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A new extension of the Birnbaum–Saunders distribution

Artur J. Lemonte
Universidade de São Paulo

Abstract. In this paper, a new extension for the Birnbaum–Saunders distri-
bution, which has been applied to the modeling of fatigue failure times and
reliability studies, is introduced. The proposed model, called the Marshall–
Olkin extended Birnbaum–Saunders distribution, arises based on the scheme
introduced by Marshall and Olkin [Biometrika 84 (1997) 641–652]. The max-
imum likelihood estimators and statistical inference for the new distribution
parameters and influence diagnostic for the new distribution are presented.
Finally, the proposed new distribution is applied to model three real data sets.

1 Introduction

The crack growth caused by vibrations in commercial aircrafts motivated Birn-
baum and Saunders (1969a, 1969b) to develop a new family of two-parameter
distributions for modeling the failure time due to fatigue under cyclic loading. Re-
laxing assumptions made by Birnbaum and Saunders (1969a), Desmond (1985)
presented a more general derivation of the Birnbaum–Saunders (BS) distribution
based on a biological model. The relationship between the BS distribution and
the inverse Gaussian distribution was investigated by Desmond (1986). The author
also demonstrated that the BS distribution is an equal-weight mixture of an in-
verse Gaussian distribution and its complementary reciprocal. The two-parameter
BS distribution is also known as the fatigue life distribution. This distribution is
an attractive alternative to the Weibull, gamma and log-normal models, since its
derivation considers the basic characteristics of the fatigue process.

The random variable T is said to have a BS distribution with shape param-
eter α > 0 and scale parameter β > 0, say, BS(α,β), if its cumulative distri-
bution function (c.d.f.) is given by F(t) = �(v), t > 0, where �(·) is the stan-
dard normal distribution function, v = ρ(t/β)/α and ρ(z) = z1/2 − z−1/2. Since
F(β) = �(0) = 1/2, β is the median of the distribution. For any constant k > 0,
it follows that kT ∼ BS(α, kβ). The reciprocal property holds for the BS distri-
bution, that is, T −1 ∼ BS(α,β−1). The probability density function (p.d.f.) and
hazard ratio function (h.r.f.) are given by (for t > 0)

f (t) = κ(α,β)t−3/2(t + β) exp
{
−τ(t/β)

2α2

}
(1.1)
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and

hBS(t) = κ(α,β)t−3/2(t + β) exp{−τ(t/β)/(2α2)}
1 − �(v)

, (1.2)

respectively, where κ(α,β) = exp(α−2)/(2α
√

2πβ) and τ(z) = z + z−1. For the
applications of the BS distributions, read, for example, Balakrishnan et al. (2007)
in reliability and Leiva et al. (2008, 2009) in other fields. The BS distribution has
received significant attention over the last few years by many researchers such as
Wu and Wong (2004), Kundu et al. (2008), Lemonte et al. (2007, 2008), Xu and
Tang (2010) and Bhatti (2010), among others. Some generalizations and exten-
sions of the BS distribution are proposed in Díaz-García and Leiva (2005), Owen
(2006), Vilca and Leiva (2006), Gómes et al. (2009), Guiraud et al. (2009), Leiva
et al. (2009), Leiva et al. (2010) and Cordeiro and Lemonte (2011). In this study, a
new three-parameter extension for the BS distribution is proposed. An advantage
of this new model over all the other generalizations of the BS distribution men-
tioned above is that this new extended model is geometrically extremely stable.
This stable behavior makes that a bivariate lifetime distribution can be easily built
(see Section 2).

Marshall and Olkin (1997) introduced an interesting method of adding a new
parameter to an existing F distribution. The resulting distribution, known as the
Marshall–Olkin (MO) extended-F distribution, includes the original distribution
as a special case and gives more flexibility to model various types of data. Let
F̄ (t) = 1 − F(t) denote the survival function of a continuous random variable T .
Then, the associated MO extended-F distribution has survival function given by

Ḡ(t) = ηF̄ (t)

1 − η̄F̄ (t)
= ηF̄ (t)

F (t) + ηF̄ (t)
, −∞ < t < ∞, η > 0, (1.3)

where η̄ = 1 − η. Clearly, equation (1.3) provides a tool to obtain new parametric
distributions from existing ones. For η = 1, Ḡ(t) = F̄ (t) and, therefore, F̄ (t) is a
basic exemplar of (1.3). The p.d.f. corresponding to (1.3), say, g(t), is given by

g(t) = ηf (t)

{1 − η̄F̄ (t)}2
, −∞ < t < ∞, η > 0, (1.4)

where f (t) is the density function corresponding to the baseline c.d.f. F(t). Re-
cently, Gómez-Déniz (2010) and García at al. (2010) used the MO scheme for
generalizing the geometric and normal distributions, respectively.

