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Although the study of weak convergence of superpositions of point processes to the Poisson process dates
back to the work of Grigelionis in 1963, it was only recently that Schuhmacher [Stochastic Process. Appl.
115 (2005) 1819–1837] obtained error bounds for the weak convergence. Schuhmacher considered depen-
dent superposition, truncated the individual point processes to 0–1 point processes and then applied Stein’s
method to the latter. In this paper, we adopt a different approach to the problem by using Palm theory and
Stein’s method, thereby expressing the error bounds in terms of the mean measures of the individual point
processes, which is not possible with Schuhmacher’s approach. We consider locally dependent superposi-
tion as a generalization of the locally dependent point process introduced in Chen and Xia [Ann. Probab.
32 (2004) 2545–2569] and apply the main theorem to the superposition of thinned point processes and of
renewal processes.
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1. Introduction

The study of weak convergence of superpositions of point processes dates back to Grigelionis
[22] who proved that the superposition of independent sparse point processes converges weakly
to a Poisson process on the carrier space R+. His result was subsequently extended to more
general carrier spaces by Goldman [19] and Jagers [23]; see [15] and [9] for further discussion.
It was further extended to superpositions of dependent sparse point processes by Banys [1,3],
Kallenberg [24], Brown [10] and Banys [2]. For a systematic account of these developments, see
[25].

Surprisingly, it was only recently that error bounds for such convergence of point processes
were studied. Using Stein’s method for Poisson process approximation, as developed by Barbour
[4] and Barbour and Brown [5], Schuhmacher [29] obtained an error bound on the d2 Wasser-
stein distance between a sum of weakly dependent sparse point processes {ξni,1 ≤ i ≤ kn}n∈N
and an approximating Poisson process. As he truncated the sparse point processes to 0–1
point processes, as in the proof of Grigelionis’ theorem, his error bound contains the term∑kn

i=1 P[ξni(B) ≥ 2], whose convergence to 0 for every bounded Borel subset B of the carrier
space is a condition for Grigelionis’ theorem to hold. A consequence of such truncation is that
the mean measure of the approximating Poisson process is not equal to the sum of the mean
measures of the individual point processes.
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In this paper, we adopt a different approach to Poisson process approximation in which we do
not use the truncation, but apply Palm theory and express the error bounds in terms of the mean
measures of the individual sparse point processes. Such an approach also ensures that the mean
measure of the approximating Poisson process is equal to the sum of the mean measures of the
sparse point processes.

As in [29], we study the dependent superposition of sparse point processes. But we consider
only locally dependent superposition, which is a natural extension of the point processes

∑
IiδUi

studied in [14], Section 4, where δx is the point mass at x, the Ui ’s are S -valued independent
random elements with S a locally compact metric space, the indicators Ii ’s are locally dependent
and the Ii ’s are independent of the Ui ’s.

In our main theorem (Theorem 2.1), with the help of Brown, Weinberg and Xia [11],
Lemma 3.1, it is possible to recover a factor of order 1/λ from the term 1/(|�(i)| + 1). Hence,
the error bound on the d2 Wasserstein distance yields the so-called Stein factor 1/λ, by which
approximation remains good for large λ, a feature always sought after for Poisson-type approx-
imations. In the error bound obtained by Schuhmacher [29], a leading term does not have the
Stein factor; see Remark 4.4 for further details.

Our main theorem and some corollaries are presented in Section 2. Applications to thinned
point processes and renewal processes are given in Sections 3 and 4, respectively.

2. The main theorem

Throughout this paper, we assume that � is a locally compact metric space with metric d0
bounded by 1. In estimating the error of Poisson process approximation to the superposition
of dependent point processes {�i, i ∈ I} on the carrier space � with I a finite or countably infi-
nite index set, one natural approach is to partition the index set I into {{i}, I s

i , I w
i }, where I s

i is
the set of indices of the point processes which are strongly dependent on �i and I w

i the set of the
indices of the point processes which are weakly dependent on �i ; see [29]. Another approach is
to divide the index set according to various levels of local dependence, a successful structure for
studying normal approximation; see [13]. The latter approach has been generalized by Barbour
and Xia [8] to randomly indexed sums with a particular interest in random variables resulting
from integrating a random field with respect to a point process.

