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Bayesian Inference and Testing of Group
Differences in Brain Networks

Daniele Durante∗ and David B. Dunson†

Abstract. Network data are increasingly collected along with other variables of
interest. Our motivation is drawn from neurophysiology studies measuring brain
connectivity networks for a sample of individuals along with their membership to
a low or high creative reasoning group. It is of paramount importance to develop
statistical methods for testing of global and local changes in the structural inter-
connections among brain regions across groups. We develop a general Bayesian
procedure for inference and testing of group differences in the network structure,
which relies on a nonparametric representation for the conditional probability
mass function associated with a network-valued random variable. By leveraging
a mixture of low-rank factorizations, we allow simple global and local hypothesis
testing adjusting for multiplicity. An efficient Gibbs sampler is defined for pos-
terior computation. We provide theoretical results on the flexibility of the model
and assess testing performance in simulations. The approach is applied to provide
novel insights on the relationships between human brain networks and creativity.
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1 Introduction

There has been an increasing focus on using neuroimaging technologies to better under-
stand the neural pathways underlying human behavior, abilities and neuropsychiatric
diseases. The primary emphasis has been on relating the level of activity in brain re-
gions to phenotypes. Activity measures are available via electroencephalography (EEG)
and functional magnetic resonance imaging (fMRI) – among others – and the aim is to
produce a spatial map of the locations in the brain across which activity levels display
evidence of change with the phenotype (e.g. Genovese et al., 2002; Tansey et al., 2014).

Although the above analyses remain an active area of research, more recently there
has been a paradigm shift in neuroscience away from the modular approach, and towards
studying brain connectivity networks and their relationship with phenotypes (Fuster,
2000, 2006). It has been increasingly realized that it is naive to study region-specific ac-
tivity in isolation, and the overall circuit structure across the brain is a more important
predictor of phenotypes (Bressler and Menon, 2010). Brain connectivity data are now
available to facilitate this task, with non-invasive imaging technologies providing accu-
rate brain network data at increasing spatial resolution; see Stirling and Elliott (2008),
Craddock et al. (2013) and Wang et al. (2014) for an overview and recent developments.
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Figure 1: Adjacency matrices Ai representing the brain network of two subjects in the
low and high creativity group. Black refers to an edge and white to a non-edge.

A common approach for constructing brain network data is based on the covariance
in activity across brain regions estimated from fMRI data. For example, one can create
a functional connectivity network from the inverse covariance matrix, with low values of
the precision matrix suggesting evidence of conditional independence between pairs of
brain regions (e.g. Ramsey et al., 2010; Smith et al., 2011; Simpson et al., 2013). Even if
functional connectivity networks are of fundamental interest, the recent developments
in diffusion tensor imaging (DTI) technologies (Craddock et al., 2013) have motivated
an increasing focus on structural brain network data measuring anatomical connections
made by axonal pathways.

DTI maps the diffusion of water molecules across biological tissues, thereby providing
a better candidate to estimate axonal pathways. As the directional diffusion of the water
within the brain tends to occur along the white matter fibers, current connectome pre-
processing pipelines (e.g. Craddock et al., 2013; Gray Roncal et al., 2013) can produce an
adjacency matrix Ai for each individual i = 1, . . . , n, with elements Ai[vu] = Ai[uv] = 1
if there is at least one white matter fiber connecting brain regions v = 2, . . . , V and u =
1, . . . , v−1 in individual i, and Ai[vu] = Ai[uv] = 0 otherwise. In our applications V = 68
and each node in the network characterizes a specific anatomical brain region according
to the Desikan atlas (Desikan et al., 2006), with the first 34 in the left hemisphere and
the remaining 34 in the right; see Figure 1 for an illustration. Refer also to Sporns
(2013) for a discussion on functional and structural connectivity networks.

1.1 Motivating application and relevant literature

Recent studies provide brain networks along with a categorical variable. Examples in-
clude presence or absence of a neuropsychiatric disease, cognitive trait and rest-stimulus
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states. There is a need for methods assessing how the brain connectivity structure varies
across groups. We are specifically interested in studying the relationship between the
brain connectivity structure and creative reasoning. For each individual i = 1, . . . , n,
data consist of an indicator of creative reasoning yi and an adjacency matrix Ai repre-
senting the undirected structural brain network. We focus on dataset MRN-111 avail-
able at http://openconnecto.me/data/public/MR/, preselecting subjects having low
(< 90, yi = 1) or high (> 111, yi = 2) creative reasoning scores. The first group com-
prises 17 subjects and the second 19, with thresholds chosen to correspond to the 0.15
and 0.85 quantiles. Creativity scores are measured via the composite creativity index
(CCI) (Jung et al., 2010). We are interested in assessing evidence of differences in brain
connectivity between the low and high creativity groups, while additionally inferring the
types of differences and learning which connections are responsible for these variations.
Note that we are not attempting to estimate a network – as in graphical modeling –
but we are focused on testing of differences between groups in network-valued data.

Flexible statistical methods for analyzing brain networks have lagged behind the
increasingly routine collection of such data in neuroscience. A major barrier to progress
in this area is that the development of statistical methodologies for formal and robust
inference on network data is a challenging task. Networks represent a type of object
data – a concept encompassing a broad class of non-standard data types, ranging from
functions to images and trees; refer to Wang and Marron (2007) and the references cited
therein for an overview. Such data require adaptations of classical modeling frameworks
to non-standard spaces. This is particularly true for inference on network data in which
the set of methodologies and concepts required to test for changes in underlying con-
nectivity structures is necessarily distinct from standard data analysis strategies.

There has been some emphasis in the literature on developing methods for address-
ing our goals; see Bullmore and Sporns (2009), Stam (2014) and the references cited
therein. The main focus is on reducing each observed network Ai, i = 1, . . . , n to a
vector of summary statistics θi = (θi1, . . . , θip)

T and then apply standard procedures,
such as the multivariate analysis of variance (MANOVA), to test for changes in these
vectors across groups. Summary statistics are commonly chosen to represent global net-
work characteristics of interest, such as the number of connections, the average path
length and the clustering coefficient (Rubinov and Sporns, 2010). Similar procedures
have been recently employed in exploring the relationship between the brain network
and neuropsychiatric diseases, such as Parkinson’s (Olde Dubbelink et al., 2014) and
Alzheimer’s (Daianu et al., 2013), but the analyses are sensitive to the chosen network
topological measures, with substantially different results obtained for different types of
summary statistics. Simpson et al. (2011) and Simpson et al. (2012) improve choice of
network summary statistics via a data driven procedure which exploits exponential ran-
dom graph models (e.g. Frank and Strauss, 1986; Wasserman and Pattison, 1996) and
related validation procedures (Hunter et al., 2008a,b) to detect the topological measures
that better characterize the observed networks. Although this is a valuable procedure,
inference is still available only on the scale of the network summary statistics, which
typically discard important information about the brain connectivity architecture that
may crucially explain differences across groups. Refer to Arden et al. (2010) for a review
on inconsistencies in results relating brain connectivity networks to creative reasoning.

http://openconnecto.me/data/public/MR/
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An alternative approach is to avoid discarding information by separately testing
for differences between groups in each edge probability, while adjusting the significance
threshold for multiple testing via false discovery rate (FDR) control. As there are V (V −
1)/2 pairs of brain regions under study – with V = 68 using the Desikan atlas (Desikan
et al., 2006) – the number of tests is substantial. Such massively univariate approaches
do not incorporate network information, leading to low power (Fornito et al., 2013), and
underestimating the variations of the brain connections across groups. Recent proposals
try to gain power by replacing the common Benjamini and Hochberg (1995) approach
with thresholding procedures that account for the network structure in the data (Zalesky
et al., 2010). However, such approaches require careful interpretation, while being highly
computationally intensive, requiring permutation testing and choice of suprathreshold
links. Instead of controlling FDR thresholds, Scott et al. (2015) gain power in multiple
testing by using auxiliary data – such as spatial proximity – to inform the posterior
probability that specific pairs of nodes interact differently across groups or with respect
to a baseline. Ginestet et al. (2014) focus instead on assessing evidence of global changes
in the brain structure by testing for group differences in the expected Laplacians.

