Brazilian Journal of Probability and Statistics
2012, Vol. 26, No. 2, 178-207

DOI: 10.1214/10-BJPS128

© Brazilian Statistical Association, 2012

The gamma beta ratio distribution

Saralees Nadarajah
School of Mathematics, University of Manchester

Abstract. The important problem of the ratio of gamma and beta distributed
random variables is considered. Six motivating applications (from efficiency
modeling, income modeling, clinical trials, hydrology, reliability and mod-
eling of infectious diseases) are discussed. Exact expressions are derived
for the probability density function, cumulative distribution function, hazard
rate function, shape characteristics, moments, factorial moments, variance,
skewness, kurtosis, conditional moments, L moments, characteristic func-
tion, mean deviation about the mean, mean deviation about the median, Bon-
ferroni curve, Lorenz curve, percentiles, order statistics and the asymptotic
distribution of the extreme values. Estimation procedures by the methods
of moments and maximum likelihood are provided and their performances
compared by simulation. For maximum likelihood estimation, the Fisher in-
formation matrix is derived and the case of censoring is considered. Finally,
an application is discussed for efficiency of warning-time systems.

1 Introduction

For given random variables X and Y, the distribution of the ratio X /Y is of interest
in many areas of the sciences, engineering and medicine. In this paper, we study
the distribution of Z = X/Y when X and Y are independent random variables
with X having the gamma distribution given by the probability density function

(p.d.f.):
S exp(—Ax)

x(x) = (1.1)
I r'(B)
(forx > 0, 8 > 0and A > 0) and Y having the beta distribution given by the p.d.f.:
Yl =y
= 77 1.2
fr(») Ba.b) (1.2)

(for0 <y <1,a>0and b > 0), where I'(-) and B(-, -) are the gamma and beta
functions defined by

I'(c)= /000 1 Vexp(—t) dt
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and
! 1 d—1
B(c, a’):/ 71— de,
0

respectively. We shall refer to the distribution of Z = X /Y as the gamma beta ra-
tio distribution. The study of the gamma beta ratio distribution is of importance in
many applied areas. Six motivating examples are discussed in Section 2. A com-
prehensive treatment of the mathematical properties of the gamma beta ratio dis-
tribution including estimation issues is provided in Sections 3—10. An application
is discussed in Section 11. Some of the results in Section 3 have appeared before
in Nadarajah and Kotz (2005). They are reproduced here for completeness.

The calculations of this paper involve several more special functions, including
the complementary incomplete gamma function defined by

oo
F(a,x)z/ exp(—1)t~ ! dt,
X
the 1 F; hypergeometric function (also known as the confluent hypergeometric
function) defined by
& (@) x*
S by k!

the » F| hypergeometric function (also known as the Gauss hypergeometric func-
tion) defined by

1Fi(a; b; x) =

s k
2F1(a,b;c; x) = Z (@) (D) x*

= (o K
the o F, hypergeometric function defined by

& @byt
2F2(a, b, di x) = k; Oy &

the Meijer G-function defined by

m,n
Gpy (x

al,...,an,an+1,...,ap>
bi,....bw, by, ..., by
1 x'Thy+t) - Ty +Td—a;—t)---T'(l —a, — 1)

T 2miJL T + 1) T(ap + OT (A —bpyr —1) - T(1— by — 1)

and, the generalized Kampé de Fériet function defined by

.p(). .ph)
Fé{gu);_f:;gm)((a) L BMY; () (€ (@D) L (d ) xL L x)

_ i i (@) +-tmy (B -+ (), 2" - 2™

2 (@)t (@ D))y - (@), !
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where i = /1, a = (a1, a2, ...,aa), b = (bj1, bj2.....bj pw) for j =
1,2,....n,c=(c1,¢2,...,cc),d® = (dj,l,djyz,...,dj’D@)) for j=1,2,...,n
and ((f)x = (1, fos -5 )k = (fOx(f2)k - - - (fp)k denotes the product of
ascending factorials with each ascending factorial defined as (fj)r = f;(f; +
1)---(fj +k — 1) with the convention that (f;)o = 1. For a description of the
integration path, L, in the the Meijer G-function, see Section 9.3 in Gradshteyn
and Ryzhik (2000). Detailed properties of these special functions can be found in
Exton (1978), Prudnikov et al. (1986) and Gradshteyn and Ryzhik (2000).

2 Motivating applications

Here, we discuss six motivating examples from efficiency modeling, income mod-
eling, clinical trials, hydrology, reliability and modeling of infectious diseases,
where ratios of the form X /Y arise with X and Y being gamma and beta random
variables. The assumption that X and Y are independent may not be realistic for
some of the examples. However, the independence assumption could at least yield
a first approximation for the distribution of the ratio. For large samples, it is known
that the distribution assuming independence is consistent with that not assuming
independence; see, for example, Cox and Hinkley (1974).

2.1 Over-reported income

In the economic literature, the over-reported income is commonly expressed by
the multiplicative relationship Z = X /Y, where Y is a multiplicative error and X
denotes the true income. It is well known that if ¥ has the power function distribu-
tion (a particular case of the beta distribution) then X is Pareto distributed if and
only if Z is also; see Krishnaji (1970). In practice, the gamma distribution is often
preferred as a model for income; see, for example, Grandmont (1987), Milevsky
(1997), Sarabia et al. (2002) and Silver et al. (2002). This raises the important
question: what is the distribution of the over-reported income Z = X/Y if X is
gamma distributed?

2.2 Hydrology

Let X and Y be independent random variables representing the areal precipitation
and the annual stream flow, respectively. In hydrology, the interest is in the propor-
tion of precipitation that ended up in stream flow, thatis, 1/Z =Y/ X. It is known
on physical grounds that Y is finite valued [see, e.g., Clarke (1979)]; therefore, it
will be most reasonable to assume that X and Y are distributed according to (1.1)
and (1.2), respectively, after suitable scaling.
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2.3 Adaptive randomization

The purpose of outcome-adaptive randomization is to treat patients more effec-
tively by weighting randomization probabilities in favor of better performing arms.
[Berry and Eick (1995) and Berry (2004) discuss of the ethics and efficiency
of adaptive randomization trials.] In most adaptively randomized clinical trials,
the probability that a patient will be assigned to a given arm is proportional to
exp(—ur)r* where r is the probability that the arm is in some sense best and
@ > 0and A > 0 are some trial design parameters. The value of r will be subject
to some random error because it will depend on how many arms there are and
on their respective strengths. Since r is a probability, the most reasonable model
will be the beta distribution given by (1.2). The question is: what is the probability
that a patient gets assigned an arm with a specific design? This is proportional to
[01 exp(—ur)r* f (r) dr, which entails computing the distribution of the ratio X/ Y
of gamma and beta random variables.

