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Improving the Efficiency of Fully Bayesian
Optimal Design of Experiments Using

Randomised Quasi-Monte Carlo

Christopher C. Drovandi∗‡ and Minh-Ngoc Tran†‡

Abstract. Optimal experimental design is an important methodology for most ef-
ficiently allocating resources in an experiment to best achieve some goal. Bayesian
experimental design considers the potential impact that various choices of the con-
trollable variables have on the posterior distribution of the unknowns. Optimal
Bayesian design involves maximising an expected utility function, which is an
analytically intractable integral over the prior predictive distribution. These in-
tegrals are typically estimated via standard Monte Carlo methods. In this paper,
we demonstrate that the use of randomised quasi-Monte Carlo can bring signif-
icant reductions to the variance of the estimated expected utility. This variance
reduction can then lead to a more efficient optimisation algorithm for maximising
the expected utility.

Keywords: approximate Bayesian computation, evidence, experimental design,
importance sampling, mutual information, Laplace approximation, quasi-Monte
Carlo.

1 Introduction

1.1 Background

A data collection process often involves variables that can be controlled. The field of
optimal experimental design is devoted to developing methods to optimally choose val-
ues for these controllable variables so that the resulting data is likely to have a sufficient
amount of information to address the aims of the analysis.

Fully Bayesian experimental design (see Bernardo and Smith (2000)) proceeds by
specifying a utility function U(d,y,θ), which defines the worth of conducting an ex-
periment that generated the observed data y, assuming that the dataset was drawn
from a model with parameter value θ and the design d was applied. Of course, the
experimental design d must be specified before data collection. A common approach in
Bayesian design is to consider the expected utility over the prior predictive distribution
of the data

U(d) =

∫
y

∫
θ

U(d,y,θ)p(y|θ,d)p(θ)dθdy, (1)
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where p(y|θ,d) is the likelihood function and p(θ) is the prior distribution, which in-
corporates information from previous similar experiments and/or expert opinion. The
optimal Bayesian design is the one that maximises the expected utility

d∗ = argmax
d∈D

U(d),

where D is the set of allowable designs. An alternative approach is when the utility
is some functional of the posterior, in which θ is integrated out producing the utility
U(d,y). The expected utility is then

U(d) =

∫
y

U(d,y)p(y|d)dy, (2)

where p(y|d) is the prior predictive distribution of the data y. An example is where
U(d,y,θ) = log p(θ|y,d) − log p(θ), which is the Shannon information gain (SIG). In
this case, U(d,y) is the Kullback–Leibler divergence (KLD) between the prior and the
posterior, U(d,y) = KLD(p(θ)||p(θ|y,d)). It should be noted that under the SIG utility,
the expected utility represents the mutual information (MI) between the parameter θ
and the potential future dataset y when the design d is applied. That is, the expected
reduction in entropy about the parameter θ brought about by the data y. In general,
the KLD is difficult to estimate precisely in a computationally efficient manner. A
pragmatic alternative Bayesian parameter estimation utility is U(d,y) = − log(|Σy|d|)
where |·| denotes the determinant of a matrix and Σy|d is the posterior covariance matrix
obtained when observing data y under design d. Overstall et al. (2016) show that this
utility is one component of the KLD when the prior and posterior are multivariate
normal. In general, the posterior covariance matrix is easier to estimate than the KLD.
It is important to note that other utility functions can be defined to reflect different
goals such as prediction or model discrimination (see Section 3.4 for an example of the
latter).

Whatever formulation is adopted for U(d) (integration over (y,θ) or just y), the
integral is generally analytically intractable. Our focus is on the formulation in (2)
however the ideas in this paper can be adapted to the formulation in (1). A common
approach in the Bayesian design literature is to estimate the integral via Monte Carlo
(MC) integration

UJ(d) =
1

J

J∑
j=1

U(d,yj),

assuming (yj ,θj)
iid∼ p(y|θ,d)p(θ) for j = 1, . . . , J . That is, a parameter is first drawn

from the prior, p(θ), then the dataset is drawn from the model, p(y|θ,d), conditional
on this parameter value and the design d. Each U(d,yj) calculation involves the com-
putation or the approximation of the posterior distribution conditional on yj . Thus ap-
proximating a single expected utility calculation can be expensive, which subsequently
needs to be maximised via some optimisation algorithm. The efficiency of the optimi-
sation process will depend on the level of noise associated with the expected utility
estimate. The computational challenges of the Bayesian optimal design problem are
well summarised in Ryan et al. (2016).
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1.2 Contribution and Outline

In this paper we propose the use of randomised quasi-Monte Carlo (RQMC) methods
to improve the precision with which the expected utility is estimated for the same
value of J . Any optimisation algorithm can then benefit from the reduction in the
noise of expected utility approximations. It is well known that MC methods estimate
expectations that converge at a rate of O(1/

√
J) whereas RQMC can generally achieve

a faster convergence rate (Owen, 1997).

The idea of QMC has been considered in pseudo-Bayesian design (see, for example,
Bliemer et al. (2008)). Here the utility is some scalar function of the Fisher information
matrix. In this case the utility is independent of the future data y and the expected
utility is given by

U(d) =

∫
θ

U(d,θ)p(θ)dθ.

This integral can be estimated by MC or RQMC by taking J samples of θ from the
prior in the relevant way. Our paper focuses on RQMC in the context of fully Bayesian
design, which is much more difficult as it involves also the integral over the data space.
We suspect that variance reduction is more critical in fully Bayesian design as it is much
more computationally intensive than pseudo-Bayesian design. This is due to the fact
that fully Bayesian design typically requires the repeated approximation of posterior
quantities whereas pseudo-Bayesian design relies on an expression for the observed or
Fisher information matrix only.

