
Bernoulli 18(4), 2012, 1172–1187
DOI: 10.3150/11-BEJ382

Distributions of exponential integrals of
independent increment processes related to
generalized gamma convolutions
ANITA BEHME1, MAKOTO MAEJIMA2, MUNEYA MATSUI3 and
NORIYOSHI SAKUMA4

1TU Braunschweig, Pockelsstr. 14, 38106 Braunschweig, Germany. E-mail: a.behme@tu-bs.de
2Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
3Department of Business Administration, Nanzan University, 18 Yamazato-cho, Showa-ku, Nagoya 466-
8673, Japan
4Department of Mathematics Education, Aichi University of Education, 1 Hirosawa, Igaya-cho, Kariya-shi,
448-8542, Japan

It is known that in many cases distributions of exponential integrals of Lévy processes are infinitely divisible
and in some cases they are also selfdecomposable. In this paper, we give some sufficient conditions under
which distributions of exponential integrals are not only selfdecomposable but furthermore are generalized
gamma convolution. We also study exponential integrals of more general independent increment processes.
Several examples are given for illustration.
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1. Introduction

Let (ξ, η) = {(ξt , ηt ), t ≥ 0} be a bivariate càdlàg independent increment process. In most cases,
(ξ, η) is assumed as a bivariate Lévy process, but we also treat more general cases where ξ or
η is a compound sum process, which is not necessarily a Lévy process but is another typical
independent increment process. Our concern in this paper is to examine distributional properties
of the exponential integral

V :=
∫

(0,∞)

e−ξt− dηt , (1.1)

provided that this integral converges almost surely. More precisely, we are interested in when
L(V ), the law of V , is selfdecomposable and moreover is a generalized gamma convolution.

We say that a probability distribution μ on R (resp. an R-valued random variable X) is selfde-
composable, if for any b > 1 there exists a probability distribution μb (resp. a random variable
Yb independent of X) such that

μ = Db−1(μ) ∗ μb (resp. X
d= b−1X + Yb),
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where Da(μ) means the distribution induced by Da(μ)(aB) := μ(B) for B ∈ B(R), ∗ is the

convolution operator and
d= denotes equality in distribution. Every selfdecomposable distribution

is infinitely divisible. Some well-known distributional properties of nontrivial selfdecomposable
distributions are absolute continuity and unimodality (see Sato [15], pages 181 and 404).

First, we review existing results on L(V ). Bertoin et al. [3] (in the case when η = {ηt } is a one-
dimensional Lévy process) and Kondo et al. [9] (in the case when η is a multi-dimensional Lévy
process) showed that if ξ = {ξt } is a spectrally negative Lévy process satisfying limt→∞ ξt =
+∞ a.s. and if the integral (1.1) converges a.s., or equivalently, if

∫
R

log+ |y|νη(dy) < ∞ for the
Lévy measure νη of η1, then L(V ) is selfdecomposable.

On the other hand, there is an example of noninfinitely divisible L(V ), which is due to
Samorodnitsky (see Klüppelberg et al. [8]). In fact if (ξt , ηt ) = (St + at, t), where {St } is a
subordinator and a > 0 some constant, then the support of L(V ) is bounded so that L(V ) is not
infinitely divisible.

Recently, Lindner and Sato [11] considered the exponential integral∫
(0,∞)

exp(−(log c)Nt−)dYt =
∫

(0,∞)

c−Nt− dYt , c > 0,

where {(Nt , Yt )} is a bivariate compound Poisson process whose Lévy measure is concentrated
on (1,0), (0,1) and (1,1), and showed a necessary and sufficient condition for the infinite di-
visibility of L(V ). They also pointed out that L(V ) is always c−1-decomposable, namely there
exists a probability distribution ρ such that μ = Dc−1(μ) ∗ ρ. Note that a c−1-decomposable
distribution is not necessarily infinitely divisible, unless ρ is infinitely divisible. In their second
paper (Lindner and Sato [12]), they also gave a condition under which L(V ), generated by a
bivariate compound Poisson process {(Nt , Yt )} whose Lévy measure is concentrated on (1,0),
(0,1) and (1, c−1), is infinitely divisible.

For other distributional properties of exponential integrals, like the tail behavior, see, e.g.,
Maulik and Zwart [13], Rivero [14] and Behme [2].

In this paper, we focus on “Generalized Gamma Convolutions” (GGCs, for short) to get more
explicit distributional informations of V than selfdecomposability.

Throughout this paper, we say that for r > 0 and λ > 0 a random variable γr,λ has a
gamma(r, λ) distribution if its probability density function f on (0,∞) is

f (x) = λr

�(r)
xr−1e−λx.