2.4 Expected efficiency

Suppose that a job can be performed in n possible ways with the resulting
costs ¢y, €2, ..., Ccy. Suppose too that the n ways are chosen with probabilities
P1, P2, .-, Pn, Where p1 + p2 4+ --- + p, = 1. The expected efficiency of the job
performed can be defined as py/c1+ pa/ca+- -+ pn/cn, Where p;/c; denotes the
expected efficiency of choosing the ith possible way. In reality, both ¢; and p; will
be subject to some random errors and so will the expected efficiency. Thus, in gen-
eral, one can write the expected efficiency as Y/ X, where X and Y are independent
random variables representing the values of ¢; and p;, respectively. The most nat-
ural model for X will be the gamma distribution (it being the most popular model
for skewed data) given by (1.1). The most natural model for ¥ will be the beta
distribution (the only standard model for data on the unit interval) given by (1.2).
Thus, inferences about the expected efficiency can be made by deriving the exact
distribution of Z = X/Y when X and Y are independent random variables with
the p.d.f.s given by (1.1) and (1.2), respectively.

2.5 Modeling of infectious diseases

Importance of the Wells Riley equation to modeling of infectious diseases can-
not be overlooked; see, for example, Fennelly et al. (2004), Fennelly and Nardell
(1998), Liao et al. (2005), Nicas (1996, 2000) and Rudnick and Milton (2003). The
original form of the Wells Riley equation [Nardell et al. (1991)] is given by

P=1 —exp(—inqt>, 2.1)

where P = proportion of new disease cases among the susceptible persons; D =
number of new disease cases; s = number of susceptible persons; i = number of
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infectors; p = breathing rate; g = the rate at which an infector disseminates infec-
tious particles; + = time that infectors and susceptibles share a confined space or
ventilation system; and Q = rate of supply of outdoor air.

Probabilistic modeling based on (2.1) has gained much interest not just with re-
spect to infectious diseases but also in other areas. Two popular models used with
respect to (2.1) have been the gamma and beta distributions. For instance, Nicas
(1996) stated the following: ... It was previously shown that the beta distribution
on the interval [0, 1] is a good descriptor of respirator penetration values experi-
enced by an individual worker from wearing to wearing, and of average respirator
penetration values experienced by different workers. Based on the premise that
the gamma distribution can reasonably describe the time-varying M. tb aerosol ex-
posure levels experienced by health care workers. ...” The calculation with (2.1)
clearly involves ratios of random variables.

2.6 Reliability

Let X and Y be independent random variables representing, respectively, the fail-
ure time of a component and the warning-time variable showing that the compo-
nent will fail. In reliability engineering, 1/Z = Y /X will represent the efficiency
of the warning-time system. Gamma distributions are popular models for failure
time data and one would like the warning made within a fixed period of the time
of operation; therefore, it will be most reasonable to assume that X and Y are
distributed according to (1.1) and (1.2), respectively, after suitable scaling.

3 P.d.f. and c.d.f.

Theorem 1 expresses the p.d.f. and the c.d.f. of the gamma beta ratio distribution
in terms of the confluent hypergeometric function and the ; F> hypergeometric
function, respectively.

Theorem 1. Suppose X and Y are distributed according to (1.1) and (1.2), re-
spectively. The c.d.f. of Z = X/Y can be expressed as

_ B(b.a+p)(2)f
~ T(B+1)B(a,b)

for z > 0. The corresponding p.d.f.of Z=X/Y is

F7(2) 2B a+ BB+ 1,a+b+ B —A2) 3.1

AP B(B +a,b)

p—1 . o
FBBap) - 1P Tafrathi—i) (3.2)

fz(x) =

forz>0.
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Proof. The c.d.f. corresponding to (1.1) is 1 — I'(8, Ax)/ '(B). Thus, one can
write the c.d.f. of X/Y as

1
Pr(X/Y <2) = /0 Fx (@) fr () dy

1
T T AR, N a=lc1 _ b1
lYmBmiaﬁlwﬂ*W”’ (I—y)""dy (3.3)

1
- 1.
I'(B)B(a,b)
Application of equation (2.10.2.2) in Prudnikov et al. (1986, Volume 2) shows that
the integral / can be calculated as

I =T(B8)B(a,b)

3.4
(r2)P
-5 B(b,a+pnFr(B.a+pB:p+1,a+b+p;—1z).
The resultin (3.1) follows by substituting (3.4) into (3.3). The p.d.f. in (3.2) follows
by differentiation and using properties of the hypergeometric function. 0

Using special properties of the hypergeometric functions, one can derive sev-
eral simpler forms for (3.1) and (3.2) when a, b and B take integer values. The
following are worth noting:

e If B =n >1is an integer then

Frz) =1 ! S(M)kB( Yk, b) Fi(a+kia+btk—iz)
PYE T Bk ok TR T

for z > 0.
e If B =n >1is an integer then

ATdza— 1 n

—k
0= F Gy ( ){r(a+ﬁ+k>—r<a+ﬂ+k,xz>}

for z > 0.
e Ifa+b+pB=m=>1anda+ B =n>1 are integers then

(=)™ 11 = m)y(@)m-nz ' (Az)f~mH!

Jz@)= m—1(B)
m—n—1 k k
(n—m + D(=22) L1 =y (h)
X{ & wemme 0O “)Z a2 —m

for z > 0.
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e If a4+ B =n>1is an integer then

(—DPz7 1 (A2)P b exp(—rz2)
I'(B)B(a, b)

fz(x) =

x Y (o) (” ; 1) {Tb+k) —T(b+k, —12)}
k=0

for z > 0.

The formulas for fz(z) and Fz(z) above can be used to save computational time
since the computation of the hypergeometric functions in (3.1) and (3.2) can be
more demanding. We note that the 5 F> hypergeometric function in (3.1) has been
reduced to the simpler confluent hypergeometric function. We also note that the
confluent hypergeometric function in (3.2) has been reduced to the simpler com-
plementary incomplete gamma function.

4 Hazard rate function

It follows from (3.1) and (3.2) that the hazard rate function (h.r.f.) of the gamma
beta ratio distribution is

A(z)
=— 4.1
2z (2) 50 (4.1)
for z > 0,
A(z) =pBrPBa+ B, b):P "\ Fi(B+a; B+a+b; —rz)
and

B(z) =T(B+1)B(a,b) — B(b,a+B)(A)PrF(B,a+B; B+1,a+b+B; —1r2).