RQMC has recently received increasing attention in the statistics community. Gerber
and Chopin (2015) show the efficiency of RQMC in sequential Monte Carlo, Tran et al.
(2015) document a faster convergence in their variational Bayes updating procedure
when the noisy gradient is computed using RQMC. In Bayesian decision problems, one
selects the best decision by minimising the Bayes risk which is an integral of the loss
function over the posterior (Robert, 2007, ch. 2) and it is important to estimate such
integrals accurately. The RQMC method that we describe in this article can be applied
to any Bayesian decision problem.

Some experimental design problems involve sequential decision making, where the
loss function takes into account both the decision loss and the cost of conducting the
experiment, and where the data are collected sequentially (Berger, 1985, ch. 7). The
optimal stopping time and the best decision are selected to optimise an expected loss
function (Berger, 1985, equation 7.2), which can be estimated accurately with RQMC.
To reduce the complexity of the sequential design problem, a myopic approach may be
adopted that only makes an optimal decision for the next observation only (e.g. Drovandi
et al. (2013)). In this setting, the current ‘prior’ distribution may not be available in
closed form and may be represented by a Monte Carlo sample. The application of
RQMC is less clear in this setting. However, it would be possible to use importance
sampling through a parametric approximation of the posterior, and the same RQMC
idea in this paper can be used to estimate the expected utility of the design for the next
observation conditional on the data obtained so far. In these respects, we conjecture
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that RQMC can have a beneficial effect on sequential decision making problems, but a
thorough investigation of this is beyond the scope of the current paper. In this article,
we focus only on using RQMC for Bayesian experimental design problems where we
know in advance how many observations we wish to design for and that this data will
be collected in a single batch after the optimal design has been determined. This is often
referred to in the literature as a static design.

In Section 2 we describe RQMC and how we implement it in the context of Bayesian
design. Four examples that illustrate the benefits of RQMC are provided in Section 3.
We conclude in Section 4.

2 Randomised Quasi-Monte Carlo for Bayesian
Experimental Design

2.1 Randomised Quasi-Monte Carlo

Quasi-Monte Carlo

This section presents a short tutorial to QMC and in particular RQMC. A thorough
treatment of the subject can be found in the monographs by Niederreiter (1992) and
Dick and Pillichshammer (2010). Glasserman (2004, ch. 5) provides a more accessible
introduction to the subject.

Consider the problem of estimating the following integral over the s-dimensional
unit hypercube

I(f) =

∫
[0,1)s

f(u)du,

for some function f . Almost all Monte Carlo problems can be written in this form. It
is convenient in QMC to take intervals to be closed on the left and open on the right.

Plain MC methods estimate this integral by an average of f(uj) over J iid samples
uj ∼ U(0, 1)s. It is well known that the convergence rate of such MC estimators is
of order J−1/2. QMC methods are a deterministic alternative that chooses the points
uj more evenly in [0, 1)s than random in the sense that they minimize the so-called
star-discrepancy of the point set. Consider a set of J points PJ = {u0, . . . ,uJ−1} with
uj ∈ [0, 1)s. Let A be a collection of subsets in [0, 1)s of the form

A =

s∏
i=1

[0, ai), ai ∈ [0, 1).

The star-discrepancy of the point set PJ = {u0, . . . ,uJ−1} is defined as

D∗(PJ ) = sup
A∈A

∣∣∣∣#{uj ∈ A}
J

−Vol(A)

∣∣∣∣ ,
where #{uj ∈ A} is the number of uj belonging to A and Vol(A) is the volume of set A.
Clearly, D∗(PJ ) measures the non-uniformity of the point set PJ . The Koksma–Hlawka
inequality states that
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1

J

J−1∑
j=0

f(uj)

∣∣∣∣∣∣ ≤ D∗(PJ )σ
2(f),

where σ2(f) is the variation of the function f . This inequality provides an upper bound
on the approximation error and a criterion on searching for efficient QMC point sets
PJ .

Several construction rules of low-discrepancy point sets PJ have been proposed, for
which D∗(PJ) is of order J−1(log J)s−1. Before describing such construction rules, let
us introduce the so-called van der Corput sequences (van der Corput, 1935). Given an
integer b ≥ 2, any integer k ≥ 0 can be written as

k =

∞∑
i=0

ai(k)b
i, ai(k) ∈ {0, 1, . . . , b− 1},

with all, but finitely many, zero coefficients ai(k). Then the function

ψb(k) =

∞∑
i=0

ai(k)

bi+1
, (3)

maps each integer k ≥ 0 to a point in [0, 1). The sequence {ψb(k), k = 0, 1, . . .} is
called the base-b van der Corput sequence. The table below gives the first 8 values of
the base-2 van der Corput sequence. As k increases, the van der Corput sequence fills

k 0 1 2 3 4 5 6 7
ψ2(k) 0 1/2 1/4 3/4 1/8 5/8 3/8 7/8

up the interval [0, 1) in a very balanced way: they appear alternately on both sides of
1/2, first 1/4 and 3/4, then 1/8 and 5/8, then 3/8 and 7/8 and so on. Because of this
uniformity feature, van der Corput sequences are extensively used in the QMC literature
for constructing low-discrepancy point sets.