A gamma(1, λ) distribution is an exponential distribution with parameter λ > 0. When we do not
have to emphasize the parameters (r, λ), we just write γ for a gamma random variable.

The class of GGCs is defined to be the smallest class of distributions on the positive half line
that contains all gamma distributions and is closed under convolution and weak convergence. By
including gamma distributions on the negative real axis, we obtain the class of distributions on
R which will be called “Extended Generalized Gamma Convolutions” (EGGCs, for short). We
refer to Bondesson [4] and Steutel and van Harn [16] for many properties of GGCs and EGGCs
with relations among other subclasses of infinitely divisible distributions.
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One well-known concrete example of exponential integrals is the following. When (ξt , ηt ) =
(Bt + at, t) with a standard Brownian motion {Bt } and a drift a > 0, the law of (1.1) equals
L(1/(2γ )) which is GGC (and thus is selfdecomposable).

When choosing ξ to be deterministic, that is, (ξt , ηt ) = (t, ηt ), the exponential integral (1.1) is
defined and is an EGGC if and only if η admits a finite log-moment (needed for the convergence)
and L(η1) is included in the Goldie–Steutel–Bondesson Class, a superclass of EGGC as defined
for example, in Barndorff-Nielsen et al. [1]. This fact follows directly from [1], equation (2.28).
In the same paper, the authors characterized the class of GGCs by using stochastic integrals
with respect to Lévy processes as follows. Let e(x) = ∫ ∞

x
u−1e−u du,x > 0, and let e∗(·) be its

inverse function. Then L(
∫
(0,∞)

e∗(s)dηs) is GGC if η is a Lévy process and L(η1) has a finite
log-moment.

In this paper, via concrete examples, we investigate distributional properties of exponential
integrals connected with GGCs.

The paper is organized as follows. In Section 2, we give some preliminaries. In Section 3, we
consider exponential integrals for two independent Lévy processes ξ and η such that ξ or η is a
compound Poisson process, and construct concrete examples related to our question. In the spe-
cial case that both ξ and η are compound Poisson processes, we also allow dependence between
the two components of (ξ, η). In Section 4, we consider exponential integrals for independent in-
crement processes such that ξ and η are independent and one is a compound sum process (which
is not necessarily a Lévy process) while the other is a Lévy process.

2. Preliminaries

The class of all infinitely divisible distributions on R (resp. R+) is denoted by I (R) (resp.
I (R+)). We denote the class of selfdecomposable distributions on R (resp. R+) by L(R) (resp.
L(R+)). The class of EGGCs on R (resp. GGCs on R+) is denoted by T (R) (resp. T (R+)). The
moment generating function of a random variable X and of a distribution μ are written as LX

and Lμ, respectively. If X is positive and μ has support in R+, LX and Lμ coincide with the
Laplace transforms.

We are especially interested in distributions on R+. The class T (R+) is characterized by the
Laplace transform as follows: A probability distribution μ is GGC if and only if there exist a ≥ 0
and a measure U satisfying∫

(0,1)

| logx−1|U(dx) < ∞ and
∫

(1,∞)

x−1U(dx) < ∞,

such that the Laplace transform Lμ(z) can be uniquely represented as

Lμ(u) =
∫

[0,∞)

e−uxμ(dx) = exp

{
−au +

∫
(0,∞)

log

(
x

x + u

)
U(dx)

}
. (2.1)

Another class of distributions which we are interested in is the class of distributions on R+
whose densities are hyperbolically completely monotone (HCM, for short). Here we say that a
function f (x) on (0,∞) with values in R+ is HCM if for every u > 0, the mapping f (uv) ·
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f (u/v) is completely monotone with respect to the variable w = v + v−1, v > 0. Examples
of HCM functions are xβ(β ∈ R), e−cx (c > 0) and (1 + cx)−α (c > 0, α > 0). The class of
all distributions on R+ whose probability densities are HCM is denoted by H(R+). Note that
H(R+) ⊂ T (R+) ⊂ L(R+) ⊂ I (R+).

For illustration, we give some examples. Log-normal distributions are in H(R+) [4], Exam-
ple 5.2.1. So these are also GGCs. Positive strictly stable distributions with Laplace transform
L(u) = exp(−uα) for α ∈ {1/2,1/3, . . .} are in H(R+) [4], Example 5.6.2, while they are GGCs
for all α ∈ (0,1] [16], Proposition 5.7. Let Y = exp(γr,λ) − 1. If r ≥ 1, then L(Y ) is in H(R+),
but if r < 1, L(Y ) is not in H(R+) [4], page 88. But L(Y ) or equivalently L(exp(γr,λ)) is
always in T (R+), independent of the value of r [4], Theorem 6.2.3. Remark that by treating
H(R+) we cannot replace exp(γr,λ) − 1 by exp(γr,λ). Namely, set r = 1 and observe that the
probability density function λ(x + 1)−λ−11[0,∞)(x) is HCM, but the probability density func-
tion λx−λ−11[1,∞)(x) is not HCM. It follows from this that L(exp(γ1,λ) − 1) is in H(R+) but
L(exp(γ1,λ)) is not in H(R+).