Parallel to the local dependence structures defined in [13], we introduce the following:

[LD1] for each i ∈ I , there exists a neighborhood Ai such that i ∈ Ai and �i is independent
of {�j , j ∈ Ac

i };
[LD2] condition [LD1] holds and for each i ∈ I , there exists a neighborhood Bi such that

Ai ⊂ Bi and {�j , j ∈ Ai} is independent of {�j , i ∈ Bc
i }.

The index set I in [LD1] and [LD2] will be assumed to be finite or countably infinite in this
paper, although it may be as general as that considered in [8]. The superposition of {�i : i ∈ I}
which satisfies the condition [LD1] is more general than point processes of the form

∑
IiδUi

,
where the Ii ’s are locally dependent indicators with one level of dependent neighborhoods in
I (i.e., the Ii ’s satisfy [LD1] in [13], page 1986). Such a point process is a typical example
of locally dependent point processes defined in [13], page 2548. Likewise, the superposition of
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{�i : i ∈ I} which satisfies the condition [LD2] is more general than point processes of the form∑
IiδUi

, where the Ii ’s are locally dependent indicators with two levels of dependent neighbor-
hoods in I (i.e., the Ii ’s satisfy [LD2] in [13], page 1986).

Three metrics will be used to describe the accuracy of Poisson process approximation: the
total variation metric for Poisson random variable approximation dtv; the total variation metric
for Poisson process approximation dTV; and a Wasserstein metric d2 (see [7] or [32]).

To briefly define these metrics, let H be the space of all finite point process configurations
on �, that is, each ξ ∈ H is a non-negative integer-valued finite measure on �. Let K stand
for the set of d0-Lipschitz functions k :� → [−1,1] such that | k(α) − k(β) |≤ d0(α,β) for all
α,β ∈ �. The first Wasserstein metric d1 on H is defined by

d1(ξ1, ξ2) =

⎧⎪⎪⎨
⎪⎪⎩

0, if |ξ1| = |ξ2| = 0,
1, if |ξ1| �= |ξ2|,
|ξ1|−1 sup

k∈K

∣∣∣∣
∫

k dξ1 −
∫

k dξ2

∣∣∣∣, if |ξ1| = |ξ2| > 0,

where |ξi | is the total mass of ξi . A metric d ′
1 equivalent to d1 can be defined as follows (see

[12]): for two configurations ξ1 = ∑n
i=1 δyi

and ξ2 = ∑m
i=1 δzi

with m ≥ n,

d ′
1(ξ1, ξ2) = min

π

n∑
i=1

d0
(
yi, zπ(i)

) + (m − n),

where π ranges over all permutations of (1, . . . ,m). Both d1 and d ′
1 generate the weak topology

on H (see [32], Proposition 4.2) and we use B(H) to stand for the Borel σ -algebra generated by
the weak topology. Define three subsets of real-valued functions on H: Ftv = {1A(|ξ |) :A ⊂ Z+},
Fd1 = {f : |f (ξ1) − f (ξ2)| ≤ d1(ξ1, ξ2) for all ξ1, ξ2 ∈ H} and FTV = {1A(ξ) :A ∈ B(H)}. The
pseudo-metric dtv and the metrics d2 and dTV are then defined on probability measures on H by

dtv(Q1,Q2) = inf
(X1,X2)

P(|X1| �= |X2|) = sup
f ∈Ftv

∣∣∣∣
∫

f dQ1 −
∫

f dQ2

∣∣∣∣,
d2(Q1,Q2) = inf

(X1,X2)
E[d1(X1,X2)]

= sup
f ∈Fd1

∣∣∣∣
∫

f dQ1 −
∫

f dQ2

∣∣∣∣,
dTV(Q1,Q2) = inf

(X1,X2)
P(X1 �= X2)

= sup
f ∈FTV

∣∣∣∣
∫

f dQ1 −
∫

f dQ2

∣∣∣∣,
where the infima are taken over all couplings of (X1,X2) such that L(Xi) = Qi , i = 1,2, and
the second equations are due to the duality theorem; see [27], page 168.

To bound the error of Poisson process approximation, we need the Palm distributions Qα of a
point process X2 with respect to a point process X1 with finite mean measure ν at α. When X1
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is a simple point process, that is, it has at most one point at each location, the Palm distribution
Qα may be intuitively interpreted as the conditional distribution of X2 given that X1 has a point
at α. More precisely, let B(�) denote the Borel σ -algebra in � generated by the metric d0 and
define the Campbell measure C of (X1,X2) on B(�) × B(H):

C(B × M) = E[X1(B)1X2∈M ], B ∈ B(�),M ∈ B(H).