In this note, we introduce a new distribution, called the MO extended BS (de-
noted with the prefix “MOEBS” for short) distribution of which density function
can be obtained from (1.4) by taking f (t) to be the p.d.f. of the BS(α,β) dis-
tribution. We discuss maximum likelihood estimation of the model parameters,
derive the observed information matrix and present some properties of the new
class of distributions. The article is outlined as follows. In Section 2, we intro-
duce the MOEBS distribution and provide plots of the density function and hazard
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ratio function. Maximum likelihood estimation is addressed in Section 3. Influ-
ence diagnostic is presented in Section 4. Empirical applications are presented and
discussed in Section 5. Finally, concluding remarks are given in Section 6.

2 A new three-parameter BS distribution

In this section, we develop the MOEBS distribution. For this new distribution, we
present the c.d.f., p.d.f., h.r.f., moments and discuss some properties. If a random
variable T follows a MOEBS distribution, then the notation T ∼ MOEBS(η,α,β)

is used. The c.d.f. of T can be written as

G(t) = �(v)

1 − η̄�(−v)
, t > 0. (2.1)

The survival function of T is Ḡ(t) = 1 − G(t) = η�(−v)/{1 − η̄�(−v)}. The
p.d.f. of T is given by

g(t) = ηκ(α,β)t−3/2(t + β)

[1 − η̄�(−v)]2 exp
{
−τ(t/β)

2α2

}
, t > 0. (2.2)

If T ∼ MOEBS(η,α,β), then kT ∼ MOEBS(η,α, kβ), for k > 0, that is, the
class of MOEBS distributions is closed under scale transformations, as in the
case of the BS distribution. Additionally, this new distribution has an interest-
ing property. If Ti (i = 1,2, . . .) is a sequence of independent and identically dis-
tributed random variables with c.d.f. as in (2.1) and if N has a geometric distribu-
tion taken values {1,2, . . .}, then the random variables U = min{T1, . . . , TN } and
V = max{T1, . . . , TN } are distributed as in (2.1). It implies that the MOEBS dis-
tribution is geometrically extremely stable (Marshall and Olkin, 1997). Thus, bi-
variate distributions can be built. Bivariate distributions generated using the above
procedure are useful in lifetime distributions (see, for instance, Sarhan and Balakr-
ishnan, 2007).

The h.r.f. of T has the form

h(t) = hBS(t)

1 − η̄�(−v)
, t > 0, (2.3)

where hBS(t) is given in (1.2). From (2.3), note that h(t)/hBS(t) is increasing in t

for η ≥ 1 and decreasing in t for 0 ≤ η ≤ 1. Additionally, we have (for η ≥ 1)

hBS(t)

η
≤ h(t) ≤ hBS(t), �(−v) ≤ Ḡ(t) ≤ �(−v)1/η

and

hBS(t) ≤ h(t) ≤ hBS(t)

η
, �(−v)1/η ≤ Ḡ(t) ≤ �(−v)
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Figure 1 Plots of the density function (2.2) for some parameter values; β = 1.

Figure 2 Plots of the hazard ratio function (2.3) for some parameter values; β = 1.

for 0 < η ≤ 1, where �(−v) is the survival function of the BS distribution. It can
also be shown that

lim
t→∞h(t) = 1

2α2β

and, hence, we have that the limit behavior of the h.r.f. of the MOEBS distribution
is the same as that of the BS distribution.

Figures 1 and 2 illustrate some of the possible shapes of (2.2) and (2.3) for
selected values of the parameters. The plots in these figures show that the MOEBS
distribution is very versatile and that the value of η has a substantial effect on its
skewness and kurtosis. It is evident that the MOEBS distribution is much more
flexible than the BS distribution.
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Table 1 Numerical values of the function cs(η,α,β); α = 0.5 and β = 1

η

s 0.5 1 1.5 3 5 10 20 50

1 1.864 1.125 0.836 0.499 0.339 0.198 0.114 0.054
2 2.231 1.594 1.300 0.902 0.680 0.453 0.295 0.161
3 3.447 2.805 2.458 1.920 1.570 1.163 0.836 0.517
4 6.772 6.018 5.550 4.725 4.115 3.316 2.588 1.778

The sth moment of the MOEBS(η,α,β) distribution is given by

μ′
s = E(T s) = ηcs(η,α,β), s > 0, (2.4)

where

cs(η,α,β) =
∫ ∞

0

sts−1�(−v)

1 − η̄�(−v)
dt.

It is not known how cs(η,α,β) can be reduced to a closed-form expression. How-
ever, this integral can be easily computed numerically in software such as MAPLE
(Garvan, 2002), MATLAB (Sigmon and Davis, 2002), MATHEMATICA (Wolfram,
2003), Ox (Doornik, 2006) and R (R Development Core Team, 2010). Numerical
values of the function cs(η,α,β) for some values of the parameters are presented
in Table 1. Note that for η = 1, the moments agree with the respective moments of
the BS distribution. The skewness and kurtosis measures can be calculated from
the ordinary moments given in (2.4) using well-known relationships.