The simplest construction of low-discrepancy point sets is the Halton–Hammersley
sequence (Halton, 1960; Hammersley, 1960). Let b1, . . . , bs be s positive integers such
that their greatest common divisor is one. Then

uk = (ψb1(k), . . . , ψbs(k)), k = 0, 1, . . .

is a sequence of low-discrepancy points, which satisfies D∗(u0, . . . ,uJ−1) =
O(J−1(log J)s).

A more sophisticated rule is (t,m, s)-nets (Niederreiter, 1992). The set PJ of J =
bm points, where b ≥ 2 is an integer, is said to be a (t,m, s)-net in base b if for all
d1, . . . , ds ≥ 0 with d1 + · · ·+ ds = m− t, every elementary box of the form

s∏
i=1

[
ai
bdi

,
ai + 1

bdi

)
, 0 ≤ ai < bdi for i = 1, . . . , s,

contains exactly bt points of PJ . The volume of each elementary box is 1/bd1+···+ds =
1/bm−t. A (t,m, s)-net has a high uniformity in the sense that the portion of points
contained in each elementary box bt/J = 1/bm−t is exactly the volume of the box.
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Figure 1: Plots of 1024 points generated by plain MC, (t,m, s)-net QMC and scrambled
(t,m, s)-net RQMC with t = 0 and s = 2.

The reader is referred to Niederreiter (1992) and Dick and Pillichshammer (2010) for
construction of (t,m, s)-nets.

Randomised Quasi-Monte Carlo

Unlike MC estimators which are stochastic, QMC estimators are deterministic. Appli-
cations in statistics often require randomness so that probability theory can be applied,
for instance, for estimating approximation errors and constructing confidence intervals.
Furthermore, we sometimes require an unbiased estimator of I(f). To get the best of
both MC and QMC, randomised versions of QMC have been proposed. The idea is
that, by injecting a random element into a QMC sequence PJ = {u0, . . . ,uJ−1}, the re-
sulting randomised QMC sequence P̃J = {ũ0, . . . , ũJ−1} preserves the low-discrepancy
property and, at the same time, ũj ∼ U [0, 1)s.

The simplest randomisation method is to shift the point set PJ by a random vector
r uniformly distributed over [0, 1)s

ũj = (uj + r) mod 1, j = 0, 1, . . . , J − 1,

where α mod 1 = α − �α� with �α� the largest integer number that is smaller than α.
Here the mod operator applies separately to each coordinate. It is easy to see that ũj is

uniformly distributed over [0, 1)s. Then Î(f) = (1/J)
∑

f(ũj) is an unbiased estimator
of I(f). It is important to note that the ũj are not independent of each other.

A more sophisticated RQMC method (Owen, 1997; Matousek, 1998) is to apply
random permutations to the coefficients in the base-b expansion (3) of each number in
a (t,m, s)-net. The resulting set is called a scrambled net. A visual comparison of plain
MC, QMC and RQMC for s = 2 is shown in Figure 1. Owen (1997) shows that, given

that f is smooth enough, the variance of Î(f) is of order J−3(log J)s−1, compared to
the order of J−1 for plain MC estimates. So given that the dimension s is not too large,
RQMC estimates achieve a better convergence rate than plain MC estimates.

Here we describe the simplified version of Matousek (1998). Write PJ as a matrix
of size J × s and consider a single element uji in this matrix with the base-b expansion
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uji = a0/b+a1/b
2+ · · · , ai ∈ {0, 1, . . . , b−1}. Let Π(i) = {π(i)

0 , π
(i)
1 , . . .} be independent

random permutations of the set {0, 1, . . . , b − 1}. Then the scrambled version of uji is

ũji = π
(i)
0 (a0)/b+π

(i)
1 (a1)/b

2+ · · · , i.e., we apply π
(i)
ν to the coefficients aν , ν = 0, 1, . . ..

The same set of random permutations Π(i) is used for all elements in the ith column of
PJ , different and independent sets Π(i) are used for different columns. The scrambled
set P̃J = {ũ0, . . . , ũJ−1} is a (t,m, s)-net with probability one and each ũj ∼ U [0, 1)s.
As the f(ũj) are dependent, it is in general harder to obtain central limit theorems

(CLT) for the RQMC estimator Î(f) = (1/J)
∑

f(ũj). Loh (2003) obtains a CLT for
RQMC estimators based on scrambled (0,m, s)-nets.

2.2 Estimating the Expected Utility

In the context of Bayesian design, simulation from the prior predictive, y∼ p(y|θ,d)p(θ),
can be written as a function (transformation) of uniform random variates. This involves
a two stage process. In an abuse of notation we write the simulation of θ from thep-
rior as the function θ = θ(uθ) where uθ is uniformly distributed over the hypercube
(0, 1)nθ where nθ is the dimension of uθ. Then to produce a simulation of y we re-
quire an additional set of ny uniform random numbers and we set y = y(uy,θ) where
uy ∈ (0, 1)ny . We can write this more succinctly as u = (uθ,uy)

� and set y = y(u)
where u is uniform over the hypercube (0, 1)nθ+ny . Then, we can re-write the integral
in (2) as

U(d) =

∫
u

U(d,y(u))du.

If we simulate u uniformly using pseudo random numbers then we recover the standard
MC estimator in (2). However, if we generate u using the procedure outlined in the
previous section then we obtain an estimator based on RQMC that should have lower
variance.

