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In this paper, we study robust estimators of the memory parameter d of a (possibly) non-stationary Gaussian
time series with generalized spectral density f . This generalized spectral density is characterized by the
memory parameter d and by a function f ∗ which specifies the short-range dependence structure of the
process. Our setting is semi-parametric since both f ∗ and d are unknown, and d is the only parameter of
interest. The memory parameter d is estimated by regressing the logarithm of the estimated variance of
the wavelet coefficients at different scales. The two estimators of d that we consider are based on robust
estimators of the variance of the wavelet coefficients, namely the square of the scale estimator proposed
by Rousseeuw and Croux [J. Amer. Statist. Assoc. 88 (1993) 1273–1283] and the median of the square
of the wavelet coefficients. We establish a central limit theorem, for these robust estimators as well as
for the estimator of d, based on the classical estimator of the variance proposed by Moulines, Roueff and
Taqqu [Fractals 15 (2007) 301–313]. Some Monte-Carlo experiments are presented to illustrate our claims
and compare the performance of the different estimators. The properties of the three estimators are also
compared to the Nile river data and the Internet traffic packet counts data. The theoretical results and the
empirical evidence strongly suggest using the robust estimators as an alternative to estimate the memory
parameter d of Gaussian time series.

Keywords: long-range dependence; memory parameter estimator; robustness; scale estimator;
semiparametric estimation; wavelet analysis

1. Introduction

Long-range dependent processes are characterized by hyperbolically slowly decaying correla-
tions or by a spectral density exhibiting a fractional pole at zero frequency. During the last
decades, long-range dependence (and the closely related self-similarity phenomena) has been
observed in many different fields, including financial econometrics, hydrology and analysis of
Internet traffic. In most of these applications, however, the presence of atypical observations is
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quite common. These outliers might be due to gross errors in the observations but also to un-
modeled disturbances; see, for example, [31] and [30] for possible explanations of the presence
of outliers in Internet traffic analysis. It is well known that even a few atypical observations can
severely affect estimators, leading to incorrect conclusions. Hence, defining robust estimators of
the memory parameter, which are less sensitive to the presence of additive outliers, is a challeng-
ing practical problem.

In this paper, we consider the class of fractional processes, denoted M(d), defined as follows.
Let X = {Xk}k∈Z be a real-valued Gaussian process, not necessarily stationary, and denote by
�X the first order difference of X, defined by [�X]n = Xn −Xn−1, n ∈ Z. Define, for an integer
K ≥ 1, the K th order difference recursively as follows: �K = � ◦ �K−1. Let f ∗ be a bounded
non-negative symmetric function, which is bounded away from zero in a neighborhood of the
origin. Following [20], we say that X is an M(d) process if, for any integer K > d − 1/2, �KX

is stationary with spectral density function

f�KX(λ) = |1 − e−iλ|2(K−d)f ∗(λ), λ ∈ (−π,π). (1)

Observe that f�KX(λ) in (1) is integrable since −(K − d) < 1/2. When d ≥ 1/2, the process is
not stationary. One can, nevertheless, associate to X the function

f (λ) = |1 − e−iλ|−2df ∗(λ), (2)

which is called a generalized spectral density function. In the sequel, we assume that f ∗ ∈
H(β,L) with 0 < β ≤ 2 and L > 0, where H(β,L) denotes the set of non-negative and symmet-
ric functions g satisfying, for all λ ∈ (−π,π),

|g(λ) − g(0)| ≤ Lg(0)|λ|β . (3)

Our setting is semi-parametric in that both d and f ∗ in (2) are unknown. Here, f ∗ can be seen as
a nuisance parameter, whereas d is the parameter of interest. This assumption on f ∗ is typical in
the semi-parametric estimation setting; see for instance [25] and [21] and the references therein.

Different approaches have been proposed for building robust estimators of the memory pa-
rameter for M(d) processes in the semi-parametric setting outlined above. Stoev et al. [31] have
proposed a robustified wavelet-based regression estimator developed by [1]; the robustification
is achieved by replacing the estimation of the wavelet coefficients variance at different scales by
the median of the square of the wavelet coefficients. Another technique to robustify the wavelet
regression technique has been outlined in [23], which consists of regressing the logarithm of
the square of the wavelet coefficients at different scales. [18] proposed a robustified version
of the log-periodogram regression estimator introduced in [14]. The method replaces the log-
periodogram of the observation by a robust estimator of the spectral density in the neighborhood
of the zero frequency, obtained as the discrete Fourier transform of a robust autocovariance esti-
mator defined in [17]; the procedure is appealing and has been found to work well, but also lacks
theoretical support in the semi-parametric context (note, however, that the consistency and the
asymptotic normality of the robust estimator of the covariance have been discussed in [16]).

In the related context of the estimation of the fractal dimension of locally self-similar Gaussian
processes, Coeurjolly [10] has proposed a robust estimator of the Hurst coefficient; instead of
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using the variance of the generalized discrete variations of the process (which are closely related
to the wavelet coefficients, despite the facts that the motivations are quite different), this author
proposes to use the empirical quantiles and the trimmed means. The consistency and asymptotic
normality of this estimator is established for a class of locally self-similar processes, using a
Bahadur-type representation of the sample quantile; see also [9]. Shen, Zhu and Lee [28] propose
to replace the classical regression of the wavelet coefficients by a robust regression approach,
based on Huberized M-estimators.

The two robust estimators of d that we propose consist of regressing the logarithm of robust
variance estimators of the wavelet coefficients of the process X on a range of scales. We use, as
robust variance estimators, the square of the scale estimator proposed by [27] and the square of
the mean absolute deviation (MAD). These estimators are a robust alternative to the estimator
of d , proposed by [19], which uses the same method, but with the classical variance estimator.
Here, we derive a central limit theorem (CLT) for the two robust estimators of d and, by the
way, we give another methodology for obtaining a central limit theorem for the estimator of d

proposed by [19]. In this paper, we have also extended Theorem 4 of [2] and the Theorem of [11]
to arrays of stationary Gaussian processes. These new results were very helpful in establishing
the CLT for the three estimators of d that we propose.

The paper is organized as follows. In Section 2, we introduce the wavelet setting and define
the wavelet-based regression estimators of d . Section 3 is dedicated to the asymptotic properties
of the robust estimators of d . In this section, we derive asymptotic expansions of the wavelet
spectrum estimators and provide a CLT for the estimators of d. In Section 4, some Monte-Carlo
experiments are presented in order to support our theoretical claims. The Nile river data and two
Internet traffic packet counts data sets, collected from the University of North Carolina, Chapel,
are studied as an application in Section 5. Sections 6 and 7 detail the proofs of the theoretical
results stated in Section 3.

2. Definition of the wavelet-based regression estimators of the
memory parameter d

2.1. The wavelet setting

The wavelet setting involves two functions φ and ψ in L2(R) and their Fourier transforms

φ̂(ξ)
def=
∫ ∞

−∞
φ(t)e−iξ t dt and ψ̂(ξ)

def=
∫ ∞

−∞
ψ(t)e−iξ t dt. (4)

Assume the following:

(W-1) φ and ψ are compactly-supported, integrable and φ̂(0) = ∫∞
−∞ φ(t)dt = 1 and∫∞

−∞ ψ2(t)dt = 1.
(W-2) There exists α > 1 such that supξ∈R |ψ̂(ξ)|(1 + |ξ |)α < ∞.
(W-3) The function ψ has M vanishing moments, that is,

∫∞
−∞ tmψ(t)dt = 0 for all m =

0, . . . ,M − 1.
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(W-4) The function
∑

k∈Z
kmφ(· − k) is a polynomial of degree m for all m = 0, . . . ,M − 1.

Condition (W-2) ensures that the Fourier transform ψ̂ decreases quickly to zero. Condition (W-3)
ensures that ψ oscillates and that its scalar product with continuous-time polynomials up to
degree M − 1 vanishes. It is equivalent to asserting that the first M − 1 derivatives of ψ̂ vanish
at the origin and hence

|ψ̂(λ)| = O(|λ|M), as λ → 0. (5)

Daubechies wavelets (with M ≥ 2) and the Coiflets satisfy these conditions; see [19]. Viewing
the wavelet ψ(t) as a basic template, define the family {ψj,k, j ∈ Z, k ∈ Z} of translated and
dilated functions

ψj,k(t) = 2−j/2ψ(2−j t − k), j ∈ Z, k ∈ Z. (6)

Positive values of k translate ψ to the right, negative values to the left. The scale index j dilates ψ

so that large values of j correspond to coarse scales and hence to low frequencies. We suppose
throughout the paper that

(1 + β)/2 − α < d ≤ M. (7)

We now describe how the wavelet coefficients are defined in discrete time, that is, for a real-
valued sequence {xk, k ∈ Z} and for a finite sample {xk, k = 1, . . . , n}. Using the scaling func-
tion φ, we first interpolate these discrete values to construct the following continuous-time func-
tions:

xn(t)
def=

n∑
k=1

xkφ(t − k) and x(t)
def=
∑
k∈Z

xkφ(t − k), t ∈ R. (8)

Without loss of generality we may suppose that the support of the scaling function φ is included
in [−T,0] for some integer T ≥ 1. Then

xn(t) = x(t) for all t ∈ [0, n − T + 1].
We may also suppose that the support of the wavelet function ψ is included in [0,T]. With
these conventions, the support of ψj,k is included in the interval [2j k,2j (k + T)]. The wavelet
coefficient Wj,k at scale j ≥ 0 and location k ∈ Z is formally defined as the scalar product in
L2(R) of the function t 	→ x(t) and the wavelet t 	→ ψj,k(t).

Wj,k
def=
∫ ∞

−∞
x(t)ψj,k(t)dt =

∫ ∞

−∞
xn(t)ψj,k(t)dt, j ≥ 0, k ∈ Z, (9)

when [2j k,2j k + T] ⊆ [0, n − T + 1], that is, for all (j, k) ∈ In, where

In
def= {(j, k): j ≥ 0,0 ≤ k ≤ nj − 1} with nj = [2−j (n − T + 1) − T + 1]. (10)

If �MX is stationary, then from [20], equation (17), the process {Wj,k}k∈Z of wavelet co-
efficients at scale j ≥ 0 is stationary, but the two-dimensional process {[Wj,k,Wj ′,k]T }k∈Z of
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wavelet coefficients at scales j and j ′, with j ≥ j ′, is not stationary. Here T denotes the transpo-
sition. This is why we consider instead the stationary, between-scale process

{[Wj,k,Wj,k(j − j ′)T ]T }k∈Z, (11)

where Wj,k(j − j ′) is defined as follows:

Wj,k(j − j ′) def= [W
j ′,2j−j ′

k
,W

j ′,2j−j ′
k+1, . . . ,Wj ′,2j−j ′

k+2j−j ′−1]T .