The MOEBS quantile function is given by

t = Q(u) = β

{
α

2
�−1

(
ηu

1 − η̄u

)
+

[
1 + α2

4
�−1

(
ηu

1 − η̄u

)2]1/2}2

,

where �−1(·) is the inverse of the standard normal c.d.f., that is, �−1(·) is the
quantile function of the standard normal c.d.f. �(·). Thus, the MOEBS distri-
bution is easily simulated as follows: if U ∼ U (0,1), then T = Q(U) has the
MOEBS(η,α,β) distribution. This scheme is useful because of the existence of
fast generators for uniform random variables. Additionally, it follows immediately
that the median (M) of the distribution of T is given by M = Q(1/2), and if η = 1,
that is, when T ∼ BS(α,β), then M = β .

3 Maximum likelihood estimation

Let t = (t1, . . . , tn)
	 denote a random sample of size n of the MOEBS distribution

with unknown parameter vector θ = (η,α,β)	. We shall consider estimation of
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the parameters of the MOEBS distribution by the method of maximum likelihood.
The total log-likelihood function for θ is


(θ) =
n∑

i=1


i(θ), (3.1)

where


i(θ) = log{ηκ(α,β)} − 3

2
log(ti) + log(ti + β)

− τ(ti/β)

2α2 − 2 log{1 − η̄�(−vi)}.
The components of the score vector Uθ = (Uη,Uα,Uβ)	, which are obtained by
taking the partial derivatives of the above log-likelihood function with respect to
η, α and β , are given by

Uη = n

η
− 2

n∑
i=1

�(−vi)

1 − η̄�(−vi)
,

Uα = −n

α

(
1 + 2

α2

)
+ 1

α3

n∑
i=1

(
ti

β
+ β

ti

)
+ 2η̄

α

n∑
i=1

viφ(vi)

1 − η̄�(−vi)
,

Uβ = − n

2β
+

n∑
i=1

1

ti + β
+ 1

2α2β

n∑
i=1

(
ti

β
− β

ti

)
+ η̄

αβ

n∑
i=1

τ(
√

ti/β)φ(vi)

1 − η̄�(−vi)
,

where φ(·) is the standard normal density function, vi = α−1ρ(ti/

β) = α−1{(ti/β)1/2 − (β/ti)
1/2} and τ(

√
ti/β) = (ti/β)1/2 + (β/ti)

1/2, for i =
1, . . . , n.

The maximum likelihood estimate (MLE) θ̂ = (η̂, α̂, β̂)	 of θ = (η,α,β)	 is
obtained by solving the likelihood equations, Uη = 0, Uα = 0 and Uβ = 0, si-
multaneously. These equations cannot be solved analytically. However, they can
be solved by a numerical method through the implementation of a statistical soft-
ware. For example, the Newton–Raphson iterative technique could be applied to
solve the likelihood equations and obtain the estimate θ̂ . The BFGS method (see,
e.g., Nocedal and Wright, 1999; Press et al., 2007) with analytical derivatives has
been used for maximizing the log-likelihood function 
(θ). As starting values for
the algorithm, we suggest for η, α and β , the values

η̃ = 1, α̃ =
√

s̄

β̃
+ β̃

r̄
− 2 and β̃ = √

s̄ r̄ ,

respectively, where

s̄ = 1

n

n∑
i=1

ti and r̄ =
(

1

n

n∑
i=1

1

ti

)−1

.
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These starting values worked well in the applications considered in Section 5.
The asymptotic inference for the parameter vector θ = (η,α,β)	 can be based

on the normal approximation of the MLE of θ , θ̂ = (η̂, α̂, β̂)	. Under some reg-
ular conditions stated in Cox and Hinkley (1974, Chapter 9) that are fulfilled for
the parameters in the interior of the parameter space, we have θ̂

a∼ N3(θ,�θ ),
for n large, where

a∼ means approximately distributed and �θ is the asymptotic
variance–covariance matrix of θ̂ . The asymptotic behavior remains valid if �θ is
approximated by −L̈−1

θ̂ θ̂
, where −L̈θ̂ θ̂ is the 3 × 3 observed information matrix

evaluated at θ̂ , obtained from

L̈θθ =
⎡⎣ L̈ηη L̈ηα L̈ηβ

· L̈αα L̈αβ

· · L̈ββ

⎤⎦ ,

whose elements are given in the Appendix. The multivariate normal N3(0,−L̈−1
θ̂ θ̂

)

distribution can be used to construct approximate confidence intervals for the pa-
rameters η, α and β , which are given, respectively, by η̂ ± zγ/2 × [v̂ar(η̂)]1/2,
α̂ ± zγ/2 × [v̂ar(α̂)]1/2 and β̂ ± zγ/2 × [v̂ar(β̂)]1/2, where var(·) is the diago-
nal element of −L̈−1

θ̂ θ̂
corresponding to each parameter, and zγ/2 is the quantile

100(1 − γ /2)% of the standard normal distribution.
We can easily check if the fit using the MOEBS model is statistically “su-

perior” to a fit using the BS model by testing the null hypothesis H0 :η = 1
against H1 :η 
= 1. For testing H0, the likelihood ratio (LR) statistic is given by
w = 2{
(η̂, α̂, β̂) − 
(1, α̃, β̃)}, where η̂, α̂ and β̂ are the unrestricted MLEs ob-
tained from the maximization of 
(θ) under H1 and α̃ and β̃ are the restricted
MLEs obtained from the maximization of 
(θ) under H0. The limiting distribu-
tion of this statistic is χ2