Since the mean measure ν of X1 is finite, by Kallenberg [25], 15.3.3, there exist probability
measures Qα on B(H) such that

E[X1(B)1X2∈M ] =
∫

B

Qα(M)ν(dα) ∀B ∈ B(�),M ∈ B(H), (2.1)

which is equivalent to

Qα(M) = E{1[X2∈M]X1(dα)}
ν(dα)

∀M ∈ B(H), α ∈ � ν-a.s.;

see [25], Section 10.1. It is possible to realize a family of point processes Yα on some probability
space such that Yα ∼ Qα and we say that Yα is a Palm process of X2 with respect to X1 at α.
Moreover, when X1 = X2, we call the point process Yα − δα the reduced Palm process of X2 at
α; see [25], Lemma 10.2.

As noted in [21], when � is reduced to one point only, the Palm distribution of X2 (with respect
to itself) is the same as the size-biased distribution; general guidelines for the construction of
size-biased variables are investigated in [20].

Theorem 2.1. Let {�i, i ∈ I} be a collection of point processes on � with respective mean
measures λi , i ∈ I . Set � = ∑

i∈I �i with mean measure denoted by λ and assume that λ :=
λ(�) < ∞. If [LD1] holds, then

dtv(L(�),Po(λ)) ≤ 1 − e−λ

λ
E

∑
i∈I

∫
�

{∣∣|Vi | − |Vi,α|∣∣ + ∣∣|�i | − |�i,(α)|
∣∣}λi (dα), (2.2)

d2(L(�),Po(λ)) ≤ E

∑
i∈I

(
3.5

λ
+ 2.5

|�(i)| + 1

)∫
�

d ′
1(Vi,Vi,α)λi (dα)

(2.3)

+
∑
i∈I

(
3.5

λ
+ E

2.5

|�(i)| + 1

)
E

∫
�

d ′
1(�i,�i,(α))λi (dα),

dTV(L(�),Po(λ)) ≤ E

∑
i∈I

∫
�

{‖Vi − Vi,α‖ + ‖�i − �i,(α)‖}λi (dα), (2.4)

where �(i) = ∑
j∈Ac

i
�j , Vi = ∑

j∈Ai\{i} �j , �i,(α) is the reduced Palm process of �i at α, Vi,α

is the Palm process of Vi with respect to �i at α such that �(i) + Vi,α + �i,(α) + δα is the Palm
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process of � with respect to �i at α and ‖ · ‖ denotes the variation norm of signed measure.
Under the condition [LD2], (2.2) and (2.4) remain the same, but (2.3) can be further reduced to

d2(L(�),Po(λ)) ≤
∑
i∈I

(
3.5

λ
+ E

2.5∑
j∈Bc

i
|�j | + 1

)
E

∫
�

d ′
1(Vi,Vi,α)λi (dα)

(2.5)

+
∑
i∈I

(
3.5

λ
+ E

2.5

|�(i)| + 1

)
E

∫
�

d ′
1(�i,�i,(α))λi (dα)

≤
∑
i∈I

(
3.5

λ
+ 2.5 ·

√
κi(1 + κi/4) + 1 + κi/2∑

j∈Bc
i
λj + 1

)

(2.6)
× {λiE|Vi | + E(|Vi | · |�i |) + λ2

i + E(|�i |2) − λi},

where λi = λi (�) and

κi =
∑

j1∈Bc
i

∑
j2∈Bc

i ∩Aj1
cov(|�j1 |, |�j2 |)∑

j∈Bc
i
λj + 1

.

Proof. We employ Stein’s method for Poisson process approximation, established in [4] and [5],
to prove the theorem. To this end, for a suitable measurable function h on H, let

Ah(ξ) =
∫

�

[h(ξ + δα) − h(ξ)]λ(dα) +
∫

�

[h(ξ − δx) − h(ξ)]ξ(dx).