For all j, j ′ ≥ 1, the covariance function of the between-scale process is given by

Cov
(
Wj,k′(j − j ′),Wj,k

)=
∫ π

−π

eiλ(k−k′)Dj,j−j ′(λ;f )dλ, (12)

where Dj,j−j ′(λ;f ) stands for the cross-spectral density function of this process. For further
details, we refer the reader to [20], Corollary 1. The case j = j ′ corresponds to the spectral
density function of the within-scale process {Wj,k}k∈Z.

In the sequel, we shall use that the within- and between-scale spectral densities Dj,j−j ′(λ;d)

of the wavelet coefficients of the process X with memory parameter d ∈ R can be approximated
by the corresponding spectral density of the generalized fractional Brownian motion B(d), de-
fined, for d ∈ R and u ∈ N, by

D∞,u(λ;d) = [
D(0)∞,u(λ;d), . . . ,D(2u−1)∞,u (λ;d)

]
(13)

=
∑
l∈Z

|λ + 2lπ|−2deu(λ + 2lπ)ψ̂(λ + 2lπ)ψ̂
(
2−u(λ + 2lπ)

)
,

where,

eu(ξ)
def= 2−u/2[1, e−i2−uξ , . . . , e−i(2u−1)2−uξ

]T
, ξ ∈ R.

For further details, see page 307 of [19] and Theorem 1 and Remark 5 of [20].

2.2. Definition of the robust estimators of d

Let us now define robust estimators of the memory parameter d of the M(d) process X from the
observations X1, . . . ,Xn. These estimators are derived from the construction of [1], and consist
of regressing estimators of the scale spectrum

σ 2
j

def= Var(Wj,0), (14)

with respect to the scale index j . The idea behind such a choice is that, by [19], equation (28),

σ 2
j ∼ C22jd , as j → ∞, (15)

where C is a positive constant. More precisely, if σ̂ 2
j is an estimator of σ 2

j , based on Wj,0:nj −1 =
(Wj,0, . . . ,Wj,nj −1), then an estimator of the memory parameter d is obtained by regressing
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log(̂σ 2
j ) for a finite number of scale indices j in {J0, . . . , J0 + 	}, where J0 = J0(n) ≥ 0 is the

lower scale and 1 + 	 ≥ 2 is the number of scales in the regression. The regression estimator can
be expressed formally as

d̂n(J0,w)
def=

J0+	∑
j=J0

wj−J0 log(̂σ 2
j ), (16)

where the vector w def= [w0, . . . ,w	]T of weights satisfies
∑	

i=0 wi = 0 and 2 log(2)
∑	

i=0 iwi =
1; see [1] and [20]. For J0 ≥ 1 and 	 > 1, one may choose, for example, w corresponding to the
least squares regression matrix, defined by w = DB(BT DB)−1b where

b def= [ 0 (2 log(2))−1 ] , B
def=
[

1 1 · · · 1

0 1 · · · 	

]T

(17)

is the design matrix, and D is an arbitrary positive definite matrix. The best choice of D depends
on the memory parameter d . However, a good approximation of this optimal matrix D is the di-
agonal matrix with diagonal entries Di,i = 2−i , i = 0, . . . , 	; see [13] and the references therein.
We will use this choice of the design matrix in the numerical experiments.

In the sequel, we shall consider three different estimators of d based on three different estima-
tors of the scale spectrum σ 2

j , with respect to the scale index j , which are defined below.

2.2.1. Classical scale estimator

This estimator has been considered in the original contribution of [1] and consists of estimating
the scale spectrum σ 2

j with respect to the scale index j by the empirical variance

σ̂ 2
CL,j = 1

nj

nj∑
i=1

W 2
j,i , (18)

where for any j , nj denotes the number of available wavelet coefficients at scale index j defined
in (10).

2.2.2. Median absolute deviation

This estimator is well known to be a robust estimator of the scale, and, as mentioned in [27], it
has several appealing properties: it is easy to compute and has the best possible breakdown point
(50%). Since the wavelet coefficients Wj,i are centered Gaussian observations, the square of the
median absolute deviation of Wj,0:nj −1 is defined by

σ̂ 2
MAD,j =

(
m(
) med

0≤i≤nj −1
|Wj,i |

)2
, (19)

where 
 denotes the c.d.f. of a standard Gaussian random variable and

m(
) = 1/
−1(3/4) = 1.4826. (20)
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The use of the median estimator to estimate the scalogram has been suggested to estimate the
memory parameter in [29]; see also [24], page 420. A closely related technique is considered
in [9] and [10] to estimate the Hurst coefficient of locally self-similar Gaussian processes. Note
that the use of the median of the squared wavelet coefficients has been advocated to estimate the
variance at a given scale in wavelet denoising applications; this technique is mentioned in [12] to
estimate the scalogram of the noise in the i.i.d. context; Johnstone and Silverman [15] proposed
to use this method in the long-range dependent context; the use of these estimators has not,
however, been rigorously justified.

2.2.3. The Croux and Rousseeuw estimator

This estimator is another robust scale estimator introduced in [27]. Its asymptotic properties in
several dependence contexts have been further studied in [16] and the square of this estimator is
defined by

σ̂ 2
CR,j = (

c(
){|Wj,i − Wj,k|; 0 ≤ i, k ≤ nj − 1}(knj
)

)2
, (21)

where c(
) = 2.21914 and knj
= n2

j /4�. That is, up to the multiplicative constant c(
), σ̂CR,j

is the knj
th order statistics of the n2

j distances |Wj,i −Wj,k| between all the pairs of observations.

3. Asymptotic properties of the robust estimators of d

3.1. Properties of the scale spectrum estimators

The following proposition gives an asymptotic expansion for σ̂ 2
CL,j , σ̂ 2

MAD,j and σ̂ 2
CR,j defined

in (18), (19) and (21), respectively. These asymptotic expansions are used for deriving central
limit theorems for the different estimators of d .

Proposition 1. Assume that X is a Gaussian M(d) process with generalized spectral density
function, defined in (2), such that f ∗ ∈ H(β,L) for some L > 0 and 0 < β ≤ 2. Assume that
(W-1)–(W-4) hold with d, α and M satisfying (7). Let Wj,k be the wavelet coefficients asso-
ciated to X defined by (9). If n 	→ J0(n) is an integer valued sequence satisfying J0(n) → ∞
and n2−J0(n) → ∞, as n → ∞, then σ̂ 2∗,j defined in (18), (19) and (21), satisfies the following
asymptotic expansion, as n → ∞, for any given 	 ≥ 1:

max
J0(n)≤j≤J0(n)+	

∣∣∣∣∣√nj (̂σ
2∗,j − σ 2

j ) − 2σ 2
j√
nj

nj −1∑
i=0

IF

(
Wj,i

σj

,∗,


)∣∣∣∣∣= oP (1), (22)

where ∗ denotes CL, CR and MAD, σ 2
j is defined in (14) and IF is given by

IF(x,CL,
) = 1

2
H2(x), (23)

IF(x,CR,
) = c(
)

(
1/4 − 
(x + 1/c(
)) + 
(x − 1/c(
))∫

R
ϕ(y)ϕ(y + 1/c(
))dy

)
, (24)
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IF(x,MAD,
) = −m(
)

(
(1{x≤1/m(
)} − 3/4) − (1{x≤−1/m(
)} − 1/4)

2ϕ(1/m(
))

)
, (25)

where ϕ denotes the p.d.f. of the standard Gaussian random variable, m(
) and c(
) being
defined in (20) and (21), respectively, and H2(x) = x2 − 1 is the second Hermite polynomial.

The proof is postponed to Section 6.
We deduce from Proposition 1 and Theorem 6, given and proved in Section 6, the following

multivariate central limit theorem for the wavelet coefficient scales.

Theorem 2. Under the assumptions of Proposition 1, (̂σ 2∗,J0
, . . . , σ̂ 2∗,J0+	)

T , where σ̂ 2∗,j is de-
fined in (18), (19) and (21), satisfies the following multivariate central limit theorem:

√
n2−J02−2J0d

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣

σ̂ 2∗,J0

σ̂ 2∗,J0+1

...

σ̂ 2∗,J0+	

⎤⎥⎥⎥⎥⎦−

⎡⎢⎢⎢⎢⎣
σ 2∗,J0

σ 2∗,J0+1

...

σ 2∗,J0+	

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠ d−→ N (0,U∗(d)), (26)

where

U∗,i,j (d) = 4(f ∗(0))2
∑
p≥2

c2
p(IF∗)

p!K(d)p−2
2d(2+p)i∨j 2d(2−p)i∧j+i∧j

(27)

×
∑
τ∈Z

2|i−j |−1∑
r=0

(∫ π

−π

D(r)
∞,|i−j |(λ;d)eiλτ dλ

)p

, 0 ≤ i, j ≤ 	.

In (27), K(d)
def= ∫

R
|ξ |−2d |ψ̂(ξ)|dξ, D∞,|i−j |(·;d) is the cross-spectral density defined in (13),

cp(IF∗) = E[IF(X,∗,
)Hp(X)], where Hp is the pth Hermite polynomial, and IF(·,∗,
) is
defined in (23), (24) and (25).

The proof of Theorem 2 is postponed to Section 6.

Remark 1. Since, for ∗ = CL, IF(·) = H2(·)/2, Theorem 2 gives an alternative proof to ([19],
Theorem 2) of the limiting covariance matrix of (̂σ 2

CL,J0
, . . . , σ̂ 2

CL,J0+	)
T which is given, for

0 ≤ i, j ≤ 	, by

UCL,i,j (d) = 4π(f ∗(0))224d(i∨j)+i∧j

∫ π

−π

∣∣D∞,|i−j |(λ;d)
∣∣2 dλ.

Thus, for ∗ = CR and ∗ = MAD, we deduce the following:

UCL,i,i (d)

U∗,i,i (d)
≥ 1/2

E[IF2∗(Z)] , (28)
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where Z is a standard Gaussian random variable. With Lemma 8, we deduce, from inequal-
ity (28), that the asymptotic relative efficiency of σ̂ 2∗,j is larger than 36.76% when ∗ = MAD and
larger than 82.27% when ∗ = CR.

3.2. CLT for the robust wavelet-based regression estimator

Based on the results obtained in the previous section, we derive a central limit theorem for the
robust wavelet-based regression estimators of d defined by

d̂∗,n(J0,w)
def=

J0+	∑
j=J0

wj−J0 log(̂σ 2∗,j ), (29)

where σ̂ 2∗,j are given for ∗ = CL, MAD and CR by (18), (19) and (21), respectively.

