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The Horseshoe+ Estimator of Ultra-Sparse
Signals

Anindya Bhadra∗, Jyotishka Datta†, Nicholas G. Polson‡, and Brandon Willard§

Abstract. We propose a new prior for ultra-sparse signal detection that we term
the “horseshoe+ prior.” The horseshoe+ prior is a natural extension of the horse-
shoe prior that has achieved success in the estimation and detection of sparse
signals and has been shown to possess a number of desirable theoretical proper-
ties while enjoying computational feasibility in high dimensions. The horseshoe+
prior builds upon these advantages. Our work proves that the horseshoe+ posterior
concentrates at a rate faster than that of the horseshoe in the Kullback–Leibler
(K-L) sense. We also establish theoretically that the proposed estimator has lower
posterior mean squared error in estimating signals compared to the horseshoe
and achieves the optimal Bayes risk in testing up to a constant. For one-group
global–local scale mixture priors, we develop a new technique for analyzing the
marginal sparse prior densities using the class of Meijer-G functions. In simula-
tions, the horseshoe+ estimator demonstrates superior performance in a standard
design setting against competing methods, including the horseshoe and Dirichlet–
Laplace estimators. We conclude with an illustration on a prostate cancer data
set and by pointing out some directions for future research.

MSC 2010 subject classifications: primary 62F15; secondary 62F12, 62C10.
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1 Introduction

Ultra-sparse signal detection provides a challenge for developing statistical estimators.
In the classical normal means inference problem, we observe data from the probability
model (yi|θi) ∼ N (θi, 1) for i = 1, . . . , n. We wish to provide an estimator for the vector
of normal means θ = (θ1, . . . , θn). Sparsity occurs when a large portion of the parameter
vector contains zeros. The “ultra-sparse” or “nearly black” vector case occurs when the
parameter vector θ lies in the set l0[pn] ≡ {θ : #(θi �= 0) ≤ pn} with the upper bound
on the number of non-zero parameter values pn = o(n) as n → ∞.

To motivate the need for developing new prior distributions, consider the classic
James–Stein “global” shrinkage rule, θ̂JS(y). This estimator uniformly dominates the
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traditional sample mean estimator, θ̂. For all values of the true parameter θ and for
n > 2, we have the classical mean squared error (MSE) risk bound:

R(θ̂JS , θ) : =Ey|θ‖θ̂JS(y)− θ‖2 < n = Ey|θ‖y − θ‖2, ∀θ.

However, for a sparse signal, θ̂JS(y) performs poorly. Suppose that the true parameter
θ is an “r-spike” with r coordinates of magnitude

√
n/r and the rest set at zero, giving

‖θ‖2 = n. Then Johnstone and Silverman (2004) showed that the classical risk satisfies

R(θ̂JS , θ) ≥ n/2 whereas simple thresholding at
√
2 logn performs with risk

√
logn.

To address this issue, a “global–local” shrinkage estimator called the horseshoe es-
timator was proposed by Carvalho et al. (2010). The horseshoe estimator, θ̂HS(y), pro-
vides a Bayes rule that inherits good MSE properties of global shrinkage estimators
and simultaneously provides asymptotic minimax risk for estimating sparse signals. For
example, Polson and Scott (2012) showed that θ̂HS(y) uniformly dominates the tradi-
tional sample mean estimator in terms of MSE and van der Pas et al. (2014) showed
that the horseshoe estimator has good posterior concentration properties. Specifically,
the horseshoe estimator achieves

sup
θ∈l0[pn]

Ey|θ‖θ̂HS(y)− θ‖2 � pn log (n/pn) ,

which is the asymptotically minimax risk rate in �2 for nearly black objects (Donoho
et al., 1992). Here an � bn means limn→∞ an/bn = 1. The “worst” θ ∈ l0[pn] is obtained

at the maximum absolute difference |θ̂HS(y) − y| where θ̂HS(y) = EHS(θ|y) can be
interpreted as a Bayes posterior mean which is optimal under the Bayes MSE.

Though the horseshoe prior was originally designed to provide an accurate and effi-
cient estimator of a sparse normal mean vector, it turns out that the multiple testing
rule induced by the horseshoe prior also enjoys the “oracle property” in testing under
the 0–1 loss (Datta and Ghosh, 2013). For the multiple testing problem in the classical
two-groups model, many approaches involve explicitly modeling the ultra-sparse mean
as a mixture of a point mass at zero and a heavy-tailed alternative, also known as
the “spike-and-slab” approach (Mitchell and Beauchamp, 1988). This results in a pos-
terior distribution over a high-dimensional discrete space, exploring which often leads
to extreme computational cost, although the posterior mean or some other point es-
timates might still be found using polynomial time algorithms (Castillo and van der
Vaart, 2012). The one-group global–local model, inspired by the widespread popularity
of the lasso for variable selection in regression (Tibshirani, 1996), is computationally
more tractable, and can be used to select a model through concentration of measure in
a space of pseudo-probabilities, rather than in the n-dimensional Euclidean space (Car-
valho et al., 2010; Polson and Scott, 2010; Datta and Ghosh, 2013). In particular, the
horseshoe prior leads to “pseudo-posterior” probabilities that mimic the true posterior
inclusion probabilities from a two-groups mixture model, and induces a multiple testing
rule with attractive properties. Specifically, Datta and Ghosh (2013) proved that the
Bayes risk for the horseshoe estimator attains the Bayes risk of the oracle if the global
shrinkage parameter is of the same order as the proportion of sparsity using the asymp-
totic framework introduced by Bogdan et al. (2011). Thus, it seems natural to require
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that any new sparse signal recovery prior should attain the oracle risk up to a multi-
plicative constant, and improve upon the error rates in theory as well as in practice.
The generality of the Bayes risk results was conjectured by Datta and Ghosh (2013) and
proved by Ghosh et al. (2016) in a recent unpublished manuscript. Ghosh et al. (2016)
proved that asymptotic Bayes optimality holds true for a general class of shrinkage
priors where the local shrinkage parameter follows a distribution with a slowly-varying
component bounded away from 0 and ∞. This class of shrinkage priors includes many
of the recently introduced priors such as the horseshoe, the normal–exponential–gamma
(Griffin and Brown, 2010), the three-parameter beta (Armagan et al., 2011), and the
generalized double Pareto (Armagan et al., 2013), among others, but this class excludes
the horseshoe+ prior, since its heavier tail is slowly varying but is not bounded above.

In the light of the previous works, the purpose of our article, then, is to provide
an estimator that sharpens the ability of the Bayes estimator to extract signals from
sparsity while maintaining the optimal properties of the induced decision rule. We pro-
vide theoretical justifications by demonstrating that the proposed estimator has sharper
information theoretic bounds and better MSE bounds compared to the horseshoe esti-
mator. We illustrate that the horseshoe+ estimator achieves greater separation of sig-
nals and noise in a standard simulation setting and we provide a comprehensive MSE
comparison with existing sparse estimators. We develop a hierarchical model which is
a natural extension of the horseshoe model of Carvalho et al. (2010) and hence our
terminology for the horseshoe+ hierarchical model.