Then A defines a generator of the spatial immigration–death process with immigration inten-
sity λ and unit per capita death rate, and the equilibrium distribution of the spatial immigration–
death process is Po(λ); see [32], Section 3.2, for more details. The Stein equation based on A
is

Ah(ξ) = f (ξ) − Po(λ)(f ) (2.7)

with solution

hf (ξ) = −
∫ ∞

0
[Ef (Zξ (t)) − Po(λ)(f )]dt,

where {Zξ (t), t ≥ 0} is the spatial immigration–death process with generator A and initial con-
figuration Zξ (0) = ξ . To obtain bounds on the errors in the approximation, we need to define

hf (ξ ;x) := hf (ξ + δx) − hf (ξ),

2hf (ξ ;x, y) := hf (ξ + δx;y) − hf (ξ ;y),

2hf (ξ, η;x) := hf (ξ ;x) − hf (η;x),
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for corresponding test functions f . Xia [32], Propositions 5.6 and 5.12 (see [5,6]) and
Lemma 5.26, state that, for all x, y ∈ �,

|2hf (ξ ;x, y)| ≤ 1 − e−λ

λ
∀f ∈ Ftv, (2.8)

|2hf (ξ ;x, y)| ≤ 1 ∀f ∈ FTV, (2.9)

|2hf (ξ, η;x)| ≤
(

3.5

λ
+ 2.5

|η| ∧ |ξ | + 1

)
d ′

1(ξ, η) ∀f ∈ Fd1 . (2.10)

Now, since �(i) +Vi,α +�i,(α) +δα is the Palm process of � with respect to �i at α, it follows
from (2.1) that

E

∫
�

[h(�) − h(� − δα)]�(dα) =
∑
i∈I

E

∫
�

[h(�) − h(� − δα)]�i(dα)

=
∑
i∈I

E

∫
�

h
(
�(i) + Vi,α + �i,(α);α

)
λi (dα).

On the other hand, by the Stein equation (2.7), we have

|Ef (�) − Po(λ)(f )|

=
∣∣∣∣E

∫
�

[hf (� + δα) − hf (�)]λ(dα) + E

∫
�

[hf (� − δx) − hf (�)]�(dx)

∣∣∣∣
=

∣∣∣∣
∑
i∈I

E

∫
�

{
hf (�;α) − hf

(
�(i) + Vi,α + �i,(α);α

)}
λi (dα)

∣∣∣∣ (2.11)

≤
∑
i∈I

E

∫
�

{∣∣hf

(
�(i) + Vi + �i;α

) − hf

(
�(i) + Vi,α + �i;α

)∣∣
(2.12)

+ ∣∣hf

(
�(i) + Vi,α + �i;α

) − hf

(
�(i) + Vi,α + �i,(α);α

)∣∣}λi (dα).

To prove (2.2), we note that the test functions f ∈ Ftv satisfy f (ξ) = f (|ξ |δz) for a fixed point
z ∈ � and so we have hf (ξ) = hf (|ξ |δz). Hence, for all η, ξ1, ξ2 ∈ H,

|hf (η + ξ1;α) − hf (η + ξ2;α)|
= ∣∣hf

(
η + (|ξ1| ∨ |ξ2|)δz;α

) − hf

(
η + (|ξ1| ∧ |ξ2|)δz;α

)∣∣ (2.13)

≤
||ξ1|−|ξ2||∑

j=1

∣∣2hf

(
η + (|ξ1| ∧ |ξ2| + j − 1)δz; z,α

)∣∣ ≤ ∣∣|ξ1| − |ξ2|
∣∣1 − e−λ

λ
,

where the last inequality is due to (2.8). Combining (2.13) with (2.12) yields (2.2).
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Next, (2.10) and (2.11) imply that for f ∈ Fd1 ,

|Ef (�) − Po(λ)(f )| ≤
∑
i∈I

E

∫
�

(
3.5

λ
+ 2.5

|�(i)| + 1

)
d ′

1(Vi + �i,Vi,α + �i,(α))λi (dα).

Because d ′
1(Vi + �i,Vi,α + �i,(α)) ≤ d ′

1(Vi,Vi,α) + d ′
1(�i,�i,(α)) and, for each i ∈ I , �i is

independent of �(i), (2.3) follows. On the other hand, due to the independence between {Vi,�i}
and {�j , j ∈ Bc

i } implied by [LD2], (2.5) is immediate. To prove (2.6), one can verify that

Var

( ∑
j∈Bc

i

|�j |
)