Theorem 3. Under the same assumptions as in Proposition 1 and if

n2−(1+2β)J0(n) → 0, as n → ∞, (30)

then d̂∗,n(J0,w) satisfies the following central limit theorem:√
n2−J0(n)

(
d̂∗,n(J0,w) − d

) d−→ N (0,wT V∗(d)w), (31)

where V∗(d) is the (1 + 	) × (1 + 	) matrix defined by

V∗,i,j (d) =
∑
p≥2

4c2
p(IF∗)

p!K(d)p
2pd|i−j |+i∧j

(32)

×
∑
τ∈Z

2|i−j |−1∑
r=0

(∫ π

−π

D(r)
∞,|i−j |(λ;d)eiλτ dλ

)p

, 0 ≤ i, j ≤ 	.

In (32), K(d) = ∫
R

|ξ |−2d |ψ̂(ξ)|dξ, D∞,|i−j |(·;d) is the cross-spectral density defined in (13),
cp(IF∗) = E[IF(X,∗,
)Hp(X)], where Hp is the pth Hermite polynomial and IF(·,∗,
) is
defined in (23), (24) and (25).

The proof of Theorem 3 follows from Theorem 2 and the Delta method as explained in the
proof of [19], Proposition 3.

Remark 2. Since it is difficult to provide a theoretical lower bound for the asymptotic relative
efficiency (ARE) of d̂∗,n(J0,w) defined by

ARE∗(d) = wT VCL(d)w/wT V∗(d)w, (33)
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Table 1. Asymptotic relative efficiency of d̂n,CR and d̂n,MAD with respect to d̂n,CL

d −0.8 −0.4 −0.2 0 0.2 0.6 0.8 1 1.2 1.6 2 2.2 2.6 3

ARECR(d) 0.72 0.67 0.63 0.65 0.70 0.63 0.70 0.75 0.76 0.75 0.79 0.74 0.77 0.74
AREMAD(d) 0.48 0.39 0.38 0.36 0.43 0.39 0.44 0.47 0.45 0.50 0.48 0.5 0.49 0.49

where ∗ = CR or MAD, we propose to compute this quantity empirically. We know from Theo-
rem 3 that the expression of the limiting variance wT V∗(d)w is valid for all Gaussian M(d) pro-
cesses satisfying the assumptions given in Proposition 1; thus it is enough to compute ARE∗(d)

in the particular case of a Gaussian ARFIMA(0, d,0) process (Xt ). Such a process is defined by

Xt = (I − B)−dZt =
∑
j≥0

(j + d)

(j + 1)(d)
Zt−j , (34)

where {Zt } are i.i.d. N (0,1). We propose to evaluate ARE∗(d) empirically by simulating sev-
eral Gaussian ARFIMA(0, d,0) processes for each d belonging to [−0.8;3] and computing the
associated empirical standard error. With such a choice of d , both stationary and non-stationary
processes are considered. The empirical values of ARE∗(d) are given in Table 1. The results
were obtained from the observations X1, . . . ,Xn where n = 212, 1000 independent replications
and w = DB(BT DB)−1b, where B and b are defined in (17) and D is a diagonal matrix with
diagonal coefficients Di,i = 2−i . We used Daubechies wavelets with M = 2 vanishing moments
when d ≤ 2 and M = 4 when d > 2, which ensures that condition (7) is satisfied. The smallest
scale is chosen to be J0 = 3 and J0 + 	 = 8.

From Table 1, we can see that d̂n,CR is more efficient than d̂n,MAD and that its asymptotic
relative efficiency ARECR ranges from 0.63 to 0.79. These results indicate empirically that the
the loss of efficiency of the robust estimator d̂n,CR is moderate and makes it an attractive robust
procedure to the non-robust estimator d̂n,CL.

4. Numerical experiments

In this section the robustness properties of the different estimators of d , namely d̂CL,n(J0,w),
d̂CR,n(J0,w) and d̂MAD,n(J0,w), that are defined in Section 2.2 are investigated using Monte
Carlo experiments. In the sequel, the memory parameter d is estimated from n = 212 observations
of a Gaussian ARFIMA(0, d,0) process defined in (34), when d = 0.2 and 1.2 are eventually
corrupted by additive outliers. We use the Daubechies wavelets with M = 2 vanishing moments
which ensures that condition (7) is satisfied.

Let us first explain how to choose the parameters J0 and J0 + 	. With n = 212, the maximal
available scale is equal to 10. Choosing J0 too small may introduce a bias in the estimation of d

by Theorem 3. However, at coarse scales (large values of J0), the number of observations may
be too small, and thus choosing J0 too large may yield a large variance. Since at scales j = 9 and
j = 10, we have, respectively, 5 and 1 observations, we chose J0 + 	 = 8. For the choice of J0,



182 O. Kouamo, C. Lévy-Leduc and E. Moulines

Figure 1. Confidence intervals of the estimates d̂n,CL, d̂n,CR and d̂n,MAD of an ARFIMA(0, d,0) pro-
cess with d = 0.2 (left) and d = 1.2 (right) for J0 = 1, . . . ,8 and J0 + 	 = 9. For each J0, are displayed
confidence interval associated to d̂n,CL (red), d̂n,CR (green) and d̂n,MAD (blue), respectively.

we use the empirical rule proposed by [19] and illustrated in Figure 1. In this figure, we display
the estimates d̂n,CL, d̂n,CR and d̂n,MAD of the memory parameter d as well as their respective
95% confidence intervals from J0 = 1 to J0 = 7 with J0 +	 = 8. We propose to choose J0 = 3 in
both cases (d = 0.2 and d = 1.2) since the successive confidence intervals starting from J0 = 3 to
J0 = 7 are such that the smallest one is included in the largest one. This choice is a way to achieve
a bias/variance trade-off. A further justification for this choice of J0 is given in Table 2, in which
we provide the empirical coverage probabilities associated to d̂∗,n(J0,w), which correspond to
the probability that d belongs to the 95% confidence intervals. Note that the confidence intervals
in Figure 1 were computed by using Theorem 3. More precisely, an approximation of the limiting
variance is obtained by computing the empirical standard error of

√
n2−J0(d̂∗,n(J0,w) − d) for

the different values of J0 by simulating and estimating the memory parameter of 5000 Gaussian
ARFIMA(0, d,0) processes with d = 0.2 (left part of Figure 1) and with d = 1.2 (right part of
Figure 1).

Table 2. Coverage probabilities pCL, pCR and pMAD of d̂n,CL d̂n,CR d̂n,MAD, respectively, for n = 212

observations of an ARFIMA(0, d,0) process with d = 0.2 and d = 1.2

d = 0.2 d = 1.2

J0 1 2 3 4 5 6 7 1 2 3 4 5 6 7

pCL 0.36 0.90 0.95 0.94 0.94 0.94 0.94 0 0.79 0.94 0.94 0.94 0.95 0.95
pCR 0.52 0.92 0.95 0.95 0.95 0.94 0.95 0 0.85 0.95 0.95 0.95 0.96 0.95
pMAD 0.73 0.93 0.95 0.95 0.96 0.95 0.95 0.01 0.89 0.95 0.95 0.95 0.95 0.95
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Figure 2. Empirical densities of the quantities
√

n2−J0 (d̂∗,n − d), with ∗ = CL (solid line), ∗ = CR
(dashed line) and ∗ = MAD (dotted line) of the ARFIMA(0,0.2,0) model without outliers (left) and with
1% of outliers (right).

In the left panels of Figures 2 and 3, the empirical distribution of
√

n2−J0(d̂∗,n − d) are dis-
played when ∗ = CL,MAD and CR for the ARFIMA(0, d,0) model with d = 0.2 (Figure 2) and
d = 1.2 (Figure 3), respectively. They were computed using 5000 replications; their shapes are
close to the Gaussian density (the standard deviations are of course different). In the right panels
of Figures 2 and 3, the empirical distribution of

√
n2−J0(d̂∗,n − d) are displayed when outliers

are present. We introduce 1% of additive outliers in the observations; these outliers are obtained
by choosing, uniformly at random, a time index and by adding to the selected observation 5 times

Figure 3. Empirical densities of the quantities
√

n2−J0 (d̂∗,n − d), with ∗ = CL (solid line), ∗ = CR
(dashed line) and ∗ = MAD (dotted line) of the ARFIMA(0,1.2,0) model without outliers (left) and with
1% of outliers (right).
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the standard error of the raw observations. The empirical distribution of
√

n2−J0(d̂CL,n − d) is
clearly located far away from zero, especially in the non-stationary ARFIMA(0,1.2,0) model.
One can also observe the considerable increase in the variance of the classical estimator. In sharp
contrast, the distribution of the robust estimators

√
n2−J0(d̂MAD,n − d) and

√
n2−J0(d̂CR,n − d)

stays symmetric and the variance stays constant.

5. Application to real data

In this section, we compare the performance of the different estimators of the long memory
parameter d introduced in Section 2.2 on two different real data sets.

5.1. Nile river data

The Nile river data set is a well-known time series, which has been extensively analyzed; see [4],
Section 1.4, page 20. The data consists of yearly minimal water levels of the Nile river measured
at the Roda gauge, near Cairo, for the years 622–1284 AD and contains 663 observations; the
units for the data, as presented by [4], are centimeters. The empirical mean and the standard
deviation of the data are equal to 1148 and 89.05, respectively. The question has been raised as
to whether the Nile time series contains outliers; see, for example, [3,8,25] and [18]. The test
procedure developed by [8] suggests the presence of outliers at 646 AD (p-value 0.0308) and at
809 (p-value 0.0007). Another possible outliers is at 878 AD. Since the number of observations
is small, in the estimation of d, we took J0 = 1 and J0 + 	 = 6. With this choice, we observe a
significant difference between the classical estimators d̂n,CL = 0.28 (with 95% confidence inter-
val [0.23, 0.32]) and the robust estimators d̂n,CR = 0.408 (with 95% confidence interval [0.34,
0.46]) and d̂n,MAD = 0.414 (with 95% confidence interval [0.34, 0.49]). Thus, to better under-
stand the influence of outliers on the estimated memory parameter in practical situations, a new
data set with artificial outliers was generated. Here, we replaced the presumed outliers of [8] by
the value of the observation plus 10 times the standard deviation. The new memory parameter
estimators are d̂n,CL = 0.12, d̂n,CR = 0.4 and d̂n,MAD = 0.392. As was expected, the values of
the robust estimators remained stable. However, the classical estimator of d was significantly
affected. A robust estimate of d for the Nile data is also given in [18]. The authors found 0.416,
which is very close to d̂n,CR = 0.408 and d̂n,MAD = 0.414.