The rest of the paper is outlined as follows. Section 2 motivates the class of one-group
global–local shrinkage priors for sparse signal estimation as a suitable alternative to the
commonly used two-groups models. Section 3 describes the horseshoe+ estimator with a
particular reference to global–local shrinkage estimators. Section 4 provides theoretical
properties of our proposed estimator. Our major findings can be summarized as follows:

1. The decision rule induced by the horseshoe+ prior attains the risk of Bayes oracle
under 0–1 loss up to a multiplicative constant, with the constant in Bayes risk
close to the constant in oracle. We also obtain a sharper bound on the probability
of type-I error compared to the horseshoe prior.

2. The posterior mean squared error for the horseshoe+ estimator is always smaller
than the posterior mean squared error of the horseshoe estimator in estimating a
large signal.

3. The estimated sampling density using the horseshoe+ prior converges to the true
density at a super-efficient rate when the true parameter value is zero, when the
efficiency is calculated using the Kullback–Leibler (K-L) distance between the
true density and the estimated sampling density. The upper bound of the risk
for horseshoe+ is shown to be smaller than that of the horseshoe estimator using
asymptotic properties of the prior utilizing Meijer-G functions (Mathai et al.,
2009).

Section 5 provides comparisons of our proposed approach with other shrinkage rules
using a standard design setting. We compare horseshoe+ with the Dirichlet–Laplace es-
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timator (Bhattacharya et al., 2015) and the horseshoe estimator (Carvalho et al., 2010),
illustrating superior performance of the horseshoe+ estimator in both estimation (under
squared error loss) and testing (under 0–1 loss). Section 6 discusses the application of
the proposed prior on a high-dimensional prostate cancer data set. Section 7 concludes
with some directions for future research.

2 The one and two groups models

Consider the model of Section 1, i.e., (yi|θi) ∼ N (θi, 1), for i = 1, . . . , n, where θ is
ultra-sparse or nearly-black, in the sense that θ ∈ l0[pn]. Our interest might lie in
testing whether each θi is zero or non-zero, based on a suitably normalized test statistic
or in proposing a suitable estimate θ̂i, that has attractive properties, e.g., low mean
squared error. The large number of parameters together with sparsity require further
modeling of the data to facilitate learning via empirical Bayes or full Bayes methods.
The two-groups or the spike-and-slab model (see, e.g., Mitchell and Beauchamp, 1988;
Efron, 2008), provides a natural Bayesian hierarchical framework for the sparse multiple
testing problem where conditionally i.i.d. θi are modeled as

θi|π = (1− π)δ{0} + πN (0, ψ2), (1)

where δ{0} denotes a point mass at zero and the parameter ψ2 > 0 is the non-centrality
parameter that determines the separation between the two groups. Under this setting,
the marginal distribution of yi|π is given by

yi|π ∼ (1− π)N (0, 1) + πN (0, 1 + ψ2). (2)

As can be seen from Equation (2), the two-groups model leads to a sparse estimate, i.e.,
it puts exact zeros in the model. The two-groups model enjoys a number of attractive
theoretical properties, detailed as follows:

1. Johnstone and Silverman (2004) showed that a thresholding-based estimator for
θ under the two-groups model with an empirical Bayes estimate for π is minimax
in �2 sense.

2. Castillo and van der Vaart (2012) treated a full Bayes version of the problem and
again found an estimate that is minimax in �2.

3. Bogdan et al. (2011) found that the estimator under the two-groups model pro-
vides asymptotically optimal performance in testing, in the sense that its perfor-
mance matches the Bayes oracle up to a constant.

Thus, while the two-groups approach is a recognized gold-standard for Bayesian sparse
signal detection and estimation, a number of arguments favor an alternative approach
via the one-group global–local shrinkage priors. First, in many real life applications,
such as studies involving “high-dimensional, low sample size” gene expression data, the
majority of the effect sizes are negligible, but not exactly zero, leading to an argument
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against exact sparsity induced by the model in Equations (1)–(2) (Stephens and Balding,
2009; Guan and Stephens, 2008; Marchini and Howie, 2010; Stranger et al., 2011). From
a more pragmatic point of view, the one-group global–local model leads to much faster
computation, owing to the simple batch updating in the Gibbs sampler for the latent
local shrinkage parameters (see, e.g., Section S.3 of the supplement of Bhadra et al.,
2016a). We refer the readers to Carvalho et al. (2010) for further arguments and insights.

A useful outcome of the two-groups model is that the posterior mean E(θi|yi) can
be written as follows:

E(θi|yi) = ωi
ψ2

1 + ψ2
yi ≈ ωiyi(1 + o(1)) as ψ2 → ∞, (3)

where ωi = P (θi �= 0|yi) is the posterior inclusion probability. Looking at the form of
the posterior mean, one can see that it involves a global component ψ2/(1 + ψ2) that
provides shrinkage towards zero for all the parameters. However, the local component
ωi allows the signal terms to escape from being too close to zero. The lack of a local
shrinkage term explains why Stein-type global shrinkage estimators perform poorly in
a nearly-black setting.

The key to success in a one-group model is to design a global–local shrinkage term
that gives the same form of the posterior mean as in the two-groups model. The horse-
shoe prior of Carvalho et al. (2010) is one such one-group global–local shrinkage prior
that has been shown to possess a number of theoretically attractive properties along
with a considerably easier computational implementation compared to the two-groups
model.

1. Carvalho et al. (2010) showed the horseshoe estimator has good information theo-
retic properties when the true parameter vector is sparse, in the sense that the K-L
distance between the estimated and the true densities decreases at a super-efficient
rate.

2. Datta and Ghosh (2013) proved that the decision rule induced by the horseshoe
estimator is asymptotically Bayes optimal for multiple testing under 0–1 loss up
to a multiplicative constant.

3. van der Pas et al. (2014) showed the horseshoe estimator is minimax in �2 in a
nearly-black case up to a constant. The constant they have been able to achieve
is at least twice as large as the minimax constant of Donoho et al. (1992).

These theoretical properties, coupled with the ease of computational implementation
suggests the one-group global–local model holds considerable promise. Some other im-
portant examples of the one-group global–local model include the three-parameter beta
prior (Armagan et al., 2011), the normal–exponential–gamma prior (Griffin and Brown,
2010), the generalized double Pareto prior (Armagan et al., 2013), the generalized
shrinkage prior (Denison and George, 2012) and the Dirichlet–Laplace prior (Bhat-
tacharya et al., 2015). Below we describe the one-group horseshoe hierarchical model
and then proceed to propose the horseshoe+ model that leads to considerable improve-
ments upon the horseshoe.
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3 The horseshoe+ estimator

Given normally distributed data (yi|θi) ∼ N (θi, 1), the horseshoe hierarchical model is
defined by the set of conditional distributions

(θi|λi, τ) ∼ N
(
0, λ2

i

)
, (4)

(λi|τ) ∼ C+ (0, τ) ,

where C+ denotes a half-Cauchy distributed scale parameter λi with density

p(λi|τ) =
2

πτ{1 + (λi/τ)2}
, (5)

as discussed by Gelman (2006). The horseshoe+ hierarchical model is defined similarly
by the set of conditionals

(θi|λi, ηi, τ) ∼ N
(
0, λ2

i

)
, (6)

(λi|ηi, τ) ∼ C+ (0, τηi) ,

ηi ∼ C+ (0, 1) ,

where we have introduced a further half-Cauchy mixing variable ηi. In both models,
the local shrinkage random effects λi’s are not marginally independent after mixing
over the global shrinkage parameter τ . The horseshoe+ model builds on the horseshoe
by assuming that the λi’s are conditionally independent given another level of local
shrinkage parameters ηi’s, in addition to τ . Integrating over ηi gives the density of λi

as

p(λi|τ) =
4

π2τ

log(λi/τ)

(λi/τ)2 − 1
. (7)

Although conceptually a natural extension, we will see that the additional log(λi/τ)
term in the numerator leads to very different properties of the proposed estimator
compared to the horseshoe. There are a number of ways of dealing with the global
shrinkage parameter τ . In a full Bayesian approach one can put a standard half-Cauchy
prior or a Uniform(0, 1) prior on τ . Another approach is to appeal to an asymptotic
argument that suggests that the empirical Bayes estimator of τ to be set to τ̂ = pn/n,
where pn is the number of non-zero entries in θ (van der Pas et al., 2014).