In addition, we also investigate the modified HCM class denoted by H̃ (R), which gives some
interesting examples of L(V ) on R. The class H̃ (R) is characterized to be the class of distri-
butions of random variables

√
XZ, where L(X) ∈ H(R+) and Z is a standard normal random

variable independent of X (see Bondesson [4], page 115). By the definition, any distribution in
H̃ (R) is a type G distribution, which is the distribution of the variance mixture of a standard
normal random variable. Note that H̃ (R) ⊂ T (R). As will be seen in Proposition 2.1, there are
nice relations between H̃ (R) and T (R) in common with those of H(R+) and T (R+).

Here we state some known facts that we will use later.

Proposition 2.1 (Bondesson [4] and Steutel and van Harn [16]).

(1) A continuous function L(u),u > 0, with L(0+) = 1 is HCM if and only if it is the Laplace
transform of a GGC.

(2) If L(X) ∈ H(R+), L(Y ) ∈ T (R+) and X and Y are independent, then L(XY) ∈ T (R+).
(3) Suppose that L(X) ∈ H(R+), L(Y ) ∈ T (R) and that X and Y are independent. If L(Y )

is symmetric, then L(
√

XY) ∈ T (R).
(4) Suppose that L(X) ∈ H̃ (R) and L(Y ) ∈ T (R) and that X and Y are independent. If L(Y )

is symmetric, then L(XY) ∈ T (R).
(5) If L(X) ∈ H̃ (R), then L(|X|q) ∈ H(R+) for all |q| ≥ 2, q ∈ R. Furthermore, L(|X|q ×

sign(X)) ∈ H̃ (R) for all q ∈ N, q 	= 2, but not always for q = 2.

Remark 2.2. Notice that the distribution of a sum of independent random variables with distri-
butions in H(R+) does not necessarily belong to H(R+). See Bondesson [4], page 101.

Some distributional properties of GGCs are stated in the following proposition [4], Theo-
rems 4.1.1. and 4.1.3.

Proposition 2.3.

(1) The probability density function of a GGC without Gaussian part satisfying 0 <∫
(0,∞)

U(du) = β < ∞ with the measure U as in (2.1) admits the representation xβ−1h(x),
where h(x) is some completely monotone function.
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(2) Let f be the probability density of a GGC distribution without Gaussian part satisfying
1 <

∫
(0,∞)

U(du) = β ≤ ∞. Let k be a nonnegative integer such that k < β − 1. Then the density
f is continuously differentiable any times on (0,∞), and at 0 at least k times differentiable with
f (j)(0) = 0 for j ≤ k.

Examples of GGCs and the explicit calculation of their Lévy measure are found in Bondesson
[4] and James et al. [7].

Necessary and sufficient conditions for the convergence of (1.1) for bivariate Lévy processes
were given by Erickson and Maller [5]. More precisely, in their Theorem 2.1, they showed that
V converges a.s. if and only if for some ε > 0 such that Aξ(x) > 0 for all x > ε it holds

lim
t→∞ ξt = ∞ a.s. and

(2.2)∫
(eε,∞)

(
logy

Aξ (logy)

)
|νη((dy,∞)) + νη((−∞,−dy))| < ∞.

Here Aξ(x) = aξ + νξ ((1,∞)) + ∫
(1,x] νξ ((y,∞))dy while (�X, νX,aX) denotes the Lévy–

Khintchine triplet of a Lévy process X.

3. Exponential integrals for compound Poisson processes

In this section, we study exponential integrals of the form (1.1), where either ξ or η is a compound
Poisson process and the other is an arbitrary Lévy process. First, we assume the two processes
to be independent, later we also investigate the case that (ξ, η) is a bivariate compound Poisson
process.

3.1. Independent component case

We start with a general lemma which gives a sufficient condition for distributions of perpetuities
to be GGCs.

Lemma 3.1. Suppose A and B are two independent random variables such that L(A) ∈ H(R+)

and L(B) ∈ T (R+). Let (Aj ,Bj ), j = 0,1,2, . . . , be i.i.d. copies of (A,B). Then, given its

a.s. convergence, the distribution of the perpetuity Z := ∑∞
k=0(

∏k−1
i=0 Ai)Bk belongs to T (R+).

Furthermore, if L(A) ∈ H̃ (R), L(B) ∈ T (R) and L(B) is symmetric, then L(Z) ∈ T (R).