Scott et al. (2015) and Ginestet et al. (2014) substantially improve state of the art in
local and global hypothesis testing for network data, respectively, but are characterized
by a similar key issue, motivating our methodology. Specifically, previous procedures test
for changes across groups in marginal (Scott et al., 2015) or expected (Ginestet et al.,
2014) structures associated with the network-valued random variable, and hence cannot
detect variations in the probabilistic generative mechanism that go beyond their focus.
Similarly to much simpler settings, substantially different joint probability mass func-
tions (pmf) for a network-valued random variable can have equal expectation or induce
the same marginal distributions – characterized by the edge probabilities. Hence, these
procedures are expected to fail in scenarios where the changes in the network-valued ran-
dom variable are due to variations in more complex functionals. Model misspecification
can have a major effect on the quality of inference (Deegan, 1976; Begg and Lagakos,
1990; DiRienzo and Lagakos, 2001), providing biased and inaccurate conclusions.

1.2 Outline of our methodology

In order to avoid the issues discussed above, it is fundamental to define a statistical
model which is sufficiently flexible to accurately approximate any probabilistic genera-
tive mechanism underlying the observed data. Durante et al. (2016) recently proposed a
flexible mixture of low-rank factorizations to characterize the distribution of a network-
valued random variable. We generalize their statistical model to allow the probabilistic
generative mechanism associated with the brain networks to change across groups, with-
out reducing data to summary measures prior to statistical analysis.

We accomplish the above goal by factorizing the joint pmf for the random variable
generating data (yi,Ai), i = 1, . . . , n, as the product of the marginal pmf for the cate-
gorical predictor and the conditional pmf for the network-valued random variable given
the group membership defined by the categorical predictor. By modeling the collection
of group-dependent pmfs for the network-valued random variable via a flexible mixture
of low-rank factorizations with group-specific mixing probabilities, we develop a simple
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global test for assessing evidence of group differences in the entire distribution of the
network-valued random variable, rather than focusing inference only on changes in se-
lected functionals. Differently from Ginestet et al. (2014), our procedure additionally
incorporates local testing for changes in edge probabilities across groups, in line with
Scott et al. (2015) – which in turn do not consider global tests. By explicitly borrowing
strength within the network via matrix factorizations, we substantially improve power
in our multiple local tests compared to standard FDR control procedures.

In Section 2 we describe the model formulation, with a key focus on the associated
testing procedures. Prior specification, theoretical properties and posterior computation
are considered in Section 3. Section 4 provides simulations to assess inference and testing
performance of our procedures. Results for our motivating neuroscience application are
discussed in Section 5. Concluding remarks are provided in Section 6.

2 Model formulation and testing

2.1 Notation and motivation

Let (yi,Ai) represent the creativity group and the undirected network observation, re-
spectively, for subject i = 1, . . . , n, with yi ∈ Y = {1, 2} and Ai the V × V adjacency
matrix characterizing the edges in the network. As the brain network structure is avail-
able via undirected edges and self-relationships are not of interest, we model (yi,Ai) by
focusing on the random variable {Y ,L(A)} generating data {yi,L(Ai)} with L(Ai) =
(Ai[21], Ai[31], . . . , Ai[V 1], Ai[32], . . . , Ai[V 2], . . . , Ai[V (V−1)])

T ∈ AV = {0, 1}V (V−1)/2 the
vector encoding the lower triangular elements of Ai, which uniquely define the network
as Ai[vu] = Ai[uv] for every v = 2, . . . , V , u = 1, . . . , v − 1 and i = 1, . . . , n.

Let pY,L(A) = {pY,L(A)(y,a) : y ∈ Y,a ∈ AV } denote the joint pmf for the random
variable {Y ,L(A)} with pY,L(A)(y,a) = pr{Y = y,L(A) = a}, y ∈ Y and a ∈ AV a
network configuration. Assessing evidence of global association between Y and L(A) –
under the above notation – formally requires testing the global null hypothesis

H0 : pY,L(A)(y,a) = pY(y)pL(A)(a), (1)

for all y ∈ Y and a ∈ AV , versus the alternative

H1 : pY,L(A)(y,a) �= pY(y)pL(A)(a), (2)

for some y ∈ Y and a ∈ AV , where pY(y) = pr(Y = y), y ∈ Y characterizes the
marginal pmf of the grouping variable, whereas pL(A)(a) = pr{L(A) = a}, a ∈ AV

denotes the unconditional pmf for the network-valued random variable. The system of
hypotheses (1)–(2) assesses evidence of global changes in the entire probability mass
function, rather than on selected functionals or summary statistics, and hence is more
general than Ginestet et al. (2014) and joint tests on network measures.

Recalling our neuroscience application, rejection of H0 implies that there are dif-
ferences in the brain architecture across creativity groups, but fails to provide insights
on the reasons for these variations. Global differences may be attributable to several
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underlying mechanisms, including changes in specific interconnection circuits. As dis-
cussed in Section 1, local testing of group differences in the edge probabilities is of key
interest in neuroscience applications in highlighting which brain connection measure-
ments L(A)l ∈ {0, 1}, l = 1, . . . , V (V − 1)/2 – characterizing the marginals of L(A) –
are potentially responsible for the global association between Y and L(A). Hence, con-
sistently with these interests, we also incorporate in our analyses the multiple local tests
assessing – for each pair l = 1, . . . , V (V − 1)/2 – evidence against the null hypothesis
of independence between L(A)l and Y

H0l : pY,L(A)l(y, al) = pY(y)pL(A)l(al), (3)

for all y ∈ Y and al ∈ {0, 1}, versus the alternative

H1l : pY,L(A)l(y, al) �= pY(y)pL(A)l(al), (4)

for some y ∈ Y and al ∈ {0, 1}. In hypotheses (3)–(4), the quantity pY,L(A)l(y, al)
denotes pr{Y = y,L(A)l = al}, while pL(A)l(al) = pr{L(A)l = al}.

In order to develop robust methods to test the global system (1)–(2), and the multiple
locals (3)–(4), it is fundamental to define a representation for pY,L(A) which is provably
flexible in approximating any joint pmf for the data {yi,L(Ai)}, i = 1, . . . , n. As L(A)
is a highly multidimensional variable on a non-standard space, we additionally seek
to reduce dimensionality in characterizing pY,L(A), while looking for a representation
which facilitates simple derivation of pY,L(A)l(y, al) and pL(A)l(al) from pY,L(A).

2.2 Dependent mixture of low-rank factorizations

According to the goals described above, we start by factorizing pY,L(A) as

pY,L(A)(y,a) = pY(y)pL(A)|y(a) = pr(Y = y)pr{L(A) = a | Y = y}, (5)

for every y ∈ Y and a ∈ AV . It is always possible to define the joint probability mass
function pY,L(A) as the product of the marginal pmf pY = {pY(y) : y ∈ Y} for the
grouping variable and the conditional pmfs pL(A)|y = {pL(A)|y(a) : a ∈ AV } for the
network-valued random variable given the group y ∈ Y. This also favors inference on
how the network structure varies across the two groups, with pL(A)|1 and pL(A)|2 fully
characterizing such variations. Although we treat Y as a random variable through a
prospective likelihood, our methodology remains also valid for studies that sample the
groups under a retrospective design.