1 under the null hypothesis. The null hypothesis is rejected
if the test statistic exceeds the upper 100(1 − γ )% quantile of the χ2

1 distribution.
Next, a small Monte Carlo simulation is conducted to evaluate the estima-

tions of the MOEBS distribution parameters. The simulation was performed us-
ing the Ox matrix programming language (Doornik, 2006). The Ox program is
freely distributed for academic purposes and available at http://www.doornik.com.
The number of Monte Carlo replications was R = 1000. For maximizing the log-
likelihood function, we use the subroutine MaxBFGS with analytical derivatives.

The evaluation of point estimation was performed based on the following quan-
tities for each sample size: the empirical mean and the root mean squared error,√

MSE, where MSE is the mean squared error estimated from R Monte Carlo
replications. We set the sample size at n = 100 and 200, the parameter α at
α = 0.5,1.0 and 1.5, and the parameter η at η = 0.4,0.8,1.2,1.8,2.5 and 5. With-
out loss of generality, the scale parameter β was fixed at 1.0. It can be seen from
Table 2 that the estimates are quite stable and, more important, are close to the true
values for the sample sizes considered.

http://www.doornik.com
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Table 2 Empirical means and root mean squared error in parentheses

n = 100 n = 200

α η η̂ α̂ β̂ η̂ α̂ β̂

0.5 0.4 0.522 (0.396) 0.502 (0.044) 1.013 (0.210) 0.457 (0.235) 0.501 (0.031) 1.007 (0.144)
0.8 0.982 (0.719) 0.502 (0.038) 1.018 (0.189) 0.885 (0.431) 0.501 (0.026) 1.010 (0.131)
1.2 1.440 (1.072) 0.502 (0.038) 1.022 (0.186) 1.312 (0.639) 0.501 (0.026) 1.013 (0.130)
1.8 2.125 (1.644) 0.501 (0.040) 1.029 (0.190) 1.952 (0.976) 0.500 (0.028) 1.016 (0.133)
2.5 2.923 (2.371) 0.500 (0.044) 1.035 (0.199) 2.700 (1.404) 0.500 (0.030) 1.020 (0.140)
5.0 5.764 (5.374) 0.497 (0.056) 1.058 (0.234) 5.392 (3.225) 0.498 (0.040) 1.031 (0.166)

1.0 0.4 0.459 (0.223) 0.998 (0.086) 1.012 (0.248) 0.428 (0.141) 0.998 (0.061) 1.007 (0.173)
0.8 0.883 (0.402) 1.000 (0.073) 1.023 (0.228) 0.839 (0.264) 0.999 (0.052) 1.013 (0.159)
1.2 1.302 (0.584) 0.999 (0.073) 1.032 (0.228) 1.247 (0.391) 0.999 (0.051) 1.018 (0.159)
1.8 1.922 (0.866) 0.998 (0.078) 1.043 (0.238) 1.857 (0.588) 0.998 (0.055) 1.024 (0.165)
2.5 2.636 (1.205) 0.996 (0.086) 1.054 (0.253) 2.563 (0.828) 0.997 (0.060) 1.030 (0.174)
5.0 5.121 (2.502) 0.987 (0.112) 1.092 (0.313) 5.056 (1.764) 0.992 (0.079) 1.049 (0.211)

1.5 0.4 0.436 (0.157) 1.492 (0.129) 1.008 (0.245) 0.417 (0.102) 1.495 (0.092) 1.005 (0.171)
0.8 0.851 (0.290) 1.496 (0.109) 1.022 (0.226) 0.823 (0.195) 1.497 (0.077) 1.013 (0.158)
1.2 1.261 (0.425) 1.495 (0.109) 1.032 (0.227) 1.228 (0.290) 1.496 (0.077) 1.018 (0.158)
1.8 1.870 (0.631) 1.493 (0.117) 1.045 (0.239) 1.832 (0.437) 1.495 (0.082) 1.025 (0.165)
2.5 2.573 (0.879) 1.489 (0.130) 1.058 (0.258) 2.533 (0.614) 1.493 (0.090) 1.032 (0.176)
5.0 5.029 (1.818) 1.475 (0.170) 1.104 (0.333) 5.011 (1.292) 1.485 (0.119) 1.054 (0.217)

4 Influence diagnostic

The detection of atypical cases is an important step in the estimation procedure.
The first technique developed to assess the individual impact of cases on the esti-
mation process is based on case-deletion (see, e.g., Cook and Weisberg, 1982) in
which the effects are studied of completely removing cases from the analysis. This
is a global influence analysis, since the effect of the case is evaluated by dropping
it from the data. The local influence method is recommended when the concern is
related to investigate the model sensibility under some minor perturbations in the
model (or data).