5 Shape

Here, we derive shape characteristics of (3.2) and (4.1). Using the fact

01Fi(a;b;x) a
—————=—1Fila+1;b+1;x) (5.1)
0x b

(see http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric1F1/
20/01/04/) one can see that the p.d.f., (3.2), is unimodal and the mode is the root
of the equation

1Fi(l+B+a;1+B+a+bi—22) (B—1D(B+a+b)
\Fi(B+a;B+a+b;—rz)  AB+az
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Using the fact

Fila: b x)— I'(b) —ar1 1 o(1 I'(b)
1F1(a; J)—m(—x) [1+ (/x)]+F(a)

as x — oo (see http://functions.wolfram.com/HypergeometricFunctions/
Hypergeometric1F1/06/02/), one can see that

I'(B+a) 1
r4T(B)Bl(a, b)
as z — o0o. Using the fact Fi(a;b;x) =14 O(x) as x — 0 (see http://

functions.wolfram.com/HypergeometricFunctions/Hypergeometric1F1/06/01/02/
01/01/), one can see that

exp(x)xP[1 + 0(1/x)]

fz(2) ~ (5.2)

kﬁB(,B +a,b) A1

fz(z) ~ F(B)B(a.b)

(5.3)

as z — 0. Using the facts (5.1) and

d2F»(a, b; c,d; b
2@ bie i) @b bbb el d41ix)
ax cd
(see http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F2/
20/01/06/), one can see that the hazard rate function, (4.1), is unimodal and the

mode is the root of the equation
BAPB(a+ B.b)zP*B(2)C(z) = —BAPB(b,a + p)zP ' A(2) D(2),

where

C@=@B-D1Fi(B+a;B+a+b;—A7)

—%1Fl(ﬂ +a+1;8+a+b+1;—1z)
and
D) =2k (B.a+B;B+1,a+b+ B; —Az)
(a+ Bz
T B+ D@+b+p)
xoF(B+1l,a+B+1;8+2,a+b+ B+ 1;—A2).
Using the fact

2Fa(a, b;c,d; x) = F(l;g?(l;(f);(ﬁ(; i)a) (=) “[14+01/x)]
L)' d)'(a—Db)
'a)'(c—b)I'(d—b)
I'(eI'(d) catb—c—d
C'(@)T'(b)

(=) P14+ 0(1/x)]

exp()[1 + O(1/x)]


http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric1F1/06/02/
http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric1F1/06/01/02/01/01/
http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F2/20/01/06/
http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric1F1/06/02/
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as x — oo (see http://functions.wolfram.com/HypergeometricFunctions/
Hypergeometric2F2/06/02/02/), one can see that

LB +a) —a
ariT(B)B(a,b)"

1 —Fz(z)~

as z — oo and so
al’(b) _,

12~ Tt

as z — oo. It follows from (5.3) that

)\ﬂB(,B +a, b)zﬁ—l
I'(B)B(a,b)
as z — 0. Clearly the tails of the p.d.f. and the hazard rate function are polynomial.
It is also clear that the parameters a and S control, respectively, the upper and lower
tails.
Figures 1 and 2 illustrate possible shapes of the p.d.f., (3.2), and the haz-
ard rate function, (4.1), for selected values of a, b and B. The hypergeo-

metric functions (3.2) and (4.1) were calculated using hypergeom([-],[-], -) and
hypergeom([-1,[-], [-1,[-], -) functions in MAPLE.

Az(2) ~

~
o
©
o
o 4
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=
5]
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o
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o
<
o

Figure 1 Plots of the p.d.f., (3.2),fora=b=0.5,A=1and § =0.8,1,2,5.
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Figure 2  Plots of the hazard rate function, (4.1), fora=b=0.5,.=1and $ =0.8,1,2,5.

6 Moment properties

The moments of the gamma beta ratio distribution can be derived by knowing the
same for X and Y. It is well known [see, e.g., Johnson et al. (1994)] that

r
E(xn = LEED
AT(B)
and
B b
E(Y") = (a+n,b)
B(a, b)
forallreal n suchthat 5 +n#0,—1,-2,...,a+n#0,—1,-2,...anda+ b+
n=#0,—1,-2,....So, the nth moment of the gamma beta ratio distribution is

'B+n)Bla—n,b)
AT (B)B(a, b)
forall real n suchthat 8 +n#0,—1,-2,...,a—n#0,—1,-2,...anda+ b —

n #0,—1,-2,.... The factorial moments, variance, skewness and the kurtosis
can be calculated from the expression for E(Z").

E(Z") =
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As mentioned in Section 2, the distribution of Z is useful as lifetime models.
For such models, it is of interest to know what E(Z¥ | Z > z) is. Using Lemma 1
in the Appendix, it is easily seen that

AP B ,b
E(ZK|Z> 2= @HBD) _ zaibiain)
{1 - Fz()}I'(B)B(a,b)
for all real k. The mean residual lifetime functionis E(Z | Z > z) — z.

Some other important measures useful for lifetime models are the L moments

due to Hoskings (1990). It can be shown using Lemma 2 in the Appendix that the

kth L moment is
k—1 .
(k=1 k—1+
=Y 0 () (P ) g
i J J

where

8 — T(np+ B+ B (a+ B, b)
"TOAD(B)T(B + 1)B T (a, b)

The L moments have several advantages over ordinary moments: for example,
they apply for any distribution having finite mean; no higher-order moments need
be finite.

Using the fact that the characteristic function (c.h.f.) of X is

1k, n).

A B
Elexp(itX)] = (A — it) )

the c.h.f. of the gamma beta ratio distribution can be expressed as

¢(t) = E(exp(itX/Y))
_ 1 A B B AP 1 ya—l(l _ y)b—l
_/o (A—it/y) friyydy = B(a,b)/o G iF P D

1 1 ya+ﬂ—1(1 _ y)b—l 1
= = I.
Fad b o—wF " 5D
Application of equation (2.2.6.15) in Prudnikov et al. (1986, Volume 1) shows that
the integral / can be calculated as

ir\ P
t A
I= (—%) B(a + B, b)2 F) (a+/3,,8;a+b+/3; E)‘ 6.2)
Substituting (6.2) into (6.1), one obtains

A B(a + B, b)

o) = (—it)PB(a, b) >

A
Fl<a+ﬂ,,3;a+b+,3; E) (6.3)
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Using well-known transformation formulas for the Gauss hypergeometric func-
tion, one can obtain the following alternative forms of (6.3):

N % . A\ "R Ba + B, b) - beat b B A
¢()_<_;> < _E> B((l,b) 2 1<a+ﬁaa+ 9a+ +ﬂ’)\.—lt>’
A% P B(a+ B.b) . A
00=(5) (1-5) gy 2rlpraressy)

and

M A\"PBa+Bb) _ A
(p(f)—(—g) (1—5) WzFl(b,a+b,a+b+ﬁ,E>

If a, b and B take integer values then, using special properties of the Gauss hyper-
geometric function, one can obtain the following elementary form of (6.3):

14 b—1 B
B\ (_1yk(_inB— k .
¢1) = 2“B(a b);”zo< )(1>( DS (=)P /W) Pla+B+k+1—1),

where P (m) satisfies the recurrence relation

1 (n/tym1 m—1
1+m—=280+r/0)f~1  2B—m—1

with the initial values
log( ) if =1,

2(1—ﬂ){( 7)o e

A Pl eg—nes =3B —2k+1) A2\ k=P
14+ 2
(2ﬁ—1)l,; kB -1)(B—2)---(B—k) (+t2>

28 — 3! A
m arctan(;) .