We note that the choice of transformation function is not unique. For example, to
simulate from a normal distribution, we could use the quantile function of the normal
distribution (the inversion method) or the Box–Muller method (Box and Muller, 1958).
In our examples in Section 3, we use the inversion method exclusively. Note that it is
not necessarily guaranteed that the space filling properties of the RQMC numbers are
preserved on the transformed space. Nonetheless, in Section 3, we obtain significant
improvements.

We show later that increased precision afforded by the RQMC approach can im-
prove the efficiency of optimisation algorithms for determining the design d∗ that leads
to the largest expected utility. There have been several methods developed for this
optimisation task. We do not intend to give a complete overview here but give a few ex-
amples to provide a flavour. Müller et al. (2004) convert the optimisation into a Markov
chain Monte Carlo (MCMC) simulation problem that simulates over the joint space of
(d,y,θ) and admits a probability density proportional to the expected utility surface
as the marginal in d. Such an approach has been commonly used in the Bayesian design
literature (e.g. Cook et al. (2008); Drovandi and Pettitt (2013)). Drovandi and Pettitt
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Algorithm 1 Co-ordinate exchange design optimisation algorithm.

Input: Number of sweeps S, J , and a vector, e, containing potential values for each
component of the design vector d.

Output: An approximation to the optimal design d∗ and its corresponding estimated
expected utility value.

1: Set initial design d0

2: Estimate expected utility U0 = UJ(d
0)

3: Set iteration counter I ← 0
4: for s = 1 to S do
5: for j = 1 to |e| do
6: Set d+ ← dI

7: Replace jth element of d+, d+j = ej
8: Calculate U+ = UJ(d

+)
9: if U+ > U I then

10: Set dI ← d+

11: Set U I ← U+

12: end if
13: Set I ← I + 1
14: end for
15: end for

(2013) note some issues with this approach. In particular, the mixing of the MCMC can

be poor and furthermore the optimal design is obtained by estimating the mode of the

density proportional to the expected utility surface in a non-parametric fashionbased on

only MCMC samples from this density. This approach does not scale with an increase

in the length of d.

Other approaches attempt to maximise U(d) directly but their performance may

be affected by the noise associated with UJ(d). Huan and Marzouk (2014) imple-

ment various stochastic approximation algorithms to perform the optimisation. Got-

walt et al. (2009) apply the co-ordinate exchange (CE) algorithm (Meyer and Nacht-

sheim, 1995) in a pseudo-Bayesian design setting. The CE algorithm involves cycling

through each of the design variables one-at-a-time, trialling a set of candidate replace-

ments and choosing the best replacement if it improves the expected utility. Over-

stall and Woods (2016) extend this idea to an approximate CE algorithm that uses

a Gaussian process emulator so that only a relatively small number of candidates are

required. Weaver et al. (2016) consider a Bayesian optimisation algorithm that uses

a Gaussian process emulator over the entire design space. Our main message is that

all of these approaches can benefit from a reduction in the variance of UJ(d). To

illustrate the capability of RQMC in determining designs with higher expected util-

ity than MC, we use the CE algorithm (shown in Algorithm 1). This algorithm re-

quires the specification of a vector e containing potential values for each component

of the design vector d and the number of sweeps, S, to perform over the design vec-

tor.
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3 Examples

Here we consider four examples that illustrate the variance reduction in the estimate
of the expected utility that can be achieved through RQMC. For a particular design
d we obtain UJ(d) under both MC and RQMC for several values of J . Note that for
both MC and RQMC we use the same approach to compute/approximate U(d,y). We
consider two different designs, one that is sub-optimal (e.g. a randomly selected design)
and one that is closer to optimal. To obtain the closer-to-optimal design we use one
run of the CE algorithm in conjunction with RQMC and J = 100. Note that we do not
expend a great deal of effort into determining the most optimal design, we are simply
interested in comparing MC and RQMC at two markedly different designs with different
expected utilities. To estimate the precision of the estimated expected utility we obtain
50 (unless otherwise specified) independent values of UJ(d) under each scenario, then
compute the sample standard deviation to obtain sd(UJ(d)). We prefer the integration
method that leads to lower values of the standard deviation. In this paper, we use the
scrambled Sobol’s net, i.e. the scrambled (t,m, s)-net in base b = 2.

We also investigate how much influence the reduction in variance provided by RQMC
has in determining efficient designs. As mentioned above, we use the CE optimisation
algorithm for this purpose. We run this for both RQMC and MC with different values
of J . When a design is updated by the CE algorithm, we compute a gold standard
value of its expected utility by using RQMC and J = 1000 and keep track of this gold
standard value throughout the optimisation process. Since the CE algorithm is not a
global optimisation method and that it may be impacted by the noise in the expected
utility estimate, we run it several times from different random starting designs. For
each individual run of the CE method, we use the same starting design for both MC
and RQMC. We compare the MC and RQMC methods via the median value (over the
repeated runs) of the gold standard estimate of the expected utility throughout the CE
iterations.

For a fixed value of J , the only difference between run times of MC and RQMC
for estimating UJ(d) can be attributed to the time to generate random numbers for
producing different values of y. We find that there is only a very small additional cost
for generating randomised QMC numbers over pseudo random numbers. The additional
time required to estimate the expected utility via RQMC becomes negligible as the value
of J and/or the time to approximate U(d,y) is increased.