Note that in equation (3.1) the contributions 
i(θ) are equally weighted.
A perturbed log-likelihood function, allowing different weight for the different
observations, can be defined in the form 
(θ |ω) = ∑n

i=1 ωi
i(θ), where ω =
(ω1, . . . ,ωn)

	 is a n-dimensional vector of perturbations, which corresponds to
a vector of weights of the contributions from each case to the log-likelihood
function. Also, let ω0 = (1, . . . ,1)	 be the vector of no perturbation such that

(θ |ω0) = 
(θ). This perturbation is intended to evaluate whether the contribution
of the cases with different weights affects the MLE of θ . The influence of mi-
nor perturbations on θ̂ can be assessed by using the log-likelihood displacement
LDω = 2{
(̂θ) − 
(̂θω)}, where θ̂ω denotes the maximum likelihood estimate un-
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der 
(θ |ω). This is the most commonly used method to evaluate the influence of a
small modification of the model. This method is briefly described as follows.

The idea for assessing local influence as advocated by Cook (1986) is essentially
the analysis of the local behavior of LDω around ω0 by evaluating the curvature of
the plot of LDω0+ad against a, where a ∈ � and d is a unit direction. One of the
measures of particular interest is the direction dmax corresponding to the largest
curvature Cdmax . The index plot of dmax may evidence those observations that have
considerable influence on LDω under minor perturbations. Cook (1986) showed
that the normal curvature at the direction d is given by Cd(θ) = 2|d	�	L̈−1

θθ �d|,
where � = ∂2
(θ |ω)/∂θ ∂ω	 and −L̈θθ is the observed information matrix, both
� and L̈θθ are evaluated at θ̂ and ω0. Hence, Cdmax/2 is the largest eigenvalue of
B = −�	L̈−1

θθ � and dmax is the corresponding unit norm eigenvector. The index
plot of dmax for the matrix B may show how to obtain large changes in the estimate
of θ .

For the MOEBS distribution, after some algebra, the matrix � is given by

� = [�	
η �	

α �	
β ]	 ,

where

�η = (k̂11, . . . , k̂1n), �α = (k̂21, . . . , k̂2n), �β = (k̂31, . . . , k̂3n),

with

k1i = 1

η
− 2�(−vi)

1 − η̄�(−vi)
,

k2i = − 1

α

(
1 + 2

α2

)
+ 1

α3

(
ti

β
+ β

ti

)
+ 2η̄

α

viφ(vi)

[1 − η̄�(−vi)] ,

k3i = − 1

2β
+ 1

ti + β
+ 1

2α2β

(
ti

β
− β

ti

)
+ η̄

αβ

τ(
√

ti/β)φ(vi)

[1 − η̄�(−vi)]
for i = 1, . . . , n. Here, the hat indicates evaluation at θ̂ = (η̂, α̂, β̂)	.

5 Applications

Here, we present three empirical applications to demonstrate the flexibility and
applicability of the MOEBS distribution. We compare the results of the fits of the
MOEBS and BS distributions. All the computations were done using the Ox matrix
programming language (Doornik, 2006).

First, we shall consider an uncensored data set from Nichols and Padgett (2006)
on breaking stress of carbon fibres (in Gba). Table 3 lists the MLEs (and the cor-
responding standard errors in parentheses) of the model parameters and the fol-
lowing statistics: AIC (Akaike Information Criterion), BIC (Bayesian Information
Criterion) and HQIC (Hannan–Quinn Information Criterion). These results show
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Table 3 MLEs (standard errors in parentheses) and AIC, BIC and HQIC; first data set

Estimates Statistic

Distribution η α β AIC BIC HQIC

MOEBS 22.3238 0.5792 0.9879 288.58 296.40 291.75
(24.0611) (0.1295) (0.4275)

BS 0.4622 2.3660 304.12 309.33 306.23
(0.0327) (0.1064)

Table 4 MLEs (standard errors in parentheses) and AIC, BIC and HQIC; second data set

Estimates Statistic

Distribution η α β AIC BIC HQIC

MOEBS 2.7338 1.2750 3.5815 5391.10 5405.15 5396.50
(0.3522) (0.0391) (0.2977)

BS 1.2347 6.0625 5451.86 5461.22 5455.45
(0.0309) (0.2195)

that the MOEBS distribution has the lowest AIC, BIC and HQIC values, and so it
could be chosen as the best model. The LR statistic for testing the null hypothesis
H0 :η = 1 (BS) against H1 :η 
= 1 (MOEBS) is 17.5379 (p-value < 0.001). Thus,
we reject the null hypothesis in favor of the MOEBS distribution at any usual sig-
nificance level, that is, the MOEBS model is significantly better than the BS model
based on the LR statistic.

Next, as a second application, we consider the data set corresponding to a record
of 799 intervals between pulses along a nerve fibre presented in Cox and Lewis
(1966) and reported in Jørgensen (1982). Table 4 lists the MLEs (standard errors
in parentheses) of the parameters and the statistics AIC, BIC and HQIC. Based
on these statistics, the MOEBS model should be preferred to the BS model. The
LR statistic for testing the hypothesis H0: BS against H1: MOEBS is 62.757 (p-
value < 0.001) and, hence, we strongly reject the null hypothesis in favor of the
MOEBS distribution at any usual significance level. Therefore, according to the
LR statistic, the MOEBS model is significantly better than the BS model.