To further develop the distributional properties of the horseshoe+ prior we write
this as a member of the class of one-group global–local shrinkage priors with marginal
prior density

p(θi|τ) =
∫ ∞

0

p(θi|λi, τ)p(λi|τ)dλi.

Transforming to a shrinkage scale with κi = 1/(1 + λ2
i τ

2) yields

p(θi|τ) =
∫ 1

0

p(θi|κi, τ)p(κi|τ)dκi, with p(θi|κi, τ) ∼ N
(
0,

1− κi

κi

)
,
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where κi ∈ [0, 1] is a shrinkage weight. The corresponding ultra-sparse Bayes estimator
is

θ̂i = E(θi|yi, τ) = (1− E(κi|yi, τ))yi, (8)

where we need to compute E(κi|yi, τ). By comparing the expression for the posterior
mean for θi for the one-group global–local model given by Equation (8) to the two-groups
model given by Equation (3), it is apparent that the quantity ω̂i = 1−E(κi|yi, τ) behaves
as the posterior inclusion probability P (θi �= 0|yi). This results in a natural threshold
for simultaneously testing H0i : θi = 0 vs. H1i : θi �= 0 for i = 1, . . . , n. We will consider
the following multiple testing procedure proposed by Carvalho et al. (2010), and later
shown to be optimal under 0–1 loss by Datta and Ghosh (2013), for the horseshoe prior:

Reject H0i : if 1− E(κi|yi, τ) >
1

2
. (9)

3.1 Shrinkage profile

Note that the marginal data likelihood is p(yi|κi, τ) = κ
1/2
i exp(−κiy

2
i /2). Signals are

identified when κi → 0 and sparsity occurs when κi → 1 in the posterior. We see that
there are no shrinkage factors in the marginal likelihood to “help” identify signals in
the normal model as p(yi|κi, τ) → 0 as κi → 0. This is precisely why the normal prior
performs poorly for sparse settings. The horseshoe prior was designed to cancel the

factor κ
1/2
i and to simultaneously place prior mass at κi = 1 to introduce shrinkage (see

Carvalho et al. (2010) for further discussion). The priors on the local shrinkage factor
λi and the induced prior on κi for the horseshoe, the horseshoe+ and the generalized
double Pareto prior are summarized in Table 1.

Prior for θi Prior for λi Prior for κi

GDP
√
2

(λ2
i )

∫∞
0

exp
(√

2u
λ2
i
− u
)√

udu 1
2(1−κi)2

[√
π exp

{
κi

2(1−κi)

}
Erfc

{√
κi

2(1−κi)

}
√

2κi(1−κi)
−1

]

Horseshoe 2/
{
πτ(1 + (λi/τ)

2)
}

τ√
κi(1−κi)

1
(1+κi(τ2−1))

Horseshoe+ 4 log(λi/τ)/
{
π2τ((λi/τ)

2 − 1)
}

τ√
κi(1−κi)

log{(1−κi)/κiτ
2}

(1−κi(τ2+1))

Table 1: Priors for λi and κi for some one-group global–local shrinkage rules.

The main difference between horseshoe+ and the others is in the extra Jacobian term
introduced in the representation on the shrinkage scale. This term has a fundamentally
different behavior for separating signals (κi = 0) from the noise terms (κi = 1). The
horseshoe+ prior introduces another horseshoe U -shaped Jacobian factor that pushes
posterior mass to the places of most interest, κi = 0, 1. This provides horseshoe+ prior
with an additional power to detect signals in the ultra sparse signal case. Figure 1 plots
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Figure 1: The horseshoe+ (top) and horseshoe (bottom) prior Jacobian terms against
κi for τ = 0.5 and 2. The vertical lines are at κ = 1/(1 + τ2).

the Jacobians of the horseshoe and horseshoe+ priors with τ set to 0.5 and 2 to make
the difference explicit. The horseshoe Jacobian displays unequal shrinkage behavior near
the two extremities of κi.

This extra shrinkage through the Jacobian is an unique property of the horseshoe+
prior not shared by any of the other univariate shrinkage priors. To see this, note that
the ‘sensible’ priors can be expressed in terms of a slowly varying function following
Theorem 1 of Polson and Scott (2010):

p(λ2
i ) ∝ (λ2

i )
(−a−1)L(λ2

i ) for τ
2 = 1, (10)

p(κi) ∝ (1− κi)
(−a−1)κ

(a−1)
i L(1/κi − 1), (11)

where L(·) is a slowly varying function with the property L(ty)/L(y) → 1 as y →
∞. In a recent unpublished manuscript, Ghosh et al. (2016) showed that the popular
shrinkage priors like the three-parameter beta (TPB, Armagan et al. (2011)), which
includes the popular Strawderman–Berger prior, the horseshoe prior and the normal–
exponential–gamma prior, as well as the generalized double Pareto (GDP, Armagan
et al. (2011)) prior fall into this class. Furthermore, the authors proved that the slowly
varying component of (10) is bounded as λ2

i → ∞ for these popular shrinkage rules, i.e.
limλ2

i→∞ L(λ2
i ) ∈ (0,∞) for priors such as TPB and GDP. This is where the horseshoe+

prior stands out from the rest, as the slowly-varying component for the prior density
pHS+(λ

2
i ) is unbounded as λ → ∞, i.e.

lim
λ2
i→∞

LHS+(λ
2
i ) = lim

λ2
i→∞

log(λ2
i )

(
1− 1

λ2
i

)−1

→ ∞.

Since κi → 0 as λ2
i → ∞, the unboundedness of LHS+(λ

2
i ) ≡ L(1/κi − 1) together

with (11) implies that the extra shrinkage at limκi→0 p(κi) → ∞ only holds for the
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Horseshoe+ prior among all shrinkage priors expressible as heavy-tailed Gaussian scale
mixtures. The Jacobian term can also be interpreted on the shrinkage scale. Specifically,
for κ = 1/(1 + τ2), we have

p(κ1, . . . , κp|κ, y) ∝
n∏

i=1

1√
1− κi

exp

{
−κi

y2i
2

} | log
(
(1− κ−1

i )/(1− κ−1)
)
|

|κ− κi|
.