=
∑

j1∈Bc
i

∑
j2∈Bc

i ∩Aj1

cov(|�j1 |, |�j2 |)

and that E
∑

j∈Bc
i
|�j | = ∑

j∈Bc
i
λj . Hence, (2.6) follows from Lemma 3.1 in [11] and the facts

that d ′
1(Vi,Vi,α) ≤ |Vi | + |Vi,α| and d ′

1(�i,�i,(α)) ≤ |�i | + |�i,(α)|.
Finally, we show (2.4). For ξ1, ξ2 ∈ H, we define

ξ1 ∧ ξ2 =
k∑

j=1

(a1j ∧ a2j )δxj
,

where {x1, . . . , xk} is the support of the point measure ξ1 + ξ2, so that ξi = ∑k
j=1 aij δxj

for
i = 1,2 with the aij ’s being non-negative integers. Then, for all f ∈ FTV, η, ξ1, ξ2 ∈ H,

|hf (η + ξ1;α) − hf (η + ξ2;α)|
≤ |hf (η + ξ1;α) − hf (η + ξ1 ∧ ξ2;α)|

+ |hf (η + ξ2;α) − hf (η + ξ1 ∧ ξ2;α)| (2.14)

≤ (|ξ1| − |ξ1 ∧ ξ2|) + (|ξ2| − |ξ1 ∧ ξ2|)
= ‖ξ1 − ξ2‖,

where the last inequality is due to (2.9). Applying (2.14) in (2.12), we obtain (2.4). �

Corollary 2.2. With the notation of Theorem 2.1, if {�i, i ∈ I} are all independent, then

dtv(L(�),Po(λ)) ≤ 1 − e−λ

λ
E

∑
i∈I

∫
�

∣∣|�i | − |�i,(α)|
∣∣λi (dα), (2.15)

d2(L(�),Po(λ)) ≤
∑
i∈I

(
3.5

λ
+ E

2.5∑
j �=i |�j | + 1

)
E

∫
�

d ′
1(�i,�i,(α))λi (dα) (2.16)

≤
(

3.5

λ
+ 2.5 ·

√
κ(1 + κ/4) + 1 + κ/2

λ − maxj∈I λj + 1

)∑
i∈I

{λ2
i + E(|�i |2) − λi}, (2.17)
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dTV(L(�),Po(λ)) ≤ E

∑
i∈I

∫
�

‖�i − �i,(α)‖λi (dα), (2.18)

where κ =
∑

i∈I Var(|�i |)
λ−maxj∈I λj +1 .

Proof. Let Ai = Bi = {i}, then (2.15)–(2.18) follow from (2.2), (2.5), (2.6) and (2.4), respec-
tively. �

Corollary 2.3 (cf. [14], Theorem 4.1). Let {Ii, i ∈ I} be dependent indicators with I a finite or
countably infinite index set and let {Ui , i ∈ I} be �-valued independent random elements inde-
pendent of {Ii, i ∈ I}. Define � = ∑

i∈I IiδUi
with mean measure λ, let EIi = pi and assume

that λ = ∑
i∈I pi < ∞. For each i ∈ I , let Ai be the set of indices of those Ij ’s which are

dependent on Ii , that is, Ii is independent of {Ij : j ∈ Ac
i }. Then,

dtv(L(�),Po(λ)) ≤ 1 − e−λ

λ

∑
i∈I

{ ∑
j∈Ai\{i}

EIiIj +
∑
j∈Ai

pipj

}
, (2.19)

d2(L(�),Po(λ)) ≤ E

∑
i∈I

∑
j∈Ai\{i}

(
3.5

λ
+ 2.5

Si + 1

)
IiIj

(2.20)

+
∑
i∈I

∑
j∈Ai

(
3.5

λ
+ E

[
2.5

Si + 1

∣∣∣Ij = 1

])
pipj ,

dTV(L(�),Po(λ)) ≤
∑
i∈I

{ ∑
j∈Ai\{i}

EIiIj +
∑
j∈Ai

pipj

}
, (2.21)

where Si = ∑
j /∈Ai

Ij . For each i ∈ I , let Bi be the set of indices of those Il’s which are dependent
on {Ij , j ∈ Ai} so that {Ij : j ∈ Ai} is independent of {Il : l ∈ Bc

i }. Then, (2.19) and (2.21) remain
the same, but (2.20) can be further reduced to

d2(L(�),Po(λ)) ≤
∑
i∈I

∑
j∈Ai\{i}

(
3.5

λ
+ E

2.5

Wi + 1

)
E(IiIj )

(2.22)

+
∑
i∈I

∑
j∈Ai

(
3.5

λ
+ E

2.5

Wi + 1

)
pipj

≤
∑
i∈I

(
3.5

λ
+ 2.5 ·

√
κi(1 + κi/4) + 1 + κi/2∑

j∈Bc
i
pj + 1

)

(2.23)

×
( ∑

j∈Ai\{i}
EIiIj +

∑
j∈Ai

pipj

)
,
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where Wi = ∑
j /∈Bi

Ij and

κi =
∑

j1∈Bc
i

∑
j2∈Bc

i ∩Aj1
cov(Ij1, Ij2)∑

j∈Bc
i
pj + 1

.