3.1 Pharmacokinetics

We take this example from Ryan et al. (2014), which involves determining optimal
blood sampling times for a pharmacokinetics (PK) model. PK studies involve the ad-
ministration of a specified quantity of a drug to subjects and investigate the absorption,
distribution and elimination of the drug and its metabolites. Let yt be the observed con-
centration of the drug at time t. We assume that

yt ∼ N (c(θ)μt(θ), σ
2vt(θ)), where

μt(θ) = exp(−θ1t)− exp(−θ2t),



148 Improving the Efficiency of Fully Bayesian Optimal Design

c(θ) =
D

θ3

θ2
θ2 − θ1

,

vt(θ) =

(
1 +

τ2

σ2
c(θ)2μt(θ)

2

)
,

where θ1 is the elimination rate, θ2 is the absorption rate and θ3 is the ‘the vol-

ume of distribution’. D is the administered dose, which is set fixed at 400 units.

Additive and proportional error variances are set fixed at σ2 = 0.1 and τ2 = 0.01,

respectively. The goal of the experiment is the precise estimation of the parameter

log(θ) = (log(θ1), log(θ2), log(θ3))
�. The prior for θi is log-normal with a mean (on the

log scale) of log(0.1), log(1) and log(20) for i = 1, 2 and 3, respectively. Each parameter

has a variance (on the log scale) of 0.05 and the parameters are assumed independent

a priori.

The design problem is to determine the optimal set of 15 sampling times d =

(t1, . . . , t15)
� where t1 < t2 < · · · < t15 and the sampling times are constrained to

be at least 0.25 time units apart.

To estimate the posterior distribution we use a Laplace approximation (LA) of

log(θ). The LA is useful in optimal Bayesian design since the estimate of U(d,y) does

not have noise associated with it (see Ryan et al. (2015) and Overstall et al. (2016)).

Since the prior and posterior of log(θ) are both normally distributed, there is an ana-

lytical expression for the KLD.

To apply RQMC we are required to write the simulation from the prior predictive

distribution as a function of uniform random variates. The prior on each θi is log-normal

so we can simulate it via θi = exp(μi+σiΦ
−1(ui

θ)) where Φ
−1(·) is the quantile function

of a standard normal random variate, ui
θ ∼ U(0, 1), and μi and σi are the prior mean and

standard deviation of log θi. After simulation from the prior to obtain θ, we can easily

simulate the response as it is normally distributed, ytk = c(θ)μtk(θ)+σ
√

vtk(θ)Φ
−1(uk

y)

where uk
y ∼ U(0, 1) for k = 1, . . . , 15. Thus we can write the expected utility with respect

to the prior predictive distribution as an integral over the 3+ 15 = 18 dimensional unit

hypercube.

The sub-optimal design we consider is the evenly spaced design d = (1, 2, . . . , 15)�.

The closer-to-optimal design is d = (0.75, 1.0, 1.25, 1.75, 3.75, 4.0, 4.75, 5.0, 5.25, 10.5,

11.0, 11.25, 13.0, 15.0, 15.75)�. Based on J = 1000 and RQMC the expected utilities

of these designs are 7.02 and 7.37, respectively. The results are shown in Figure 2. It is

evident that RQMC clearly outperforms MC for any value of J .

Figure 3 shows the median of the gold standard expected utility when performing 50

independent runs of the CE algorithm for both MC and RQMC for a variety of J values.

Here we set e = (0.25, 0.5, . . . , 24)� and S = 5. It is clear that the RQMC method is

beneficial in obtaining designs with higher expected utility.
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Figure 2: Estimated standard deviations of the estimated expected utilities UJ(d) for
different values of J for the PK example. Subfigure (a) shows results for a sub-optimal
evenly spaced design whilst subfigure (b) shows results for a closer-to-optimal design.
Results based on MC integration are shown as circles whilst results based on RQMC
are shown as crosses. Points are connected via linear interpolation.

3.2 Logistic Regression

We consider the logistic regression example of Overstall and Woods (2016). The response
is binary, yi ∼ B(pi), where

logit(pi) = β0 +

4∑
j=1

βjxij , for i = 1, . . . , n,

where n is the number of observations. The model parameter is θ = (β0, β1, β2, β3, β4)
�.

The observed vector of responses is denoted as y = (y1, . . . , yn)
� and the design vector

is the concatenation of the controllable elements of the design matrix, d = {xi,j ; i =
1, . . . , n, j = 1, . . . , 4} and is of length n × 4. The design space has xij ∈ (−1, 1) for
all i = 1, . . . , n and j = 1, . . . , 4. We design for n = 24 independent observations. The
prior distribution allocated by Overstall et al. (2016) is β0 ∼ N (0, 3), β1 ∼ N (7, 3),
β2 ∼ N (8, 3), β3 ∼ N (−3, 3), β4 ∼ N (0.5, 3), and that all parameters are independent
a priori.

We consider the MI utility for U(d). In this case U(d,y) is the KLD between the
prior and the posterior, and may be written as

U(d,y) =

∫
θ

log(p(y|θ,d))p(θ|y,d)dθ −
∫
θ

p(y|θ,d)p(θ)dθ.

We consider an MC approximation of the above utility based on importance sampling
(IS) where the importance distribution is simply the prior. Denote a large collection of
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Figure 3: The median of the expected utility for the PK example over 50 independent
runs of the CE optimisation algorithm with different starting designs. Results for various
values of J used in the optimisation process are considered. Results are shown when
using MC (solid) and RQMC (dashed) for estimating the expected utility during the
CE algorithm.

N samples taken from the prior as Θ = {θi}Ni=1
iid∼ p(θ). Here we set N = 100, 000.