5.2. Internet traffic packet counts data

In this section, two Internet traffic packet counts data sets collected at the University of
North Carolina, Chapel (UNC) are analyzed. These data sets are available from the website
http://netlab.cs.unc.edu/public/old_research/net_lrd/. These data sets have been studied by [23].

Figure 4 (left) displays a packet count time series measured at the link of UNC on April 13,
Saturday, from 7:30 p.m. to 9:30 p.m., 2002 (Sat1930). Figure 4 (right) displays the same type
of time series but on April 11, a Thursday, from 1 p.m. to 3 p.m., 2002 (Thu1300). These packet
counts were measured every 1 millisecond, but, for a better display, we aggregated them at 1
second.

http://netlab.cs.unc.edu/public/old_research/net_lrd/
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Figure 4. Packet counts of aggregated traffic every 1 second.

The maximal available scale for the two data sets is 20. Since we have less than 4 observations
at this scale, we set the coarse scale J0 + 	 = 19 and vary the finest scale J0 from 1 to 17. The
values of the three estimators of d are stored in Table 3 for J0 = 1 to 14 as well as the standard
errors of

√
n2−J0(d̂n,∗ − d) for the two data sets: Thu1300 and Sat1930. The standard errors in

Table 3 were obtained as follows. For each estimated value of d , we simulated n observations of
1000 Gaussian ARFIMA(0, d,0) processes with this value of d , n being the number of observa-
tions of the data sets that we are studying (Thu1300 or Sat1930), and we computed the empirical
standard errors of

√
n2−J0(d̂n,∗ − d) from these 1000 Gaussian ARFIMA(0, d,0) processes.

In Figure 5, we display the estimates d̂n,CL, d̂n,CR and d̂n,MAD of the memory parameter d as
well as their respective 95% confidence intervals from J0 = 1 to J0 = 14. We propose to choose
J0 = 9 for Thu1300 and J0 = 10 for Sat1930 since, from these values of J0, the successive

Table 3. Estimators of d with J0 = 1 to J0 = 14 and J0 + 	 = 19 obtained from Thu1300 and Sat1930.
Here SE denotes the standard error of

√
n2−J0(d̂n,∗ − d)

J0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Thu1300
d̂n,CL 0.08 0.09 0.11 0.15 0.19 0.25 0.31 0.39 0.43 0.47 0.51 0.49 0.44 0.41
SECL (0.52) (0.56) (0.51) (0.52) (0.57) (0.52) (0.56) (1.45) (0.74) (0.76) (0.87) (0.91) (1.10) (1.21)
d̂n,CR 0.08 0.07 0.07 0.09 0.13 0.19 0.28 0.34 0.37 0.40 0.42 0.43 0.48 0.45
SECR (0.55) (0.58) (0.61) (0.63) (0.59) (0.6) (0.67) (1.42) (0.82) (0.88) (0.97) (1.08) (1.18) (1.23)
d̂n,MAD 0.08 0.08 0.07 0.09 0.13 0.19 0.27 0.33 0.38 0.40 0.43 0.43 0.5 0.48
SEMAD (0.74) (0.87) (0.78) (0.83) (0.86) (0.84) (0.91) (1.49) (0.98) (1.04) (1.07) (1.15) (1.18) (1.2)

Sat1930
d̂n,CL 0.05 0.06 0.08 0.11 0.14 0.17 0.23 0.28 0.33 0.36 0.37 0.39 0.42 0.42
SECL (0.41) (0.47) (0.43) (0.48) (0.47) (0.48) (0.46) (0.89) (0.54) (0.61) (0.70) (0.80) (1.11) (1.24)
d̂n,CR 0.06 0.06 0.06 0.09 0.12 0.16 0.23 0.3 0.34 0.38 0.4 0.42 0.44 0.42
SECR (0.51) (0.47) (0.54) (0.48) (0.48) (0.53) (0.56) (0.90) (0.81) (0.70) (0.88) (0.96) (1.21) (1.26)
d̂n,MAD 0.06 0.06 0.07 0.09 0.11 0.16 0.23 0.29 0.33 0.38 0.4 0.43 0.45 0.4
SEMAD (0.59) (0.77) (0.72) (0.81) (0.70) (0.89) (0.82) (0.64) (1.13) (0.99) (1.10) (1.34) (1.49) (1.38)
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Figure 5. Confidence intervals of the estimates d̂n,CL (red), d̂n,CR (green) and d̂n,MAD (blue) on the data
Thu1300 (left) and Sat1930 (right) for J0 = 1, . . . ,14 and J0 + 	 = 19.

confidence intervals are such that the smallest one is included in the largest one (for the robust
estimators). Note that Park and Park [23] chose the same values of J0 using another methodology.
For these values of J0, we obtain d̂n,CL = 0.43 (with 95% confidence interval [0.412, 0.443]),
d̂n,CR = 0.37 (with 95% confidence interval [0.358, 0.385]) and d̂n,MAD = 0.38 with (95% con-
fidence interval [0.362, 0.397]) for Thu1300 and d̂n,CL = 0.36 (with 95% confidence interval
[0.345, 0.374]), d̂n,CR = d̂n,MAD = 0.38 (with 95% confidence intervals [0.361, 0.398] for CR
and [0.357, 0.402] for MAD) for Sat1930. These values are similar to the one found by [23].

With this choice of J0 for Thu1300, we observe a significant difference between the classical
estimator and the robust estimators. Thus to better understand the influence of outliers on the
estimated memory parameter, a new data set with artificial outliers was generated. The Thu1300
time series shows two spikes shooting down. Especially, the first downward spike hits zero. Park
et al. [22] have shown that this dropout lasted 8 seconds. Outliers are introduced by dividing
by 6 the 8000 observations in this period. The new memory parameter estimators are d̂n,CL =
0.445, d̂n,CR = 0.375 and d̂n,MAD = 0.377. As for the Nile river data, the classical estimator was
affected while the robust estimators remain stable.

6. Proofs

Theorem 4 is an extension of [2], Theorem 4, to arrays of stationary Gaussian processes in the
unidimensional case, and Theorem 5 extends the result of [11] to arrays of stationary Gaussian
processes. These two theorems are useful for the proof of Proposition 1.

Theorem 4. Let {Xj,i, j ≥ 1, i ≥ 0} be an array of standard stationary Gaussian processes such
that for a fixed j ≥ 1, (Xj,i)i≥0 has a spectral density fj and an autocorrelation function ρj ,
defined by ρj (k) = E(Xj,0Xj,k), for all k ≥ 0. Assume also that there exists a sequence {uj }j≥1
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tending to zero as j tends to infinity, such that, for all j ≥ 1,

sup
λ∈(−π,π)

|fj (λ) − g∞(λ)| ≤ uj , (35)

where g∞ is a 2π-periodic function which is bounded on (−π,π) and continuous at the origin.
Let h be a function on R such that E[h(X)2] < ∞, where X is a standard Gaussian random
variable, and of Hermite rank τ ≥ 1. Let {nj }j≥1 be a sequence of integers such that nj tends to
infinity as j tends to infinity. Then,

1√
nj

nj∑
i=1

h(Xj,i)
d−→ N (0, σ̃ 2), as j → ∞, (36)

where

σ̃ 2 = lim
j→∞ Var

(
1√
nj

nj∑
i=1

h(Xj,i)

)
= 2π

∑
	≥τ

c2
	

	! g
�	∞(0).

In the previous equality, c	 = E[h(X)H	(X)], where H	 is the 	th Hermite polynomial, and X is
a standard Gaussian random variable.

Proof. By observing that h(x) =∑
	≥τ c	H	(x)/	!, we start by proving that, for any fixed t ,∑nj

i=1

∑
τ≤	≤t (c	/	!)H	(Xj,i)√

Var(
∑nj

i=1

∑
τ≤	≤t (c	/	!)H	(Xj,i))

d−→ N (0,1), as nj → ∞. (37)

Using Mehler’s formula given in [6, (2.1)], we have

Var

( nj∑
i=1

∑
τ≤	≤t

c	

	! H	(Xj,i)

)
=

nj∑
i1,i2=1

∑
τ≤	1,	2≤t

c	1c	2

	1!	2!E[H	1(Xj,i1)H	2(Xj,i2)]
(38)

=
∑

τ≤	≤t

c2
	

	!

[ nj∑
i1,i2=1

ρ	
j (i2 − i1)

]
.

Since the Gaussian distribution is uniquely determined by its moments, it is enough to show the
convergence of moments to prove (37), that is for p ≥ 1,

E[(∑nj

i=1

∑
τ≤	≤t (c	/	!)H	(Xj,i))

2p+1]
(
∑

τ≤	≤t (c
2
	/	!)[

∑nj

i1,i2=1 ρ	
j (i2 − i1)])(2p+1)/2

→ 0, as nj → ∞ and (39)

E[(∑nj

i=1

∑
τ≤	≤t (c	/	!)H	(Xj,i))

2p]
(
∑

τ≤	≤t (c
2
	/	!)[

∑nj

i1,i2=1 ρ	
j (i2 − i1)])p

→ (2p)!
p!2p

, as nj → ∞. (40)



188 O. Kouamo, C. Lévy-Leduc and E. Moulines

Observe that, for all m in N
∗,

E

[( nj∑
i=1

∑
τ≤	≤t

c	

	! H	(Xj,i)

)m]
(41)

=
∑

1≤i1,...,im≤nj

∑
τ≤	1,...,	m≤t

c	1 · · · c	m

	1! · · ·	m!E[H	1(Xj,i1) · · ·H	m(Xj,im)].

By [26], equation (33), page 69,

E[H	1(Xj,i1) · · ·H	m(Xj,im)] = 	1! · · ·	m!
∑

{	1,...,	m}

ρν
j

ν! , (42)

where it is understood that ρν
j =∏

1≤q<k≤m ρ
νq,k

j (iq − ik), ν! =∏
1≤q<k≤m νq,k!, and

∑
{	1,...,	m}

indicates that we are to sum over all symmetric matrices ν with nonnegative integer entries,
νii = 0 and the row sums equal to 	1, . . . , 	m.

(1) We start with the case where m = 2p + 1. By Lemma 9, we get that

lim
nj →∞

1

nj

∑
τ≤	≤t

c2
	

	!