This representation shows that the horseshoe+ prior allows differential shrinkage for
κi around κ (and is continuous at κi = κ), and suggests that the global shrinkage
parameter τ2 can also be interpreted as a scaling factor for the shrinkage weights κi.

4 Theoretical properties of the horseshoe+ estimator

In this section we establish a few theoretical properties for the proposed prior and the
resulting posterior, from both a decision theoretic and information theoretic viewpoint.
We present our main results in the form of seven theorems. Proofs and technical details
are given in Supplementary Sections S.1–S.7 (Bhadra et al., 2016b).

4.1 Marginal density for the horseshoe+ prior

We start by formally establishing that the marginal prior density for horseshoe+ is
unbounded at the origin.

Theorem 1. Assume τ2 = 1. Then the marginal density of the horseshoe+ prior,
pHS+(θ), satisfies the following properties:

1. 1

π2
√
2π

log

(
1 +

4

θ2

)
< pHS+(θ) ≤

1

π2|θ| ,

2. lim
|θ|→0

pHS+(θ) = ∞.

A proof is given in Supplementary Section S.1. Figures 2 and 3 show the behavior of
several one-group global–local shrinkage priors near the origin and at the tails. The pri-
ors considered here are: horseshoe+, horseshoe (Carvalho et al., 2010), Dirichlet–Laplace
(Bhattacharya et al., 2015), generalized double Pareto (Armagan et al., 2013), stan-
dard Cauchy, and standard Laplace (double-exponential). Note that the horseshoe+,
horseshoe and Dirichlet–Laplace densities are unbounded near the origin. Perhaps more
importantly, horseshoe+ puts more mass compared to the horseshoe in a small neigh-
borhood of the origin and has heavier tails compared to both horseshoe and Dirichlet–
Laplace. Carvalho et al. (2010) established that a prior with unbounded density near
the origin leads to super-efficiency in density estimation in a sparse signal setting. Due
to Theorem 1, the horseshoe+ estimator enjoys the resultant advantages, as we shall
show in Section 4.3.
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Figure 2: Marginal prior densities near the origin. The legends denote the horseshoe+
(HSPlus), horseshoe (HS), Dirichlet–Laplace (DL), generalized double Pareto (GDP),
Cauchy and Laplace priors.

Figure 3: Marginal prior densities in the tail regions. The legends denote the horseshoe+
(HSPlus), horseshoe (HS), Dirichlet–Laplace (DL), generalized double Pareto (GDP),
Cauchy and Laplace priors.

4.2 Asymptotic Bayes optimality under sparsity

Datta and Ghosh (2013) proved that the Bayes risk optimality for the horseshoe prior
leverages the fact that the shrinkage weight 1− κ̂i concentrates near one (uniformly in
yi) if the global shrinkage parameter τ → 0, and concentrates near zero if |yi| → ∞ for
any fixed τ in (0, 1). To attain the Bayes risk of the oracle, one additionally needs the
global shrinkage parameter τ to adapt to the underlying proportion of non-zero effects
μn, i.e. limn→∞ τμ−1

n ∈ (0,∞), where μn = #{θi �= 0}/n. It turns out that similar
concentration inequalities, but with sharper bounds, hold for the posterior distribution
of κi under the new horseshoe+ prior. At an intuitive level, this suggests that the
decision rule induced by the horseshoe+ prior will also inherit the same, if not better,
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optimality properties. In this section, we state two posterior concentration inequalities
along with the asymptotic type-I and type-II error probabilities to establish the oracle
property for horseshoe+.

Below, we briefly describe the notion of Bayes oracle in the context of multiple
testing following the asymptotic framework of Bogdan et al. (2011). Assume the two-
groups model of Equations (1)–(2). The optimal Bayes rule under a 0–1 additive loss
for testing H0i : θi = 0 vs. H1i : θi �= 0 is given by:

Reject H0i if |yi| > C,

where,

C2 = C2
ψ,f =

1 + ψ2

ψ2

(
log(ψ2 + 1) + 2 log f

)
where f =

1− μ

μ
. (12)

We call this rule the Bayes oracle as the risk for this is the lower bound of (1/n) times
the risk for any multiple testing procedure under the two-groups model. Bogdan et al.
(2011) further re-parametrized this by u = ψ2 and v = uf2, to obtain the following
simpler form for the threshold in the oracle:

C2 =

(
1 +

1

u

)(
log v + log

(
1 +

1

u

))
. (13)

For maintaining clarity of notations and preserving correspondence with the original
work of Bogdan et al. (2011), we use the same asymptotic framework in form of the
following assumption:

Assumption 1. The sequence of vectors γn = (ψn, μn) satisfies the following condi-
tions:

μn → 0;un
.
= ψ2

n → ∞; vn
.
= unf

2
n

.
= ψ2

n

(
1− μn

μn

)2

→ ∞;

log vn
un

→ C ∈ (0,∞) as n → ∞.

Remark 1. The asymptotic framework provides a natural way to study the properties of
the Bayes risk as the parameter vector γ = (ψ, μ) defining the Bayes oracle in Equation
(12) varies through an infinite sequence indexed by the number of tests n increasing to
infinity. To reduce notational complexity, we will suppress the index n from γn, μn, τn, ψn

throughout the remainder of this section. The statements such as μ → 0 should imply
that μn → 0 as n → ∞.

Remark 2. It should be pointed out that the conditions are not restrictive, and are in
fact minimal conditions for optimality in some sense. On one hand, the Bayes Oracle
is no better than a coin toss if the limit ψ2/2 log(1/μ) → ∞, making the test powerless,
and has zero type-II error when the limit goes to zero, which could happen if one has an
infinite number of replicates. The interesting cases are obtained for a finite, non-zero
limit which Bogdan et al. (2011) term as “verge of detectability” and our results pertain
to this situation.
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Under Assumption 1, the type-I and type-II error probabilities of the Bayes oracle
are given by Bogdan et al. (2011):

tBO1 = e−C/2

√
2

πv log v
(1 + on),

tBO2 = (2Φ(
√
C)− 1)(1 + on),

Ropt = n
(
(1− μ)tBO

1 + μtBO
2

)
= nμ(2Φ(

√
C)− 1)(1 + on), (14)

where on denotes an infinite sequence of terms, indexed by n (the number of tests),
converging to zero as n → ∞. The last expression follows from the fact that the Bayes
risk for a fixed-threshold multiple testing rule is given by R = n((1 − μ)t1 + μt2)
for an additive 0–1 loss, when t1, t2 denote the type-I and type-II error probabilities
respectively. A decision rule is said to attain the asymptotic Bayes optimality under
sparsity (or, ABOS) if the ratio of the Bayes risk of the decision rule to the risk of the
Bayes oracle (Equation (14)) goes to 1 as multiplicity n → ∞. Now, we present the first
concentration inequality on the posterior distribution of κi providing the conditions
under which the posterior mass of κi concentrates near one. We show that an upper
bound to the he posterior mass of κi ∈ (0, ε), decays as τ2.

Theorem 2. Suppose we have observations y1, . . . , yn where yi ∼ N (θi, 1), for i =
1, . . . , n, and the prior on θi is distributed as horseshoe+ with the hierarchical model
given by (6). Then the posterior distribution of κi = (1+λ2

i τ
2)−1 given yi and τ satisfies

the following:

P(κi < ε|yi, τ) ≤ e
y2
i
2 τ2ε(1− ε)−2, (15)

for any fixed ε ∈ (0, 1), and any τ ∈ (0, 1).