Proof. If we set �i = IiδUi
, i ∈ I , then �i is independent of {�j : j /∈ Ai}, so [LD1] holds,

�i,(α) = 0, and the claims (2.19)–(2.21) follow from (2.2)–(2.4), respectively. On the other hand,
{�j : j ∈ Ai} is independent of {�j : j /∈ Bi}, so [LD2] holds and (2.22) and (2.23) are direct
consequences of (2.5) and (2.6). �

A typical example of Poisson process approximation is that of the Bernoulli process defined
as follows (see [32], Section 6.1, for further discussion). Let I1, . . . , In be independent indicators
with

P(Ii = 1) = 1 − P(Ii = 0) = pi, i = 1, . . . , n.

Let � = [0,1], � = ∑n
i=1 Iiδi/n and λ = ∑n

i=1 piδi/n be the mean measure of �. If we set
�i = Iiδi/n, i = 1, . . . , n, then the reduced Palm process of �i at α ∈ � is �i,(α) = 0 and the
Palm distribution of �j with respect to point process �i at α for j �= i is the same as that
of �j . Hence, Corollary 2.2, together with (2.16) and [14], Proposition 4.5, can be used to obtain
immediately the following (known) result.

Example 2.4 ([32], Section 6.1). For the Bernoulli process � on � = [0,1] with mean mea-
sure λ,

dtv(L(�),Po(λ)) ≤ 1 − e−λ

λ

n∑
i=1

p2
i ,

dTV(L(�),Po(λ)) ≤
n∑

i=1

p2
i ,

d2(L(�),Po(λ)) ≤ 6

λ − max1≤i≤n pi

n∑
i=1

p2
i .

Example 2.5. Throw n points uniformly and independently onto the interval [0, n] and let � be
the configuration of the points on [0, T ] := � with n � T and λ be the mean measure of �.
Then,

d2(L(�),Po(λ)) ≤ 6T

n − 1
.

Proof. Let Ii = 1 if the ith point is in � and 0 if it is not in �. The configuration of the ith point
on � can then be written as �i = IiδUi

and � = ∑n
i=1 �i , where the Ui ’s are independent and

identically distributed uniform random variables on � and are independent of the Ii ’s. Noting
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that the reduced Palm process �i,(α) = 0, we obtain the bound by applying (2.22) with pi =
P(Ii = 1) = T/n and [14], Proposition 4.5. �

3. Superposition of thinned dependent point processes

Assume that q is a measurable retention function on � and X is a point process on �. For a real-
ization X(ω) of X, we thin its points as follows. For each point of X(ω) at α, it is retained with
probability q(α) and discarded with probability 1 − q(α), independently of the other points; see
[16], page 554, for dependent thinning and [30] for discussions of more thinning strategies. The
thinned configuration is denoted by Xq(ω). For retention functions q1, q2, . . . , qn, let

∑n
i=1 X′

qi

be the process arising from the superposition of independent realizations of Xq1,Xq2 , . . . ,Xqn ,
that is, X′

q1
,X′

q2
, . . . ,X′

qn
are independent and L(X′

qi
) = L(Xqi

) for i = 1, . . . , n. Fichtner [18]
showed that a sequence of such superpositions, obtained from the rows of an infinitesimal ar-
ray of retention functions, converges to a Poisson process under standard conditions; see also
[25], Exercise 8.8). Serfozo [28] presented convergence theorems for sums of dependent point
processes that are randomly thinned by a two-step procedure which deletes each entire point
process with a given probability and for each retained point process, points are deleted or re-
tained according to another thinning strategy. Necessary and sufficient conditions are given for a
sum of two-step thinned point processes to converge in distribution and the limit is shown to be
a Cox process; see also [17] and [26].