A weight is assigned to each particle, Wi ∝ p(y|θi,d) such that
∑N

i=1 Wi = 1, so that
{Wi,θi}Ni=1 forms a particle approximation of p(θ|y,d). Then the approximation of
U(d,y) is given by

UN (d,y) =
N∑
i=1

Wi log(p(y|θi,d))−
1

N

N∑
i=1

p(y|θi,d).
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1 1 -1 -1
-1 1 -1 1
-1 -1 1 -1
1 -1 1 1
-1 -1 -1 -1
1 1 1 1
-1 -1 -1 -1
1 -1 1 1
-1 1 -1 -1
1 -1 -1 1
1 -1 -1 -1
-1 -1 1 -1
1 1 -1 -1
1 1 1 -1
-1 1 1 -1
-1 -1 1 1
-1 -1 1 -1
1 1 -1 1
1 -1 1 1
1 -1 1 1
1 -1 -1 -1
-1 1 1 -1
1 -1 -1 -1
-1 -1 -1 -1

-1.0 0.0 -1.0 0.5
-1.0 1.0 1.0 1.0
1.0 -1.0 1.0 1.0
1.0 -1.0 1.0 1.0
-1.0 1.0 -1.0 -1.0
1.0 -1.0 -1.0 -1.0
-1.0 1.0 -1.0 0.0
-1.0 0.0 1.0 1.0
-1.0 -1.0 1.0 1.0
0.0 -1.0 -1.0 1.0
1.0 -1.0 -1.0 -1.0
0.5 -1.0 -1.0 -1.0
1.0 -1.0 -1.0 1.0
-1.0 1.0 1.0 1.0
-1.0 1.0 1.0 -1.0
0.5 0.0 1.0 1.0
1.0 -1.0 -1.0 1.0
-1.0 1.0 1.0 -1.0
1.0 -1.0 -1.0 1.0
-1.0 0.5 1.0 -1.0
-1.0 1.0 1.0 -1.0
1.0 -1.0 1.0 1.0
1.0 -1.0 1.0 -1.0
-1.0 0.5 -1.0 1.0

Table 1: Designs used in the logistic regression example. Shown is a sub-optimal (ran-
dom) design (left) and a closer-to-optimal design (right).

The advantage of using IS in the context of Bayesian design is that the same collec-
tion Θ can be used for each dataset y drawn during the design optimisation process.
However, the optimal design obtained will be dependent on Θ, which we denote as d∗

Θ.
To eliminate the dependence on Θ it would be necessary to re-generate a new collection
of Θ for each y. However, this leads to an increase in the computation time. We consider
both cases here. We refer to the former as ‘fixed Θ’ and the latter as ‘new Θ’. Here we
perform 100 independent repeats to estimate sd(UJ (d)).

To compare the performance of MC and RQMC, we consider two values of d (see
Table 1). The first is a random design where each element xij is equal to −1 or 1 with
equal probability. Using J = 1000, RQMC and new Θ, the expected utilities for the
random and closer-to-optimal designs are 2.94 and 4.29, respectively. Intuitively, the
utility, U(d,y), may be more difficult to estimate at efficient designs as they provide
more information about the parameters thus leading to a lower effective sample size
in the IS approximation. This will naturally lead to more variability associated with
UN (d,y).

Since the prior on each parameter is normal we can simulate from it using the
quantile function of the normal distribution (similar to the previous example). The
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Figure 4: Estimated standard deviations of the estimated expected utilities UJ(d) for
different values of J for the logistic regression example. Subfigures (a) and (c) show
results for a sub-optimal random design whilst subfigures (b) and (d) show results for
a more optimal design. Subfigures (a) and (b) use the same importance samples to
estimate U(d,y) for different y whilst subfigures (c) and (d) generate new importance
samples for each y. Results based on MC integration are shown as circles whilst results
based on RQMC are shown as crosses. Points are connected via linear interpolation.

response is binary so we may simulate it as yi = I(ui
y < pi) for i = 1, . . . , n where

pi is a function of the model parameter, ui
y ∼ U(0, 1) and I(·) is the indicator func-

tion.

The comparison of the standard deviation of the estimated expected utility is shown
in Figure 4. The top row has fixed Θ while the bottom row has new Θ. The left column
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Figure 5: The median of the expected utility for the logistic regression example over
30 independent runs of the CE optimisation algorithm with different starting designs.
Results for various values of J used in the optimisation process are considered. Results
are shown when using MC (solid) and RQMC (dashed) for estimating the expected
utility during the CE algorithm.

is based on the sub-optimal design whereas the right column uses the closer-to-optimal

design. In all four scenarios and for the majority of J values the RQMC approach brings

a considerable variance reduction.

Figure 5 shows the median of the gold standard expected utility when performing

30 independent runs of the CE algorithm for both MC and RQMC for a variety of J

values. Here we set e = (−1,−0.5, 0, 0.5, 1)� and S = 2. Again it is evident that RQMC

provides a better chance of finding designs with higher expected utility than MC.
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3.3 Susceptible-Infected Example

We investigate an example involving a stochastic infectious disease model considered by
Cook et al. (2008); Drovandi and Pettitt (2013). Such models are important for gaining
an understanding of how a disease is transmitted and for assessing the impact that
various intervention strategies may have on the spread of the disease. Scientists may be
interested in the optimal times to observe an epidemic in order to increase the chance
of learning about the parameter of an infectious disease model or to learn the structure
of the model itself, or both. In this section we consider the goal of parameter estimation
while in the next section the aim is model discrimination.