The proof is given in Supplementary Section S.2. Theorem 2 implies that the pos-
terior distribution of κi given τ and the observation yi would converge to a point mass
one if τ → 0. This leads to the following bound on the probability of type-I error rate
for horseshoe+ prior, with proof given in Supplementary Section S.3.

Theorem 3. Suppose we have observations y1, . . . , yn from the ‘two-groups’ model in
Equation (2), and we want to test H0i : θi = 0 vs. H1i : θi �= 0, using the decision rule of
Equation (9) induced by the horseshoe+ prior. Suppose furthermore that Assumption 1
holds for the parameter vector (ψ, μ), then the probability of type-I error for horseshoe+
decision rule is given by:

t1 ≤
√

2

π

τ2√
log(1/2τ)

(1 + o(1)).

Remark 3. It should be noted that one of the bounds (and the type-I error rate) ob-
tained for the horseshoe+ prior are sharper than that obtained for the horseshoe prior.
Theorem 2 shows PHS+(κi < ε|yi, τ) = O(τ2) whereas Datta and Ghosh (2013) obtained
PHS(κi < ε|yi, τ) = O(τ). This relative gain will not affect the asymptotic order of the
total Bayes risk derived here, but this result has interesting implications (e.g. lower false
positives) nonetheless.
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We now present the second concentration inequality in the other direction, with a
proof in Supplementary Section S.4.

Theorem 4. Suppose we have observations y1, . . . , yn where yi ∼ N (θi, 1), for i =
1, . . . , n, and the prior on θi is distributed as horseshoe+ with the hierarchical model
given by Equation (6). Then the posterior distribution of κi = (1 + λ2

i τ
2)−1 given yi

and τ satisfies the following:

P(κi > η|yi, τ) ≤ e−η(1−δ)
y2
i
2

1

τ2
C(η, δ), (16)

for any fixed η ∈ (0, 1), any fixed δ ∈ (0, 1/η(1 + τ2)) and uniformly in yi ∈ R, where
C(η, δ) is a constant independent of yi.

A corollary of Theorem 4 is that the posterior distribution of κi given τ and yi would
converge to a point mass at zero if |yi| → ∞.

A crucial step for proving the optimality for the horseshoe prior is the choice of
the global shrinkage parameter τ . Datta and Ghosh (2013) chose τ to be of the same
order as the proportion of signals μ, i.e. τ = τn = O(μn). They also argued that the
optimality of the decision rule induced by the horseshoe prior depends on how well the
sparsity is captured in the hyper-parameter τ . This was further supported by van der
Pas et al. (2014) who showed that the condition τ = O(μ) is a sufficient condition for
the minimaxity properties of the horseshoe estimator. Since the role of τ as a global
scale parameter for the prior on local shrinkage parameters λi does not change with
the horseshoe+ prior, intuitively the same choice on τ would lead to the optimal type-
II error rates. Under this choice of τ , it follows that the type-II error for horseshoe+
decision rule has the same asymptotic order as that of the type-II error rate for the
Bayes oracle. Let C denote the constant in the expression for the risk of the Bayes
oracle as appears in Equation (13). Then it follows from Theorem 4 that the type-II
error rate has the following upper bound:

Theorem 5. Suppose we have observations y1, . . . , yn from the ‘two-groups’ model in
Equation (2), and wish to test H0i : θi = 0 vs. H1i : θi �= 0, using the decision rule of
Equation (9). Suppose furthermore that Assumption 1 holds for the parameter vector
(ψ, μ), and the global shrinkage parameter τ decreases to zero such that τ = O(μ). Then
for all η ∈ (0, 1) and δ ∈ (0, 1/η(1 + τ2)), the probability of type-II error of the decision
rules induced by the horseshoe+ prior is bounded above by:

t2 ≤
(
2Φ(

√
2

η(1− δ)

√
C)− 1

)
(1 + o(1)).

The proof is given in Supplementary Section S.5. The proof of this theorem follows
similar steps as the proof of type-II error rate for horseshoe prior in Datta and Ghosh
(2013), where a fixed η = 1/4 and δ = 1/9 were used for deriving an explicit expression.
Then it follows from Theorems 3 and 5 that the risk of the horseshoe+ decision rule is
given by

RHS+ = n

{
μ(2Φ(

√
2

η(1− δ)

√
C)− 1) + (1− μ)

√
2τ2√

π log(1/2τ)

}
(1 + o(1))
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= n

{
μ(2Φ(

√
2

η(1− δ)

√
C)− 1)

}
(1 + o(1)) as τ → 0.

Since the risk of the Bayes oracle is RBO = n{μ(2Φ(
√
C)− 1)}(1+ o(1)), it follows that

the horseshoe+ decision rule attains the Bayes oracle up to a multiplicative constant.

4.3 Kullback–Leibler risk bounds

Carvalho et al. (2010) proved that for horseshoe the Bayes estimate for the sampling
density, measured using the Kullback–Leibler distance between the true model and
the estimator of the density function, converges to the truth at a super-efficient rate.
Let θ0 be the true parameter value and f(y|θ) be the sampling model. Further, let
K(q1, q2) = Eq1 log(q1/q2) denote the K-L divergence of a density q2 from q1. The proof
utilizes the following result by Clarke and Barron (1990).

Proposition 1. (Clarke and Barron, 1990). Let νn(dθ|y1, . . . , yn) be the posterior
distribution corresponding to some prior ν(dθ) after observing data y(n) = (y1, . . . ,
yn) according to the sampling model f(y|θ). Define the posterior predictive density
q̂n(y) =

∫
f(y|θ)νn(dθ|y1, . . . , yn). Assume further that ν(Aε) > 0 for all ε > 0. Then

the Cesàro-average risk of the Bayes estimator, defined as Rn ≡ n−1
∑n

j=1 K(qθ0 , q̂j),
satisfies

Rn ≤ ε− 1

n
log ν(Aε),

where ν(Aε) denotes the measure of the set {θ : K(qθ0 , qθ) ≤ ε}.

Using the above proposition, Theorem 4 of Carvalho et al. (2010) proves that for
the horseshoe estimator the Cesàro-average risk satisfies

Rn = O

(
1

n
log

(
n

(logn)b

))
, (17)

when the true parameter θ0 = 0. This rate is faster than any prior without a pole at
zero. It is super-efficient, in the sense that the risk is lower than that of the MLE, which
has the rate O(log n/n). The same result holds for the horseshoe+ estimator due to its
infinite mass near zero (by Theorem 1). However, we demonstrate that the horseshoe+
prior in fact has a better rate of convergence than the horseshoe prior. Our result is
based on the following theorem.