Under factorization (5), the global test (1)–(2) coincides with assessing whether the
conditional pmf of the network-valued random variable remains equal or shifts across
the two groups. Hence, under (5), the hypotheses (1)–(2) reduce to

H0 : pL(A)|1(a) = pL(A)|2(a), for all a ∈ AV , (6)

versus the alternative

H1 : pL(A)|1(a) �= pL(A)|2(a), for some a ∈ AV . (7)
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In order to develop a provably general and robust strategy to test (6)–(7) the key chal-
lenge relies in flexibly modeling the conditional pmfs pL(A)|1 and pL(A)|2 characterizing
the distribution of the network-valued random variable in the first and second group,
respectively. In fact, for every group y ∈ Y, one needs a parameter pL(A)|y(a) for ev-
ery possible network configuration a ∈ AV to uniquely characterize pL(A)|y, with the

number of configurations being |AV | = 2V (V−1)/2. For example, in our neuroscience
application |A68| = 268(68−1)/2− 1 = 22,278− 1 free parameters are required to uniquely
define the pmf of the brain networks in each group y ∈ Y, under the usual restriction∑

a∈A68
pL(A)|y(a) = 1. Clearly this number of parameters to test is massively larger

than the sample size available in neuroscience applications. Hence, to facilitate tractable
testing procedures it is necessary to substantially reduce dimensionality. However, in re-
ducing dimension, it is important to avoid making overly restrictive assumptions that
lead to formulations sensitive to issues arising from model misspecification.

Focused on modeling the pmf pL(A) of a network-valued random variable, without
considering hypothesis tests or additional data on a categorical predictor, Durante et al.
(2016) proposed a mixture of low-rank factorizations which reduces dimensionality by
exploiting network information, but maintains flexibility. Although this provides an ap-
pealing building block for our testing procedures, global and local testing, and inference
on group differences, are not straightforward adds on to their approach. As a first step
towards constructing our tests, we generalize their model to allow group differences via

pL(A)|y(a) = pr{L(A) = a | Y = y} =
H∑

h=1

νhy

V (V−1)/2∏
l=1

(π
(h)
l )al(1− π

(h)
l )1−al , (8)

for each configuration a ∈ AV and group y ∈ {1, 2}, with the edge probability vectors

π(h) = (π
(h)
1 , . . . , π

(h)
V (V−1)/2)

T ∈ (0, 1)V (V−1)/2 in each mixture component h, defined as

π(h) =
{
1 + exp(−Z −D(h))

}−1

, D(h) = L(X(h)Λ(h)X(h)T), h = 1, . . . , H, (9)

with X(h) ∈ �V×R, Λ(h) diagonal with R non-negative weights λ
(h)
1 , . . . , λ

(h)
R , and Z ∈

�V (V−1)/2. Representation (8) defines pL(A)|y via a flexible dependent mixture model
which borrows strength across groups in characterizing the shared mixture components,
while allowing flexible modeling of the conditional pmfs pL(A)|y via group-specific mixing
probabilities νy = (ν1y, . . . , νHy), y ∈ {1, 2}, with νhy ∈ (0, 1) for all h = 1, . . . , H and∑H

h=1 νhy = 1 for every y ∈ {1, 2}. In (9) the logistic mapping is applied element-wise.

In order to reduce dimensionality and efficiently borrow information within the net-
work, the characterization of the mixture components in (9) adapts concepts from the
literature on latent variable modeling of networks. Refer to Nowicki and Snijders (2001),
Airoldi et al. (2008), Hoff et al. (2002) and Hoff (2008) for popular specifications in
modeling of a single network observation. Within each mixture component, connections
among pairs of nodes are characterized as conditionally independent Bernoulli random

variables given their component-specific edge probabilities π
(h)
l , l = 1, . . . , V (V − 1)/2,

with these probabilities further characterized as a function of node-specific latent vari-
ables. In particular, we define each component-specific log-odds vector as the sum of a
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Figure 2: Graphical representation of the mechanism to generate data {yi,L(Ai)}, i =
1, . . . , n, under representation (5) and (8)–(9) for the joint pmf pY,L(A).

shared similarity Z ∈ �V (V−1)/2, and a component-specific one D(h) ∈ �V (V−1)/2 aris-
ing from the weighted dot product of node-specific latent coordinate vectors defining the
rows of the V ×R – typically R � V – matrix X(h), for h = 1, . . . , H. In fact, letting l
denote the pair of nodes v and u, v > u, under (9), the probability of an edge between v

and u in component h increases with Zl and L(X(h)Λ(h)X(h)T)l =
∑R

r=1 λ
(h)
r X

(h)
vr X

(h)
ur .

Representation (9) provides an over-complete factorization – a common approach pro-
viding several benefits in Bayesian hierarchical modeling of multidimensional data (e.g.
Bhattacharya and Dunson, 2011; Ghosh and Dunson, 2009). In fact, factorization (9)
is appealing in reducing dimensionality, accommodating topological network properties
(Hoff, 2008) and improving mixing performance (Gelman et al., 2008). Our focus is
on using the resulting flexible and tractable formulation (8)–(9) to draw inference on
changes in identified functionals of interest arising from the pmf of our network-valued
random variable and develop robust procedures for global and local testing.

Figure 2 outlines the mechanism to generate the data {yi,L(Ai)} from the random
variable {Y ,L(A)} with pmf factorized as in (5) and (8)–(9). According to Figure 2,
the indicator group yi is sampled from pY . The network L(Ai) is instead generated
conditioned on yi under the mixture representation in (8). In particular, given yi = y,
we first choose a mixture component by sampling the latent indicator Gi ∈ {1, . . . , H}
with conditional pmf defined by the mixing probabilities, so that pGi|y(h) = νhy. Then,
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given Gi = h and the corresponding edge probability vector π(h) – factorized as in (9) –
the network L(Ai) is generated by sampling its edges L(Ai)l, l = 1, . . . , V (V −1)/2 from
conditionally independent Bernoulli variables. Hence, the dependence on the groups is
introduced in the assignments to the mixture components via group-specific mixing
probabilities, so that brain networks in the same component share a common edge
probability vector π(h), with the probability assigned to each component changing across
the two groups. This simple generative mechanism is appealing in facilitating tractable
posterior computation and inference.

A key aspect in representation (8)–(9) is that it allows dimensionality reduction,
while preserving flexibility. As stated in Proposition 1, such a representation is suffi-
ciently flexible to define any collection of group-dependent pmfs pL(A)|1, pL(A)|2.

Proposition 1. Any collection of group-dependent probability mass functions
pL(A)|y ∈ P|AV | = {pL(A)|y : 0 ≤ pL(A)|y(a) ≤ 1 for all a ∈ AV ,

∑
a∈AV

pL(A)|y(a) =
1}, y ∈ {1, 2} can be characterized as in (8) for some H, with component-specific edge
probability vectors π(h), h = 1, . . . , H factorized as in (9) for some R.

This additionally ensures that any joint probability mass function pY,L(A) for the
random variable {Y ,L(A)} admits representation (5), (8)–(9) and hence our formulation
can be viewed as fully general and robust against model misspecification in testing (6)–
(7), given sufficiently flexible priors for the components. See the online supplementary
materials (Durante and Dunson, 2016) for proofs.

2.3 Global and local testing under the proposed statistical model

Including group dependence only in the mixing probabilities favors borrowing of infor-
mation across the groups in modeling π(h), h = 1, . . . , H, while massively reducing the
number of parameters to test in (6)–(7) from 2{2V (V−1)/2 − 1} to 2(H − 1). In fact,
the characterization of pL(A)|y in (8)–(9) further simplifies the system (6)–(7) to only
testing the equality of the group-specific mixing probability vectors

H0 : (ν11, . . . , νH1) = (ν12, . . . , νH2) versus H1 : (ν11, . . . , νH1) �= (ν12, . . . , νH2). (10)

Recalling Proposition 1, under our formulation, the system (10) uniquely characterizes
the global hypotheses (1)–(2).