[ nj∑
i1,i2=1

ρ	
j (i2 − i1)

]
= 2π

∑
τ≤	≤t

c2
	

	! g
�	∞(0). (43)

Thus, in order to prove (39), it is enough to prove that

lim
nj →∞

1

n
p+1/2
j

E

[( nj∑
i=1

∑
τ≤	≤t

c	

	! H	(Xj,i)

)2p+1]
= 0. (44)

Let us now prove that

lim
nj →∞

1

n
p+1/2
j

∑
1≤i1,...,i2p+1≤nj

sup
ν

∏
1≤q<k≤2p+1

ρ
νq,k

j (iq − ik) = 0, (45)

where supν indicates that we are taking the supremum over all symmetric matrices ν with non-
negative integer entries, νii = 0 and the row sums equal to 	1, . . . , 	2p+1. By (41) and (42), (44)
is a consequence of (45).

Let us first address the case where |{i1, . . . , i2p+1}| = 2p + 1; that is, the indices i1, . . . , i2p+1

are all different. Using that ρ
νq,k

j (iq − ik) = ∫ π
−π eiλq,k(iq−ik)f

�νq,k

j (λq,k)dλq,k and the notation

Dnj
(λ) =∑nj

r=1 eiλr , we obtain that∑
1≤i1,...,i2p+1≤nj

∏
1≤q<k≤2p+1

ρ
νq,k

j (iq − ik)

=
∫

[−π,π]p(2p+1)

Dnj

(2p+1∑
k=2

λ1,k

)
Dnj

(
−λ1,2 +

2p+1∑
k=3

λ2,k

)
(46)
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× Dnj

(
−λ1,3 − λ2,3 +

2p+1∑
k=4

λ3,k

)
· · ·

× Dnj

(
−

2p∑
q=1

λq,2p+1

) ∏
1≤q<k≤2p+1

f
�νq,k

j (λq,k)dλq,k,

with the convention that f �0
j (λ)dλ is a Dirac measure at 0. The number of Dnj

in the previous
product is equal to 2p + 1. Since the 	is are greater than 1, there is at least one λq,k in each Dnj

.
Moreover, there exists at least one Dnj

having a sum of at least two λq,ks as argument; otherwise
the matrix ν would have a null line which is impossible since the 	is are greater than 1. The
right-hand side of (46) can be bounded above by using that ab ≤ (a2 + b2)/2 with

a = Dnj

(2p+1∑
k=2

λ1,k

)∣∣∣∣∣Dnj

(
−λ1,2 +

2p+1∑
k=3

λ2,k

)∣∣∣∣∣
1/2

,

and

b =
∣∣∣∣∣Dnj

(
−λ1,2 +

2p+1∑
k=3

λ2,k

)∣∣∣∣∣
1/2

Dnj

(
−λ1,3 − λ2,3 +

2p+1∑
k=4

λ3,k

)
· · · Dnj

(
−

2p∑
q=1

λq,2p+1

)
.

Then, using Lemma 10 and (35), we get (45). Actually, the Dnj
, which is common to a and b,

can be any Dnj
having a sum of at least two λq,ks as argument. Such a Dnj

does exist according
to the previous remark.

If |{i1, . . . , i2p+1}| < 2p + 1, the number of Dnj
appearing in the right-hand side of (46) is

equal to |{i1, . . . , i2p+1}|, and thus, using the same arguments as previously, we can also con-
clude, in this case, that (45) holds.

(2) Let us now study the case where m is even; that is, m = 2p with p ≥ 1.

We shall prove that, among all the terms in the right-hand side of (42), the leading ones cor-
respond to the case where we have p pairs of equal indices in the set {	1, . . . , 	2p}, that is, for
instance, 	1 = 	2, 	3 = 	4, . . . , 	2p−1 = 	2p and ν1,2 = 	1, ν3,4 = 	3, . . . , ν2p−1,2p = 	2p−1, the
others νi,j being equal to zero. This gives

(	2!)2 · · · (	2p!)2 ρj (i2 − i1)
	2ρj (i4 − i3)

	4 · · ·ρj (i2p − i2p−1)
	2p

	2! · · ·	2p! .

The corresponding term in (41) with m = 2p is given by

∑
1≤i1,...,i2p≤nj

∑
τ≤	2,	4,...,	2p≤t

c2
	2

c2
	4

· · · c2
	2p

	2!	4! · · ·	2p!ρj (i2 − i1)
	2ρj (i4 − i3)

	4 · · ·ρj (i2p − i2p−1)
	2p

=
[∑

l≥τ

c2
	

	!

( nj∑
i1,i2=1

ρ	
k(i2 − i1)

)]p

,
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which corresponds to the denominator in the left-hand side of (40). Since there exists exactly
(2p)!/(2pp!) possibilities to have pairs of equal indices among 2p indices, we obtain (40) if we
prove that the other terms can be neglected.

We use the same line of reasoning as the one used in the case where m is odd and prove that

lim
nj →∞

1

n
p
j

∑
1≤i1,...,i2p≤nj

sup
ν

∏
1≤q<k≤2p

ρ
νq,k

j (iq − ik) = 0, (47)

where supν indicates that we are taking the supremum over all symmetric matrices ν with non-
negative integer entries such that νii = 0, the row sums equal to 	1, . . . , 	2p and such that there
are at least two non-null values of νqk on a row of ν.

Let us first address the case where |{i1, . . . , i2p}| = 2p. Using the notation Dnj
(λ) =∑nj

r=1 eiλr

and that ρ
νq,k

j (iq − ik) = ∫ π
−π eiλq,k(iq−ik)f

�νq,k

j (λq,k)dλq,k , we obtain that

∑
1≤i1,...,i2p≤nj

∏
1≤q<k≤2p

ρ
νq,k

j (iq − ik)

=
∫

[−π,π]p(2p−1)

Dnj

( 2p∑
k=2

λ1,k

)
Dnj

(
−λ1,2 +

2p∑
k=3

λ2,k

)
(48)

× Dnj

(
−λ1,3 − λ2,3 +

2p∑
k=4

λ3,k

)
· · · Dnj

(
−

2p−1∑
q=1

λq,2p

)

×
∏

1≤q<k≤2p

f
�νq,k

j (λq,k)dλq,k,

with the convention that f �0
j (λ)dλ is a Dirac measure at 0. The number of Dnj

in the previous
product is equal to 2p. Since the 	is is greater than 1, there are at least one λq,k in each Dnj

.
Moreover, there exists at least one Dnj

, having a sum of at least two λq,ks, as argument; other-
wise, there are p pairs of equal indices in the set {	1, . . . , 	2p}, which corresponds to the case
previously addressed. To conclude the proof of (47), we use the same arguments as those used in
the odd case.

If |{i1, . . . , i2p}| < 2p, the number of Dnj
appearing in the right-hand side of (48) is equal to

|{i1, . . . , i2p}|, and thus, using the same arguments as previously, we can also conclude in this
case that (47) holds.

We conclude the proof by applying [7], Proposition 6.3.9. By (37), (38) and (43), Assump-
tion (i) of [7], Proposition 6.3.9, holds true. Assumption (ii) comes from

∑
τ≤	≤t c

2
	g

�	∞(0)/	! →∑
	≥τ c2

	g
�	∞(0)/	!, as t tends to infinity. Let us now check Assumption (iii). For this, it is

enough to prove that limt→∞ lim supnj →∞ Var(n−1/2
j

∑nj

i=1

∑
	>t c	H	(Xj,i)/	!) = 0. Note that

Var(n−1/2
j

∑nj

i=1

∑
	>t c	H	(Xj,i)/	!) = ∑

	>t

∑
|s|<nj

c2
	(1 − |s|/nj )ρ

	
j (s)/	!. We aim at ap-
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plying Lemma 12 to fnj
, gnj

, f and g defined hereafter. Let

fnj
(	) = c2

	

	!
∑

|s|<nj

(
1 − |s|

nj

)
ρ	

j (s).

Observe that for 	 ≥ 2, |fnj
(	)| ≤ gnj

(	) where

gnj
(	) = c2

	

	!
∑

|s|<nj

(
1 − |s|

nj

)
ρ2

j (s).

By Lemma 9 we get, as nj → ∞, that

fnj
(	) → f (	) = 2π

c2
	

	! g
�	∞(0) and gnj

(	) → g(	) = 2π
c2
	

	! g
�2∞(0).

Moreover,
∑

	>t gnj
(	) → 2π

∑
	>t c

2
	g

�2∞(0)/	! and Lemma 12 yields

lim
nj →∞

1

nj

Var

( nj∑
i=1

∑
	>t

c	

	! H	(Xj,i)

)
= 2π

∑
	>t

c2
	

	! g
�	∞(0),

which tends to zero as t tends to infinity since
∑

	 c2
	g

�	∞(0)/	! is a convergent series. �

Theorem 5. Let {Xj,i, j ≥ 1, i ≥ 0} be an array of standard stationary Gaussian processes such
that, for a fixed j ≥ 1, (Xj,i)i≥0 has a spectral density fj and an autocorrelation function ρj

defined by ρj (k) = E(Xj,0Xj,k), for all k ≥ 0. Let Fj be the c.d.f. of Xj,1 and Fnj
the empirical

c.d.f., computed from Xj,1, . . . ,Xj,nj
. If {nj }j≥1 is a sequence of integers such that nj tends to

infinity as j tends to infinity and if condition (35) holds, then

√
nj (Fnj

− Fj )
d−→ W in D([−∞,∞]), (49)

as j tends to infinity, where D([−∞,∞]) denotes the Skorokhod space on [−∞,∞], and W is
a Gaussian process with covariance function

E[W(x)W(y)] = 2π
∑
q≥1

Jq(x)Jq(y)

q! g
�q∞(0), x, y ∈ R,

where Jq(x) = E[Hq(X){1{X≤x} − E(1{X≤x})}], Hq is the qth Hermite polynomial and X is a
standard Gaussian random variable.

Proof. Let Sj (x) = n
−1/2
j

∑nj

i=1(1{Xj,i≤x} − Fj (x)), for all x in R. We shall first prove that for
x1, . . . , xQ and a1, . . . , aQ in R

Q∑
q=1

aqSj (xq)
d−→ N

(
0,2π

∑
	≥1

c2
	

	! g
�	∞(0)

)
, as j → ∞, (50)
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where c	 is the 	th Hermite coefficient of the function h defined by

h(·) =
Q∑

q=1

aq

(
1{·≤xq

} − E(1{·≤xq })
)
.

Thus
∑Q

q=1 aqSj (xq) = n
−1/2
j

∑nj

i=1 h(Xj,i), where h is bounded and of Hermite rank τ ≥ 1

since, for all t in R, E(X1X≤t ) = ∫
R

x1x≤t ϕ(x)dx = ∫ t

−∞(−ϕ(x))′ dx = −ϕ(t) �= 0, and the
CLT (50) follows from Theorem 4.