The third real data set corresponds to daily ozone concentrations in New York
during May–September, 1973. They were taken from Nadarajah (2008), provided
by the New York State Department of Conservation. The MLEs (standard errors in
parentheses) of the parameters and the statistics AIC, BIC and HQIC are given in
Table 5. Based on the AIC, BIC and HQIC, the MOEBS model should be preferred
to the BS model. The null hypothesis H0 : BS against H1 : MOEBS is rejected,
since the value of the LR statistic is 10.7089 (p-value < 0.001). Thus, the MOEBS
model is significantly better than the MOEBS model according to this statistic.
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Table 5 MLEs (standard errors in parentheses) and AIC, BIC and HQIC; third data set

Estimates Statistic

Distribution η α β AIC BIC HQIC

MOEBS 3.8289 1.0646 14.5053 1093.49 1101.75 1096.84
(1.6021) (0.1031) (3.6853)

BS 0.9823 28.0234 1102.19 1107.70 1104.43
(0.0645) (2.2644)

Figure 3 Estimated p.d.f. and c.d.f. of the MOEBS and BS distributions; first data set.

Plots of the estimated p.d.f. and c.d.f. of the MOEBS and BS models are given
in Figures 3, 4 and 5 for the first, second and third data set, respectively. From
these figures, the MOEBS model provides a better fit than the BS model in all the
cases. QQ-plots are presented in Figures 6, 7 and 8 for the first, second and third
real data set, respectively. Note that the MOEBS model outperforms the BS model
in all the cases.

Figure 9 gives the influence index plot for the MOEBS model for the first, sec-
ond and third real data sets. An inspection of these plots [Figures 9(a) and 9(b)]
reveal that no observation appears with outstanding influence on the MLEs of the
model parameters in the first and second real data sets. However, Figure 9(c) in-
dicates that the case #18 has more pronounced influence on the MLEs than the
other observations. It corresponds to the smallest observation. The relative change
(RC), in percentage, of each parameter estimate is used to evaluate the effect of the
potentially influential case. The RC is defined by RCθ (i) = |(θ̂ − θ̂(i)/θ̂ | × 100%,
where θ̂(i) denotes the MLE of θ after removing the ith observation. We have
RCη(18) = 64.36%, RCα(18) = 19.34% and RCβ(18) = 83.39%. Note the poten-
tial influence of this observation, mainly on the MLE of the parameters η and β .
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Figure 4 Estimated p.d.f. and c.d.f. of the MOEBS and BS distributions; second data set.

Figure 5 Estimated p.d.f. and c.d.f. of the MOEBS and BS distributions; third data set.

We fit the MOEBS and BS distributions when the potentially influential case #18
is not considered in the analysis. In this case, the classical BS distribution presents
a better fit than the MOEBS model. For example, we have AIC = 1071.44, BIC =
1079.67 and HQIC = 1074.78 for the MOEBS model, whereas AIC = 1069.96,
BIC = 1075.45 and HQIC = 1072.19 for the BS model.

6 Concluding remarks

Marshall and Olkin (1997) proposed a simple transformation of a distribution
function by inserting an additional parameter η > 0 in order to obtain a larger
class of distribution functions which contains the original one, in case of η = 1.
Based on this approach, a new three parameter Birnbaum–Saunders distribution
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Figure 6 QQ-plots: first data set.

Figure 7 QQ-plots: second data set.

was developed. The probability density function, cumulative distribution function,
hazard function, moments and some plots were provided. Some properties of this
new model were obtained. The estimation of the parameters is approached by the
method of maximum likelihood and the observed information matrix is derived.
Moreover, it can be depicted from the Monte Carlo simulation study that the max-
imum likelihood estimators of the model parameters of the MOEBS distribution
present a quite nice behavior in terms of empirical means and mean squared er-
ror. We also discussed influence diagnostic for the new model. Applications of the
MOEBS distribution to three real data sets are given to show that the new distri-
bution provides consistently better fits than the BS distribution. It also illustrates
the fact that there is still room for improving the BS model. We hope that this
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Figure 8 QQ-plots: third data set.

generalization may attract wider applications in the literature of the fatigue life
distributions and survival analysis.

Appendix

After algebraic manipulations, the elements of the matrix L̈θθ are given by

L̈ηη = − n

η2 + 2
n∑

i=1

(
�(−vi)

1 − η̄�(−vi)

)2

, L̈ηα = − 2

α

n∑
i=1

viφ(vi)

[1 − η̄�(−vi)]2 ,

L̈ηβ = − 1

αβ

n∑
i=1

τ(
√

ti/β)φ(vi)

[1 − η̄�(−vi)]2 ,

L̈αα = n

α2 + 6n

α4 − 3

α4

n∑
i=1

(
ti

β
+ β

ti

)

− 2η̄

α2

n∑
i=1

viφ(vi)

1 − η̄�(−vi)

{
2 − v2

i − η̄viφ(vi)

1 − η̄�(−vi)

}
,

L̈αβ = − 1

α3β

n∑
i=1

(
ti

β
− β

ti

)

− η̄

α2β

n∑
i=1

τ(
√

ti/β)φ(vi)

1 − η̄�(−vi)

{
1 − v2

i − η̄viφ(vi)

1 − η̄�(−vi)

}
,
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Figure 9 Influence index plots for the MOEBS model for the first (a), second (b) and third (c) real
data sets.