In developing methodologies for the multiple local tests in (3)–(4) under our model
formulation, we measure the association between L(A)l and Y by exploiting the model-
based version of the Cramer’s V proposed in Dunson and Xing (2009), obtaining

ρ2l =
1

min{2, 2} − 1

2∑
y=1

1∑
al=0

{
pY,L(A)l(y, al)− pY(y)pL(A)l(al)

}2

pY(y)pL(A)l(al)

=

2∑
y=1

1∑
al=0

{
pY(y)pL(A)l|y(al)− pY(y)pL(A)l(al)

}2

pY(y)pL(A)l(al)
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=

2∑
y=1

pY(y)
1∑

al=0

{
pL(A)l|y(al)− pL(A)l(al)

}2

pL(A)l(al)
. (11)

Measuring the local association with ρl ∈ (0, 1) provides an appealing choice in terms
of interpretation, with ρl = 0 meaning that pY,L(A)l(y, al) = pY(y)pL(A)l(al), for all
y ∈ Y and al ∈ {0, 1}, and hence the random variable L(A)l modeling the presence
or absence of an edge among the lth pair of nodes, has no differences across groups.
Beside incorporating a fully general and tractable global test, our model formulation is
particularly appealing also in addressing issues associated with local multiple testing in
the network framework. First, as stated in Proposition 2, each ρl, l = 1, . . . , V (V −1)/2,
can be easily computed from the quantities in our model.

Proposition 2. Based on factorizations (5) and (8), pL(A)l|y(1) = 1 − pL(A)l|y(0) =∑H
h=1 νhyπ

(h)
l , and pL(A)l(1) = 1− pL(A)l(0) =

∑2
y=1 pY(y)

∑H
h=1 νhyπ

(h)
l .

Second, the shared dependence on a common set of node-specific latent coordinates
characterizing the construction of the edge probability vector π(h) within each mixture
component h = 1, . . . , H in (9), explicitly accounts for specific dependence structures
in brain connections. According to Hoff (2008), factorization (9) can accurately ac-
commodate key topological properties including block structures, homophily behaviors
and transitive edge patterns – among others. As a result – in line with Scott et al.
(2015) – informing our local testing procedures about these structures, is expected to
substantially improve power compared to standard FDR control procedures.

3 Prior specification and posterior computation

3.1 Prior specification and properties

We specify independent priors pY ∼ Πy, Z = (Z1, . . . , ZV (V−1)/2)
T ∼ ΠZ , X

(h) ∼ ΠX ,

λ(h) = (λ
(h)
1 , . . . , λ

(h)
R )T ∼ Πλ, h = 1, . . . , H and νy = (ν1y, . . . , νHy) ∼ Πν , y ∈ {1, 2},

to induce a prior Π on the joint pmf pY,L(A) with full support in P2×|AV | = {pY,L(A) :
0 ≤ pY,L(A)(y,a) ≤ 1 for all y ∈ {1, 2},a ∈ AV , with

∑
y∈{1,2},a∈AV

pY,L(A)(y,a) =

1}, while obtaining desirable asymptotic behavior, simple posterior computation and
allowance for testing. Prior support is a key property to retain the flexibility associated
with our statistical model and testing procedures, when performing posterior inference.

As pY is the pmf for a categorical variable on two levels, we let 1− pY(2) = pY(1) ∼
Beta(a, b), and consider the same prior specification suggested by Durante et al. (2016)
for the quantities in (9) by choosing Gaussian priors for the entries in Z, standard

Gaussians for the elements in the coordinates matrix X(h), and multiplicative inverse
gammas for λ(h) ∼ MIG(a1, a2), h = 1, . . . , H, (Bhattacharya and Dunson, 2011). This

choice for Πλ favors shrinkage, with elements in λ(h) increasingly concentrated close to 0
as r increases, so as to shrink towards lower dimensional representations and adaptively
penalize high dimensional ones. A key property of our prior specification is incorporation
of global testing (10) in the definition of Πν . Specifically letting υ = (υ1, . . . , υH) and
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υy = (υ1y, . . . , υHy), we induce Πν through

νy = (1− T )υ + Tυy, y ∈ {1, 2},
υ ∼ Dir(1/H, . . . , 1/H), υy ∼ Dir(1/H, . . . , 1/H), y ∈ {1, 2}, (12)

T ∼ Bern{pr(H1)}.

In (12), T is a hypothesis indicator, with T = 0 for H0 and T = 1 for H1. Under H1,
we generate group-specific mixing probabilities independently, while under H0 we have
equal probability vectors. By choosing small values for the parameters in the Dirichlet
priors, we favor automatic deletion of redundant components (Rousseau and Mengersen,
2011). In assessing evidence in favor of the alternative, we can rely on the posterior
probability, pr[H1 | {y,L(A)}] = 1 − pr[H0 | {y,L(A)}] which can be easily obtained
from the output of the Gibbs sampler proposed below. Specifically, under prior (12),
and exploiting the hierarchical structure of our dependent mixture model – summarized
in Figure 2 – the full conditional pr(T = 1 | −) = pr(H1 | −) = 1− pr(H0 | −) is

pr(H1 | −) =
pr(H1)

∏2
y=1

∫
(
∏H

h=1 υ
nhy

hy )dΠυy

pr(H0)
∫
(
∏H

h=1 υ
nh

h )dΠυ + pr(H1)
∏2

y=1

∫
(
∏H

h=1 υ
nhy

hy )dΠυy

=
pr(H1)

∏2
y=1{B(α+ n̄y)/B(α)}

pr(H0)B(α+ n̄)/B(α) + pr(H1)
∏2

y=1{B(α+ n̄y)/B(α)}
, (13)

with nhy =
∑

i:yi=y 1(Gi = h), nh =
∑n

i=1 1(Gi = h), n̄y = (n1y, . . . , nHy), n̄ =
(n1, . . . , nH), α = (1/H, . . . , 1/H), and B(·) is the multivariate beta function. It is easy

to derive the equalities
∫
(
∏H

h=1 υ
nh

h )dΠυ = B(α + n̄)/B(α) and
∫
(
∏H

h=1 υ
nhy

hy )dΠυy =
B(α+ n̄y)/B(α), y ∈ {1, 2} exploiting the Dirichlet-multinomial conjugacy.

Although providing a key choice for performing global testing, it is impractical to
adopt formulation (12) for each local point null H0l : ρl = 0 versus H1l : ρl �= 0,
l = 1, . . . , V (V − 1)/2. Hence, we replace local point nulls with small interval nulls
H0l : ρl ≤ ε versus H1l : ρl > ε. This choice allows pr[H1l | {y,L(A)}] = 1 − pr[H0l |
{y,L(A)}] to be easily estimated as the proportion of Gibbs samples in which ρl > ε,
for each l = 1, . . . , V (V − 1)/2. Moreover – as noted in Berger and Sellke (1987) and
Berger and Delampady (1987) – testing the small interval hypothesis H0l : ρl ≤ ε is in
general more realistic and provides – under a Bayesian paradigm – comparable results
to those obtained when assessing evidence of H0l : ρl = 0.

Beside providing key computational benefits, as stated in Proposition 3, our choices
induce a prior Π for pY,L(A) with full L1 support over P2×|AV |, meaning that Π can gen-
erate a pY,L(A) within an arbitrarily small L1 neighborhood of the true data-generating
model p0Y,L(A), allowing the truth to fall in a wide class.

Proposition 3. Based on our priors Πy,ΠZ ,ΠX ,Πλ, Πν , and letting Bε(p
0
Y,L(A)) =

{pY,L(A) :
∑2

y=1

∑
a∈AV

|pY,L(A)(y,a)−p0Y,L(A)(y,a)| < ε} denote the L1 neighborhood

around p0Y,L(A), then for any p0Y,L(A) ∈ P2×|AV | and ε > 0, Π{Bε(p
0
Y,L(A))} > 0.