Let us now prove that there exists a positive constant C and β > 1 such that for all r ≤ s ≤ t ,

E
(|Sj (s) − Sj (r)|2|Sj (t) − Sj (s)|2

)≤ C|t − r|β. (51)

The convergence (49) then follows from (50), (51) and [5], Theorem 13.5. Note that

E
(|Sj (s) − Sj (r)|2|Sj (t) − Sj (s)|2

)
= 1

n2
j

nj∑
i,i′=1

nj∑
l,l′=1

E
(
(ks − kr)(Xj,i)(ks − kr)(Xj,i′)(kt − ks)(Xj,l)(kt − ks)(Xj,l′)

)
,

where kt (X) = 1{X≤t} − E(1{X≤t}). By expanding each difference of functions in Hermite poly-
nomials, we get

E
(|Sj (s) − Sj (r)|2|Sj (t) − Sj (s)|2

)
= 1

n2
j

nj∑
i,i′=1

nj∑
l,l′=1

∑
p1,...,p4≥1

cp1(ks − kr)cp2(ks − kr)cp3(kt − ks)cp4(kt − ks)

p1! · · ·p4!
× E(Hp1(Xj,i)Hp2(Xj,i′)Hp3(Xj,l)Hp4(Xj,l′)).

Using the same arguments as in the case where m is even in the proof of Theorem 4, we obtain

E
(|Sj (s) − Sj (r)|2|Sj (t) − Sj (s)|2

)
= 1

n2
j

∑
p1,p2≥1

nj∑
i,i′,l,l′=1

[
c2
p1

(kt − ks)c
2
p2

(ks − kr)

p1!p2! ρ
p1
j (i′ − i)ρ

p2
j (l′ − l)

+ cp1(kt − ks)cp1(ks − kr)cp2(kt − ks)cp2(ks − kr)

p1!p2!
× ρ

p1
j (l − i)ρ

p2
j (l′ − i′)

+ cp1(kt − ks)cp1(ks − kr)cp2(kt − ks)cp2(ks − kr)

p1!p2!

× ρ
p1
j (l′ − i)ρ

p2
j (l − i′)

]
+ O(n−1

j ).
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Let ‖ · ‖2 = (E(·)2)1/2 and 〈f,g〉 = E[f (X)g(X)], where X is a standard Gaussian random
variable. Since, by (64),

∑nj

i,i′,l,l′=1 ρ
p1
j (l − i)ρ

p2
j (l′ − i′) = O(n2

j ), we get with the Cauchy–
Schwarz inequality that there exists a positive constant C such that

E
(|Sj (s) − Sj (r)|2|Sj (t) − Sj (s)|2

)
≤ C

∑
p1,p2≥1

[
c2
p1

(kt − ks)c
2
p2

(ks − kr)

p1!p2! + cp1(kt − ks)cp1(ks − kr)cp2(kt − ks)cp2(ks − kr)

p1!p2!
]

≤ C(‖kt − ks‖2
2‖ks − kr‖2

2 + |〈kt − ks, ks − kr 〉|2)
≤ C‖kt − ks‖2

2‖ks − kr‖2
2.

Note that ‖kt − ks‖2
2 ≤ 2(‖1{X≤t} − 1{X≤s}‖2

2 + ‖E(1{X≤s}) − E(1{X≤t})‖2
2). Since s ≤ t ,

‖1{X≤t} − 1{X≤s}‖2
2 = 
(t) − 
(s) ≤ C|t − s|, where 
 denotes the c.d.f. of a standard Gaus-

sian random variable. Moreover, ‖E(1{X≤s})−E(1{X≤t})‖2
2 = |
(t)−
(s)|2 ≤ C|t −s|2, which

concludes the proof of (51) with β = 2. �

Proof of Proposition 1. For ∗ = CL, the proof of (22) is immediate, since

√
nj (̂σ

2
CL,j − σ 2

j ) = 1√
nj

nj −1∑
i=0

(W 2
j,i − σ 2

j ) = 2σ 2
j√
nj

nj −1∑
i=0

IF

(
Wj,i

σj

,CL,


)
.

Let us now prove (22) for ∗ = MAD. Let us denote by Fnj
the empirical c.d.f. of Wj,0:nj −1 and

by Fj the c.d.f. of Wj,0. Note that

σ̂MAD,j = m(
)T0(Fnj
),

where T0 = T2 ◦ T1 with T1 :F 	→ {r 	→ ∫
R

1{|x|≤r} dF(x)} and T2 :U 	→ U−1(1/2). To
prove (22), we start by proving that

√
nj (Fnj

− Fj ) converges in distribution in the space of
cadlag functions equipped with the topology of uniform convergence. This convergence follows
by applying Theorem 5 to Xj,i = Wj,i/σj which is an array of zero mean stationary Gaus-
sian processes by [20], Corollary 1. The spectral density fj of (Xj,i)i≥0 is given by fj (λ) =
Dj,0(λ;f )/σ 2

j where Dj,0(·;f ) is the within scale spectral density of the process {Wj,k}k≥0, de-

fined in (12), and σ 2
j is the wavelet spectrum defined in (14). Here, g∞(λ) = D∞,0(λ;d)/K(d),

with D∞,0(·;d) defined in (13) and K(d) = ∫ +∞
−∞ |ξ |−2d |ψ̂(ξ)|2 dξ since, by [20], (26) and (29)

in Theorem 1,∣∣∣∣ Dj,0(λ;f )

f ∗(0)K(d)22dj
− D∞,0(λ;d)

K(d)

∣∣∣∣ ≤ CLK(d)−12−βj → 0, as j → ∞,

∣∣∣∣ σ 2
j

f ∗(0)K(d)22dj
− 1

∣∣∣∣ ≤ CL2−βj → 0, as j → ∞.
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Note also that, by [20], Theorem 1, g∞(λ) is a continuous and 2π-periodic function on (−π,π).
Moreover, g∞(λ) is bounded on (−π,π) by Lemma 11, and (35) holds with

uj = C1
2−βj

σ 2
j /22dj

(
2−βj + C2

σ 2
j

22dj

)
→ 0, as j → ∞,

where C1 and C2 are positive constants. The asymptotic expansion (22) for σ̂MAD,j can be de-
duced from the functional Delta method (stated, e.g., in [32], Theorem 20.8) and the classical
Delta method, stated, for example, in [32], Theorem 3.1. To show this, we have to prove that
T0 = T1 ◦ T2 is Hadamard differentiable and that the corresponding Hadamard differential is
defined and continuous on the whole space of cadlag functions. We prove first the Hadamard dif-
ferentiability of the functional T1. Let (gt ) be a sequence of cadlag functions with bounded vari-
ations such that ‖gt − g‖∞ → 0, as t → 0, where g is a cadlag function. For any non-negative r ,
we consider

T1(Fj + tgt )[r] − T1(Fj )[r]
t

= (Fj + tgt )(r) − (Fj + tgt )(−r) − Fj (r) + Fj (−r)

t

= tgt (r) − tgt (−r)

t
= gt (r) − gt (−r) → g(r) − g(−r),

since ‖gt − g‖∞ → 0, as t → 0. The Hadamard differential of T1 at g is given by

(DT1(Fj ).g)(r) = g(r) − g(−r).

By [32], Lemma 21.3, T2 is Hadamard differentiable. Finally, using the Chain rule [32], Theo-
rem 20.9, we obtain the Hadamard differentiability of T0 with the following Hadamard differen-
tial:

DT0(Fj ).g = − (DT1(Fj ).g)(T0(Fj ))

(T1(Fj ))′[T0(Fj )] = −g(T0(Fj )) − g(−T0(Fj ))

(T1(Fj ))′[T0(Fj )] .

In view of the last expression, DT0(Fj ) is a continuous function of g and is defined on the whole
space of cadlag functions. Thus by [32], Theorem 20.8, we obtain:

m(
)
√

nj

(
T0(Fnj

) − T0(Fj )
)= m(
)DT0(Fj )

{√
nj (Fnj

− Fj )
}+ oP (1),

where m(
) is the constant defined in (20). Since T0(Fj ) = σj/m(
) and (T1(Fj ))
′(r) =

2σj
−1ϕ(r/σj ), where ϕ is the p.d.f. of a standard Gaussian random variable, we get

√
nj (̂σMAD,j − σj ) = σj√

nj

nj −1∑
i=0

IF

(
Wj,i

σj

,MAD,


)
+ oP (1)

and the expansion (22) for ∗ = MAD follows from the classical Delta method, applied with
f (x) = x2. We end the proof of Proposition 1 by proving the asymptotic expansion (22) for
∗ = CR. We use the same arguments as those used previously. In this case the Hadamard differ-
entiability comes from [16], Lemma 1. �
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The following theorem is an extension of [2], Theorem 4, to arrays of stationary Gaussian
processes in the multidimensional case.

Theorem 6. Let XJ,i = {X(0)
J,i , . . . ,X

(d)
J,i } be an array of standard stationary Gaussian processes

such that for j, j ′ in {0, . . . , d}, the vector {X(j)
J,i ,X

(j ′)
J,i } has a cross-spectral density f

(j,j ′)
J and

a cross-correlation function ρ
(j,j ′)
J defined by ρ

(j,j ′)
J (k) = E(X

(j)
J,iX

(j ′)
J,i+k), for all k ≥ 0. Assume

also that there exists a non-increasing sequence {uJ }J≥1 such that uJ tends to zero as J tends
to infinity, and, for all J ≥ 1,

sup
λ∈(−π,π)

∣∣f (j,j ′)
J (λ) − g

(j,j ′)∞ (λ)
∣∣≤ uJ , (52)

where g
(j,j ′)∞ is a 2π-periodic function which is bounded on (−π,π) and continuous at the

origin. Let h be a function on R such that E[h(X)2] < ∞, where X is a standard Gaussian
random variable, and of Hermite rank τ ≥ 1. Let β = {β0, . . . , βd} in R

d+1 and H : Rd+1 → R,
the real-valued function defined by H(x) =∑d

j=0 βjh(xj ). Let {nJ }J≥1 be a sequence of integers
such that nJ tends to infinity as J tends to infinity. Then

1√
nJ

nJ∑
i=1

H(XJ,i)
d−→ N (0, σ̃ 2), as J → ∞, (53)

where

σ̃ 2 = lim
n→∞ Var

(
1√
nJ

nJ∑
i=1

H(XJ,i)

)

= 2π
∑
	≥τ

c2
	

	!
∑

0≤j,j ′≤d

βjβj ′
(
g

(j,j ′)∞
)�	

(0).

