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This is a short review of Monte Carlo methods for approximating filter distributions in state space models.
The basic algorithm and different strategies to reduce imbalance of the weights are discussed. Finally,
methods for more difficult problems like smoothing and parameter estimation and applications outside the
state space model context are presented.
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1. Introduction

Filtering is engineering terminology for extracting information about a signal from partial and
noisy observations. In geophysics, filtering is usually called data assimilation. In the last 50 years,
filtering has been mainly studied in the framework of state space or hidden Markov models,
assuming a Markovian time evolution of the signal and observations which are instantaneous
functions of the signal subject to white observation noise. Developments started in the 1960s with
the Kalman–Bucy filter (Kalman (1960), Kalman and Bucy (1961)) for linear Gaussian models
and with the forward–backward algorithm due to Baum and Welch for models with a finite state
space (see p. 74 of Cappé, Moulines and Rydén (2005) for the history of this algorithm, including
references). The essential feature of these methods is that they are recursive and thus suitable for
online applications where the observations arrive sequentially and quantities of interest have to
be recomputed with each new observation.

Probabilists started in the mid-sixties to develop a general theory of nonlinear filtering in con-
tinuous time. In statistics, state space models and filtering techniques took longer to take roots.
In the seventies and eighties, the relation between linear state space and ARMA models was
studied and used. A breakthrough occurred with the paper Gordon, Salmond and Smith (1993)
which developed recursive Monte Carlo methods called particle filters. Interestingly, Handschin
and Mayne (1969) had proposed much earlier to use Monte Carlo methods, but the idea of re-
sampling was missing. However, this idea is essential to ensure that the required sample size for
a given accuracy does not explode with the number of time steps. Particle filters quickly became
very popular. Among other things they have also been used for continuous time filtering. Nowa-
days, they are also applied outside the context of state space models as a complement to other,
static MCMC methods. In the 1990s, geophysicists developed a different version of the particle
filter, called the Ensemble Kalman filter which is more stable in high dimensions. After some
delay, this idea has now also become part of the research in statistics.

There are many presentations of the topic in books and in survey articles (e.g., Künsch
(2001), Doucet, de Freitas and Gordon (2001), Del Moral (2004), Cappé, Moulines and Rydén
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(2005), Cappé, Godsill and Moulines (2007), Crisan and Rozovskiı̆ (2011), Doucet and Johansen
(2011)). This paper gives a brief introduction for non-specialists, explaining the main algorithms,
describing their scope and also their limitations and surveying some of the interesting current de-
velopments. Because of limitations of space, many interesting topics and references that would
deserve to be mentioned had to be omitted.

2. State space models

2.1. Definitions

A state space model consists of an unobservable (S, S)-valued Markov process (Xt ), the state
of a system or the signal, combined with partial and noisy R

d -valued observations (Yi; i ≥ 1)

of the state at discrete times ti . In order to simplify the notation, we assume ti = i. We denote
the initial distribution of X0 by π0 and the conditional distribution of Xi given Xi−1 = xi−1

by P(dxi |xi−1). Observations at different times are assumed to be conditionally independent
given the states, and the conditional distributions of Yi given Xi are assumed to have densities g

with respect to some reference measure ν (usually the Lebesgue or the counting measure). Time
homogeneity of these conditional distributions is only assumed to simplify notation.

The state process can be in continuous or discrete time. In the former case, the transition
kernel P is usually not available analytically. For some of the algorithms, this is not necessary, it
is sufficient that we are able to simulate from P(·|x) for any value x. Because some applications
have a deterministic or partially deterministic state evolution, we do not assume the existence of
densities for P .

Throughout, notation like X0:n for (X0, . . . ,Xn) is used. By a slight abuse of notation, p stands
for any (conditional) density: The arguments of p will indicate which random variables are in-
volved. The ratio of two probability measures is an abbreviation for the Radon–Nikodym deriva-
tive.

