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1 Introduction

We thank Bruno Sansó and the BA editorial team for encouraging discussion on our
paper, and the discussants for their interesting and valuable contributions. Our rejoin-
der is divided into six sections, which provide insight and clarification on the subjects
that were raised by the discussants. The paper by Chkrebtii et al. (2016a) and the pro-
posed formalism will hereafter be referred to as UQDE (uncertainty quantification for
differential equations).

2 Uncertainty quantification for dynamical systems with
the Markov property

Our probabilistic approach to modeling uncertainty in the unknown solution of a dy-
namical system is motivated by its Markov structure. For example, consider the initial
value problem du/dt = f (t, u) on t ∈ [0, L] with initial condition u(0) = u0. It can be
shown that for t1 < t2, the solution u(t2) is a function of u(t1) that does not depend
on u(τ), τ ∈ [0, t1) (e.g., Jazwinski, 1970). Thus, defining probability measures sequen-
tially on a filtration of σ-algebras is a key feature of our proposal and an important
distinction with the work of Skilling (1991). Such sequential probability models are also
used in simulation of stochastic differential equation (SDE) sample paths, suggesting a
relationship with the SDE literature, as described in the insightful discussion of Lysy
(2016).

The Markov property is also relevant to the comment of Dass (2016). Equation (2)
of UQDE expresses the probabilistic solution [u, ut | θ,Ψ, N ] as a continuous mixture
of Gaussian processes obtained by marginalizing [u, ut, | f1, . . . , fN , θ,Ψ, N ] over tra-
jectories f1, . . . , fN with mixture weights p(f1, . . . , fN ). Algorithm 1 samples from this
mixture by effectively selecting a mixture component from p(f1, . . . , fN ) and then draw-
ing a sample from [u, ut | f1, . . . , fN ]. However, the Markov structure of the solution
u prevents conditioning the trajectory directly on samples from multiple sample paths
simultaneously.

Cockayne (2016) suggests a different perspective on this problem. Instead of estimat-
ing u : [0, L] → R

p given a known vector field function f(t, ·) : Rp → R
p, the discussant

considers estimation of the function f(·, u(·)) : [0, L] → R
p directly. In both cases the
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Markov structure of u is inherent in the problem and must be enforced. UQDE does
this by defining a probability model for u on a filtration. The solution is updated by
conditioning on a set of sequentially updated model trajectories instead of unrelated
samples of the solution at different time points and possibly belonging to different tra-
jectories. In this way, we try to maintain as much of the structural information about
u as possible. The inconsistency brought up in the discussion supports our point that
neglecting to enforce the Markov property of u by, for example, sampling backwards in
time, does not correctly account for the structure of the solution.

3 Uncertainty quantification for partial differential
equations

The Markov property also holds for partial differential equations (PDEs) in the tem-
poral input. For this reason, the well-known “forward in time, continuous in space”
approach and its probabilistic analogue developed in UQDE are a reasonable choice
for modeling both spatial and temporal uncertainty. On the other hand, the example
described in Section 5 consists of applying the probabilistic solution technique to the
spatially discretized Navier–Stokes equation projected into the Fourier domain, reduc-
ing the problem to a large number of coupled ordinary differential equations (ODEs).
As suggested by Cockayne (2016), this of course does not take into account spatial un-
certainty, which will be accounted for by a direct probabilistic method, such as the one
introduced in Section 5.4 of UQDE.

Full uncertainty quantification for systems governed by PDEs is expected to be
very computationally expensive. To overcome this issue, Mallick et al. (2016) propose
a hybrid method that uses a combination of numerical and probabilistic models on
different scales. We discuss this strategy in the following section on prior specification.

4 Prior specification

The discussions of Yoo (2016) and Mallick et al. (2016) provide an alternative and
flexible way of defining the prior process jointly on u and any partial derivatives via basis
expansion with Gaussian priors on the coefficients. Although Gaussian processes can also
be written in spectral form, the eigenfunctions of the covariance lack the interpretability
of B-spline bases, and are difficult to adapt to different resolutions. Therefore, we believe
that this suggestion is promising for modeling spatio-temporal uncertainty in the PDE
forward problem.

When Gaussian processes are defined directly, as in UQDE, Briol et al. (2016) point
out that differentiation is often simpler than integration as a technique of defining
covariances over the state, u, and any derivatives. However, in this case, it is not
straightforward to choose a covariance corresponding to an anisotropic prior that en-
forces u(0) = u0 with probability one. Certainly, in the case of a single input, e.g.
ODE boundary value problems, this is not strictly required as boundary conditions can
be enforced by conditioning on the known boundary values. However, as pointed out
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by Briol et al. (2016), this technique breaks down for PDE problems with functional
boundaries.

5 Rate of convergence

An important advantage of the Bayesian formalism is that it encodes belief given a
finite set of “data”. However, consistency in the limit is an important feature of any
Bayesian approach because it implies that with infinite information, we gain arbitrarily
accurate knowledge about the unknown.