Theorem 6. Let p0HS+(θ) and p0HS(θ) denote the marginal densities of the horseshoe+
and horseshoe priors at the origin when τ = 1. Then we have∫ 1√

n

0

p0HS+(θ)dθ =
1√

2π5/2
√
n

(
log2(n)

4
+

(
1− γ

2
+

log(4)

4

)
log(n) +O(1)

)
,

where γ is the Euler–Mascheroni constant and∫ 1√
n

0

p0HS(θ)dθ =
1√

2π3/2
√
n

(
log(n)

2
+O(1)

)
.
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The proof is given in Supplementary Section S.6. Due to the extra log(n) factor, the
horseshoe+ prior places more mass around a neighborhood of the origin compared to
the horseshoe prior. Thus, when θ0 = 0, setting ε = 1/n gives after some algebra from
Proposition 1 that

Rn(HS) ≤ logn

2n
+

1

n
− log logn

n
+ const,

and

Rn(HS+) ≤ logn

2n
+

1

n
− 2 log logn

n
+ const.

Therefore, the multiplier of the log logn term improves for horseshoe+.

4.4 Mean squared error

It is well known that if p(|yi − θi|) is the standard normal density and p(θi) is a zero
mean scale mixture of normals, with the scale parameter λ2 following a proper prior
law, the posterior moments of θi admits the following representations, also known as
“Tweedie’s formula” (Efron, 2011):

E(θi|yi) = yi +
d

dyi
logm(yi), (18)

V(θ|yi) = 1 +
d2

dy2i
logm(yi), (19)

where m(yi) is the marginal for yi (see for example Pericchi and Smith (1992) and
Carvalho et al. (2010)). Furthermore, we can use properties of slowly varying functions
to show that if the prior on θi can be written as a normal scale mixture with a “slowly-
varying” prior on the scale parameter, the marginal inherits the slowly varying property.
For priors with a polynomially heavy tail it can also be shown that the resulting posterior
mean is asymptotically robust, in that the difference |E(θi|yi, τ)− yi| vanishes for large
|yi| while τ is fixed.

Heavy-tailed distributions are often characterized by the notion of regular variation.
The following definition is due to Karamata (see Mikosch (1999) or Bingham et al.
(1989) for a detailed discussion).

Definition 1. A positive, measurable function L(·) is said to be regularly varying at
infinity with index α if it is defined on the interval [x0,∞) for some x0 and

lim
x→+∞

L(tx)

L(x)
= tα for all t > 0.

L(·) is said to be slowly varying at infinity if α = 0.

Using the above definition, we state the following result from Theorem 6.1 of Barnd-
orff-Nielsen et al. (1982).
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Proposition 2. (Barndorff-Nielsen et al., 1982). Consider the Gaussian scale mixture
y|λ2 ∼ N (0, λ2) and suppose the prior density of λ2 is given by f(λ2) = (λ2)α−1L(λ2)
as λ2 → ∞, where L(·) is a slowly varying function. Then the marginal m(y) after
integrating out λ2 has the property that m(y) ∝ |y|2α−1L(y2) as |y| → ∞.

Let mHS+(yi) and mHS(yi) denote the marginals under the horseshoe+ and horse-
shoe priors respectively. Proposition 2 immediately shows that we have mHS+(yi) =
mHS(yi) log(|yi|)(1+ o(1)) as |yi| → ∞, since the only difference between the horseshoe
and horseshoe+ mixing densities is the additional slowly varying (log λi) term in the
scale mixing density for the horseshoe+ prior. In particular, as |yi| → ∞, we have

mHS+(yi) = mHS(yi)× log(|yi|)×
y2i − 1

y2i + 1
× constant,

where “constant” denotes the collection of all terms that does not involve yi. Thus,

d

dyi
logmHS+(yi) =

d

dyi
logmHS(yi) +

1

|yi| log |yi|
− 4y2i

y4i − 1︸ ︷︷ ︸
O(1/y2

i )

, (20)

and,

d2

dy2i
logmHS+(yi) =

d2

dy2i
logmHS(yi)−

1 + log yi
(yi log yi)2

+O
(
1/y3i

)
. (21)

Using Equations (18) and (19), in combination with Equations (20) and (21), allows
one to relate the bias and variance, and hence the MSE, for the horseshoe and the
horseshoe+ estimators. We have the following result:

Theorem 7. Suppose p(|yi − θi|) is the standard normal density, and pHS(θi) and
pHS+(θi) denote the horseshoe and horseshoe+ prior densities on θi when τ = 1, leading
to the posterior mean squared errors MSEHS(θi|yi) and MSEHS+(θi|yi) respectively.
Then, for large values of |yi|, we have,

MSEHS+(θi|yi) = MSEHS(θi|yi)−
1

y2i log |yi|
+O

(
1

y3i

)
.

The proof is given in Supplementary Section S.7. This theorem establishes that
the horseshoe+ estimator has asymptotically lower MSE compared to the horseshoe
estimator when |yi| is large, due to the extra (log |yi|) factor in the marginal, which in
turn is due to the extra (log λi) term in the prior mixing density.

5 Numerical examples

5.1 Sum of squared error about the posterior median

We follow the simulation setting described in Bhattacharya et al. (2015). We simulate
data yi|θi ∼ N (θi, 1) for i = 1, . . . , n, where θi = A in fraction q of its components
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with the magnitude of A = 7, 8 and θi = 0 in the remaining components. We report
simulation results for n = 200 in Table 2. Each configuration is replicated 100 times
and the average sum of squared error about the posterior median is reported.

q A D-L HS Cauchy HS+ Cauchy HS Unif HS+ Unif

0.05 7 26.86 15.95 18.58 17.11 18.08
8 22.49 14.47 15.97 15.26 17.42

0.1 7 43.76 33.92 31.65 35.13 33.51
8 43.81 32.28 29.77 33.67 32.23

0.2 7 78.11 69.29 59.26 83.61 59.92
8 82.64 70.72 62.64 118.52 63.69

0.3 7 103.46 104.33 86.77 322.93 100.26
8 121.04 108.12 93.21 373.71 220.16

Table 2: Average SSE about the posterior median for n = 200 for the competing priors.
The averages are computed over 100 replicates. The lowest SSE for each setting (in
rows) is in bold.

We compare the proposed horseshoe+ prior with two competitors: the horseshoe
prior of Carvalho et al. (2010) and the Dirichlet–Laplace (D-L) prior of Bhattacharya
et al. (2015). To deal with the global shrinkage parameter τ for the horseshoe and the
horseshoe+ priors, we try two scenarios: (a) τ ∼ C+(0, 1/n) and (b) τ ∼ Uniform(0, 1).
For posterior sampling, we use the Stan software package (Stan Development Team,
2014) to draw 10,000 samples in each case, half of which are treated as burn-in and
discarded. We monitored Markov chain Monte Carlo (MCMC) convergence and found
no evidence of mixing problems. The D-L prior is implemented in its hierarchal normal–
exponential form, and the horseshoe and horseshoe+ priors by the hierarchical model
in Equations (4) and (6) respectively.

In Table 2, the estimator with the lowest average SSE is in bold in each simulation
setting (in rows). The horseshoe+ prior with the half-Cauchy prior on τ has the lowest
SSE in all but two cases, in which the horseshoe prior performs the best. The C+(0, 1/n)
prior on τ results in better performance over a Uniform(0, 1) prior for both horseshoe and
horseshoe+ since the former puts more mass in a neighborhood close to zero, helping τ
adapt to the sparsity level of the data. Additional simulation results for different values
of n and A are presented in Table S.1 in the Supplementary Material. Horseshoe+
outperforms the competing approaches in most cases.