40 Bayesian Inference on Group Differences in Brain Networks

Full prior support is a key property to ensure accurate posterior inference and testing,
because without prior support about the true data-generating pmf, the posterior cannot
possibly concentrate around the truth. Moreover, as pY,L(A) is characterized by finitely
many parameters pY,L(A)(y,a), y ∈ Y, a ∈ AV , Proposition 3 is sufficient to guarantee
that the posterior assigns probability one to any arbitrarily small neighborhood of the
true joint pmf as n → ∞, meaning that Π[Bε(p

0
Y,L(A)) | {y1,L(A1)}, . . . , {yn,L(An)}]

converges almost surely to 1, when the true joint pmf is p0Y,L(A).

3.2 Posterior computation

Posterior computation is available via a simple Gibbs sampler, exploiting our repre-
sentation in Figure 2. Specifically, the Markov Chain Monte Carlo (MCMC) algorithm
alternates between the following steps.

1. Sample pY(1) = 1−pY(2) from the full conditional pY(1) | − ∼ Beta(a+n1, b+n2),
with ny =

∑n
i=1 1(yi = y).

2. For each i = 1, . . . , n, update Gi from the discrete variable with probabilities,

pr(Gi = h | −) =
νhy

i

∏V (V−1)/2
l=1 (π

(h)
l )L(Ai)l(1− π

(h)
l )1−L(Ai)l

∑H
q=1 νqyi

∏V (V−1)/2
l=1 (π

(q)
l )L(Ai)l(1− π

(q)
l )1−L(Ai)l

,

for h = 1, . . . , H, with each π(h) factorized as in (9).

3. Given Gi, i = 1, . . . , n, the updating for quantities Z, X(h) and λ(h), h = 1, . . . , H
proceeds via the recently developed Pólya-gamma data augmentation scheme for
Bayesian logistic regression (Polson et al., 2013) as in Durante et al. (2016).

4. Sample the testing indicator T from a Bernoulli with probability (13).

5. If T = 0, let νy = υ, y ∈ {1, 2} with υ updated from the full conditional Dirichlet
(υ1, . . . , υH) | − ∼ Dir(1/H + n1, . . . , 1/H + nH). Otherwise, if T = 1, update
each νy independently from (ν1y, . . . , νHy) | − ∼ Dir(1/H +n1y, . . . , 1/H +nHy).

Since the number of mixture components in (8) and the dimensions of the latent
spaces in (9) are not known in practice, we perform posterior computation by fixing H
and R at conservative upper bounds. The priors Πν and Πλ are chosen to allow adap-
tive emptying of the redundant components, with the posteriors for the corresponding
parameters controlling unnecessary dimensions concentrated near zero.

4 Simulation studies

We consider simulation studies to evaluate the performance of our method in correctly
assessing the global hypothesis of association among the network-valued random variable
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L(A) and the categorical predictor Y , and in identifying local variations in each edge
probability across groups.

For comparison we also implement a MANOVA procedure – see e.g. Krzanowski
(1988) – to test for global variations across groups in the random vector of summary
measures Θ, with realization θi from Θ comprising the most common network summary
statistics – covering network density, transitivity, average path length and assortativity
– computed for each simulated network Ai. Refer to Kantarci and Labatut (2013) for
an overview on these topological network measures, and Bullmore and Sporns (2009),
Bullmore and Sporns (2012) for a discussion on their importance in characterizing wiring
mechanisms within the brain. For local testing, we compare our procedure to the results
obtained when testing on the association between L(A)l and Y via separate two-sided
Fisher’s exact tests for each l = 1, . . . , V (V −1)/2 – see e.g. Agresti (2002). We consider
exact tests to avoid issues arising from χ2 approximations in sparse tables.

4.1 Simulation settings

We simulate n = 50 pairs (yi,Ai) from our model (5) and (8)–(9), with yi from a
categorical random variable having two equally likely groups p0Y(1) = p0Y(2) = 0.5 and
Ai a V × V network with V = 20 nodes. We consider two mixture components, with
π0(h) defined as in (9). Brain networks are typically characterized by tighter intra-
hemispheric than inter-hemispheric connections (Gray Roncal et al., 2013). Hence, we
consider two node blocks V1 = {1, . . . , 10} and V2 = {11, . . . , 20} characterizing left
and right hemisphere, respectively, and generate entries in Z0 to favor more likely
connections between pairs in the same block, than pairs in different blocks.

To assess performance in local testing, we induce group differences in the connec-
tions for a small subset of nodes V

∗ ⊂ {1, . . . , V }. To characterize this scenario we let

R0 = 1, λ
0(1)
1 = λ

0(2)
1 = 1 and consider X

0(h)
v1 �= 0 only for nodes v ∈ V

∗, while fixing the
latent coordinates of the remaining nodes to 0. Hence, no variations in edge probabilities
are displayed when the mixing probabilities are constant, while only local differences
are found when the mixing probabilities shift across groups. Under the dependence
scenario, we define group-specific mixing probabilities ν0

1 = (0.8, 0.2), ν0
2 = (0.2, 0.8).

Instead, equal mixing probabilities ν0
1 = ν0

2 = (0.5, 0.5) are considered under indepen-
dence. Although we focus on V = 20 nodes to facilitate graphical analyses, the mixture
representation (8) and the low-rank factorization (9) allows scaling to higher V .

As shown in Figures 3–4, although our dependence simulation scenario may appear
– at first – simple, it provides a challenging setting for procedures assessing evidence
of global association by testing on changes in the network summary measures. In fact,

we choose values X
0(h)
v1 for the nodes v ∈ V∗ such that the resulting summary statistics

for the simulated networks do not display evident variations across groups also in the
dependence scenario. Hence, a global test relying on the network summary measures is
expected to fail in detecting the association between Y and L(A), as the variations in
the networks’ pmf are mainly local – i.e. in a subset of its marginals L(A)l. On the other
hand, powerful local testing procedures are required to efficiently detect this small set
of edge probabilities truly changing across the two groups.
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Figure 3: For the two scenarios, observed changes across the two groups for selected
network summary statistics. These measures are computed for each simulated network
under the two scenarios and summarized via violin plots.

Figure 4: Lower triangular: Group difference between the empirical edge probabilities
for each pair of nodes computed from the simulated data. Upper triangular: True group
differences from the generative processes considered in the simulations. These quantities
are displayed for the dependence (left) and independence (right) scenarios. Triangles
highlight edge probabilities which truly differ across groups in the dependence scenario.

In both scenarios, inference is accomplished by considering H = R = 10, pr(H1) =

pr(H0) = 0.5 and letting 1 − pY(2) = pY(1) ∼ Beta(1/2, 1/2). For priors ΠZ ,ΠX and
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Πλ, we choose the same default hyperparameters suggested by Durante et al. (2016). We
collect 5,000 Gibbs iterations, discarding the first 1,000. In both scenarios convergence
and mixing are assessed via Gelman and Rubin (1992) potential scale reduction factors
(PSRF) and effective sample sizes, respectively. The PSRFs are obtained by splitting
each chain in four consecutive sub-chains of length 1,000 after burn-in, and comparing
between and within sub-chains variances. Convergence and mixing assessments focus
on parameters of interest for inference, including the Cramer’s V coefficients ρl, l =
1, . . . , V (V − 1)/2 for local testing and the group-specific edge probability vectors π̄y,
with elements π̄yl = pL(A)l|y(1) = pr{L(A)l = 1 | Y = y} defined in Proposition 2. This
vector coincides with the group-specific mean network structure E{L(A) | Y = y} =∑

a∈AV
a×pL(A)|y(a) =

∑H
h=1 νhyπ

(h) under factorization (8). In both scenarios, most
of the effective samples sizes are around 2,000 out of 4,000 samples, demonstrating
excellent mixing performance. Similarly, all the PSRFs are less than 1.1, providing
evidence that convergence has been reached.