L̈ββ = n

2β2 −
n∑

i=1

1

(ti + β)2 − 1

α2β3

n∑
i=1

ti

− η̄

2αβ2

n∑
i=1

φ(vi)

1 − η̄�(−vi)

{
3

√
t

β
+

√
β

t

− τ(
√

ti/β)2

α

[
vi + η̄φ(vi)

1 − η̄�(−vi)

]}
.

Acknowledgments

The author thanks two anonymous referees for helpful comments. The financial
support from FAPESP (Brazil) is gratefully acknowledged.



148 A. J. Lemonte

References

Balakrishnan, N., Leiva, V. and López, J. (2007). Acceptance sampling plans from truncated life tests
from generalized Birnbaum–Saunders distribution. Communications in Statistics—Simulation
and Computation 36, 643–656. MR2370927

Bhatti, C. R. (2010). The Birnbaum–Saunders autoregressive conditional duration model. Mathemat-
ics and Computers in Simulation 80, 2062–2078. MR2665320

Birnbaum, Z. W. and Saunders, S. C. (1969a). A new family of life distributions. Journal of Applied
Probability 6, 319–327. MR0253493

Birnbaum, Z. W. and Saunders, S. C. (1969b). Estimation for a family of life distributions with
applications to fatigue. Journal of Applied Probability 6, 328–347. MR0251807

Cook, R. D. (1986). Assessment of local influence (with discussion). Journal of the Royal Statistical
Society, Ser. B 48, 133–169. MR0867994

Cook, R. D. and Weisberg, S. (1982). Residuals and Influence in Regression. London: Chapman &
Hall. MR0675263

Cordeiro, G. M. and Lemonte, A. J. (2011). The β-Birnbaum–Saunders distribution: An improved
distribution for fatigue life modeling. Computational Statistics and Data Analysis 55, 1445–1461.

Cox, D. R. and Hinkley, D. V. (1974). Theoretical Statistics. London: Chapman & Hall. MR0370837
Cox, D. R. and Lewis, P. A. W. (1966). The Statistical Analysis of Series of Events. London:

Methuem. MR0199942
Desmond, A. F. (1985). Stochastic models of failure in random environments. Canadian Journal of

Statistics 13, 171–183. MR0818323
Desmond, A. F. (1986). On the relationship between two fatigue-life models. IEEE Transactions on

Reliability 35, 167–169.
Díaz-García, J. A. and Leiva, V. (2005). A new family of life distributions based on the elliptically

contoured distributions. Journal of Statistical Planning and Inference 128, 445–457. MR2102769
Doornik, J. A. (2006). An Object-Oriented Matrix Language—Ox 4, 5th ed. London: Timberlake

Consultants Press.
García, V. J., Gómez-Déniz, E. and Vázquez-Polo, F. J. (2010). A new skew generalization of the

normal distribution: Properties and applications. Computational Statistics and Data Analysis 54,
2021–2034. MR2640305

Garvan, F. (2002). The Maple Book. London: Chapman & Hall/CRC.
Gómes, H. W., Olivares-Pacheco, J. F. and Bolfarine, H. (2009). An extension of the generalized

Birnbaum–Saunders distribution. Statistics and Probability Letters 79, 331–338. MR2493016
Gómez-Déniz, E. (2010). Another generalization of the geometric distribution. Test 19, 399–415.

MR2677735
Guiraud, P., Leiva, V. and Fierro, R. (2009). A non-central version of the Birnbaum–Saunders distri-

bution for reliability analysis. IEEE Transactions on Reliability 58, 152–160.
Jørgensen, B. (1982). Statistical Properties of the Generalized Inverse Gaussian Distribution. New

York: Springer-Verlag. MR0648107
Kundu, D., Kannan, N. and Balakrishnan, N. (2008). On the hazard function of Birnbaum–Saunders

distribution and associated inference. Computational Statistics and Data Analysis 52, 2692–2702.
MR2419535

Leiva, V., Barros, M., Paula, G. A. and Sanhueza, A. (2008). Generalized Birnbaum–Saunders dis-
tributions applied to air pollutant concentration. Environmetrics 19, 235–249. MR2420468

Leiva, V., Sanhueza, A. and Angulo, J. M. (2009). A length-biased version of the Birnbaum–Saunders
distribution with application in water quality. Stochastic Environmental Research and Risk Assess-
ment 23, 299–307. MR2476075