Our convergence result applies to the entire stochastic process [u | θ,Ψ, N ] =
∫
[u, f |

θ,Ψ, N ] df , which we term the “probabilistic solution”. Therefore, as discussed in Dass
(2016), the fact that CN → 0 alone is not enough to ensure convergence. In the
Supplement (Chkrebtii et al., 2016b) we have shown that the posterior expectation
E (|u− u∗| | θ,Ψ, N) = O(h) as α−1, λ → 0 under the stated assumptions. Mallick
et al. (2016) point out that this consistency result corresponds to the accuracy of a nu-
merical solver. Additionally, convergence rates under different grid point distributions
are certainly worth studying, as suggested by Yoo (2016).

6 Relationship to numerical solvers

There has been recent interest in characterizing uncertainty associated with a given
numerical solver (Schober and Hennig, 2016) and in using the output of a numerical
solver as information to update a prior distribution on the unknown solution (e.g.,
Dass, 2016). While the ability to take advantage of existing numerical infrastructure is
appealing, our objective with UQDE is to show that the Bayesian formalism produces
uncertainty quantification naturally without the need for numerical methods. The use
of numerical output within a UQ algorithm (e.g., Dass, 2016) requires the conversion
of numerical error bounds to probability statements, and may result in the loss of the
functional structure of the error.

Mallick et al. (2016) suggest an interesting compromise between discrete approx-
imations and probabilistic methods for multiscale models. They propose to recover
large-scale “resolved” dynamics numerically, while the uncertainty in the smaller-scale
“unresolved” dynamics, which is typically much greater, can be characterized through
Gaussian process prior updating. This type of analysis would be applicable to many
stiff systems with solutions that have structure at different scales.

Next, we discuss the points made by Briol et al. (2016) and Schober and Hennig
(2016) and give an example of how a special case of UQDE can emulate a numer-
ical method. We agree that analogies between numerical and probabilistic methods
can provide insights into both techniques. Thus, the correspondence between methods
must be carefully qualified, whether it is agreement in the mean or the rate of conver-
gence (Schober and Hennig, 2016), or simply that the resulting sampling scheme and
prior resemble a numerical solver, as with UQDE. Consider, for example, the following
UQDE solver, which emulates an explicit first-order Euler scheme. This is constructed
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by defining a GP prior on the state with integrated uniform covariance structure and
length-scale equal to a single time step. This restricts possible trajectories to piecewise
linear functions with derivative discontinuities over the sampling grid. This special case
also illustrates the answer for a question of Briol et al. (2016) about how to best exploit
sparsity of the covariance structures. In this example, the updating problem is reduced
to a linear extrapolation at each solver step with a random component with predictive
variance.

7 Stochastic differential equations

In an insightful discussion, Lysy (2016) suggests possible strategies to adapt the UQDE
method to the simulation of sample paths with uncertainty quantification for the stochas-
tic differential equation (SDE) (i) initial value problem and (ii) boundary value problem,
also called diffusion bridge sampling. Our suggestion is that diffusion bridge sampling
could be used to interpolate subsequent model interrogations in method (i) to replace
the likelihood, p(fi+1 | fi, Xt), which is misspecified for SDEs as suggested in the discus-
sion. For (ii), we suggest incorporating boundary constraints into the prior measure. We
agree that uncertainty quantification for SDE model simulation is a promising direction
for research and we look forward to more work on this topic.

8 Calibration

One of the goals of UQDE is in addressing posterior undercoverage due to an optimistic
view of numerical error (e.g., that it is negligible) in the forward problem. Dass (2016)
and Mallick et al. (2016) pose an important question: is posterior coverage guaranteed
in the limit? Intuitively, one would suppose that if the uncertainty quantification in the
forward model does not underestimate discretization uncertainty, then this should be
the case. However, theoretical studies are needed to confirm this fact. We encourage
future investigation of this topic.

Regarding practical aspects of calibration, Dass (2016) has pointed out that the
marginal posterior distribution of the length-scale hyperparameter λ will have support
that decreases with the discretization step length. A similar phenomenon is observed
in other nonparametric regression problems. This fact requires care in the sampling
algorithm. Indeed, our implementation of Algorithm (2) adapts the proposal distribution
variance during the burn-in phase to achieve reasonable acceptance rates (e.g. Roberts
and Rosenthal, 2009). Additionally, we have noticed that prior hyperparameters in
this setting often have complex posterior correlations with model parameters. For this
reason, we suggest using and have provided in the Supplement a Parallel Tempering
implementation (Geyer, 1991) for the calibration problem.

9 Conclusion

We are happy that this paper has generated so much discussion. It is encouraging to see
a large number of other methods being put forward, many of which have been cited in
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the discussions. We look forward to many new developments in probabilistic numerics
in the future.
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