P(m) = P(m —2)

P(l)=

and

P(0) =

7 Mean deviations and Bonferroni and Lorenz curves

The amount of scatter in a population is evidently measured to some extent by the
totality of deviations from the mean and median. These are known as the mean
deviation about the mean and the mean deviation about the median—defined by

51<Z>=fooo 2 — ulfz()dz
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and
5(2) =f0°° 2 — MIf2(2)dz.

respectively, where yu = E(Z) and M = Median(Z) denotes the median. The mea-
sures 81(Z) and §>(Z) can be calculated using the relationships

m 00
61<Z>=f (M—Z)fz(z)dz+/ (z— ) f2(2)dz
0 H
" 00
=qu<u>—f f2(2)dz — p{l —FZ(M)}+/ f2(2)dz
0 "

=220~ 242 [ Y 2 dz
n
and
M [e%)
52(Z) = fo (M —2) f7(2)dz + fM (2 — M) f2(2)dz

M e’}
— MFz(M) - /0 2f2(2)dz — M{1 — Fz(M)} + /M 2f2(2)dz

= Z/M 2fz(z)dz — .

By Lemma 1 in the Appendix,

00 _ MB(a+B.b)
_/;; ZfZ(Z)dZ—WJ(LM,a,b,aJ») (7.1)
and
00 __MB(a+8.b)

so it follows that
20 B(a + B, b)

51(Z2) =2pnFz(u) —2p + WJ(LM»GJ?,O!, 9]
and
_ 2PB(a+B.b)
52(2) = W](l, M,a,b, o, )\.) — U.

Bonferroni and Lorenz curves [Bonferroni (1930)] have applications not only
in economics to study income and poverty, but also in other fields like reliability,
demography, insurance and medicine. They are defined by

1
B(p)= — / ity i (7.3)
puJo
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and
1
L(p)=— / Lttt (7.4)
wJo

respectively, where u = E(Z) and g = Fgl(p). Using (7.1) and (7.2), one can
reduce (7.3) and (7.4) to
1  AMB@a+8,b)

B =—————“J(,q,a,b,a, A
D)= " ourBB@p’ e

and
APB(a + B,b)

L =1-—
(p) uT(B)B(a.b)

J(1,q,a,b,0, 1),

respectively.

8 Percentiles

In this section, we provide a program for computing the percentage points z,, as-
sociated with the c.d.f. of the gamma beta ratio distribution. These values are ob-
tained numerically by solving the equation

B(b,a+ B)(rzp)P
T'(B+ 1)B(a, b)

Evidently, this involves computation of the » F> hypergeometric function and rou-
tines for this are widely available. We used the function hypergeom([-, -],[-, -], -) in
MAPLE. The following three-line program in MAPLE solves (8.1) for given p, A,
B, a and b:

cc:=Beta (b, atbeta) * (lambda*z) **beta/ (GAMMA (beta+1) *Beta(a,b) ) :
ff:=cc*hypergeom( [beta,a+betal, [beta+l,a+b+beta],-lambda*z) :
fsolve(ff=p,z=0..10000) :

2P (B,a+ BB+ 1,a+b+B; —rzp) =p. 8.1

We expect that this program could be useful for applications of the type described
in Section 2. For instance, z1—, will be the over reported income that will be ex-
ceeded with probability p; see Example 1 of Section 2. Similarly, in Example 2 of
Section 2, the percentile points can be used to quantify the proportion of precipi-
tation ended up in stream.

9 Order statistics

Suppose Z1, Z3, ..., Z, is a random sample from (3.2). Let Z1., < Zoy < -+ <
Z,.n denote the corresponding order statistics. It is well known that the p.d.f. and
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the c.d.f. of the kth order statistic, say ¥ = Zi.,, are given by

O = i O = Fo ™ 20
— n! o (n—k m pmtk—1
—m%( N )(—1) F7 7 00 f29)

and

n

Fr)=3 (’;) FJ )1 — Fz ()~

j=k

S (’;) (";j) (—"F (),

Jj=km=0
respectively, fork = 1,2, ..., n. Using Lemma 2 in the Appendix, the gth moment
of Y can be expressed as
n!
(k—D!(n—k)rr(B)

ok n—k WD (m+ 0B +q)B"*(a+ B, b)
Xﬂ;( m >(_1) Fm+k—1(ﬁ+1)Bm+k(a,b)

E(Y?) =

xI(g,m+k—1)

for all real ¢ such that (m + k)8 +¢q #0,—1, =2, ... for all m.

Sometimes one would be interested in the asymptotics of the extreme order
statistics M,, = max(Zy, ..., Z,) and m,, = min(Zy, ..., Z,). Take the c.d.f. and
the p.d.f. of the gamma beta ratio distribution as specified by (3.1) and (3.2), re-
spectively. It can be seen from (5.2), (5.3) and an application of L’Hospital’s rule
that

1 — Fz(t2) . zfz(tz)
lim ———— = lim =z
1—00 1 — Fz(t) 1=00 fz(1)

and

Fz(tz) . zfz(tz) 4
im = lim =7z".
t—oo Fz(r) t—=oo fz(1)

So, it follows from Theorem 1.6.2 in Leadbetter et al. (1987) that there must be
norming constants a, > 0, b,, ¢, > 0 and d,, such that

Pr{a, (M, — b,) <t} — exp(—t~ %)

and

Pr{c,(m, —d,) <t} > 1— exp(—tﬁ)
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as n — oo. The form of the norming constants can also be determined. For in-
stance, using Corollary 1.6.3 in Leadbetter et al. (1987), one can see that 1/a, =
Fz_l(l — 1/n) and b, = 0, where FZ_I(-) denotes the inverse function of Fz(-).