To make the difference between the horseshoe and the horseshoe+ estimates clear, we
plot E(κi|yi) and E(θi|yi) for i = 1, . . . , n, for horseshoe in Figure 4 and for horseshoe+
in Figure 5. In both cases, the prior on τ is Uniform(0, 1). We used n = 200 and
simulated yi with 10 components with a mean equal to 7 and the rest with mean 0.
Without loss of generality, the components (true values and estimates) with true non-
zero means are plotted as the first 10 data points and those with true zero means are
plotted afterwards. The posterior means are shown as dots and the middle 95% posterior
credible intervals by solid lines. By comparing the estimates, it is clear that horseshoe+
does a much better job compared to horseshoe in terms of shrinking the noise terms to
zero (estimated κ̂i closer to 1 or equivalently, estimated θ̂i closer to zero).
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Figure 4: Estimated κi and θi for horseshoe for n = 200 with first 10 true θi equal to
7 and rest true values set to 0. Dots are posterior means and solid lines are the middle
95% posterior credible intervals. We used τ ∼ Uniform(0, 1).

Figure 5: Estimated κi and θi for horseshoe+ for n = 200 with first 10 true θi equal to
7 and rest true values set to 0. Dots are posterior means and solid lines are the middle
95% posterior credible intervals. We used τ ∼ Uniform(0, 1).

5.2 Misclassification probabilities

We compared the performance of the multiple testing rule induced by the horseshoe+
prior with two other one-group global–local shrinkage priors: the horseshoe prior of
Carvalho et al. (2010) and the Dirichlet–Laplace prior of Bhattacharya et al. (2015) in
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Figure 6: Misclassification probability plots for the horseshoe+, horseshoe, and the
Dirichlet–Laplace (DL1/n) shrinkage priors, Benjamini–Hochberg and the Bayes oracle
for μ ∈ (0.1, 0.5).

terms of the misclassification probability (MP). We use the misclassification probability
as a criteria for our experiment as it is equal to the Bayes risk under a 0–1 additive
loss for data generated by a two-groups model. We follow the same experimental set up
in Bogdan et al. (2008), replicated in Datta and Ghosh (2013), where the Bayes oracle
(BO) acts as the lower bound and the MP = μ line as the upper bound, where μ is the
proportion of signals. We simulated data of size n = 200, ψn =

√
2 logn = 3.26. Our

data generation scheme follows the conditions provided by Bogdan et al. (2011), which
guarantees the optimality of the Benjamini–Hochberg procedure to use it as another
practical lower bound along with the Bayes Oracle.

Figure 6 shows the misclassification probabilities (henceforth abbreviated as MP) for
different shrinkage priors considered for ten equispaced values of μ ∈ [0.01, 0.5] along
with the oracle and the straight line (MP = μ). Figure 6 shows that the misclassifi-
cation probability for the horseshoe+ prior is very close to that of the Bayes oracle
for a wide range of values of μ, and departs a little for values higher than 0.2. Fur-
thermore, the horseshoe+ decision rule leads to a superior performance compared both
the horseshoe and the Dirichlet–Laplace prior. We have also plotted the MP for the
Benjamini–Hochberg rule, for α = 1/ logn = 0.1887, along with the one-group global–
local shrinkage priors. Under this setting, the Benjamini–Hochberg rule achieves the
same MP as the oracle. This is in concordance with the theoretical results for optimal-
ity of BH in Bogdan et al. (2011).

We used the full Bayes estimates for the hyperparameters for both the horseshoe
prior and the double exponential prior. For estimating τ , we assumed standard half-
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Cauchy prior on τ for deriving the full conditionals using a Gibbs sampler. As pointed
out by Carvalho et al. (2009) and Scott and Berger (2006), the fully Bayesian approach
for estimating τ has a few advantages over its alternatives, viz. empirical Bayes and
cross-validation. In the extremely sparse case, the empirical Bayes estimate of τ might
collapse to 0 (Scott and Berger, 2010; Bogdan et al., 2008). Cross-validation, though
free of this problem, uses plug-in estimates for the signal-to-noise ratio. Carvalho et al.
(2009) argue that the plug-in estimates are not necessarily wrong, but caution should
be exercised while using them for extremely sparse problems.

6 Application on a prostate cancer data set

We illustrate the performance of the horseshoe+ prior for the benchmark prostate can-
cer data, introduced by Singh et al. (2002) and made popular by Efron (2008, 2010b,a),
among others. The prostate cancer data has gene expression values for n = 6,033 genes
for m = 102 subjects, with m1 = 50 normal controls and m2 = 52 prostate cancer
patients. The goal is to identify genes that are differentially expressed between con-
trols and the cancer patients. To analyze this data further, the test statistic values are
calculated for each of the 6,033 genes by first calculating a two-sample t-statistic, say
ti, i = 1, 2, . . . , n = 6,033 for each of the genes and then applying the inverse normal
cumulative distribution function (CDF) transformation to obtain yi = Φ−1(Ft100(ti)),
where Ft100 is the CDF of a t-distribution with 100 degrees of freedom. The yi-values can
be modeled as independent Gaussian variables with mean θi’s, i.e. yi ∼ θi + εi to cast
this problem as a high-dimensional normal means inference problem. The corresponding
multiple testing problem would be to simultaneously test the hypotheses H0i : θi = 0,
for i = 1, . . . , n. Under the global null hypothesis of no ‘differentially expressed’ genes,
one should expect the histogram of the test statistics to follow a N (0, 1) density curve
but the histogram shows a heavier tail, suggesting the presence of a few regulatory genes.

For a proper appraisal of the extra shrinkage by the horseshoe+ prior at the tails
compared to the horseshoe prior, we do the following experiment: We consider the top
10 genes selected by Efron (2010a) and their effect sizes estimated by a two-groups
normal hierarchical model. We apply both the horseshoe and the horseshoe+ prior to
the 6,033 test statistics, and compare the ‘effect-size’ estimates θ̂i for these genes. One
would expect that the horseshoe+ prior would shrink these “top” genes even less than
the horseshoe prior and as a result the posterior mean θ̂i = (1−E(κi|yi, τ))yi would be
closer to the observed test statistics yi.

Table 3 shows the top 10 genes selected by Efron (2010a), and the effect size estimates
by the horseshoe and the horseshoe+ priors. For both the horseshoe and horseshoe+
prior, we implemented a Gibbs sampler with 15,000 draws with a burn-in period of 3,000
draws. The benefits of a heavier tail become apparent from this table as in 9 out of the
top 10 genes, the horseshoe+ estimates are closer to the observed test statistics com-
pared to the horseshoe estimates. One might naturally wonder about the performance
of the two competing Bayesian models for the “uninteresting” genes, and it turns out
that both the priors have equal strength in squelching the noisy test statistics to zero.
Figure 7 shows the posterior mean for the two priors against the observed test statistics.
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Figure 7: Posterior mean E(θi|yi) against yi for 6,033 genes for the horseshoe and horse-
shoe+ priors applied to the prostate cancer example.