4.2 Global and local testing performance

Our testing procedure allows accurate inference on the global association between L(A)
and Y . We obtain p̂r[H1 | {y,L(A)}] > 0.99 for the dependence scenario and p̂r[H1 |
{y,L(A)}] < 0.01 when yi and Ai, i = 1, . . . , n are generated independently. Instead,
the MANOVA testing procedure on the summary statistics vector fails to reject the null
hypothesis of no association in both scenarios at a level α = 0.1 – as expected. This result
further highlights how global network measures may fail in accurately characterizing the
whole network architecture.

Focusing on local testing in the dependence scenario, Figure 5 shows how accounting
for sparsity and network information – via our dependent mixture of low-rank factor-

Figure 5: Lower triangular: For the dependence simulation scenario, mean and quartiles
of the posterior distribution for the difference between the edge probabilities in the
second group π̄2l and first group π̄1l, l = 1, . . . , V (V − 1)/2. Upper triangular: For the
same scenario, true group difference π̄0

2l − π̄0
1l, l = 1, . . . , V (V − 1)/2. In the figure, the

pairs of nodes – indexed by l – are re-arranged in matrix form.
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Figure 6: Lower triangular: p̂r[H1l | {y,L(A)}] = p̂r[ρl > 0.1 | {y,L(A)}] (left) and cal-
ibrated Fisher’s exact tests p-values 1/(1−epl log pl) if pl < 1/e, 0.5 otherwise (right), for
each l = 1, . . . , V (V −1)/2. Upper triangular: Rejected local null hypotheses (black), un-
der each method. Triangles highlight edge probabilities which truly differ across groups.
In the figure, the pairs of nodes – indexed by l – are re-arranged in matrix form.

izations – provides accurate inference on local variations in edge probabilities, correctly
highlighting pairs of nodes whose connectivity differs across groups and explicitly char-
acterizing uncertainty through the posterior distribution. Conducting inference on each
pair of nodes separately provides instead poor estimates – refer to left plot in Fig-
ure 4 – with the sub-optimality arising from inefficient borrowing of information across
the edges. This lack of efficiency strongly affects also the local testing performance as
shown in Figure 6, with our procedure having higher power than the one obtained
via separate Fisher’s exact tests. In Figure 6, each Fisher’s exact test p-value is cali-
brated via 1/(1 − epl log pl) if pl < 1/e and 0.5 otherwise, to allow better comparison
with p̂r[H1l | {y,L(A)}] (Sellke et al., 2001). Moreover, we adjust for multiplicity in
the Fisher’s exact tests by rejecting all the local nulls having a p-value below p∗, with
p∗ the Benjamini and Hochberg (1995) threshold to maintain a false discovery rate
FDR ≤ 0.1. Under our local Bayesian testing procedure we reject all H0l such that
p̂r[H1l | {y,L(A)}] > 0.9, with ε = 0.1. We do not explicitly control for FDR in order
to assess whether our Bayesian procedures contain the intrinsic adjustment for multiple
testing we expect. According to Figure 6, thresholding the posterior probability of the
local alternatives allows implicit adjustment for multiple testings. When explicit FDR
control is required, one possibility is to define the threshold following the notion of
Bayesian false discovery rate in Newton et al. (2004).

To assess frequentist operating characteristics, we repeated the above simulation ex-
ercise for 100 simulated datasets under both dependence and independence scenarios.
The MANOVA test is performed under a threshold α = 0.1, while the decision rule in
the local Fisher’s exact tests is based on the Benjamini and Hochberg (1995) threshold
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Type I error Type II error FWER FDR
Global testing procedure

Mixture of Low-Rank Factorizations 0.01 0.01
MANOVA on Summary Measures 0.09 0.90

Local testing procedure
Mixture of Low-Rank Factorizations 0.0004 0.0587 0.0600 0.0023
Separate Fisher’s Exact Tests 0.0036 0.5983 0.4000 0.0387

Table 1: Comparison of error rates for our procedure against MANOVA on summary
statistics for global testing and separate Fisher’s exact tests for local hypotheses.

Minimum Mean Median Maximum
Area under the ROC curve (AUC)

Mixture of Low-Rank Factorizations 0.969 0.999 1.000 1.000
Separate Fisher’s Exact Tests 0.810 0.921 0.923 0.989

Table 2: Summary of the AUCs for the 100 simulated datasets in the dependence sce-
nario, to assess performance of local testing at varying thresholds. The ROC curves are
defined using the true hypotheses indicators – δl = 0 if H0l is true, δl = 1 if H1l is true,
l = 1, . . . , V (V − 1)/2 – and the acceptance or rejection based on our procedure and
Fisher’s exact tests at varying the thresholds on posterior probabilities and FDR.

to maintain a false discovery rate FDR ≤ 0.1. Under our Bayesian procedure we reject
the global null if p̂r[H1 | {y,L(A)}] > 0.9. As the prior odds are pr(H1)/pr(H0) = 1,
the chosen value 0.9 implies a threshold on the Bayes factor for significance close to
the strong evidence bar discussed in Kass and Raftery (1995). According to sensitivity
analyses, moderate changes in the threshold do not affect the final conclusions. Consis-
tently with our initial simulation, we reject local nulls if p̂r[H1l | {y,L(A)}] > 0.9. Also
in this case results are not substantially affected by moderate changes in the threshold;
hence, we maintain this choice to preserve coherence in our analyses.

Table 1 confirms the superior performance of our approach in maintaining all error
rates close to zero, in both global and local testing, while intrinsically adjusting for
multiplicity. The information reduction via summary measures for the global test, and
the lack of a network structure in the local Fisher’s exact tests lead to procedures
with substantially less power. Although Table 1 has been constructed using an FDR
control of 0.1 in the Fisher’s exact tests and a threshold of 0.9 under our local testing
procedure, we maintain superior performance allowing the thresholds to vary, as shown
in Table 2.

In considering sample size n versus type I and II errors rates, it is interesting to assess
the rate at which the posterior probability of the global alternative pr[H1 | {y,L(A)}]
converges to 0 and 1 under H0 and H1, respectively, as n increases. We evaluate this
behavior by simulating 100 datasets as in the previous simulation for increasing sample
sizes n = 20, n = 40 and n = 100, and for each scenario. Figure 7 provides histograms
showing the estimated posterior probabilities of H1 for the 100 simulated datasets under
the two scenarios and for increasing sample sizes. The separation between scenarios is
evident for all sample sizes, with p̂r[H1 | {y,L(A)}] consistently concentrating close to



46 Bayesian Inference on Group Differences in Brain Networks

Figure 7: For different n, histograms of the estimated posterior probabilities of the global
alternative H1 for the 100 simulated datasets under dependence and independence.

0 and 1 under the independence and dependence scenario, respectively, as n increases.
When n = 20 the test has lower power, with 32/100 samples having p̂r[H1 | {y,L(A)}] <
0.9 when H1 is true. However, the type I errors were rare, with 1/100 samples having
p̂r[H1 | {y,L(A)}] > 0.9 when the data are generated under H0. These values are very
close to 0 when the sample size is increased to n = 40 and n = 100, with the latter
showing strongly concentrated estimates close to 0 and 1, when H0 is true and H1 is
true, respectively.