Leiva, V., Vilca, F., Balakrishnan, N. and Sanhueza, A. (2010). A skewed sinh-normal distribution
and its properties and application to air pollution. Communications in Statistics—Theory and
Methods 39, 426–443. MR2745286

http://www.ams.org/mathscinet-getitem?mr=2370927
http://www.ams.org/mathscinet-getitem?mr=2665320
http://www.ams.org/mathscinet-getitem?mr=0253493
http://www.ams.org/mathscinet-getitem?mr=0251807
http://www.ams.org/mathscinet-getitem?mr=0867994
http://www.ams.org/mathscinet-getitem?mr=0675263
http://www.ams.org/mathscinet-getitem?mr=0370837
http://www.ams.org/mathscinet-getitem?mr=0199942
http://www.ams.org/mathscinet-getitem?mr=0818323
http://www.ams.org/mathscinet-getitem?mr=2102769
http://www.ams.org/mathscinet-getitem?mr=2640305
http://www.ams.org/mathscinet-getitem?mr=2493016
http://www.ams.org/mathscinet-getitem?mr=2677735
http://www.ams.org/mathscinet-getitem?mr=0648107
http://www.ams.org/mathscinet-getitem?mr=2419535
http://www.ams.org/mathscinet-getitem?mr=2420468
http://www.ams.org/mathscinet-getitem?mr=2476075
http://www.ams.org/mathscinet-getitem?mr=2745286


A new extension of the Birnbaum–Saunders distribution 149

Lemonte, A. J., Cribari-Neto, F. and Vasconcellos, K. L. P. (2007). Improved statistical inference for
the two-parameter Birnbaum–Saunders distribution. Computational Statistics and Data Analysis
51, 4656–4681. MR2364472

Lemonte, A. J., Simas, A. B. and Cribari-Neto, F. (2008). Bootstrap-based improved estimators for
the two-parameter Birnbaum–Saunders distribution. Journal of Statistical Computation and Sim-
ulation 78, 37–49. MR2412760

Marshall, A. W. and Olkin, I. (1997). A new method for adding a parameter to a family of dis-
tributions with application to the exponential and Weibull families. Biometrika 84, 641–652.
MR1603936

Nadarajah, S. (2008). A truncated inverted beta distribution with application to air pollution data.
Stochastic Environmental Research and Risk Assessment 22, 285–289. MR2412572

Nichols, M. D. and Padgett, W. J. (2006). A bootstrap control chart for Weibull percentiles. Quality
and Reliability Engineering International 22, 141–151.

Nocedal, J. and Wright, S. J. (1999). Numerical Optimization. New York: Springer. MR1713114
Owen, W. J. (2006). A new three-parameter extension to the Birnbaum–Saunders distribution. IEEE

Transactions on Reliability 55, 475–479.
Press, W. H., Teulosky, S. A., Vetterling, W. T. and Flannery, B. P. (2007). Numerical Recipes in C:

The Art of Scientific Computing, 3rd ed. Cambridge: Cambridge Univ. Press. MR2371990
R Development Core Team (2010). R: A Language and Environment for Statistical Computing. Vi-

enna, Austria: R Foundation for Statistical Computing.
Sarhan, A. M. and Balakrishnan, N. (2007). A new class of bivariate distributions and its mixture.

Journal of Multivariate Analysis 98, 1508–1527. MR2364132
Sigmon, K. and Davis, T. A. (2002). MATLAB Primer, 6th ed. London: Chapman & Hall/CRC.
Vilca, F. and Leiva, V. (2006). A new fatigue life model based on the family of skew-elliptical distri-

butions. Communications in Statistics—Theory and Methods 35, 229–244. MR2274046
Wolfram, S. (2003). The Mathematica Book, 5th ed. New York: Cambridge Univ. Press.
Wu, J. and Wong, A. C. M. (2004). Improved interval estimation for the two-parameter Birnbaum–

Saunders distribution. Computational Statistics and Data Analysis 47, 809–821. MR2101553
Xu, A. and Tang, Y. (2010). Reference analysis for Birnbaum–Saunders distribution. Computational

Statistics and Data Analysis 54, 185–192. MR2558469

Departamento de Estatística
Universidade de São Paulo
São Paulo/SP, 05508-090
Brazil
E-mail: arturlemonte@gmail.com

http://www.ams.org/mathscinet-getitem?mr=2364472
http://www.ams.org/mathscinet-getitem?mr=2412760
http://www.ams.org/mathscinet-getitem?mr=1603936
http://www.ams.org/mathscinet-getitem?mr=2412572
http://www.ams.org/mathscinet-getitem?mr=1713114
http://www.ams.org/mathscinet-getitem?mr=2371990
http://www.ams.org/mathscinet-getitem?mr=2364132
http://www.ams.org/mathscinet-getitem?mr=2274046
http://www.ams.org/mathscinet-getitem?mr=2101553
http://www.ams.org/mathscinet-getitem?mr=2558469
mailto:arturlemonte@gmail.com

	Introduction
	A new three-parameter BS distribution
	Maximum likelihood estimation
	Influence diagnostic
	Applications
	Concluding remarks
	Appendix
	Acknowledgments
	References
	Author's Addresses