2.2. Examples

State space models have a wide range of applications in finance (stochastic volatility, inter-
est rates), engineering (tracking, speech recognition, computer vision), biology (genome se-
quence analysis, ion channels, stochastic kinetic models), geophysics (meteorology, oceanog-
raphy, reservoir modeling), analysis of longitudinal data and others. It is not possible here to
describe these applications in detail or give references to all relevant pulications. Some of these
applications are discussed in Künsch (2001) and in Doucet, de Freitas and Gordon (2001). A few
references of more recent applications are Bretó et al. (2009) and Wilkinson (2011) for biology,
Part IX in Crisan and Rozovskiı̆ (2011) for financial mathematics, and Evensen (2007), Aanonsen
et al. (2009) and Cressie and Wikle (2011) for geophysical applications.
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3. The basic particle filter

3.1. Filtering recursions

By the assumptions on the state and observation process, we have the following joint distributions
for n ≥ m

(X0:n,Y1:m) ∼ π0(dx0)

n∏
t=1

P(dxt |xt−1)

m∏
t=1

g(yt |xt )ν(dyt ). (1)

The information about the state contained in the observations is expressed by the conditional dis-
tributions πs:t |n of Xs:t given Y1:n = y1:n. Of particular interest are π0:n := π0:n|n, called here the
joint smoothing distribution, and πn := πn|n, called here the filter distribution (the terminology is
not unique). For n ≥ m, π0:n|m follows immediately from (1) and Bayes formula. Other cases are
then obtained in principle by marginalization. We are however interested in methods to compute
or approximate expectations with respect to these distributions in an explicit and efficient way.
For this, recursive formulae are most useful. It is straightforward to verify that

π0:n|n−1(dx0:n|y1:n−1) = π0:n−1(dx0:n−1|y1:n−1)P (dxn|xn−1), (2)

π0:n(dx0:n|y1:n) = π0:n|n−1(dx0:n|y1:n−1)
g(yn|xn)

pn(yn|y1:n−1)
, (3)

where

pn(yn|y1:n−1) =
∫

πn|n−1(dxn|y1:n−1)g(yn|xn). (4)

By marginalization, we therefore also have the recursions

πn|n−1(dxn|y1:n−1) =
∫

πn−1(dxn−1|y1:n−1)P (dxn|xn−1), (5)

πn(dxn|y1:n) = πn|n−1(dxn|y1:n−1)
g(yn|xn)

pn(yn|y1:n−1)
. (6)

In both cases, the recursions consist of a propagation step (2) or (5), respectively, and an update
or correction step, (3) or (6), respectively. Typically, one wants to compute these recursions for an
arbitrary, but fixed sequence y1, y2, . . . (not necessarily a realization from the state space model).

3.2. Analytical solutions

There are two important special cases where one can perform the above recursions exactly. In
the first one, the state space S is finite and the integrals reduce to finite sums which can be
computed with O(n|S|2) operations. The second special case are linear Gaussian state space
models where Xn|Xn−1 ∼ N (FXn−1,V ) and Yn|Xn ∼ N (HXn,R). If π0 is also Gaussian, then
all πn are Gaussian and (5)–(6) lead to recursions for the conditional means and covariances. For
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comparison with the Ensemble Kalman filter below, we write down the update step for going
from πn|n−1 = N (mn|n−1,Pn|n−1) to πn = N (mn,Pn):

mn = mn|n−1 + Kn(Yn − Hmn|n−1), Pn = Pn|n−1 − KnHPn|n−1 (7)

where Kn = Pn|n−1H
′(HPn|n−1H

′ + R)−1 is the so-called Kalman gain.
In most other cases of practical interest, one has to approximate the integrals involved in (5)

and (4). Numerical approximations are difficult to use because the region of main mass of πn

changes with n and is unknown in advance. The particle filter tries to generate values in this
region adaptively as new observations arise.

3.3. The particle filter

The particle filter recursively computes importance sampling approximations of πn, that is

πn(dxn|y1:n) ≈ π̂n(dxn|y1:n) =
N∑

i=1

Wi
n�Xi

n
(dxn).