The model of interest in this section is the susceptible-infected (SI) model, which
is a continuous time Markov chain (or Markov process). We denote the number of
susceptibles at time t as S(t). We have that P (S(t + Δt) = i − 1|S(t) = i) = (b1 +
b2(n − i))iΔt + o(Δt) where Δt is an infinitesimal time such that at most one event
can occur during that time. The parameter b1 represents the natural death rate of
susceptibles while b2 is the transmission rate of the disease. We are interested in the
times to observe the process (here four times) to gain the most information about the
parameter, θ = (b1, b2)

�. The parameters are independent a priori and log-normally
distributed: b1 ∼ LN (−3.6, 0.1024) and b2 ∼ LN (−4.5, 0.16).

We assume a closed population of size 50 and all individuals are susceptible at time
0. Further, we assume that it is only possible to observe the state of the system at
various discrete times, so that the process is only partially observed. The likelihood
function for Markov processes involves the computation of the transition probability
matrix for moving between states of the Markov chain (here the number of infected
individuals) during some time interval ta− tb where b > a. For continuous time Markov
chains, the transition probability matrix is calculated via the matrix exponential (see
Moler and van Loan (2003)), which is given by exp(G(tj − ti)), where G is the so-called
generator matrix which contains as its (i, j)th element the transition intensity of moving
from state i to state j if i �= j. Each diagonal element contains the negative sum of its
corresponding row. The matrix exponential is only computationally feasible for very
small populations. Further, the number of likelihood calculations required during the
optimal design process may render this approach infeasible for many Markov processes
of interest. This motivated Drovandi and Pettitt (2013) to develop a likelihood-free
approach to experimental design using approximate Bayesian computation (ABC, see
also Hainy et al. (2014)). Drovandi and Pettitt (2013) use ABC rejection to generate
samples from an approximate posterior, which is used to estimate the utility U(d,y) =
− log(|Σy|d|) using the sample covariance matrix. ABC rejection involves generating and
storing a set of N simulations from the prior predictive distribution, which we denote
as (Θ,Y). Then, a small proportion, α, of these simulations are kept that are ‘closest’
to the dataset y. The ABC approach of Drovandi and Pettitt (2013) for estimating the
utility U(d,y) is shown in Algorithm 2. We use the same discrepancy function as in
Drovandi and Pettitt (2013):

ρ(y,x|d) =
n∑

i=1

|yi − xi|
std(xi|di)

, (4)
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where n is the number of observations to collect. The value std(xi|di) is the empirical
prior predictive standard deviation of the data at time point di.

Algorithm 2 ABC rejection algorithm used in Drovandi and Pettitt (2013).

Input: Design, d, a potential future dataset, y, prior distribution, p(θ), number of prior
predictive simulations, N , discrepancy function, ρ(·|d) and proportion of parameter
samples to keep, α, to estimate the ABC posterior distribution

Output: An ABC estimate of U(d,y) = − log(|Σy|d|)
1: Generate θi ∼ p(θ) for i = 1, . . . , N
2: Simulate xi ∼ p(y|θi,d) for i = 1, . . . , N

(Note that steps 1 and 2 can be performed prior to the optimal design process and
the simulated data can be stored at a discretised grid of the design space)

3: Compute discrepancies ρi = ρ(y,xi|d) for i = 1, . . . , N , creating particles {θi, ρi}Ni=1

4: Sort the particle set via the discrepancy ρ such that ρ1 ≤ ρ2 ≤ · · · ≤ ρN

5: Calculate ε = ρ�αN� (where �·� denotes the floor function). The ABC posterior
samples consist of the set {θi|ρi ≤ ε}Ni=1

6: Estimate Σy|d via the sample covariance matrix based on {θi|ρi ≤ ε}Ni=1 and com-
pute U(d,y) = − log(|Σy|d|)

The advantage of ABC rejection, as with IS in the previous example, is that the
same simulations, (Θ,Y), can be re-used for each y generated during the optimal design
process. We refer to this as ‘fixed (Θ,Y)’. We also implement the more computationally
demanding process of generating a new (Θ,Y) for each new y, which we refer to as
‘new (Θ,Y)’. The ABC rejection approach requires a discretisation of the design space,
whichhere is the sampling times between 0 and 10 days. As in Drovandi and Pettitt
(2013), we use a design space with a time increment of 0.25 days. For the sub-optimal
design we set d = (1, 2, 3, 4)�. This design is chosen arbitrarily to be less efficient than
the closer-to-optimal design. The closer-to-optimal design is d = (1.5, 3.75, 5.25, 9.75)�.
Using J = 1000, RQMC and new (Θ,Y), we estimate the expected utilities of these
designs to be 20.89 and 21.76, respectively. The prior value of the utility is roughly 19.72.

The priors are log-normal so that prior simulation can proceed in the same way
as the PK example. To simulate from the model given a value of θ we can use the
algorithm of Gillespie (1977), where the time between a loss of a susceptible has an
exponential distribution with a rate parameter that depends on θ and the current
number of susceptibles in the simulation, which we write as η(θ, S(t)) = (b1 + b2(50 −
S(t)))S(t) where t is the current time of the simulation. To produce the simulation, the
value of S(t) is recorded at sampling times d. Since there are 50 susceptibles at time
0 the maximum number of random numbers required to simulate the data is 50. We
can simulate the time between each loss of susceptible using the quantile function of
the exponential distribution, tj − tj−1 = − log(1−uj

θ)/η(θ, S(tj−1)) where u
j
θ ∼ U(0, 1)

for j = 1, . . . , 50. Most simulations will not require the use of all 50 uniform random
numbers, but we store all of the potential randomised Sobol’s numbers nonetheless.