Proof. If we put

Zn :=
n∑

k=0

(
k−1∏
i=0

Ai

)
Bk,

then we can rewrite

Zn = B0 + A0
(
B1 + A1

(
B2 + · · · + An−2(Bn−1 + An−1Bn) · · ·)).
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Since An−1 and Bn are independent, L(An−1) ∈ H(R+) and L(Bn) ∈ T (R+), we get
L(An−1Bn) ∈ T (R+) by Proposition 2.1. Further Bn−1 and An−1Bn are independent and both
distributions belong to T (R+) and hence L(Bn−1 + An−1Bn) ∈ T (R+). By induction, we can
conclude that L(Zn) ∈ T (R+). Since the class T (R+) is closed under weak convergence, the
first part follows immediately. A similar argument with (4) in Proposition 2.1 gives the second
part. �

Case 1: The process ξ is a compound Poisson process

Proposition 3.2. Suppose that the processes ξ and η are independent Lévy processes and fur-
ther that ξt = ∑Nt

i=1 Xi is a compound Poisson process with i.i.d. jump heights Xi, i = 1,2, . . . ,

such that 0 < E[X1] < ∞, L(e−X1) ∈ H(R+) and η has finite log-moment E log+ |η1| and it
holds L(ητ ) ∈ T (R+) for an exponential random variable τ independent of η having the same
distribution as the waiting times of N . Then the integral (1.1) converges a.s. and

L
(∫

(0,∞)

e−ξt− dηt

)
∈ T (R+).

Furthermore, if L(e−X1) ∈ H̃ (R), L(ητ ) ∈ T (R) and L(ητ ) is symmetric, then L(V ) ∈ T (R).

Proof. Convergence of the integral follows from (2.2).
Set T0 = 0 and let Tj , j = 1,2, . . . , be the time of the j th jump of {Nt, t ≥ 0}. Then we can

write ∫
(0,∞)

e−ξt− dηt =
∞∑

j=0

∫
(Tj ,Tj+1]

e−∑j
i=1 Xi dηt =

∞∑
j=0

e−∑j
i=1 Xi

∫
(Tj ,Tj+1]

dηt

=:
∞∑

j=0

(
j∏

i=1

Ai

)
Bj ,

where
∑0

i=1 = 0,
∏0

i=1 = 1, Ai = e−Xi and Bj = ∫
(Tj ,Tj+1] dηt

d= η
Tj+1−Tj

. Now Lemma 3.1
yields the conclusion. �

In the following, we first give some examples for possible choices of ξ fulfilling the assump-
tions of Proposition 3.2 and then continue with examples for η. Hence, any combination of them
yields an exponential integral which is a GGC.

Example 3.3 (The case when X1 is a normal random variable with positive mean). We see that
L(e−X1) is log-normal and hence is in H(R+).

Example 3.4 (The case when X1 is the logarithm of the power of a gamma random vari-
able). Let Y = γr,λ and X1 = c logY for c ∈ R. Recall that L(logY) ∈ T (R) and so L(cX1) =
L(logY c) ∈ T (R) for c ∈ R. Note that E[X1] = cψ(λ), where ψ(x) the derivative of log�(x).
If we take c ∈ R such that cψ(λ) > 0, we conclude that L(e−X1) = L(γ −c

r,λ ) ∈ H(R+).
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Example 3.5 (The case when X1 is logarithm of some positive strictly stable random variable).
Let X1 = logY be a random variable, where Y is a positive stable random variable with parameter
0 < α < 1. Then X1 is in the class of EGGCs when α = 1/n,n = 2,3, . . . (see Bondesson [4],
Example 7.2.5) and

E[euX1] = E[Yu] = �(1 − u/α)

�(1 − u)
.

It follows that E[X1] = − 1
α
ψ(1) + ψ(1) = (1 − 1/α)ψ(1) > 0 and L(e−X1) = L(Y−1) ∈

H(R+) by [4], Example 5.6.2.

Example 3.6 (The case when X1 is the logarithm of the ratio of two exponential random vari-
ables). Let X1 = log(Y1/Y2), where Yj , j = 1,2, are independent exponential random variables
with parameters λj > 0, j = 1,2. The density function of X1 is given by [4], Example 7.2.4,

f (x) = 1

B(λ1, λ2)

e−λ1x

(1 + e−x)λ1+λ2
, x ∈ R,

where B(·, ·) denotes the Beta-function. Now if E[X1] > 0 we can set X1 to be a jump distribu-
tion of ξ . It is easy to see that L(e−X1) = L(Y2/Y1) ∈ H(R+) since L(Yj ) ∈ H(R+).