Here the Wi
n are random weights which sum to one, Xi

n are random variables called “particles”
and �x is the point mass at x. At time 0, we draw particles from π0 and set Wi

0 = 1/N . At
time n we start with π̂n−1 and draw independently new particles Xi

n from P(·|Xi
n−1). By (5), the

particles Xi
n with weights Wi

n−1 provide an importance sampling approximation of πn|n−1. If we
also update the weights with Wi

n ∝ Wi
n−1g(yn|Xi

n), we have closed the recursion by (6).
This algorithm has the drawback that after a few iterations most particles are located at posi-

tions very far away from the region of main mass of πn and the weights are very unbalanced.
This can be avoided by introducing a resampling step before propagation such that particles
with low weights die and particles with high weights have much offspring that is independently
propagated afterwards. Thus the basic particle filter, also called the bootstrap filter or SIR-filter
(Sampling Importance Resampling), works as follows.

Algorithm 1. 1. Resample: Draw (X∗1
n−1, . . . ,X

∗N
n−1) from π̂n−1.

2. Propagate: Draw Xi
n from P(·|X∗i

n−1), independently for different indices i.
3. Reweight: Set Wi

n ∝ g(yn|Xi
n).

Note that for any function ϕ : S → R, N−1 ∑
i ϕ(X∗i

n−1) always has a larger variance than∑
i W

i
n−1ϕ(Xi

n−1). The advantage of resampling is seen only after one or several propagation
steps. Because of this, we resample at the beginning and not at the end of a recursion.

As a byproduct, the particle filter gives also the following estimate of (4)

p̂n(yn|y1:n−1) = 1

N

N∑
i=1

g
(
yn|Xi

n

)
.
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One can show by induction that the product
∏n

t=1 p̂t (yt |y1:t−1) is an exactly unbiased estimator
of p(y1:n) = ∏n

t=1 pt (yt |y1:t−1) for any n and any y1:n, see Theorem 7.4.2 in Del Moral (2004).
However, p̂t is in general not unbiased for pt .

3.4. Simple improvements

Because the numbering of particles is irrelevant, we only need to know the number of times
Ni

n that the i-th particle is selected in the resampling step. One can therefore reduce the addi-
tional variability introduced by resampling by a so-called balanced resampling scheme, meaning
that E(Ni

n) = NWi
n and |Ni

n − NWi
n| < 1. The simplest such scheme uses a uniform(0,1) ran-

dom variable U and takes as Ni
n the number of points in the intersection of (U + Z)/N with

(
∑i−1

k=1 Wk
n ,

∑i
k=1 Wk

n ]. See Crisan (2001) for other balanced resampling schemes. Since bal-
anced resampling can always be used at little extra cost, it is widely used.

A second improvement omits the resampling step whenever the weights are sufficiently uni-
form. As criterion, one often uses the so-called effective sample size which is defined as one over∑N

i=1(W
i
n)

2, see Liu (1996) for a justification of the name of this criterion.
In the propagation step, we can draw Xi

n not from P(·|X∗i
n−1), but from any other distribution

Q which dominates P(·|X∗i
n−1). We then have to adjust the weights in the reweighting step. The

correct weights are obtained by setting r ≡ 1 in step 4 of Algorithm 2 below. By letting Q depend
not only on X∗i

n−1, but also on the new observation yn, we can make the propagated particles
Xi

n more compatible with yn and thus the weights more balanced. In the so-called auxiliary
particle filter due to Pitt and Shephard (1999), one uses the new observation yn not only in the
propagation step, but also in an additional reweighting step before resampling. The goal of this
additional reweighting is to bring π̂n−1 closer to πn−1|n. Thus, the auxiliary particle filter works
as follows.

Algorithm 2. 1. Reweight: Set

π̂n−1|n =
N∑

i=1

W ∗i
n−1�Xi

n−1
(dxn−1)

where W ∗i
n−1 ∝ Wi

n−1r(X
i
n−1, yn).

2. Resample: Draw (X∗1
n−1, . . . ,X

∗N
n−1) from π̂n−1|n.

3. Propagate: Draw Xi
n from Q(·|X∗i

n−1, yn), independently for different indices i.
4. Reweight: Set

Wi
n ∝ wi

n := g(yn|Xi
n)

r(X∗i
n−1, yn)

P (dxn|X∗i
n−1)

Q(dxn|X∗i
n−1, yn)

(
Xi

n

)
.