For simplicity, we assume that {�i, i ∈ I} is a locally dependent collection of point processes
(satisfying [LD1]) on a locally compact metric space � with metric d0 bounded by 1. For each
point of �i , we delete the point with probability 1 − p and retain it with probability p, indepen-
dent of the others. The thinned point process is denoted by �

p
i , i ∈ I , and, in general, for each

point process X, we use Xp to denote its thinned process. Let �p = ∑
i∈I �

p
i . As before, we

define Ai to be the collection of indices j of the point processes �j which are dependent on �i ,
that is, �i is independent of {�j , j ∈ Ac

i }.

Theorem 3.1. Let μi be the mean measure of �i , μi = μi (�) = E(|�i |), i ∈ I , and assume that
λ = ∑

i∈I μi < ∞. The mean measure of �p is then λp = p
∑

i∈I μi and

dtv(L(�p),Po(λp)) ≤ p

(
1 ∧ 1

λ

)
E

∑
i∈I

{[|Vi | + |�i |]λi + [|Vi | + |�i | − 1]|�i |}, (3.1)

d2(L(�p),Po(λp)) ≤ pE

∑
i∈I

(
3.5

λ
+ 2.5

|∑j∈Ac
i
�j | + 1

)

(3.2)
× {[|Vi | + |�i |]λi + [|Vi | + |�i | − 1]|�i |},

dTV(L(�p),Po(λp)) ≤ pE

∑
i∈I

{[|Vi | + |�i |]λi + [|Vi | + |�i | − 1]|�i |}. (3.3)
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Proof. We prove only (3.2), as the proofs of (3.1) and (3.3) are similar to that of (3.2). By
conditioning on the configurations, we have, for each Borel set B ⊂ �,

E[�p
i (B)] = E{E[�p

i (B)|�i]} = E[�i(B)p],
which implies that the mean measure of �

p
i is λ

p
i = pμi and hence that λp = p

∑
i∈I μi . By

(2.3) and the fact that d ′
1(ξ1, ξ2) ≤ |ξ1| + |ξ2|, we obtain

d2(L(�p),Po(λp))

≤ E

∑
i∈I

(
3.5

pλ
+ 2.5

|∑j∈Ac
i
�

p
j | + 1

)∫
�

[|V p
i | + |V p

i,α| + |�p
i | + |�p

i,(α)|]λp
i (dα)

≤ E

∑
i∈I

(
3.5

pλ
+ 2.5

|∑j∈Ac
i
�

p
j | + 1

)∫
�

{[|V p
i | + |�p

i |]λp
i (dα) + [|V p

i | + |�p
i | − 1]�p

i (dα)}

≤ E

∑
i∈I

(
3.5

pλ
+ 2.5

|∑j∈Ac
i
�

p
j | + 1

)
{[|V p

i | + |�p
i |]λip + [|V p

i | + |�p
i | − 1]|�p

i |}.

Since the points are thinned independently, we can condition on the configuration of {�i, i ∈ I}.
Noting that for Z ∼ Binomial(n,p), E

1
Z+1 ≤ 1

(n+1)p
and E[(X − 1)X] = n(n − 1)p2, we obtain

d2(L(�p),Po(λp))

≤ E

∑
i∈I

(
3.5

pλ
+ 2.5

p(|∑j∈Ac
i
�j | + 1)

)
{[|Vi | + |�i |]λi + [|Vi | + |�i | − 1]|�i |}p2.

This completes the proof of (3.2). �

Remark 3.2. Serfozo [28], Example 3.6, obtained the rate p for the convergence of a sum of
thinned point processes to a Poisson process. Theorem 3.1 shows that the rate p is valid for all
of the three metrics used.

4. Superposition of renewal processes

Viswanathan [31], page 290, states that if {�i,1 ≤ i ≤ n} are independent renewal processes on
[0, T ], each representing the process of calls generated by a subscriber, then the total number of
calls can be modeled by a Poisson process. In this section, we quantify this statement by giving
an error bound for Poisson process approximation to the sum of independent sparse renewal
processes. We begin with a technical lemma.