Example 3.7 (The case when η is nonrandom). When ηt = t , it holds that L(ητ ) = L(τ ) ∈
T (R+).

Example 3.8 (The case when η is a stable subordinator). The Laplace transform of B := ητ

with τ = γ1,λ is given by (see, e.g., Steutel and van Harn [16], page 10)

LB(u) = λ

λ − logLη(u)
.

Now consider η to be a stable subordinator without drift. Then the Laplace transform of η1 is
given by Lη1(u) = exp{−uα}. Therefore, we have

LB(u) = λ

λ + uα
.

This function is HCM, since λ
λ+u

is HCM by the definition and due to the fact that the compo-
sition of an HCM function and xα , |α| ≤ 1, is also HCM (see [4], page 68). Thus, the Laplace
transform of B is HCM by Proposition 2.1 and we conclude that L(ητ ) is GGC.

Remark that if η admits an additional drift term, the distribution L(B) is not GGC. This result
was pointed out by Kozubowski [10].

Example 3.9 (The case when η is an inverse Gaussian Lévy process). We suppose η to be an
inverse Gaussian subordinator with parameters β > 0 and δ > 0. The Laplace transform of ηt is

Lηt (u) = exp
(−δt

(√
β2 + 2u − β

))
.



Exponential integrals related to GGCs 1179

Now by choosing the parameters satisfying λ ≥ δβ , we have, for B = ητ ,

LB(u) = λ

λ − δβ + δ
√

β2 + 2u
.

This function is HCM by argumentation as in Example 3.8 with α = 1/2 and using Property (xi)
in [4], page 68.

Remark 3.10. Although the Lévy measure of ητ is known explicitly, it is an open question
whether the parameter of the exponentially distributed random variable τ has an influence on
the GGC-property of ητ , or not. Examples 3.7 and 3.8 lead to the conjecture that there is no
influence. So far, no counterexamples to this conjecture are known to the authors.

Case 2: The process η is a compound Poisson process

In the following, we assume the integrator η to be a compound Poisson process, while ξ is an
arbitrary Lévy process, independent of η. We can argue similarly as above to obtain the following
result.

Proposition 3.11. Let ξ and η be independent and assume ηt = ∑Nt

i=1 Yi to be a compound
Poisson process with i.i.d. jump heights Yi, i = 1,2, . . . . Suppose that E[ξ1] > 0, E log+ |η1| <

∞, L(Y1) ∈ T (R+) and L(e−ξτ ) ∈ H(R+) for an exponentially distributed random variable τ

independent of ξ having the same distribution as the waiting times of N . Then the integral (1.1)
converges a.s. and it holds that

L
(∫

(0,∞)

e−ξt− dηt

)
∈ T (R+).

Furthermore, if L(e−ξτ ) ∈ H̃ (R), L(Y1) ∈ T (R) and L(Y1) is symmetric, then L(V ) ∈ T (R).

Proof. Convergence of the integral is guaranteed by (2.2). Now set T0 = 0 and let Tj , j =
1,2, . . . , be the jump times of {Nt, t ≥ 0}. Then we have

∫
(0,∞)

e−ξt− dηt =
∞∑

j=1

e−ξTj Yj =
∞∑

j=1

e−(ξTj
−ξTj−1 ) · · · e−(ξT1−ξT0 )Yj

=
∞∑

j=1

(
j∏

i=1

e−(ξTi
−ξTi−1 )

)
Yj =:

∞∑
j=1

(
j∏

i=1

Ai

)
Bj ,

where Ai = e−(ξTi
−ξTi−1 ) d= e−ξTi−Ti−1 and Bj = Yj . Remark that the proof of Lemma 3.1 remains

valid even if the summation starts from j = 1. Hence, the assertion follows from Lemma 3.1. �
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3.2. Dependent component case

In this subsection, we generalize a model of Lindner and Sato [11] and study to which class L(V )

belongs.
Let 0 < p < 1. Suppose that (ξ, η) is a bivariate compound Poisson process with parameter

λ > 0 and normalized Lévy measure

ν(dx,dy) = pδ0(dx)ρ0(dy) + (1 − p)δ1(dx)ρ1(dy),

where ρ0 and ρ1 are probability measures on (0,∞) and [0,∞), respectively, such that∫
(1,∞)

logy dρ0(y) < ∞ and
∫

(1,∞)

logy dρ1(y) < ∞.

For the bivariate compound Poisson process (ξ, η), we have the following representation (see
Sato [15], page 18):

(ξt , ηt ) =
Nt∑

k=0

Sk =
(

Nt∑
k=0

S
(1)
k ,

Nt∑
k=0

S
(2)
k

)
,

where S
(1)
0 = S

(2)
0 = 0 and {Sk = (S

(1)
k , S

(2)
k )}∞k=1 is a sequence of two-dimensional i.i.d. ran-

dom variables. It implies that the projections of the compound Poisson process on R
2 are

also compound Poisson processes. Precisely in the given model, since P(S
(1)
1 = 0) = p and

P(S
(1)
1 = 1) = 1 − p, the marginal process ξ is a Poisson process with parameter (1 − p)λ > 0.