4.3 Identifying group differences in more complex functionals

We conclude our simulation studies by considering a scenario in which there is a strong
dependence between L(A) and Y , but this dependence arises from changes in more
complex structures, instead of just the edge probabilities. Specifically, we simulate n =
50 pairs (yi,Ai) from our model (5) and (8), with p0Y(1) = p0Y(2) = 0.5 and Ai a V ×V
network with V = 20 nodes. In defining (8) we consider three components and again
split the nodes in two blocks V1 = {1, . . . , 10} and V2 = {11, . . . , 20}, characterizing –
for example – the two different hemispheres. When h = 1, the vector π0(1) characterizes
this block structure, with the probability of an edge between pairs of nodes in the same
block set at 0.75, while nodes in different blocks have 0.5 probability to be connected.
Vectors π0(2) and π0(3) maintain the same within block probability of 0.75 as in π0(1),
but have different across block probability. In component h = 2 the latter increases by
0.3 – from 0.5 to 0.8 – while in component h = 3 this quantity decreases by the same
value – from 0.5 to 0.2. As a result, when letting ν0

1 = (1, 0, 0) and ν0
2 = (0, 0.5, 0.5) it is

easy to show that the group-specific edge probabilities – characterizing the distribution
of each edge in the two groups – remain equal π̄0

1 = π̄0
2, even if the probability mass

function jointly assigned to these edges changes across groups p0L(A)|1 �= p0L(A)|2.

This provide a subtle scenario for the several procedures assessing evidence of changes
in the brain network across groups, by focusing solely on marginal or expected quanti-
ties. These strategies should – correctly – find no difference in edge probabilities, and
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Figure 8: Performance in the final simulation. Upper-left matrix: Group difference be-
tween the empirical edge probabilities for each pair of nodes computed from the simu-
lated data (lower triangular) versus the true group difference (upper triangular). Upper-
middle matrix: Posterior mean of the difference between the edge probabilities in the
two groups (lower triangular) versus true group difference (upper triangular). Upper-
right matrix: p̂r[H1l | {y,L(A)}] = p̂r[ρl > 0.1 | {y,L(A)}] (lower triangular) and
rejected (black) local null hypotheses (upper triangular), for l = 1, . . . , V (V −1)/2 – re-
arranged in matrix form. Lower panels: Violin plots representing the posterior predictive
distribution of selected network summary statistics in the two groups.

hence may be – wrongly – prone to conclude that the brain network does not change
across groups. Underestimating associations may be a dangerous fallacy in understat-
ing – for example – the effect of a neurological disorder that induces changes in more
complex functionals of the brain network.

We apply our procedures to these simulated data under the same settings of our
initial simulations, obtaining very similar effective sample sizes and PSRFs. As shown
in the upper panels of Figure 8, the posterior probabilities for all the local alternatives
are lower than 0.9, and hence our multiple testing procedure does not rejectH0l for every
l = 1, . . . , V (V − 1)/2. Beside correctly assessing the evidence of no changes in the edge
probabilities across the two groups, our global test is able to detect variations in more
complex functionals of the brain network. In fact, we obtain p̂r[H1 | {y,L(A)}] > 0.99,
meaning that, although there is no evidence of changes in edge probabilities across the
two groups, the model finds a strong association between L(A) and Y .

The type of variations in more complex structures can be observed in the lower
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panels of Figure 8 showing the posterior predictive distribution of the selected net-
work summary statistics obtained under our statistical model. Although the latter is
not analytically available, it is straightforward to simulate from the posterior predic-
tive distribution exploiting our constructive representation in Figure 2 and posterior
samples for the quantities in (5) and (8)–(9). Specifically, for each MCMC sample of
the parameters in (5) and (8)–(9) – after convergence – we generate a network from
our model exploiting the mechanism in Figure 2, to obtain the desired samples from
the posterior predictive distribution. According to the lower panels of Figure 8, there
are substantial changes in the pmf of the network data across groups. In group one our
model infers network summary measures having unimodal distributions, while in the
second group we learn substantially different bimodal distributions. This behavior was
expected based on our simulation, and hence these results further confirm the accuracy
of our global test along with the good performance of our model in flexibly charac-
terizing the distribution of a network-valued random variable and its variations across
groups.

5 Application to human brain networks and creativity

We apply our method to the dataset described in the introduction using the same set-
tings as in the simulation examples, but with upper bound H increased to H = 15. This
choice proves to be sufficient, with components h = 12, . . . , 15 having no observations
and redundant dimensions of the latent spaces effectively removed. The efficiency of
the Gibbs sampler was very good, with effective sample sizes around 1,500 out of 4,000.
Similarly, the PSRFs provide evidence that convergence has been reached, as the highest
of these quantities is 1.15. These checks on mixing and convergence are performed for
the chains associated with quantities of interest for inference and testing. These include
the Cramer’s V coefficients ρl, l = 1, . . . , V (V −1)/2, the group-specific edge probability
vectors π̄1, π̄2 and the expectation of selected network summary statistics.

Our results provide interesting insights into the global relation between the brain
network and creativity, with p̂r[H1 | {y,L(A)}] = 0.995 strongly favoring the alterna-
tive hypothesis of association between the brain connectivity architecture and the level
of creative reasoning. To assess the robustness of our global test, we also performed
posterior computation based on datasets that randomly matched the observed group
membership variables with a corresponding brain network, effectively removing the pos-
sibility of an association. In 10 of these trials we always obtained – as expected – low
p̂r[H1 | {y,L(A)}] ≤ 0.2.

We also attempted to apply the MANOVA test as implemented in the simulation ex-
periments, with the same network statistics – i.e. network density, transitivity, average
path length and assortativity by hemisphere. These are popular measures in neuro-
science in informing on fundamental properties of the brain network organization, such
as small-world, homophily patterns and scale-free behaviors (Bullmore and Sporns, 2009;
Rubinov and Sporns, 2010; Bullmore and Sporns, 2012). In our dataset, the average path
length was undefined for three subjects, as there were no paths between several pairs of
their brain regions. Replacing these undefined shortest path lengths with the maximum
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Figure 9: Mean and quartiles of the posterior distribution for the difference π̄2l− π̄1l be-
tween the edge probabilities in high and low creativity groups, for each l = 1, . . . , V (V −
1)/2. In the figure, the pairs of brain regions are re-arranged in matrix form.

path length, we observe no significant changes across creativity groups, with a p-value
of 0.111. When excluding this topological measure, we obtain a borderline p-value of
0.054. This sensitivity to the choice of summary statistics further motivates tests that
avoid choosing topological measures, which is a somewhat arbitrary exercise.

As a secondary focus, we also examined predictive performance of our model. In
particular, we considered in-sample edge prediction based on the posterior mean of
the edge probabilities in the two groups. This produced excellent results, with an area
under the ROC curve (AUC) equal to 0.97. The ROC curve is constructed using the
observed edges L(Ai)l, i = 1, . . . , n, l = 1, . . . , V (V − 1)/2 and those predicted with the
posterior mean of the group-specific edge probabilities at varying thresholds – using ˆ̄π1l

for subjects with yi = 1 and ˆ̄π2l for subjects with yi = 2.

Beside providing a flexible approach for joint modeling of networks and categorical
traits, our model also represents a powerful tool to predict yi given the subject’s full
brain network structure. In fact, under our formulation, the probability that a subject
i has high creativity, conditionally on his brain structural connectivity network Ai, is

pr{Yi = 2 | L(Ai)} = 1− pr{Yi = 1 | L(Ai)} =
pY(2)pL(A)|2(ai)

pY(2)pL(A)|2(ai) + pY(1)pL(A)|1(ai)
,

where ai = L(Ai) is the network configuration of the ith subject and pL(A)|y(ai),
y ∈ {1, 2} can be easily computed from (8). We obtain an in-sample AUC = 0.87 in
predicting the creativity group yi using the posterior mean of pr{Yi = 2 | L(Ai)} =
1 − pr{Yi = 1 | L(Ai)} for each i = 1, . . . , n. Hence, allowing the conditional pmf
of the network-valued random variable to shift across groups via group-specific mixing
probabilities provides a good characterization of the relation between brain networks and
creativity, leading to accurate prediction of the creativity group. Although these results
are in-sample, they provide reassurance that the substantial dimensionality reduction
underlying our representation does not lead to inadequate fit.
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Figure 10: Brain network visualization – from different views – exploiting results from
local testing. We only display connections which provide evidence of changes across high
and low creativity subjects based on our local tests. Edge color is green – or red – if
its estimated probability in high creativity subjects is greater – or smaller – than low
creativity ones. Regions’ positions are given by their spatial coordinates in the brain.