Gene y-value θ̂HS+
i θ̂HS

i θ̂Efron
i

610 5.29 5.20 5.12 4.11
1720 4.83 4.77 4.54 3.65
332 4.47 3.24 4.11 3.24
364 -4.42 -4.43 -4.14 -3.57
914 4.40 4.40 3.89 3.16

3940 -4.33 -3.78 -3.77 -3.52
4546 -4.29 -3.88 -3.46 -3.47
1068 4.25 3.71 3.03 2.99
579 4.19 3.99 2.88 2.92

4331 -4.14 -3.48 -3.26 -3.30

Table 3: The test statistics (y-values) and the effect-size estimates for the top 10 genes
selected by Efron (2010a) by the horseshoe, horseshoe+ models, and Efron’s two-groups
model estimates.

It can be clearly seen that all the procedures show good shrinkage properties near zero,

and the only difference comes from the performance near tails, or robustness to large

signals. This is also reflected in the value of the estimated mean squared prediction error

calculated as MSE = (1/n)
∑n

i=1(θ̂i − yi)
2. The values of the mean squared prediction

error for the horseshoe+ and the horseshoe prior are 1.189 and 1.045 illustrating the

superiority of horseshoe+ prior over the horseshoe prior.
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7 Discussion

We have provided a default Bayesian shrinkage estimator for extracting signals from
a sparse parameter vector. The proposed prior is called horseshoe+ prior as it ren-
ders itself to a natural extension of the horseshoe prior and provides substantial im-
provement for the “nearly-black” or “ultra-sparse” situation. In particular, the heavier
tails of the horseshoe+ prior leads to an increasing ability of separating the signals,
and the larger mass near origin leads to better handling of sparsity and a higher or-
der of super-efficiency for the risk in density estimation. We have examined this new
prior both theoretically and empirically by considering the estimation accuracy for a
high-dimensional parameter vector as well as the error rates for the multiple testing
rule induced by applying a threshold rule to the pseudo posterior inclusion probabili-
ties.

Our asymptotic results demonstrate that the horseshoe+ estimator achieves a lower
MSE and the horseshoe+ decision rule attains the Bayes oracle in testing up to O(1)
with a sharper bound on the type-I error rate compared to horseshoe. While we have
not discussed the asymptotic minimaxity properties of the horseshoe+ estimator in the
�2 sense, we conjecture that the asymptotic minimaxity will continue to hold, likely
with a sharper bound on the constant term compared to van der Pas et al. (2014).
The sharpening effect of the horseshoe+ prior can be attributed to the extra shrinkage
gained by having a U-shaped Jacobian over a lopsided one, in addition to the U-shaped
prior induced on κi. It is also worth noting that asymptotic minimaxity results for
a class of priors with p(λ2

i ) ∝ (λ2
i )

−a−1L(λ2
i ) where L(·) is a bounded, slowly vary-

ing function has been established by Ghosh and Chakrabarti (2014). For horseshoe+,
L(λi) = λ2

i log λi/(λ
2
i − 1) is slowly varying but not bounded. At the time of preparing

the current manuscript, we became aware of the work by van der Pas et al. (2016),
who use an alternative technique to establish the asymptotic minimaxity of a class of
estimators, including the horseshoe+, up to a constant (see Section 3.3 of their paper).
It must be noted, however, while asymptotic minimaxity results hold for a class of pri-
ors, their finite sample performances can often be quite different, as evidenced by our
simulations. It is also an open question how close the minimax constant can possibly
get to the optimal value of two for ultra-sparse objects, as established by Donoho et al.
(1992).

In the recent past, there have been a few shrinkage priors that we collectively call the
‘global–local’ shrinkage priors following Polson and Scott (2010). These priors include
the generalized double Pareto (Armagan et al., 2013), the normal–exponential–gamma
(Griffin and Brown, 2010), the three parameter beta (Armagan et al., 2011), and the
Dirichlet–Laplace (Bhattacharya et al., 2015), among others. These priors exhibit sim-
ilar shrinkage properties as the horseshoe prior in that they simultaneously squelch the
noise to zero and recover the signals. Though these priors lead to competitive perfor-
mances in the sparse signal recovery problem, they also have unique, distinguishable
characteristics. For example, the generalized double Pareto prior leads to a closed form
prior density of θ and induces a sparsity favoring penalty in regularized least squares,
while the Dirichlet–Laplace prior models the joint distribution of θ under the two-
groups model via the joint distribution of the shrinkage parameters. The behavior of
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the marginal prior densities on θ can be seen from Figures 2 and 3, and our simulation
results suggest improvements for both estimation and testing, but it is an open ques-
tion whether a set of necessary conditions can be imposed on the class of one-group
global–local shrinkage priors that guarantees certain desirable properties.

A key insight we gain from the success of the family of the one-group global–local
shrinkage priors is that the global shrinkage parameter plays a vital role in control-
ling the behavior of the posterior. Specifically, the global shrinkage parameter in the
horseshoe prior needs to be of the order of the proportion of non-null effects to ensure
asymptotic minimaxity in estimation (van der Pas et al., 2014) as well as the optimality
of the induced decision rule in testing (Datta and Ghosh, 2013). We have proved that
the same condition also guarantees the optimal performance for the horseshoe+ prior
in testing.

Finally, the horseshoe+ prior can be further extended by modeling the local shrink-
age parameter λi as a higher order product of independent half-Cauchy random vari-
ables, leading to an even heavier tail and larger spike at zero. The moments and densities
of the Cauchy product C1C2 . . . Ck are given in Bourgade et al. (2007). The density Ψk(·)
of the k-product C1C2 . . . Ck for the even and the odd cases are as follows:

Ψ2i+1(x) =
22i

π(2i)!

⎛
⎝ i∏

j=1

((j − 1

2
)2 +

(log |x|)2
π2

)

⎞
⎠ 1

1 + x2
,

Ψ2i(x) =
22i−1

π(2i− 1)!

⎛
⎝i−1∏

j=1

(j2 +
(log |x|)2

π2
)

⎞
⎠ log |x|

x2 − 1
.

Furthermore, one might use the “universal prior” due to Rissanen (1983) over the num-
ber of terms k in the product density. The “universal prior” is defined with the mass
function:

Q(i) = 2−L0(i), for i = 1, 2, . . . ; L0(i) = log∗(i) + log c,

where, log∗(x) = log x+ log log x+ . . ., where the sum involves only non-negative terms
and c =

∑
2− log∗ i ≈ 2.865064.

The family of Cauchy-product densities can be used in conjunction with Rissa-
nen’s universal prior described above to define an adaptive shrinkage estimator such
as the Polyshrink estimator due to Foster and Stine (2005), where the amount of
shrinkage varies adaptively with the estimation task. For an n-dimensional param-
eter θ, the Polyshrink estimator uses a collection of discrete mixture models Gp =
{gεk(y) = (1 − εk)φ(y) + εkψ(z), εk = 2k−(K+1)}, for k = 1, . . . ,K with K = 1 +
�log2(p)� and φ(·) and ψ(·) denote the standard normal density and Cauchy density
with scale

√
2 respectively. We conjecture the advantages of the one-group global–local

model over the two-groups model would naturally carry over to this case if we use a
collection of one-group priors defined by Cauchy products of different orders to achieve
different amounts of shrinkage. The possibility of such extensions was first discussed
in Polson and Scott (2012), and it would be interesting to settle this issue theoreti-
cally.
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