Note that S
(1)
k and S

(2)
k may be dependent for any k ∈ N. In this case, ρi(B) is equal to

P(S
(2)
k ∈ B|S(1)

k = i) for i = 0,1 and B ∈ B(R).

Example 3.12. In Lindner and Sato [11], the authors considered the bivariate compound Poisson
process with parameter u + v + w, u,v,w ≥ 0 and normalized Lévy measure

ν(dx,dy) = v

u + v + w
δ0(dx)δ1(dy) + u + w

u + v + w
δ1(dx)

(
u

u + w
δ0(dy) + w

u + w
δ1(dy)

)
.

So in their setting p = v
u+v+w

, ρ0 = δ1 and ρ1 = u
u+w

δ0 + w
u+w

δ1.

In the following theorem, we give a sufficient condition for L(V ), given by (1.1) with (ξ, η)

as described above, to be GGC.

Theorem 3.13. If the function
(1−p)Lρ1 (u)

1−pLρ0 (u)
is HCM, then L(V ) is GGC.

Proof. Define Tξ and M to be the first jump time of the Poisson process ξ and the number of
the jumps of the bivariate compound Poisson process (ξ, η) before Tξ , respectively. Due to the
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strong Markov property of the Lévy process (ξ, η), we have∫
(0,∞)

exp(−ξs−)dηs =
∫

(0,Tξ ]
exp(−ξs−)dηs +

∫
(Tξ ,∞]

exp(−ξs−)dηs

= ηTξ +
∫

(0,∞)

exp(−ξTξ +s−)dηs+Tξ

= ηTξ + exp(−ξTξ )

∫
(0,∞)

exp
(−(ξTξ +s− − ξTξ )

)
d
((

η(s+Tξ ) − η
Tξ

) + η
Tξ

)
d= η

Tξ
+ e−1

∫
(0,∞)

exp(−ξ̃s−)dη̃s ,

where the process (̃ξ , η̃) is independent of {(ξt , ηt ), t ≤ Tξ } and has the same law as (ξ, η).
Therefore, we have

Lμ(u) = Lμ(e−1u)Lρ(u), (3.1)

with μ = L(V ) and ρ denoting the distribution of η
Tξ

. Thus, μ is e−1-decomposable and it
follows that

Lμ(u) =
∞∏

n=0

Lρ(e−nu).

In the given setting, we have

η
Tξ

=
(

M∑
k=0

S
(2)
k

)
+ S

(2)
M+1,

where M is geometrically distributed with parameter p, namely,

P(M = k) = (1 − p)pk for any k ∈ N0.

Hence, we obtain

Lρ(u) = E[exp(−uη
Tξ

)]

= E

[
E

[
exp

(
−u

(
M∑

k=0

S
(2)
k + S

(2)
M+1

))∣∣∣M]]
= E[(Lρ0(u))MLρ1(u)]

= (1 − p)Lρ1(u)

∞∑
k=0

(pLρ0(u))k = (1 − p)Lρ1(u)

1 − pLρ0(u)
.

The class of HCM functions is closed under scale transformation, multiplication and limit. There-
fore, Lμ(u) is HCM if Lρ(u) is HCM and hence μ is GGC if ρ is GGC by Proposition 2.1(6).

As a result, μ is GGC if
(1−p)Lρ1 (u)

1−pLρ0 (u)
is HCM. �
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A distribution with the Laplace transform (1−p)
1−pLρ0 (u)

is called a compound geometric distri-

bution. It is compound Poisson, because every geometric distribution is compound Poisson with
Lévy measure given by

νp({k}) = − 1

log(1 − p)

1

k + 1
pk+1, k = 1,2, . . .

(see page 147 in Steutel and van Harn [16]). Since HCM functions are closed under multiplica-
tion, we have the following.

Corollary 3.14. If ρ1 and the compound geometric distribution of ρ0 are GGCs, then so is L(V ).

In addition, we observe the following.

Corollary 3.15.

(1) For any c > 1, the distribution μc = L(
∫
(0,∞)

c−ξs− dηs) is c−1-selfdecomposable. Thus,
in the nondegenerate case it is absolutely continuous or continuous singular (Wolfe [17]) and
Theorem 3.13 holds true also for μc instead of μ.