In order to understand the formula for wi
n, note that (X∗i

n−1,X
i
n) has distribution propor-

tional to π̂n−1(dxn−1)r(xn−1, yn)Q(dxn|xn−1, yn) and the distribution target is proportional to
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π̂n−1(dxn−1)g(yn|xn)P (dxn|xn−1). Because the average of the unnormalized weights wi
n esti-

mates the ratio of the normalizing constants, the estimate of (4) is now

p̂n(yn|y1:n−1) = 1

N

N∑
i=1

wi
n ·

N∑
k=1

r
(
Xk

n−1, yn

)
Wk

n−1.

The product
∏n

t=1 p̂t (yt |y1:t ) is again unbiased for p(y1:n).
Auxiliary particle filters cannot be used if the state evolution is deterministic, or if the den-

sity dP (·|x′)/dQ(·|x′, y) is not available in closed form. In other cases, the choices of r

and Q are up to the user. Ideally, we take r(x, y) = ∫
g(y|x ′)P (dx′|x) and Q(dx′|x, y) =

r(x, y)−1g(y|x′)P (dx′|x), because then the weights Wi
n in the fourth step are constant. In most

cases, these choices are not possible, but one can try to find suitable approximations. With the
ideal choices for r and Q, the auxiliary particle filter therefore leads to a reweighting with
p(yn|xn−1) instead of p(yn|xn): Although this usually reduces the variance of the weights, the
gain may not be substantial. In principle, it is possible to go further back in time by computing
particle filter approximations of πn−L:n|n for some L > 0. An auxiliary particle filter in this case
uses yn−L:n to reweight the particles at time n − L − 1 and to generate new particles at times
n − L to n.

4. Complications and solutions

4.1. Main difficulties

The main difficulty with the particle filter is that often weights become unbalanced, even when
we use the auxiliary particle filter in Algorithm 2 or apply some of the other simple improve-
ments discussed above. In such cases, most resampled particles coincide (“sample depletion”).
If the state transitions are partially deterministic, this becomes especially drastic because the
propagation will not create diversity.

Partially deterministic state transitions occur for instance if the model contains unknown pa-
rameters θ in the state transition P or in the observation density g and one proceeds by consid-
ering the enlarged state vector (θ,Xt ). The propagation step for θ is then simply θi

n = θ∗i
n−1. One

can add some noise to create diversity, possibly combined with some shrinking towards the mean
to keep the variance the same. Still, this does not always work well.

A second instance with partially deterministic state transitions occurs if one uses the parti-
cle filter algorithm to approximate not only πn, but the whole smoothing distribution π0:n. In
principle, this is straightforward: Each particle at time n is then a path of length n + 1 that we
write as Xi

0:n|n. The propagation step concatenates a resampled path X∗i
0:n−1|n−1 with a new value

Xi
n ∼ P(·|X∗i

n−1|n−1).
If the weights at one time point become very unbalanced, the filter can be completely unreli-

able and it can lose track even though the propagation step later creates again diversity. Unbal-
anced weights have been observed to occur easily if the dimension of the observations is large.
A theoretical explanation of this phenomenon has been provided by Bickel, Li and Bengtsson
(2008).
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In the following, we discuss some more advanced methods that have been proposed to over-
come these difficulties.

4.2. Resample moves

Gilks and Berzuini (2001) have proposed the following method to avoid sample depletion when
the particle filter is used to produce an approximation of π0:n with particles Xi

0:n|n and equal

weights. Let Kn be a Markov kernel on Sn+1 which has π0:n as invariant distribution, con-
structed for instance according to the general Metropolis–Hastings recipe. Drawing new particles
X∗i

0:n|n ∼ Kn(.|Xi
0:n|n), independently for different i’s will then give a new approximation of π0:n

which is expected to be at least as good as the old one. If Kn modifies all components of Xi
0:n|n,

this method also removes ties, but since typically a single kernel can only update one or a few
components of Xi

0:n|n, the computational complexity increases with n if one wants to get rid of
all ties.