Lemma 4.1. Let η ∼ G, ξi ∼ F, i ≥ 1, be independent non-negative random variables and de-
fine

Nt = max{n :η + ξ1 + · · · + ξn−1 ≤ t}, t ≥ 0.
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Then,

G(t) ≤ E(Nt ) ≤ G(t)

1 − F(t)
, (4.1)

E(N2
t ) − E(Nt ) ≤ 2F(t)E(Nt )

1 − F(t)
≤ 2F(t)G(t)

(1 − F(t))2
. (4.2)

Proof. Let V (t) = E(Nt ). The renewal equation gives

V (t) = G(t) +
∫ t

0
V (t − s)dF(s) ≤ G(t) + V (t)F (t), (4.3)

which implies (4.1). For (4.2), define V2(t) = E[Nt(Nt + 1)]. Then, using the same arguments
as for proving the renewal equation,

V2(t) = 2V (t) +
∫ t

0
V2(t − s)dF(s).

This implies that V2(t) ≤ 2V (t) + V2(t)F (t), which, in turn, implies that

V2(t) ≤ 2V (t)

1 − F(t)
.

Since

E(N2
t ) − E(Nt ) = V2(t) − 2V (t) =

∫ t

0
V2(t − s)dF(s) ≤ V2(t)F (t) ≤ 2F(t)V (t)

1 − F(t)
,

(4.2) follows from (4.1). �

Theorem 4.2. Suppose that {�i,1 ≤ i ≤ n} are independent renewal processes on [0, T ] with
the first arrival time of �i having distribution Gi and its inter-arrival time having distribution
Fi . Let � = ∑n

i=1 �i and λ be its mean measure. Then,

d2(L(�),Po(λ)) ≤ 6
∑n

i=1[2Fi(T ) + Gi(T )]Gi(T )

(
∑n

i=1 Gi(T ) − maxj Gj (T ))(1 − Fi(T ))2
. (4.4)

Proof. We view a renewal process as a point process whose points occur at the renewal times.
For a renewal process X with renewal times τ1 ≤ τ2 ≤ · · ·, we further define X′ = δτ1 . Since
λi = E(|�i |), it follows from (2.16) that

d2(L(�),Po(λ)) ≤
n∑

i=1

(
3.5

λ
+ E

2.5∑
j �=i |�j | + 1

)
[λ2

i + E(|�i |2) − λi]
(4.5)

≤
n∑

i=1

(
3.5

λ
+ E

2.5∑
j �=i |�′

j | + 1

)
[λ2

i + E(|�i |2) − λi].
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However, applying Proposition 4.5 of [13] gives

E
1∑

j �=i |�′
j | + 1

≤ 1∑
j �=i E|�′

j |
= 1∑

j �=i Gj (T )

and using (4.1), we obtain

λ ≥
n∑

i=1

Gi(T ).

By combining (4.5), (4.1) and (4.2), we obtain (4.4). �

Remark 4.3. If {�i,1 ≤ i ≤ n} are independent and identically distributed stationary renewal
processes on [0, T ] with the successive inter-arrival time distribution F , then

d2(L(�),Po(λ)) ≤ 6n[2F(T ) + G(T )]
(n − 1)(1 − F(T ))2

,

where G(t) = ∫ t

0 (1 − F(s))ds/
∫ ∞

0 (1 − F(s))ds; see [16], page 71.

Remark 4.4. An application of [29], Theorem 2.1, to the sum of the renewal processes {�i,1 ≤
i ≤ n} in Remark 4.3 with the natural partition {{i},∅, {1, . . . , i − 1, i + 1, . . . , n}} for each
1 ≤ i ≤ n will give an error bound

n[F(T ) + G(T )] + θG(T )(1 + ln+ n),

where θ is a constant. The first term of the bound increases linearly in n and the bound is clearly
not as sharp as the bound in Remark 4.3.

Since the thinned process Xp of a renewal process X with mean measure μ is still a renewal
process (see [16], pages 75–76) with mean measure μp = pμ (see the proof of Theorem 3.1),
a repetition of the proof of Theorem 4.2 yields the following proposition.

Proposition 4.5. Suppose that {�i,1 ≤ i ≤ n} are independent renewal processes on [0, T ] with
the first arrival time of �i having distribution Gi and its inter-arrival time having distribution
Fi . Let �

p
i be the thinned point process obtained from �i by deleting each point with probability

1 − p and retaining it with probability p, independently of the other points. Let �p = ∑n
i=1 �

p
i

and λp be its mean measure. Then,

d2(L(�p),Po(λp)) ≤ 6p
∑n

i=1[2Fi(T ) + Gi(T )]Gi(T )

(
∑n

i=1 Gi(T ) − maxj Gj (T ))(1 − Fi(T ))2
.
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