(2) If ρ1 is infinitely divisible, then μc is also infinitely divisible.
(3) Let B(R+) be the Goldie–Steutel–Bondesson class, which is the smallest class that con-

tains all mixtures of exponential distributions and is closed under convolution and weak conver-
gence.

If (1−p)
1−pLρ0 (u)

is the Laplace transform of a distribution in B(R+), then μc is in B(R+). More-

over, μc will be a c−1-semi-selfdecomposable distribution.

About the definition and basic properties of semi-selfdecomposable distributions, see [15].
The proof of (1) is obvious. For (2), remark that a distribution with Laplace transform (1−p)

1−pLρ0 (u)

as compound Poisson distribution is always infinitely divisible. Hence, only ρ1 has influence on
that property. The proof of (3) follows from the characterization of the class B(R+) in Chapter 9
of [4] and our proof of Theorem 3.13.

Example 3.16. Let ρ1 be a GGC, that is, Lρ1(u) is HCM. Then if (1−p)
1−pLρ0 (u)

is HCM, μ is found

to be GGC. For example, if ρ0 is an exponential random variable with density f (x) = be−bx, b >

0, then 1
1−pLρ0 (u)

is HCM. To see this, for u > 0, v > 0, write

1

1 − pLρ0(uv)

1

1 − pLρ0(u/v)
= 1 + (u/b)(v + v−1) + u2/b2

(1 − p)2 + (u/b)(v + v−1)(1 − p) + u2/b2

= 1

1 − p
+ p + (1 − 1/(1 − p))u2/b2

(1 − p)2 + (u/b)(v + v−1)(1 − p) + u2/b2
.

This is nonnegative and completely monotone as a function of v + v−1.
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Example 3.17. In the case of Example 3.12, the Lévy measure of μc is

νμc =
∞∑

n=0

∞∑
m=1

amδc−nm,

where am = 1
m

(qm − (−r/p)m). This Lévy measure is not absolutely continuous. Thus, μc is
never GGC for any parameters u, v, w and c.

4. Exponential integrals for independent increment processes

We say that a process X = {Xt = ∑Mt

i=1 Xi, t ≥ 0} is a compound sum process, if the {Xi} are
i.i.d. random variables, {Mt, t ≥ 0} is a renewal process and they are independent. When {Mt } is
a Poisson process, X is nothing but a compound Poisson process and is a Lévy process. Unless
{Mt } is a Poisson process, X is no Lévy process. In this section, we consider the case when either
ξ or η is a compound sum process and the other is an arbitrary Lévy process. Although (ξ, η)

is not a Lévy process, the exponential integral (1.1) can be defined and its distribution can be
infinitely divisible and/or GGC in many cases as we will show in the following.

Case 1: The process ξ is a compound sum process

First, we give a condition for the convergence of the exponential integral (1.1) when (ξ, η) is not
a Lévy process.

Proposition 4.1. Suppose that (ξt , ηt )t≥0 is a stochastic process where ξ and η are independent,
η is a Lévy process and ξt = ∑Mt

i=1 Xi is a compound sum process with i.i.d. jump heights Xi, i =
1,2, . . . , and i.i.d. waiting times Wi . Then (1.1) converges in probability to a finite random
variable if and only if

ξt → ∞ a.s. and
∫

(1,∞)

(
logq

Aξ (logq)

)
P(|η

W1
| ∈ dq) < ∞ (4.1)

for Aξ(x) = ∫
(0,x)

P (X1 > u)du.

Proof. As argued in the proof of Proposition 3.2, we can rewrite the exponential integral as
perpetuity ∫

(0,∞)

e−ξt− dηt =
∞∑

j=0

(
j∏

i=1

Ai

)
Bj ,

where Ai = e−Xi and Bj
d= η

Wj
. By Theorem 2.1 of [6] the above converges a.s. to a finite

random variable if and only if
∏n

i=1 Ai → 0 a.s. and∫
(1,∞)

(
logq

A(logq)

)
P(|B1| ∈ dq) < ∞
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for A(x) = ∫
(0,x)

P (− logA1 > u)du. Using the given expressions for A1 and B1 in our set-
ting, we observe that this is equivalent to (4.1). It remains to show that a.s. convergence of the
perpetuity implies convergence in probability of (1.1). Therefore, remark that∫

(0,t]
e−ξs− dηs =

∫
(0,TMt ]

e−ξs− dηs + e−ξTMt (ηt − η
TMt

),

where the first term converges to a finite random variable while the second converges in proba-

bility to 0 since supt∈[TMt ,TMt+1 ) |ηt − η
TMt

| d= supt∈[0,W1)
|ηt |. �

Now we can extend Proposition 3.2 in this new setting as follows.