10 Estimation issues

Here, we consider method of moments estimation and maximum likelihood esti-
mation of the parameters in the gamma beta ratio distribution. We also provide the
associated Fisher information matrices.

Suppose we have two independent random samples X, X»,..., X, and
Y1,Y2,...,Y, from (1.1) and (1.2), respectively. Let X, Y, S)Z( and Slz/ denote
the sample means and sample variances. By equating the theoretical and empirical
moments

E(X) =X, EY)=Y, Var(X) = §%, Var(Y) = S3,

we obtain the method of moments estimators (MME:s) as

X2 -~ X - [Y(1=Y)
ﬁ:—’ A= —, a:Y[72_1i|,
SX SX SY
b_(l—f)[Y(lzy)—l}

Y

The maximum likelihood estimator (MLE) of A is the root of the equation
_ 12
¥ (XA) —logh=—> logX;,
s

where ¥ (x) = dlogI'(x)/dx is the digamma function. The MLE B = XA. The
corresponding Fisher information matrix is given by

E(_SZIOgL)Z@’ E(_azlogL
02 A2 0B

( azlogL) n
E(-— =——.
oA 0B A

The MLEs of a and b are the simultaneous solutions of the equations

)=,

1 n
Y@ —vla+b)=— > logY;
i=1
and

1 n
Vb)) —ylat+b) =" > log(1—7y).
i=l
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Some rearrangement shows that a is root of the equation

V@ - w(a +w—1<w<a> > og i+ Y log(l - m)) =3 log:
i=1 i=1 i=1

Similarly, b is root of the equation

Y (b) — w(zo +y! (w(m + % Y logY; — %Zlog(l — Y»))
i=1 i=1

= lZlog(l - 7).

i

The Fisher information matrix for the estimators of (a, b) is given by

3?log L , ,
E(~55" ) =@ =@+ ).
da
3% log L , ,
E(— PYe )_nw(b)—m//(a—l—b)
and
3% log L ,
E<_ 9a 0b >:_m/’ (@+D).

Sometimes the observations are on Z = X/Y, and not on the original variables,
X and Y. Suppose Z1, Zs, ..., Z, is a random sample on Z. The MMEs of the
four parameters can be obtained as the simultaneous solutions of the equations

E(ZM = %Zzlk (10.1)
i=1

for k =1, 2, 3, 4, where the theoretical moments are given in Section 6. The MLEs
are the simultaneous solutions of the equations

ny(B) +ny(B+a+b) —ny(B+a)—nlogh

(10.2)
R L w0 Fi(BtasBra+b;—AZ)/dp
‘,;k’gz”r; Fi(Btaiptatb—azZy
@Z B+a Z i1F1(ﬂ+a+1;,3+a+b+1;—)LZl~)’ (103)
A Bra+bim 1Fi(B+a;B+a+b;—)1Z;)
ny(a) +ny(B+a+b)—ny(B+a)—ny(a+b)
(10.4)

_Xn: o F1(B+a;B+a+b;—AZ;)/0a
1Fi(B+a; B+a+b;—1Z;)

i=1
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and

"0 Fi(B+a;B+a+b;—AZ;)/ob
b) — b) = . 10.5
ny(B+a+b) —ny(a+b) ; FBta B ratboiz) (10.5)

The Fisher information matrix for the estimators of (8, A, a, b) is given by

8% log L
E<_ 0p2 )
=ny'(B) +ny'(B+a+b) —ny'(B+a)
_nE[alel(ﬂ +a; B +a+b; —AZ)/aﬁZ]
1Fi(B+a;B+a+b;—LZ)

+nEH81F1(,3+a;,3+a+b; —2Z)/3B }2]’

1Fi(B+a;B+a+b;—rZ)
E<_8210gL>
FYER

_.n n(,B—I—a)E[ZalFl(ﬁ+a+l;/3+a+b+l;—)»Z)/E),B}
A B+a+bd 1Fi(B+a; B+a+b;—AZ)

n nb |: 1F1(ﬁ+a+1;ﬁ+a+b+l;—kZ):|
(B+a+b)? 1Fi(B+a;p+a+b;—1rZ)

n(p+a)

B+a+b

XE[ZalFl(ﬁ+a;ﬁ+a+b;—AZ)

b1

xFiB+a+1;84+a+b+1;-2127)

JOFi(B+a;B+a+b; —)»Z)}z}

E<_8210gL)
9B da
=ny'(B+a+b)—ny'(B+a)
_nE[alel(,B+a;ﬂ+a+b; —)1Z)/9B aa]
1F1(,3+a;,3+a+b; —)»Z)
NFi(B+a,B+a+b;,—AZ)Fi(B+a;B+a+b;—1Z)
ap da

+nE|:

JGFB+a: B +atb: —AZ)}Z],
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( 8210gL)
E _

dB db

=ny'(B+a+b)
E[alel(,B+a;,8+a+b; —1Z)/3p ab}
—n
1Fi(B+a;B8+a+b;—)1Z)
hFi(B+a,B+a+b,—AZ)o 1 Fi(B+a,B+a+b,—)\Z)
3B ab

JOF (B +ai B +a+b: —AZ)}Z],

E(_azlogL)
IA2
_np n+a)yf+a+1)
T2 (Bta+b(Bta+b+1)
y E|:Z21F1(,3+a+2;,3+a+b+2; —AZ)]
1Fi(B+a; B+a+b;—1Z)

n(g+a)’ E[{ZlFl(ﬂ+a+1;/3+a+b+1;—AZ)}Z}

+nE[

(B+a+b)? 1Fi(B+a;B+a+b;—\Z)
E(_azlogL)

dAda

B nb E'ZlFl(ﬂ+a+1;ﬁ+a+b+1;—AZ)]

T (B4a+b? | \Fi(B+a;B+a+b;—1Z)
n(ﬁ—i—a)E'ZalFl(,B+a+1;,B+a+b+1;—AZ)/8a]
B+a+b | 1Fi(B+a;B+a+b; —0Z)
nB+a) [

— E|Z | F 1; b+1;,—-AZ
Btatbl| 1Fir(B4+a+1;8+a+b+ )

" o Fi(B+a,p+a+b;,—AZ)
da

JGF(B+a; B+a+b; —AZ)}z},

E(_leogL)

oA 0b
L n(B+a) E[ZlF1(,8+a—|—1;,8—|—a+b+1;—k2)}
~ (B+a+b)? 1 Fi(B+a; B +a+b;—AZ)
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n(p+a) E[ Fi(B+a+1;8+a+b+1; —/\Z)/Bb}
1Fi(B+a;B4+a+b;—AZ)

B+a+b

n(B +a) [

— E\Z | F 1; b+1;,—\Z

Btath 1Fi(B+a+1;84+a+b+ )
X81F1(,B+a;,8+a+b;—kZ)

ob
/{1Fl<ﬂ+a;ﬁ+a+b;—x2)}z],
E<_8210gL>
da?