In the previous equality, c	 = E[h(X)H	(X)], where H	 is the 	th Hermite polynomial, and X is
a standard Gaussian random variable.

The proof of Theorem 6 follows the same lines as the one of Theorem 4 and is thus omitted.

Proof of Theorem 2. Without loss of generality, we set f ∗(0) = 1. In order to prove (26), let us
first prove that, for α = (α0, . . . , α	), where the αis are in R,

√
n2−J02−2J0d

	∑
j=0

αj

(
σ̂ 2∗,J0+j (WJ0+j,0:nJ0+j −1) − σ 2∗,J0+j

)
(54)

d−→ N (0,αT U∗(d)α).
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By Proposition 1,

√
n2−J02−2J0d

	∑
j=0

αj

(
σ̂ 2∗,J0+j (WJ0+j,0:nJ0+j −1) − σ 2∗,J0+j

)
(55)

=
	∑

j=0

√
n2−J02−2J0d

nJ0+j

2αjσ
2
J0+j

nJ0+j −1∑
i=0

IF

(
WJ0+j,i

σJ0+j

,∗,


)
+ oP (1).

Thus, proving (54) amounts to proving that

2−	/2f ∗(0)K(d)√
nJ0+	

	∑
j=0

2αj 22dj+j

nJ0+j −1∑
i=0

IF

(
WJ0+j,i

σJ0+j

,∗,


)
d−→ N (0,αT U∗(d)α), (56)

since σ 2
J0+j

√
n2−J02−2J0d/nJ0+j ∼ 22dj−	/2+j K(d)f ∗(0)/

√
nJ0+	, as n tends to infinity, by

[20], (29) in Theorem 1. Note that

nJ0+j −1∑
i=0

IF

(
WJ0+j,i

σJ0+j

,∗,


)
=

nJ0+	−1∑
i=0

2	−j −1∑
v=0

IF

(
Wj+J0,2	−j i+v

σJ0+j

,∗,


)

+
nJ0+j −1∑

q=nJ0+j −(T−1)(2	−j −1)

IF

(
Wj+J0,q

σJ0+j

,∗,


)
.

Using the notation βj = 2αj 22dj−	/2+j K(d)f ∗(0) and that IF is either bounded or equal to
H2/2,

1√
nJ0+	

	∑
j=0

βj

nJ0+j −1∑
i=0

IF

(
WJ0+j,i

σJ0+j

,∗,


)

= 1√
nJ0+	

	∑
j=0

βj

nJ0+	−1∑
i=0

2	−j −1∑
v=0

IF

(
Wj+J0,2	−j i+v

σJ0+j

,∗,


)
+ oP (1)

= 1√
nJ0+	

nJ0+	−1∑
i=0

F(YJ0,	,i ,∗) + oP (1),

where

F(YJ0,	,i ,∗) =
	∑

j=0

βj

2	−j −1∑
v=0

IF

(
Wj+J0,2	−j i+v

σJ0+j

,∗,


)
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and

YJ0,	,i =
(

WJ0+	,i

σJ0+	

,
WJ0+	−1,2i

σJ0+	−1
,
WJ0+	−1,2i+1

σJ0+	−1
, . . . ,

WJ0+j,2	−j i

σJ0+j

, . . . ,

WJ0+j,2	−j i+2	−j −1

σJ0+j

, . . . ,
WJ0,2	i

σJ0

, . . . ,
WJ0,2	i+2	−1

σJ0

)T

is a (2	+1 −1)-dimensional stationary Gaussian vector. By Lemma 7, F is of Hermite rank larger
than 2. Hence, from Theorem 6 applied to H(·) = F(·), XJ,i = YJ0,	,i and h(·) = IF(·), we get

1√
nJ0+	

nJ0+	−1∑
i=0

F(YJ0,	,i ,∗)
d−→ N (0, σ̃ 2∗ ), (57)

where σ̃ 2∗ = limn→∞ n−1
J0+	 Var(

∑nJ0+	−1
i=0 F(YJ0,	,i ,∗)). By [20], (26) and (29), and by using

the same arguments as those used in the proof of Proposition 1, condition (52) of Theorem 6

holds with f
(j,j ′)
J (λ) = D

(r)

J0+j,j−j ′(λ;f )/σJ0+j σJ0+j ′ and g
(j,j ′)∞ = D(r)

∞,j−j ′(λ;d)/K(d), where

0 ≤ r ≤ 2j−j ′ − 1 and DJ0+j,j−j ′(·;f ) is the cross-spectral density of the stationary between

scale process defined in (12). Lemma 11 and [20], Theorem 1, ensure that D(r)

∞,j−j ′(·;d) is a
bounded, continuous and 2π-periodic function.

By using Mehler’s formula [6], equation (2.1), and the expansion of IF onto the Hermite
polymials basis given by: IF(x,∗,
) = ∑

p≥2 cp(IF∗)Hp(x)/p!, where cp(IF∗) = E[IF(X,∗,


)Hp(X)], Hp being the pth Hermite polynomial, we get

1

nJ0+	

Var

(nJ0+	−1∑
i=0

F(YJ0,	,i ,∗)

)

= 1

nJ0+	

	∑
j,j ′=1

βjβj ′

nJ0+	−1∑
i,i′=0

2	−j −1∑
v=0

2	−j ′−1∑
v′=0

E

[
IF

(
WJ0+j,2	−j i+v

σJ0+j

,∗,


)

× IF

(
W

J0+j ′,2	−j ′
i′+v′

σJ0+j ′
,∗,


)]
(58)

= 1

nJ0+	

	∑
j,j ′=1

βjβj ′

nJ0+j −1∑
i=0

nJ0+j ′−1∑
i′=0

E

[
IF

(
WJ0+j,i

σJ0+j

,∗,


)

× IF

(
WJ0+j ′,i′

σJ0+j ′
,∗,


)]
+ o(1)

= 1

nJ0+	

	∑
j,j ′=1

βjβj ′

nJ0+j −1∑
i=0

nJ0+j ′−1∑
i′=0

∑
p≥2

c2
p(IF∗)
p!

(
E

[
WJ0+j,i

σJ0+j

WJ0+j ′,i′

σJ0+j ′

])p

+ o(1).
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Without loss of generality, we shall assume in the sequel that j ≥ j ′. Equation (58) can be
rewritten as follows by using that i′ = 2j−j ′

q + r , where q ∈ N and r ∈ {0,1, . . . ,2j−j ′ − 1} and
equation (18) in [20]:

1

nJ0+	

	∑
j,j ′=1

βjβj ′

nJ0+j −1∑
i=0

nJ0+j −1∑
q=0

2j−j ′−1∑
r=0

∑
p≥2

c2
p(IF∗)
p!

×
(

E

[
WJ0+j,0

σJ0+j

W
J0+j ′,2j−j ′

(q−i)+r

σJ0+j ′

])p

+ o(1)

= nJ0+j

nJ0+	

	∑
j,j ′=1

βjβj ′
∑

|τ |<nJ0+j

2j−j ′−1∑
r=0

∑
p≥2

c2
p(IF∗)
p!

(
1 − |τ |

nJ0+j

)

×
(

E

[
WJ0+j,0

σJ0+j

W
J0+j ′,2j−j ′

τ+r

σJ0+j ′

])p

+ o(1)

= nJ0+j

nJ0+	

	∑
j,j ′=1

βjβj ′
∑

|τ |<nJ0+j

2j−j ′−1∑
r=0

∑
p≥2

c2
p(IF∗)
p!

(
1 − |τ |

nJ0+j

)

×
(∫ π

−π

D
(r)

J0+j,j−j ′(λ;f )eiλτ

σJ0+j σJ0+j ′
dλ

)p

+ o(1),

where DJ0+j,j−j ′(·;f ) is the cross-spectral density of the stationary between scale process de-
fined in (12). We aim at applying Lemma 12 with fn, gn, f and g defined hereafter.

fnJ0+j
(τ,p) = c2

p(IF∗)
p!

2j−j ′−1∑
r=0

1{|τ | < nJ0+j }
(

1 − |τ |
nJ0+j

)(
E

[
WJ0+j,0

σJ0+j

W
J0+j ′,2j−j ′

τ+r

σJ0+j ′

])p

.

Observe that |fnJ0+j
| ≤ gnJ0+j

, where

gnJ0+j
(τ,p) = c2

p(IF∗)
p!

2j−j ′−1∑
r=0

1{|τ | < nJ0+j }
(

1 − |τ |
nJ0+j

)(
E

[
WJ0+j,0

σJ0+j

W
J0+j ′,2j−j ′

τ+r

σJ0+j ′

])2

.

Using [20], (26) and (29) in Theorem 1, we get that

lim
n→∞

DJ0+j,j−j ′(λ;f )

σJ0+j σJ0+j ′
= 2d(j−j ′)

K(d)
D∞,j−j ′(λ;d).
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This implies that limn→∞ fnJ0+j
(τ,p) = f (τ,p) where

f (τ,p) = c2
p(IF∗)
p!

2j−j ′−1∑
r=0

(
2d(j−j ′)

K(d)

∫ π

−π

D(r)

∞,j−j ′(λ;d)eiλτ dλ

)p

.

Furthermore, limn→∞ gnJ0+j
(τ,p) = g(τ,p) where

g(τ,p) = c2
p(IF∗)
p!

22d(j−j ′)

K(d)2

∣∣∣∣∫ π

−π

D∞,j−j ′(λ;d)eiλτ dλ

∣∣∣∣2
2
,

and |x|22 =∑r
k=1 x2

k for x = (x1, . . . , xr ) ∈ R
r . Using (63)–(65) in [20], we get

∑
p≥2

∑
τ∈Z

gnJ0+j
(τ,p) −→

(∑
p≥2

c2
p(IF∗)
p!

)
22d(j−j ′)

K(d)2
2π

∫ π

−π

|D∞,j−j ′(λ;d)|22 dλ, as n → ∞.