4.3. Ensemble Kalman filter

This method is due to Evensen (1994). It assumes linear observations with Gaussian errors, that
is, g(·|x) is a normal density with mean Hx and variance R. It uses particles with equal weights,
the propagation step is the same as in the particle filter whereas the update step is a Monte Carlo
implementation of the Kalman filter update (7) with estimated first and second moment of πn|n−1:

Algorithm 3. 1. Propagate: Draw X∗i
n from P(·|Xi

n−1).
2. Update: Draw i.i.d. values εi

n ∼ N (0,R) and set

Xi
n = X∗i

n + K̂n

(
yn − HX∗i

n + εi
n

)
where K̂n is the Kalman gain computed with the sample covariance P̂n|n−1 of the X∗i

n ’s.

It is not difficult to show that the algorithm is consistent as N → ∞ for a linear Gaussian state
space model. However, for non-Gaussian πn|n−1, this update typically has a systematic error
because only the location, but neither the spread nor the shape of the sample (Xi

n) change if
yn changes. Nevertheless, the Ensemble Kalman filter is extremely wide-spread in geophysical
applications where the state evolution is usually complicated, making the propagation step the
computational bottleneck. This forces one to use a sample size N which is much smaller than the
dimensions of the state or the observation. Even in such cases, the Ensemble Kalman filter turns
out to be surprisingly robust – provided we regularize the estimate P̂n|n−1 of the covariance of
πn|n−1.

Several attempts have been made to find algorithms which combine the robustness of the
Ensemble Kalman filter with the nonparametric features of the particle filter. They either ap-
proximate πn|n−1 by a mixture of Gaussians or use the Ensemble Kalman filter as a proposal
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distribution Q in a particle filter. See Frei and Künsch (2012) for references and a new pro-
posal which avoids both the fitting of a Gaussian mixture to the forecast sample (X∗i

n ) and the
estimation of the density dP/dQ (which is usually not known analytically in these applications).

An extension of the Ensemble Kalman filter to more general observation densities g has been
given in Lei and Bickel (2011).

4.4. Particle smoothing

In an offline application where all T observations are available from the beginning, one can
use smoothing algorithms which combine a forward filtering pass through the data from n = 0 to
n = T with a backward recursion from n = T −1 to n = 0. We limit ourselves to approximations
of the marginals πn|T , but the same methods apply also for joint distributions.

By Bayes formula and conditional independence, we obtain the following relations

πn|T (dxn|y1:T ) = πn|n−1(dxn|y1:n−1)
p(yn:T |xn)

p(yn:T |y1:n−1)
(8)

= πn(dxn|y1:n)
p(yn+1:T |xn)

p(yn+1:T |y1:n)
. (9)

This is also called the two-filter formula because we have the recursions

p(yn+1:T |xn) =
∫

p(yn+1:T |xn+1)P (dxn+1|xn), (10)

p(yn:T |xn) = g(yn|xn)p(yn+1:T |xn) (11)

which are dual to (5) and (6). Combining (8)–(9) with (10) gives

πn|T (dxn|y1:T )

πn(dxn|y1:n)
∝

∫
πn+1|T (dxn+1|y1:T )

πn+1|n(dxn+1|y1:n)
P (dxn+1|xn). (12)

In order to be able to use Monte Carlo methods, we have to assume that for any x′ the state
transition kernel P(·|x′) has density p(·|x′) with respect to some measure μ on S. Then the filter
distributions also have densities which we denote by the same symbol. The right-hand side of
(12) can then be considered as an integral with respect to πn+1|T . Thus we obtain a marginal
particle smoother π̂n|T which has the same particles as the filter, but different weights Wi

n|T
which are computed with the recursion

Wi
n|T =

N∑
k=1

Wk
n+1|T

Wi
np(Xk

n+1|Xi
n)∑

j W
j
n p(Xk

n+1|Xj
n)

.

The disadvantage is the complexity of the algorithm which is of the order O(N2).
The algorithm in Briers, Doucet and Maskell (2010) computes first backward particle ap-

proximations of the distributions π̄n(dxn|yn:T ) ∝ p(yn:T |xn)hn(xn)μ(dxn) where hn is a known
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function such that p(yn:T |xn)hn(xn) is integrable. Inserting a forward particle filter approxima-
tion for πn|n−1 and a backward particle filter approximation for p(yn:T |xn) into (8) gives then an
approximation of πn|T which is concentrated on the particles approximating π̄n.