=ny'(@) +ny'(B+a+b) —ny' (B+a) —ny'(a+Db)
B [821F1(,3 +a;B+a+b; —AZ)/aaz]
1Fi(B+a:B+a+b;—AZ)
|:{31F1(,3 +a;B+a+b;—\Z)/da ﬂ
+nkE
\Fi(B+a;B+a+b;,—)1Z)

E(_EﬂlogL)
da db
=ny'(B+a+b)—ny'(a+b)
_nE|:821F1(ﬂ+a;,B+a+b; —1Z)/da 8b]
1Fi(B+a;B+a+b;—A\Z)
+nE|:81F1(,B+a;,3+a+b; —AZ)01Fi(B+a;B+a+b;,—)\Z)
da ab

JuFi(B+a;B+a+b; —)»Z)}Z]

and

3% log L , ,
E(— 52 )znlﬁ (B+a+b)—ny'(a+Db)

B [alel(ﬁ +a;B+a+b; —,\Z)/abZ}
1Fi(B+a;B+a+b;—1Z)

+nE“81F1(,3+a;ﬂ+a+b; —AZ)/ab}z]
\Fi(B+a; B+a+b;—1Z) '
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The partial derivatives of the confluent hypergeometric function can be calculated
by using the facts that

81F1(a b; 2) i (@)iy(a+i)7

i=0 (b)ii! — V(@) Fi(a; b; 2)

and
31F1(a; b; 2) (@i (b + )7
— =y b Fi(a;b;2) — ) —————;
5b v (b)1Fi(a; b; z) ;:) O]
see http://functions.wolfram.com/07.20.20.0001.01 and http://functions.wolfram.
com/07.20.20.0003.01.
Often with lifetime data, one encounters censoring. There are different forms of
censoring: Type I censoring, Type II censoring, etc. Here, we consider the general
case of multicensored data: there are n subjects of which:

e ng are known to have the values 11, ..., .
e n are known to belong to the interval [s;_1, s;],i =1,...,n1.
e nj are known to have exceeded r;, i =1, ..., na, but not observed any longer.

Note that n = ng 4+ n1 + ny. Note too that Type I censoring and Type II censoring
are contained as particular cases of multicensoring. In this case, the maximum
likelihood equations, (10.2) to (10.5), generalize to

noy (B) +noy (B +a+b) —noy (B +a) —nologh

_”Z°10 p SR OFIB +a ftat b —)/op
LR (F1(B+a; B+a+b;—)

i=1
<~ Di(si) — Di(si—1) D (r)
_|_
2 Fz(si) — Fz(si—1) IX: 1= Fz(ri)’

i=1

nop _ B+a f; GFi(B+a+ 1 B+atb+1:-0Z)
A Bra+bi 1Fi(B+a; B+a+b;—rZ;)

<~ Da(si) — Da(si—1) Dy(ry)
+
;FZ(Si)—FZ(Si—l) ZX:I—FZ(”z)

noy (a) +noy (B +a+b) —noy (B +a) —noy(a+b)

_”ZO 1 Fi(B+a:B+a+b;—1Z;)/0a
B 1Fi(B+a; B+a+b;—AZ;)

i=1

o D3(si) — D3(si—) <~ Di(r)
t = Fatin 2 T= Fa)



http://functions.wolfram.com/07.20.20.0001.01
http://functions.wolfram.com/07.20.20.0003.01
http://functions.wolfram.com/07.20.20.0003.01
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and

% o Fi(B+a;B+a+b;—AZ;)/db

noy (B +a+b) —nop(a+b)= \Fi(B+a; B +a+b;—AZ)

i=1
< Da(si) — Da(si—1) Dy(ri)

+
= Fz(si) — Fz(si-1) IX: 1= Fz(r;)

where Fz(-) is given by (3.1),
(A2)PT(a +b)
I'(a)
{ I(a + B) +log(A2)["(a + B)
F'a+b+pI'B+1)
3 C(a+ BT (a+b+B)
I2@+b+ BT B+1)
__T@+pr'@+1
Fa+b+BT2B+1)
I'(a+ p) 82Fz(/3,a+ﬂ;/3+1,a+b+/3;—Az)}
FCa+b+pr(B+1) B ’

T(a+ B)T(a+b)(rz)P
F@@a+b+ BT B+1)

Di(z) =

2Fh(B,a+B;8+1,a+b+B; —\2)

2B (B, a+ B p+1,a+b+ B —A2)

2P (Ba+ BB+ 1,a+b+ B, —Az)

+

D> (z) =

X {ngz(,B,a+/3;,3+1,a+b+,3;—)»z)

_ Bla+B)z
(a+b+p)(B+1)

><2F2(,3+1,a+,3+1;/3+2,a+b+/3+1;—Az)},

(rz)P
rB+1)
5 { IM(a+pB)T(@+b)+T(a+B)I(a+b)
I'(a+b+B)I(a)
X2 (B,a+B; B+ 1,a+b+B;—1z)
L lga()arfrab—:ﬁ;;fg(;b)2Fz(ﬁ, at+B;B+1l,a+b+ B;—1z)

3 IM(a+b+ B)'(a+ B)(a+b)
I2(a+b+ p)(a)

D3(z) =
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x2F2(B,a+ B p+ 1 atb+p;—22)
['(a+B)T(a+b)

F@T@+b+prB+1)

o LhB.at+piptl.atbtp; —M)}

da
and
(A2)PT(a + B)
D - 77
&= T OTE+ D
I'(a +b) - _
X {szz(ﬂ,a+ﬁ,ﬁ+1,a+b+,3,—)»2)
I'(a+b+ B)I'(a+b) . .
- Fz(a+b+ﬂ) 2F2(,B,a+ﬂ,ﬂ+1,a+b+ﬂ,—)\42)
[(a+b) 82F2(,B,a+,3;,3+1,a+b+ﬂ;—kz)}
C(a+b+B) ob '

The partial derivatives of the » F> hypergeometric function can be calculated by
using the facts that

B SOOIy

BRRLD S OOy,

82F2(a,abc; c.diz) _ S (OaFala. b c.d: 2) li::) (a)i((i))i;(ﬁ;;:? iz
and

RO TELD g krta,bied o) - i ek )z,

see  http://functions.wolfram.com/07.25.20.0001.01,  http://functions.wolfram.
com/07.25.20.0004.01, http://functions.wolfram.com/07.25.20.0007.01 and http://
functions.wolfram.com/07.25.20.0010.01. The Fisher information matrix for the
estimators of (8, A, a, b) for the case of censoring is too complicated to be pre-
sented here.