Then, with Lemma 12, we obtain

σ̃ 2∗ =
∑
p≥2

c2
p(IF∗)(f ∗(0))2

p!K(d)p−2

	∑
j,j ′=0

4αjαj ′2dj (2+p)2dj ′(2−p)+j ′

×
∑
τ∈Z

2j−j ′−1∑
r=0

(∫ π

−π

D(r)

∞,j−j ′(λ;d)eiλτ dλ

)p

.
�

7. Technical lemmas

Lemma 7. Let X be a standard Gaussian random variable. The influence functions IF defined
in Proposition 1 have the following properties:

E[IF(X,∗,
)] = 0; (59)

E[XIF(X,∗,
)] = 0; (60)

E[X2IF(X,∗,
)] �= 0. (61)

Proof. We only have to prove the result for ∗ = MAD since the result for ∗ = CR fol-
lows from [16], Lemma 12. (59) comes from E(1{X≤1/m(
)}) = E(1{X≤
−1(3/4)}) = 3/4 and
E(1{X≤−1/m(
)}) = 1/4, where X is a standard Gaussian random variable. (60) follows from∫

R
x1{x≤
−1(3/4)}ϕ(x)dx −∫

R
x1{x≤−
−1(3/4)}ϕ(x)dx = −ϕ(
−1(3/4))+ϕ(−
−1(3/4)) = 0,

where ϕ is the p.d.f. of a standard Gaussian random variable and the fact that E(X) = 0. Let us
now compute E[X2IF(X,MAD,
)]. Integrating by parts, we get

∫
R

x21{x≤
−1(3/4)}ϕ(x)dx −
3/4 − ∫

R
x21{x≤−
−1(3/4)}ϕ(x)dx + 1/4 = −2ϕ(
−1(3/4)). Thus, E[X2IF(X,MAD,
)] =

2 �= 0, which concludes the proof. �
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Lemma 8. Let X be a standard Gaussian random variable. The influence functions IF, defined
in Lemma 1, have the following properties:

E[IF2(X,MAD,
)] = m2(
)

16ϕ(
−1(3/4)2)
= 1.3601, (62)

E[IF2(X,CR,
)] ≈ 0.6077. (63)

Proof. Equation (63) comes from [27]. Since

E[IF2(X,MAD,
)] = m2(
)

4ϕ(
−1(3/4)2)
Var

(
1{|X|≤
−1(3/4)}

)
,

where 1{|X|≤
−1(3/4)} is a Bernoulli random variable with parameter 1/2, (62) follows. �

Lemma 9. Under the assumptions of Theorem 4 and for any fixed 	 ≥ 1,

1

nj

nj∑
r,s=1

ρ	
j (r − s) → 2πg�	∞(0), as nj → ∞. (64)

Proof. Let us first prove that

1

nj

∑
1≤r,s≤nj

ρj (r − s) → 2πg∞(0), as nj → ∞. (65)

Using that Fnj
, defined by Fnj

(λ) = n−1
j |∑nj

r=1 eiλr |2, for all λ in [−π,π], satisfies∫ π
−π Fnj

(λ)dλ = 2π, we obtain

1

nj

( ∑
1≤r,s≤nj

ρj (r − s)

)
− 2πg∞(0) =

∫ π

−π

(
fj (λ) − g∞(λ)

)
Fnj

(λ)dλ

(66)

+
∫ π

−π

(
g∞(λ) − g∞(0)

)
Fnj

(λ)dλ.

Using that Fnj
is non-negative,

∫ π
−π Fnj

(λ)dλ = 2π and (35), the first term on the right-hand
side of (66) tends to zero as j tends to infinity. The second term on the right-hand side of (66)
can be bounded above as follows. For 0 < η ≤ π,∣∣∣∣∫ π

−π

(
g∞(λ) − g∞(0)

)
Fnj

(λ)dλ

∣∣∣∣
≤
∫ −η

−π

|g∞(λ) − g∞(0)|Fnj
(λ)dλ (67)

+
∫ η

−η

|g∞(λ) − g∞(0)|Fnj
(λ)dλ +

∫ π

η

|g∞(λ) − g∞(0)|Fnj
(λ)dλ.
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Since there exists a positive constant C such that Fnj
(λ) ≤ C/(nj |λ|2), for all λ in [−π,π], the

first and last terms on the right-hand side of (67) are bounded by Cπ/(njη
2). The continuity of

g∞ at 0 and the fact that
∫ η

−η
Fnj

(λ)dλ ≤ ∫ π
−π Fnj

(λ)dλ = 2π ensure that the right-hand side
of (67) tends to zero as j tends to infinity. This completes the proof of (65).

Observe that, for all k in Z, ρ	
j (k) = ∫ π

−π eiλkf �	
j (λ)dλ, where f �	

j is the 	th self-convolution

of fj . Since (35) implies that supλ∈(−π,π) |f �	
j (λ) − g�	∞(λ)| tends to zero as j tends to infinity

for any fixed 	 ≥ 2, the same arguments as those used to prove (65) lead to (64). �

Lemma 10. Under the assumptions of Theorem 4, let Dnj
and Fnj

be defined by Dnj
(λ) =∑nj

r=1 eiλr and Fnj
(λ) = n−1

j |∑nj

r=1 eiλr |2, respectively, for all λ in [−π,π]. Then the following
two statements hold true:

(i) For any fixed j, 	 ≥ 1,

‖Fnj
� f �	

j ‖∞ ≤ 2π(‖f �	
j − g�	∞‖∞ + ‖g�	∞‖∞), (68)

where ‖Fnj
� f �	

j ‖∞ = supt∈R | ∫ π
−π Fnj

(t − λ)f �	
j (λ)dλ|.

(ii) For any fixed 	 ≥ 1,

sup
x∈R

∫ π

−π

|Dnj
(λ + x)|
√

nj

f �	
j (λ)dλ → 0, as nj → ∞. (69)

Proof. (i) Using that Fnj
is non-negative and such that

∫ π
−π Fnj

(λ)dλ = 2π, we get that ‖Fnj
�

f �	
j ‖∞ ≤ 2π‖f �	

j ‖∞, and thus (68) follows from the triangle inequality.

(ii) Writing f �	
j (λ) = (f �	

j (λ) − g�	∞(λ)) + g�	∞(λ) and using the Cauchy–Schwarz inequality,

sup
x∈R

∫ π

−π

|Dnj
(λ + x)|
√

nj

f �	
j (λ)dλ ≤ √

2π‖f �	
j − g�	∞‖∞ sup

x∈R

(∫ π

−π

Fnj
(λ + x)dλ

)1/2

(70)

+ sup
x∈R

∫ π

−π

|Dnj
(λ + x)|
√

nj

g�	∞(λ)dλ.

By (35), ‖f �	
j − g�	∞‖∞ tends to zero for any fixed 	 ≥ 1, as nj tends to infinity. Since Fnj

is

a 2π-periodic function,
∫ π
−π Fnj

(λ + x)dλ = 2π for all x in R, and thus the first term in the
right-hand side of (70) tends to zero as nj tends to infinity.

Let us now study the second term on the right-hand side of (70). Since Dnj
and g∞ are

2π-periodic functions, n
−1/2
j

∫ π
−π |Dnj

(λ+ x)|g�	∞(λ)dλ = n
−1/2
j

∫ π
−π |Dnj

(u)|g�	∞(u− x)du, for
all x in R. Then, by splitting the interval [−π,π] into [−δ, δ] and [−π,π] \ [−δ, δ] and by using
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the Cauchy–Schwarz inequality, we get that, for all x in R,∫ π

−π

|Dnj
(λ + x)|
√

nj

g�	∞(λ)dλ

≤
(∫ δ

−δ

Fnj
(u)du

)1/2(∫ δ

−δ

g�	∞(u − x)2 du

)1/2

+
(∫

[−π,π]\[−δ,δ]
Fnj

(u)du

)1/2(∫
[−π,π]\[−δ,δ]

g�	∞(u − x)2 du

)1/2

.

Using that
∫ δ

−δ
Fnj

(u)du and
∫
[−π,π]\[−δ,δ] Fnj

(u)du are bounded above by
∫
[−π,π] Fnj

(u)du =
2π and that g∞ is bounded, we get that there exists a positive constant C(	) depending on 	 such
that

sup
x∈R

∫ π

−π

|Dnj
(λ + x)|
√

nj

g�	∞(λ)dλ ≤ C(	)‖g∞‖	∞
(√

δ + 1√
nj δ

)
.

Setting δ = δnj
= n

α−1/2
j , with α in (0,1/2), (69) follows. �

Lemma 11. Let eu(ξ) = 2−u/2[1, e−i2−uξ , . . . , e−i(2u−1)2−uξ ]T , where ξ ∈ R. For all u ≥ 0, each
component of the vector

D∞,u(λ;d) =
∑
l∈Z

|λ + 2lπ|−2deu(λ + 2lπ)ψ̂(λ + 2lπ)ψ̂
(
2−u(λ + 2lπ)

)
,

is bounded on (−π,π), where ψ̂ is defined in (4).

Proof. We start with the case where l = 0. Using (5), we obtain that 2−u/2|λ|−2d |ψ̂(λ)| ×
|ψ̂(2−uλ)| = O(|λ|2M−2d), as λ → 0; hence, (7) ensures that 2−u/2|λ|−2d |ψ̂(λ)||ψ̂(2−uλ)| =
O(1). Let e(k)

u denotes the kth component of the vector eu. For l �= 0, (W-2) ensures that, for all λ

in (−π,π), there exists a positive constant C such that |ψ̂(λ)| ≤ C/(1 + |λ|)α . Then there exists
a positive constant C′ such that∑

l∈Z∗
|λ + 2πl|−2dψ̂(λ + 2πl)ψ̂

(
2−u(λ + 2πl)

)
e(k)
u (λ) ≤ C′ ∑

l∈Z∗
|λ + 2πl|−2d−2α.

If λ = 0,
∑

l∈Z∗ 1/|2πl|2d+2α < ∞ by (7). If λ �= 0, then, since −π ≤ λ ≤ π,
∑

l∈Z∗ 1/

|λ + 2πl|2d+2α ≤∑
l∈Z∗ 1/|π(2l − 1)|2d+2α < ∞ by (7). �

Lemma 12. Let fn and gn be two sequences of measurable functions on a measure space
(�, F ,μ) such that, for all n, |fn| ≤ gn. Assume that limn→∞ gn = g, limn→∞

∫
gn dμ = ∫

g dμ

and that limn→∞ fn = f . Then
∫

limn→∞ fn dμ = limn→∞
∫

fn dμ.

Proof. Since |fn| ≤ gn, we have −gn ≤ fn ≤ gn. By applying Fatou’s Lemma first to gn − fn

and after to fn + gn, we get lim infn→∞
∫
(gn − fn) ≥ ∫

g − ∫
f and lim infn→∞

∫
(gn + fn) ≥
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g + ∫

f . Since limn→∞
∫

gn = ∫
g, lim infn→∞

∫
(gn − fn) ≤ ∫

g + lim infn→∞(− ∫ fn), and
thus we deduce from the first inequality that lim supn→∞

∫
fn ≤ ∫

f . In the same way, we deduce
from the second inequality that

∫
f ≤ lim infn→∞

∫
fn, which concludes the proof. �
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