Figure 9 provides summaries of the posterior distribution for the quantities in
π̄2 − π̄1, with π̄2 =

∑H
h=1 νh2π

(h) and π̄1 =
∑H

h=1 νh1π
(h) encoding the edge proba-

bilities in high and low creativity groups, respectively. Most of these connections have
a similar probability in the two groups, with more evident local differences for con-
nections among brain regions in different hemispheres. Highly creative individuals dis-
play a higher propensity to form inter-hemispheric connections. Differences in intra-
hemispheric circuits are less evident. These findings are confirmed by Figure 10 includ-
ing also results from our local testing procedure. As in the simulation, we set ε = 0.1 and
the decision rule rejects the local null H0l when p̂r[H1l | {y,L(A)}] > 0.9. These choices
provide reasonable settings based on simulations, and results are robust to moderate
changes in the thresholds.

Previous studies show that intra-hemispheric connections are more likely than inter-
hemispheric connections for healthy individuals (Gray Roncal et al., 2013). This is also
evident in our dataset, with subjects having a proportion of intra-hemispheric edges of
0.55 over the total number of possible intra-hemispheric connections, against a propor-
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Figure 11: Violin plots representing the posterior distribution for the expectation of
selected network summary statistics in the two creativity groups.

tion of about 0.21 for the inter-hemispheric ones. Our estimates in Figure 9 and local
tests in Figure 10 highlight differences only in terms of inter-hemispheric connectivity,
with highly creative subjects having a stronger propensity to connect regions in differ-
ent hemispheres. This is consistent with the idea that creative innovations arise from
communication of brain regions that ordinarily are not connected (Heilman et al., 2003).

These findings contribute to the ongoing debate on the sources of creativity in the
human brain, with original theories considering the right-hemisphere as the seat of cre-
ative thinking, and more recent empirical analyses highlighting the importance of the
level of communication between the two hemispheres of the brain; see Sawyer (2012),
Shobe et al. (2009) and the references cited therein. Beside the differences in techniques
to monitor brain networks and measure creativity, as stated in Arden et al. (2010), pre-
vious lack of agreement is likely due to the absence of a unifying approach to statistical
inference in this field. Our method addresses this issue, while essentially supporting
modern theories considering creativity as a result of cooperating hemispheres.

According to Figure 10, the differences in terms of inter-hemispheric connectivity are
found mainly in the frontal lobe, where the co-activation circuits in the high creativity
group are denser. This is in line with recent findings highlighting the major role of the
frontal lobe in creative cognition (Carlsson et al., 2000; Jung et al., 2010; Takeuchi
et al., 2010). Previous analyses focus on variations in the activity of each region in
isolation, with Carlsson et al. (2000) and Takeuchi et al. (2010) noticing an increase in
cerebral blood flow and fractional anisotropy, respectively, for highly creative subjects,
and Jung et al. (2010) showing a negative association between creativity and cortical
thickness in frontal regions. We instead provide inference on the interconnections among
these regions, with increased bilateral frontal connectivity for highly creative subjects,
consistent with both the attempt to enhance frontal activity as suggested by Carlsson
et al. (2000) and Takeuchi et al. (2010) or reduce it according to Jung et al. (2010).

Figure 11 shows the effect of the increased inter-hemispheric frontal connectivity –
in high creativity subjects – on the posterior distribution of the key expected network
summary statistics in the two groups. Although the expectation for most of these quan-
tities cannot be analytically derived as a function of the parameters in (8)–(9), it is
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straightforward to obtain posterior samples for the previous measures via Monte Carlo
methods exploiting the constructive representation in Figure 2. According to Figure 11,
the brains in high creativity subjects are characterized by an improved architecture –
compared to low creativity subjects – with increased connections, higher transitivity
and shortest paths connecting pairs of nodes. As expected, also hemispheric assorta-
tivity decreases. This is consistent with our local testing procedure providing evidence
of increased inter-hemispheric activity and unchanged intra-hemispheric connectivity
structures across the two groups. Previous results are also indicative of small-world
structures in highlighting high transitivity and low average path length, with brains for
high creativity subjects having a stronger small-world topology than subjects with low
creativity. This is a key property in brain networks (Bullmore and Sporns, 2009).

6 Discussion

This article proposes the first general approach in the literature – to our knowledge –
for inference and testing of group differences in network-valued data, without focusing
on pre-specified functionals or reducing the network data to summary statistics prior to
inference. The creativity application illustrates substantial benefits of our approach in
providing a unifying and powerful methodology to perform inferences on group differ-
ences in brain networks, in contrast to current practice which applies simple statistical
tests based on network summary measures or selected functionals. These tests tend to
lack power and be sensitive to the summary statistics and functionals chosen, contribut-
ing to the inconsistent results observed in the recent literature. Although we specifically
focus on creativity, our method can be applied in many other settings. For example,
to infer differences in brain networks with neuropsychiatric diseases. In addition, our
approach is applicable to other fields involving network-valued data.

It is interesting to generalize our procedure to the multiple group case with yi ∈
{1, . . . ,K}. This can be accomplished with minor modifications to the two groups case.
Specifically, it is sufficient to consider as many mixing probability vectors νy as the total
number of groups K, replace the beta prior for pY with a Dirichlet, and appropriately
modify the Gibbs sampler. Theoretical properties and testing procedures are trivial to
extend. Although generalization to the multiple groups case is straightforward, there
may be subtleties in capturing ordering in the changes across many groups.

There are other interesting ongoing directions. For example, it is important to al-
low nonparametric shifts in the pmf associated with the network-valued random variable
across non-categorical predictor variables, while developing procedures scaling to a num-
ber of nodes much larger than V = 68. Focusing on neuroscience applications, another
important goal is to develop statistical methods that explicitly take into account errors
in constructing the brain connection network, including in alignment and in recovering
fiber tracts, taking as input the raw imaging data. Our model partially accounts for
these errors via the pmf for the network-valued random variable and the prior distribu-
tions for its quantities. However, procedures that explicitly account for this noise, may
yield improvements in performance, including better uncertainty quantification.
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Finally, it is important to consider generalizations accommodating fiber counts, in-
stead of just binary indicators. Incorporating information on weighted edges, data take
the form of multivariate counts, again with network-structured dependence. There are
subtleties involved in modeling of multivariate count data. It is common to incorporate
latent variables in Poisson factor models (e.g. Dunson and Herring, 2005). Including
this generalization requires minor modifications of our current procedures, however, as
noted in Canale and Dunson (2011), there is a pitfall in such models due to the dual
role of the latent variable component in controlling the degree of dependence and the
magnitude of over-dispersion in the marginal distributions. Canale and Dunson (2011)
address these issues via a rounded kernel method which improves flexibility in modeling
count variables. Our current efforts are aimed at adapting these procedures to develop
nonparametric approaches for inference on the distribution of weighted networks.

Supplementary Material

Supplementary Materials for “Bayesian Inference and Testing of Group Differences in
Brain Networks” (DOI: 10.1214/16-BA1030SUPP; .pdf). The online supplementary ma-
terial contains proofs of the Propositions 1, 2 and 3, providing theoretical support for
our methodology.
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