We now compare the performances of the two estimation methods. For this
purpose, we generated samples of size n = 20 from (3.2) for « = 1,2,...,5,
a=1,2,...,5and b=1,2,...,5, and A fixed as A = 1. For each sample, we


http://functions.wolfram.com/07.25.20.0001.01
http://functions.wolfram.com/07.25.20.0004.01
http://functions.wolfram.com/07.25.20.0007.01
http://functions.wolfram.com/07.25.20.0010.01
http://functions.wolfram.com/07.25.20.0004.01
http://functions.wolfram.com/07.25.20.0010.01
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computed the MMEs and the MLEs, by solving the equations (10.1) and (10.2)—
(10.5). We repeated this process 100 times and computed the average of the esti-
mates (AE) and the mean squared error (MSE). The computer package R was used
for the calculations. The results for selected «, a and b are reported in Table 1.

Note that for many cases MME does not exist because a < 4. For other cases, it
is clear that the MLE performs consistently better than the MME for all values of
o, a and b and with respect to the AE and MSE. This is expected of course.

11 Application

The results in Sections 3—10 can be applied to the practical problems discussed in
Section 2 in several different ways. For example, consider the problem discussed
in Section 2.6. Suppose we have two different warning-time systems, say A and B,
and that we wish to compare their performances. According to Section 2.6, the ef-
ficiencies of the two systems can be represented by the random variables 1/Z; and
1/Z,, where Z| and Z; are distributed according to (3.1)—(3.2). So, the probability
that system A is more efficient than system B can be expressed as

R :Pr(1/21 > 1/22) :PI‘(ZQ > Z]) =1 —Pr(22 < Z])
(11.1)

_ - fo Fz,(2) f2,(2)dz.

If Z;, i = 1,2, has the parameters (8;, Ai,a;,b;), i = 1,2, then we can ex-
press (11.1) as

MBI+ a1, b)B(by.ay + B)
T(BOT (B2 + 1) B(ar, b1) B(az, bo)

where
o0 |
L:/o PPN F (B4 an; B+ ar + brs —2a2)

X 2F2(Ba, ar + B2; P+ 1, a2 + by + B2; —roz) dz.

Using equation (2.21.1.1) in Prudnikov et al. (1986, Volume 3), the integral, L,
can be calculated to give

MR ()T (b)

R=1- L*, (11.2)
I'2(B1)B(ay, b1)B(az, by)
where
L*:Gi’i<E I1—=B1—pB2, 1 =Po,1—ax—Ba,a1 + by —ﬂz).
VS 0,a1 — B2, —Bo, 1 —ar —br— B

If estimates on the parameters are available (either from prior knowledge or by
applying the procedures in Section 10 to some data) then (11.2) can provide a
useful measure of the relative performance of the two systems.
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Table 1 Comparison of MLE versus MME

MLE MME
o a b AE@) AE@) AE(b) MSE@) MSE(@) MSE(b) AE@) AE®@) AE(D) MSE(@) MSE(@) MSE(b)

23 1.032 2255 3458 0.027 0414 0894 NA NA NA NA NA NA
24 1.035 2390 4.832 0.033 0.623 2389 NA NA NA NA NA NA
25 1.032 2366 6.042 0.031 0531 3802 NA NA NA NA NA NA
32 1.008 3478 2358 0.022 3.145 1364 NA NA NA NA NA NA
34 1.027 3739 4895 0.032 1712 3754 NA NA NA NA NA NA
35 1.024 3440 5759 0.031 1217 3424 NA NA NA NA NA NA
42 1.001 4751 2344 0.030 3316 0.635 NA NA NA NA NA NA
43 1.086 4.407 3227 0.030 2235 0862 NA NA NA NA NA NA
45 1.015 4471 5800 0.037 1902 3797 NA NA NA NA NA NA
52 1.039 5709 2.188 0.035 4.065 0407 1.120 6.582 2.600 0.039 4.177 0.413
53 1.008 6.004 3.583 0.031 4.869 1.546 1.045 7.251 3.964 0.032 5.524 1.763
54 1.010 5.644 4.545 0.034 3.206 2406 1.132 5.818 4.807 0.040 3.274 2.503
2.064 1.142 3545 0.066 0.120 1.893 NA NA NA NA NA NA
2.028 1.144 4588 0.071 0253 3.156 NA NA NA NA NA NA
2.023 1.179 6249 0.086 0.185 9.054 NA NA NA NA NA NA
2.014 3.273 1.080 0.081 1334 0.112 NA NA NA NA NA NA
2.038 3.403 4517 0.069 1593 2398 NA NA NA NA NA NA
2.024 3456 5.663 0.070 1.183 3204 NA NA NA NA NA NA
2.038 4703 1.115 0.076 3729 0.195 NA NA NA NA NA NA
2.058 4.926 3.636 0.103 3.172 1597 NA NA NA NA NA NA
2.008 4.803 5905 0.071 2784 4890 NA NA NA NA NA NA
1.995 5913 1.126 0.059 3.815 0.114 2455 6489 1.128 0.065 4.067 0.137
2.059 5.718 3.420 0.081 2805 1.241 2233 6.607 3.550 0.088 3.410 1.390
2.062 5.844 4.672 0.073 6.047 3.883 2.072 6.877 5.558 0.074 6.161 4.452
3.029 1.109 2.162 0.105 0.094 0474 NA NA NA NA NA NA
3.020 1.185 4.828 0.118 0.155 3748 NA NA NA NA NA NA
3.034 1.183 6.118 0.142 0.160 4994 NA NA NA NA NA NA
2974 2374 1.183 0.123 0845 0.160 NA NA NA NA NA NA
3.027 2320 4.671 0.118 0586 2800 NA NA NA NA NA NA
3.034 2328 6.012 0.119 0647 5885 NA NA NA NA NA NA
3.037 4.664 1.077 0.150 3.039 0.091 NA NA NA NA NA NA
2971 4.682 2268 0.115 3348 0.617 NA NA NA NA NA NA
3.018 4.637 5.823 0.111 2904 3952 NA NA NA NA NA NA
3.078 5.864 1.135 0.144 5461 0.135 3.228 5.899 1353 0.153 5931 0.161
3.044 5.656 2.190 0.107 4.121 0471 3.623 5.864 2.559 0.125 4.188 0.495
3.004 6.006 4935 0.099 6.135 4.563 3.120 6.966 5.595 0.102 6.623  4.940
4.012 1.255 2455 0.140 0235 0989 NA NA NA NA NA NA
4.084 1.139 3.555 0.194 0.153 2441 NA NA NA NA NA NA
4.025 1.162 5761 0203 0.119 4656 NA NA NA NA NA NA
4.078 2267 1.108 0.198 0.894 0.146 NA NA NA NA NA NA
4.028 2373 3.541 0.152 0760 1543 NA NA NA NA NA NA
4017 2335 5944 0201 0501 4283 NA NA NA NA NA NA
4.036 3.582 1.192 0.183 2454 0208 NA NA NA NA NA NA
4.007 3.731 2.501 0.165 2305 1019 NA NA NA NA NA NA
4.089 3.738 6.147 0.176 2211 6.682 NA NA NA NA NA NA
4.041 5809 1.135 0.195 5407 0.129 4309 6.462 1337 0.230 5.631 0.156
4.039 6.039 2426 0.189 7.561 1.113 4485 6.599 2.600 0.191 8.781 1.206
4.044 6.073 3.679 0.145 7.698 3.103 4.050 6.144 4.036 0.146 8815 3.331