The results for the four different scenarios for different values of J are shown in
Figure 6. Again, RQMC is clearly preferred to MC.
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Figure 6: Estimated standard deviations of the estimated expected utilities UJ(d) for
different values of J for the SI example. Subfigures (a) and (c) show results for a sub-
optimal design whilst subfigures (b) and (d) show results for a more optimal design.
Subfigures (a) and (b) use the same importance samples to estimate U(d,y) for different
y whilst subfigures (c) and (d) generate new importance samples for each y. Results
based on MC integration are shown as circles whilst results based on RQMC are shown
as crosses. Points are connected via linear interpolation.

Figure 7 shows the median of the gold standard expected utility when performing
50 independent runs of the CE algorithm for both MC and RQMC for a variety of J
values. Here we set e = (0.25, 0.5, . . . , 10)� and S = 5. In this example it appears that
RQMC is only beneficial relative to MC for small J . In this case, the design vector
is only of length four and thus it is not difficult to find a design with relatively high
expected utility.
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Figure 7: The median of the expected utility for the SI example over 50 independent
runs of the CE optimisation algorithm with different starting designs. Results for various
values of J used in the optimisation process are considered. Results are shown when
using MC (solid) and RQMC (dashed) for estimating the expected utility during the
CE algorithm.

3.4 Model Discrimination Example

In many scenarios there may be uncertainty about the true underlying model. We
consider the M-closed perspective of Bernardo and Smith (2000), which assumes that
the true data generating process is unknown but is one of K candidate models described
by the random variable M ∈ {1, 2, . . . ,K}. For model M = m, we denote its prior
probability as p(m), the prior for its model parameter as p(θm|m) and the likelihood
function under that model as p(y|m,θm,d). The expected utility to accommodate this
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model uncertainty can be written as

U(d) =

K∑
m=1

p(m)

∫
y

U(d,y,m)p(y|m,d)dy,

which can be estimated as

UJ(d) =

K∑
m=1

p(m)
1

J

J∑
j=1

U(d,yj ,m),

where yj ∼ p(y|m,d) for j = 1, . . . , J and m = 1, . . . ,K. If determining the de-
sign to best discriminate between models is of interest, then one possibility is to set
U(d,y,m) = log p(m|y,d) where p(m|y,d) is the posterior probability of model m
(see, for example, Box and Hill (1967); Drovandi et al. (2014)). This choice amounts to
maximising the mutual information between the model indicator M and the potential
future dataset y.

Here we consider the example specified in Dehideniya et al. (2016), which involves
discriminating between the SI model (above) and also the ‘death’ model, which has
P (S(t + Δt) = i − 1|S(t) = i) = b1Δt + o(Δt). We use a parameter prior of b1 ∼
LN (−0.48, 0.152) for the death model and b1 ∼ LN (−1.1, 0.22), b2 ∼ LN (−4.5, 0.62)
for the SI model. The two models are assumed equally likely a priori. To estimate
the utility for some generated dataset y, the ABC rejection algorithm is used. Out
of all the prior predictive simulations that are within some distance of the dataset y,
the proportion of those belonging to model m is used to estimate the posterior model
probability of model m (see Dehideniya et al. (2016) and the references therein for more
details).

To utilise RQMC here a very similar procedure is required as in the previous example.
The only difference is that two sets of J prior predictive simulations are required, one for
each of the two models. Here we perform 100 independent repeats to estimate sd(UJ (d)).
The sub-optimal design is d = (5, 10) days (chosen arbitrarily to be less efficient than
the closer-to-optimal design) and the closer-to-optimal design is d = (0.75, 4.75) days.
The expected utilities of these designs based on RQMC and J = 1000 are −0.64 and
−0.44, respectively. The results for both of these designs and also whether or not a new
set of prior predictive simulations is used for the ABC rejection for each value of j is
shown in Figure 8. Despite the MC error associated with the U(d,y,m) calculation,
a significant gain is achieved with RQMC without any additional computational cost.
However, owing to the low dimensional design space, RQMC does not speed up the rate
of convergence to designs with high expected utility.

4 Conclusion

This paper has demonstrated that RQMC can lead to substantial variance reduction
in expected utility estimates for fully Bayesian experimental design. Our focus was on
applying RQMC to increase the precision of UJ(d) for fixed J . Our results suggest
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Figure 8: Estimated standard deviations of the estimated expected utilities UJ(d) for
different values of J for the discrimination example. Subfigures (a) and (c) show results
for a sub-optimal design whilst subfigures (b) and (d) show results for a more optimal
design. Subfigures (a) and (b) use the same importance samples to estimate U(d,y) for
different y whilst subfigures (c) and (d) generate new importance samples for each y.
Results based on MC integration are shown as circles whilst results based on RQMC
are shown as crosses. Points are connected via linear interpolation.

that precision can be gained without compromising at all on computational cost. In
high dimensional design optimisation problems, we demonstrated that RQMC can more
rapidly find designs with high expected utility relative to MC.

Monte Carlo variability of the U(d,y) estimation will be present regardless of
whether MC or RQMC is used to estimate the expected utility, U(d), and this could
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dampen the impact of RQMC. We did not consider the possibility of implementing
RQMC to reduce also the variability of UN (d,y). Given that UN (d,y) is typically some
functional of the posterior it is less clear how to draw an RQMC sample from the pos-
terior when it does not have an explicit form. McGree et al. (2016) consider using a
Laplace approximation of the posterior as the importance distribution in IS and draw
samples from this multivariate normal approximation using RQMC.
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