Fearnhead, Wyncoll and Tawn (2010) have suggested to insert particle approximations into

πn|T (xn|y1:T ) ∝ πn|n−1(xn|y1:n−1)g(xn|yn)

∫
p(xn+1|xn)

hn+1(xn+1)
π̄n+1(dxn+1|yn+1:T )

which follows by combining (8) with (10) and (11). This has the advantage that the support
of π̂n|T is not constrained on the sampled particles from the forward or the backward recursion.
Moreover, one can sample from the approximation with an algorithm of complexity O(N) which
may not be efficient, however.

4.5. Particle MCMC

This is a recent innovation by Andrieu, Doucet and Holenstein (2010) which uses particle filters
as a building block in an MCMC algorithm. Assume that g and the density of P both depend on
an unknown parameter θ with prior density p(θ) and that we want to sample from the posterior
p(x0:T , θ |y1:T ). A Gibbs sampler which updates single components of x0:T given the rest is
usually too slow, and exact updates of the whole sequence x0:T are usually not possible. What
the particle filter provides are random approximations π̂0:T ;θ of π0:T ;θ = p(x0:T |y1:T , θ) for any
fixed θ . Andrieu, Doucet and Holenstein (2010) show that with these random approximations
one can still construct Markov chains which leave the correct posterior invariant without letting
the number of particles go to infinity.

The first such algorithm is called particle marginal Metropolis–Hastings sampler. It is
an approximation of the sampler which jointly proposes (θ ′, x′

0:T ) from the distribution
q(θ ′|θ) dθ ′π0:T (dx′

0:T |y1:T , θ ′) with the acceptance ratio

p(y1:T |θ ′)p(θ ′)q(θ ′|θ)

p(y1:T |θ)p(θ)q(θ |θ ′)
.

The approximation occurs at two places: First x′
0:T is generated from π̂0:T ;θ ′ instead of π0:T ;θ ,

and second the unknown likelihoods p(y1:T |θ ′) and p(y1:T |θ) in the acceptance ratio are re-
placed by unbiased estimates from the particle filter. The surprising result is that the errors from
these two approximations cancel and the algorithm has the exact posterior p(x0:T , θ |y1:T ) as
invariant distribution for any N .

Instead of jointly proposing a parameter and a path of the state process, one can also use a
Gibbs sampler, alternating between updates of the parameter and the state process. Updating the
parameter given the state and the observations is usually feasible, but for the other update one
samples again from a particle filter approximation π̂0:T ;θ and not from π0:T ;θ . Andrieu, Doucet
and Holenstein (2010) show that this also gives a correct algorithm for any N > 1 provided the
particle filter approximation is modified such that the current path is equal to one of the particle
paths Xk

0:T in π̂0:T ;θ .



1400 H.R. Künsch

5. Convergence results

Laws of large numbers as well as central limit theorems have been shown for particle fil-
ter approximations. Del Moral (2004) contains general results, Künsch (2005) gives an essen-
tially self-contained short derivation. First, one can show that for every n, every y1:n and a
suitable class of functions ϕ,

∫
ϕ(x)π̂n(dxn|y1:n) converges in probability or almost surely to∫

ϕ(x)πn(dxn|y1:n). The proof works by induction on n, assuming that π̂n−1 is close to πn−1.
This error propagates in the next particle filter iteration, but one can control by how much it
grows in the worst case, and the additional Monte Carlo error in the n-th step can be bounded by
standard methods, at least with multinomial (independent) resampling. For balanced sampling,
there seems to be still no general proof.

However, such a result is of limited use because the required sample size N may grow ex-
ponentially with the number of steps n. For applications, it is more relevant to find conditions
under which the convergence is uniform in n. This is more difficult because – in contrast to the
propagation step – the update step is in general not contractive and the above induction argument
does not succeed. One has instead to study the error propagation over several time steps. This
is equivalent to the question if and how fast the filter forgets its initial distribution π0 which has
been studied extensively, see e.g. Atar (2011).