—
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We can also obtain measures of the gain in efficiency, say, by how much system
A is more efficient than system B. For example,

Bilai+b1—1)  palaz+b2—1)
Ai(ar —1) Aa(az —1)
gives a measure of gain in terms of the mean,
Pa(Ba+ Daz +by—D(az +b2—2)  Bi(B1 + D(a1 + by — (a1 + b1 —2)

A(ar — D)(az —2) A2(a — (a1 —2)
_Bia+by— 1) Biar+bi = 1)
A(ay —1)2 A3ar —1)2

gives a measure of gain in terms of the variance,
2p2Fz,(n2) = 21 Fz, (1) — 2p2 + 211
205" B(az + B, b2)
I'(B2) B(az, b2)
2" Bai + B, by)
I'(B1)B(a1, br)

give a measure of gain in terms of the mean deviation about the mean [where
w1 =E(Zy) and uy = E(Z5)], and so on.

J(, p2, a2, by, 02, A7)

J(, w1, a1, by, o, Ar)

12 Conclusions

Motivated by practical problems ranging from efficiency modeling to modeling of
infectious diseases, we have studied mathematical properties of the ratio of gamma
and beta random variables assumed to be independent. We have derived exact and
explicit expressions for many characteristics of the ratio, including its p.d.f., c.d.f.,
h.r.f., moments, mean deviation about the mean, mean deviation about the median,
percentiles, order statistics and the asymptotic distribution of the extreme values.
We have also derived estimation procedures by the methods of moments and maxi-
mum likelihood. Finally, an illustration of applicability of the mathematical results
is given in the context of efficiency of warning-time systems.

Appendix
We need the following lemmas.

Lemma 1. Let Z be a random variable with its p.d.f. specified by (3.2). We have

o _ MB(a+B.b)
/x z fZ(Z)dZ_—F(,B)B(a,b) Jk,x,a,b, o, )
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for all real k, where

k+p
k+p

Jk,x,a,b,0, ) =— Fr(B+a,k+8;8+a+b,k+ B+ 1; —ix).

Proof. Using (3.2), we can write

0 __MB(a+8.b)
fx z fZ(Z)dZ_—F(,B)B(a,b) J(k,x,a,b,a,)),

where

o0
J(k, x,a,b, @, %) =/ PN LB+ as B+ a+ by —hz)dz.

X

The result follows by applying http://functions.wolfram.com/
HypergeometricFunctions/Hypergeometric1F1/21/01/02/01/0001/ to calculate this
integral. O

Lemma 2. Let Z be a random variable with its c.d.f. and p.d.f. specified by (3.1)
and (3.2), respectively. We have

T(np+ B +k)B" (a+ B, b)

AKT(BYT(B + 1) B T (a, b)

forall real k such thatn + B +k#0,—1,-=2,..., where

I(k,n) = Fyy "5 (B +B+K):(B.a+B):...: (B.a+ B): (b
—:B+1l,a+b+p);...;B+1,a+b+B);(a+b+ B);
—1,...,—1,1).

fooo FFR2) f2(2)dz = 1(k,n)

Proof. Using (3.1) and (3.2), we can write

k(n+1)ﬁBn+l(a +ﬂ’ b)
LB (B +1)B"(a, b)

[ Y K ELQ) f2(2) dz = Tk, m),

where
o0
J(k, n) =f0 ANy (Boat B B+ 1 a+ b+ B —r2))!

x1Fi(B+a;B+a+b;—rz)dz.

Using the fact | Fi(a; b;x) = exp(x)1F1(b — a; b; —x) (see http://functions.
wolfram.com/HypergeometricFunctions/Hypergeometric1F1/17/02/02/) and the
series expansions for hypergeometric functions, we can calculate J (k, ) as

J(k.n) = fooo KBV B (Ba+ BB+ 1 a+b+ B —AD))!


http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric1F1/21/01/02/01/0001/
http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric1F1/17/02/02/
http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric1F1/21/01/02/01/0001/
http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric1F1/17/02/02/
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X 1F1(b; B+ a+b; rz)exp(—Arz)dz
- /O S S S Brnat B (Bliy @+ Bi, (b);
i1=0  i,=0i=0
/((B+Dia+b+pB)i - (B+ i, (a+b+ B,

X (a+b+B))

(— )ittt pittinti o
i1+e+ip+i+k+nf+p—1

; T Z
i) il

x exp(—Az)dz
=YY > Bi@+ B, (B, @+ Bi, (b);
i1=0  i,=0i=0
/(B4 Diy@@+b+pB)i - (B+Di,(a+b+ B,

x (a+b+B)i)
(— 1)i1+'"+in)\‘i1+'"+in+i

i ipli!

N (A.1)
« ] it AnB A= oy o5 ) 7
0

WW Z Z Z(ﬂ)n @+ B)iy -+~ (Bi, @ + B)i, (b

i1=0 i,=0i=
/((B+Diy(@+b+ B - (B+ 1,
x (a+b+pi,(a+b+p))
(= 1)it i it in+i
il ipli!
xI'1+---+ip+i+k+nB+p)
= % ZO ZOlZw),l @+ B)iy -~ (B)i, (a + B,

[(B+Dia+b+ By - (B+ 1),
x (a+b+ B,
o DB+ B+ Bir oty
(a+b+p)i
(_1)i1+"'+in1i
X —
il ipli!
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The result of the lemma follows by using the definition of the generalized Kampé
de Fériet function to calculate the multiple sum in (A.1). O
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