Proposition 4.2. Suppose that the processes ξ and η are independent and that ξt = ∑Mt

i=1 Xi

is a compound sum process with i.i.d. jump heights Xi, i = 1,2, . . . , and i.i.d. waiting times
Wi, i = 1,2, . . . , such that (4.1) is fulfilled. Suppose that L(e−X1) ∈ H(R+) and L(ητ ) ∈ T (R+)

for τ being a random variable with the same distribution as W1 and independent of η. Then

L
(∫

(0,∞)

e−ξt− dηt

)
∈ T (R+).

Furthermore, if L(e−X1) ∈ H̃ (R), L(ητ ) ∈ T (R) and L(ητ ) is symmetric, then L(V ) ∈ T (R).

In the following, we give some examples fulfilling the assumptions of Proposition 4.2.

Example 4.3 (The case when η is nonrandom and L(W1) is GGC). For the case ηt = t , L(ητ )

belongs to T (R+) if and only if L(τ ) does. Hence, for all waiting times which are GGCs and for
a suitable jump heights of ξ , we have L(V ) ∈ T (R+).

Example 4.4 (The case when η is a stable subordinator and L(W1) is GGC). Consider η to
be a stable subordinator having Laplace transform Lη(u) = exp{−uα} with 0 < α < 1. Then
the Laplace transform of B := ητ is given by LB(u) = Lτ (u

α). This function is HCM if and
only if τ is GGC, since by Proposition 2.1, Lτ is HCM and hence also its composition with
xα . Thus, whenever L(τ ) = L(W1) is GGC, L(ητ ) is GGC, too, fulfilling the assumption of
Proposition 4.2.

Example 4.5 (The case when η is a standard Brownian motion and L(W1) is GGC). Given
that η is a standard Brownian motion, η1 has characteristic function Eeizη1 = exp(−z2/2), which
yields LB(u) = Lτ (u

2/2). We can not see L(B) ∈ T (R+) from this, and in fact L(B) is in T (R)

but not in T (R+) (see Bondesson [4], page 117). Then using that η is symmetric, we can apply
(4) in Proposition 2.1 and conclude that L(V ) ∈ T (R) for suitable jump heights of ξ .

Example 4.6 (The case when η is a Lévy subordinator and L(W1) is a half normal distribution).
The 1/2-stable subordinator η and the standard half normal random variable τ have densities,
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respectively, given by,

fηt (x) = t

2
√

π
x−3/2e−t2/2x and fτ (x) =

√
2

π
e−x2/2, x > 0.

These yield the density function of ητ as

fητ (x) =
∫

fηy (x)fτ (y)dy = 1√
2π

x−1/2

1 + x
.

Interestingly, this is an F distribution (see Sato [15], page 46) and since a random variable with
an F distribution is constricted to be the quotient of two independent gamma random variables,
we have that L(ητ ) ∈ T (R+).

Case 2: The process ηt is a compound sum process

Again we start with a condition for the convergence of (1.1). It can be shown similar to Proposi-
tion 4.1.

Proposition 4.7. Suppose ξ to be a Lévy process and that ηt = ∑Mt

i=1 Yi is a compound sum
process with i.i.d. jump heights Yi, i = 1,2, . . . , and i.i.d. waiting times Ui, i = 1,2, . . . . Then
(1.1) converges a.s. to a finite random variable if and only if

ξt → ∞ a.s. and
∫

(1,∞)

(
logq

Aη(logq)

)
P(|Y1| ∈ dq) < ∞ (4.2)

for Aη(x) = ∫
(0,x)

P (ξU1 > u)du.

In the same manner as before, we can now extend Proposition 3.11 to the new setting and
obtain the following result.

Proposition 4.8. Let ξ and η be independent and assume ηt = ∑Mt

i=1 Yi to be a compound re-
newal process with i.i.d. jump heights Yi, i = 1,2, . . . , and i.i.d. waiting times Ui such that (4.2)
holds. Suppose that L(Y1) ∈ T (R+) and L(e−ξτ ) ∈ H(R+) for a random variable τ having the
same distribution as U1 and being independent of ξ . Then

L
(∫

(0,∞)

e−ξt− dηt

)
∈ T (R+).

Furthermore, if L(e−ξτ ) ∈ H̃ (R), L(Y1) ∈ T (R) and L(Y1) is symmetric, then L(V ) ∈ T (R).

The following is a very simple example fulfilling the assumptions in Proposition 4.8.
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Example 4.9 (The case when η is a random walk and ξ is a standard Brownian motion with
drift). Suppose ξt = Bt + at is a standard Brownian motion with drift a > 0 and U1 is degener-
ated at 1. Then L(e−ξτ ) = L(e−ae−B1) is a scaled log-normal distribution and hence in H(R+).
So for all GGC jump heights L(Y1), the exponential integral is GGC.
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