6. More general situations

6.1. Filtering with continuous time observations

Much of the probability literature on filtering considers both state and observation processes in
continuous time. More precisely, (Yt ) is assumed to satisfy the following evolution equation

dYt = h(Xt ) dt + dBt

where (Bt ) is a multivariate Brownian motion. We again denote by πt the conditional distribution
of Xt given the σ -field generated by the observations (Ys, s ≤ t) (completed by all null sets). Note
that (πt ) is a stochastic process which takes values in the set of probability measures on (S, S).
The evolution equation for (πt ) corresponding to the recursions (5)–(6) is a stochastic PDE, the
Kushner–Stratonovich equation. A particle filter approximation consists of interacting particles
(Xi

t ) and associated weights (Wi
t ): Within an interval of length δ they evolve independently,

whereas at multiples of δ there is a resampling step like in the discrete case, see Xiong (2011)
for more details.

6.2. Sampling from moving targets

Particle filtering algorithms have found many applications outside the state space framework.
In these cases, the more general term sequential Monte Carlo is used. Assume we have a com-
plicated target distribution π on (S, S) which we cannot sample directly. In such a situation,
a promising strategy consists of sampling recursively from a sequence π0,π1, . . . , πT where π0
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is a simple distribution, πT = π is the target one is interested in, and πn is close to πn−1. One
example is the posterior distribution of a parameter with a large number T of observations where
πn the posterior for the first n observations. In another example, the πn’s are tempered approxi-
mations of π = πT :

πn(dx) ∝
(

πT (dx)

π0(dx)

)φn

π0(dx) (0 = φ0 < φ1 < · · · < φT = 1).

Starting with a sample from π0, one wants to recursively generate samples (Xi
n) from πn by

resampling, propagation and reweighting as in the particle filter. If Kn denotes the transition
kernel in the n-th propagation step, then for reweighting we need the density of πn with respect
to

∫
πn−1(dx′)Kn(·|x′) which is typically not available in closed form, unless we choose Kn

such that it leaves πn−1 invariant. The idea in Del Moral, Doucet and Jasra (2006) which allows
more flexibility for the choice of Kn is to consider the distributions πn−1(dx′)Kn(dx|x′) and
πn(dx)Ln(dx′|x) on the product space (S, S)2. Here Ln is an arbitrary kernel such that these two
distributions are absolutely continuous. If (Xi

n−1) is a (weighted) sample from πn−1 and we draw
Xi

n from Kn(dx|Xi
n−1) independently for different i’s, then (Xi

n−1,X
i
n) is a (weighted) sample

from πn−1(dx′)Kn(dx|x′). We can convert this into a weighted sample from πn(dx)Ln(dx′|x)

because the Radon–Nikodym density can be computed without integration. By marginalization,
we finally obtain the desired weighted sample from πn. In Del Moral, Doucet and Jasra (2006),
the optimal choice of Ln for given Kn is determined.

6.3. Rare event simulation

Particle filters are also used in rare event simulation, see e.g. Del Moral and Garnier (2005).
Assume (Zt ) is a Markov process with fixed starting point z0, τ and ζ are two stopping times
and we are interested in P(τ < ζ) which is small so simple Monte Carlo is inefficient. In a
technique called “importance splitting” one introduces a sequence of stopping times 0 = τ0 <

τ1 < · · · < τT = τ and sets Xn = Zτn . Moreover, we introduce “observations” Yn = 1[τn<ζ ]. Then
for y1 = y2 = · · · = yT = 1, πn is the conditional distribution of Zτn given τn < ζ , and p(y1:T )

is the probability we would like to estimate. Hence, we can estimate this probability unbiasedly
with a particle filter since it gives unbiased estimates of p(y1:n). Because the observations are
deterministic functions of the state, the resampling step simply duplicates the particles with τn <

ζ until the sample size is again N . Amrein and Künsch (2011) propose to control precision
instead of computational effort. This means that in the n-th step we do not propagate a fixed
number of particles and see how many of them satisfy τn < ζ , but rather propagate particles
until a fixed number of them satisfies τn < ζ . One can still obtain an unbiased estimator, and
in addition this can increase the efficiency of the algorithm. Also in other applications of the
particle filter where all observations are available from the beginning, it can be worthwile to aim
for a fixed precision instead of a fixed computational effort in each iteration, using for instance
accept-reject methods instead of importance sampling (see Künsch (2005)).
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