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Bayesian Estimation of Principal Components
for Functional Data

Adam J. Suarez∗ and Subhashis Ghosal†

Abstract. The area of principal components analysis (PCA) has seen relatively
few contributions from the Bayesian school of inference. In this paper, we propose
a Bayesian method for PCA in the case of functional data observed with error.
We suggest modeling the covariance function by use of an approximate spectral
decomposition, leading to easily interpretable parameters. We perform model se-
lection, both over the number of principal components and the number of basis
functions used in the approximation. We study in depth the choice of using the
implied distributions arising from the inverse Wishart prior and prove a conver-
gence theorem for the case of an exact finite dimensional representation. We also
discuss computational issues as well as the care needed in choosing hyperparame-
ters. A simulation study is used to demonstrate competitive performance against
a recent frequentist procedure, particularly in terms of the principal component
estimation. Finally, we apply the method to a real dataset, where we also incor-
porate model selection on the dimension of the finite basis used for modeling.

Keywords: principal components, covariance estimation, functional data.

1 Introduction

In the rapidly expanding area of functional data analysis, data compression has become
an oft-employed strategy. Principal component analysis (PCA) has become a widespread
tool in the area of functional data, where the high dimensionality of the data can quickly
become unmanageable. Principal components can be used to reconstruct a process ap-
proximately, using relatively few random variables. At its heart, PCA is an exploratory
tool used to gain insight into the structure of the data. It is also used in less scrupu-
lous endeavors, such as preprocessing for a regression analysis. For a textbook length
treatment of classical multivariate PCA, see Jolliffe (1986).

PCA for functional data has likewise become a very popular technique. Ramsay and
Silverman (2005) certainly helped make functional PCA (FPCA) a standard first step
when dealing with functional data. For another textbook account of FPCA, see Horváth
and Kokoszka (2012).

Bayesian methods for multivariate PCA have been relatively absent from the liter-
ature. Tipping and Bishop (1999) showed how the traditional method of PCA can be
viewed as the solution to a maximum likelihood procedure; this likelihood was then used
for a Bayesian treatment in Bishop (1999). For functional data, Behseta et al. (2005)
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proposed a Bayesian method for FPCA, and van der Linde (2008) proposed an approx-
imate Bayesian method using variational calculations. Frequentist PCA is commonly
used as the first step in multi-step procedures; one reason for the lack of the subjective
perspective in the PCA literature is certainly due to the fact that Bayesian procedures
are, by their nature, not performed stepwise. The extension of Bayesian procedures to
more complicated situations usually comes from hierarchically integrating the simpler
model into a larger one.

In this paper, we investigate a potential model for the covariance structure of func-
tional data observed with noise. The model jointly smooths the observations and es-
timates the principal components. As a Bayesian procedure, model selection on the
chosen number of basis functions is conceptually straightforward, and we demonstrate
this on a real data set.

Section 2 provides background material. Section 3 describes the motivation for the
model used for the data, along with the priors used throughout. Section 3 also discusses
some issues in choosing hyperparameters for the typical priors. Section 3.6 describes the
method used for model comparison in terms of the number of basis functions used for
approximation. In Section 4, we prove a convergence theorem for the case of an inverse
Wishart prior. Sections 5 and 6 present a simulation study and applied data example,
respectively.

2 Background

Let {X(t) : t ∈ [0, 1]} be a stochastic process such that the sample paths of X(t) are
square integrable. By adopting a change of location and scale, if necessary, any bounded
interval can be reduced to [0, 1], which we shall abbreviate by I. Usually the index
represents time, and for functional observations the boundedness of the domain is most
natural because data can be observed only over a limited time. Let μ(t) := E[X(t)]
for all t ∈ I, and let the covariance function of the process be given by κ(s, t) =
Cov(X(s), X(t)) for all s, t ∈ I. Note that κ is symmetric in its arguments and is a
positive definite function, i.e., for any t1, . . . , tk ∈ I, the matrix ((κ(ti, tj))) is positive
definite. We assume that κ is continuous on I × I and let M := sup{|κ(s, t)| : s, t ∈
I} < ∞. On the space L2 = L2(I) of square integrable functions, we use the standard
inner product 〈f, g〉 =

∫
I
f(t)g(t)dt, and the norm which this implies.

The covariance function then defines an integral operator, Tκ : L2 → L2, given by

Tκf =

∫
I

κ(·, t)f(t)dt, (1)

for all f ∈ L2. It is well known that Tκ is a Hilbert–Schmidt operator, and, in particular,
Tκ is a compact linear operator, which necessarily has a countable spectrum {λ1, λ2, . . .}
with 0 as the only accumulation point (Ash, 1965). Therefore, the important quantities
for us are the eigenfunctions and eigenvalues of the covariance operator, i.e., functions
{φ1, φ2, . . .} and nonnegative real numbers {λ1, λ2, . . .} (assumed to be in nonincreasing
order) such that

Tκφi = λiφi. (2)
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Mercer’s theorem (Ash, 1965, Theorem 2.4) states that the covariance function can be
represented, for s, t ∈ I, as

κ(s, t) =

∞∑
i=1

λiφi(s)φi(t), (3)

where the convergence is uniform on I × I.

The eigenfunctions, {φ1, φ2, . . .} are called the principal components for reasons we
will now discuss. The map f �→ Var〈f,X〉 = Var(

∫
I
f(t)X(t)dt) obtains its maximum

on the unit sphere at φ1. The set {φ1, φ2, . . .} satisfies

φi = argmax
f∈L2

{Var〈f,X〉 : ‖f‖ = 1, 〈f, φk〉 = 0 for k = 1, . . . , i− 1} . (4)

In this way, the eigenfunctions are the principal directions of variation for the process.
The other reason for the term, “principal components,” is due to the Karhunen–Loève
expansion theorem, which states that the process, X, as a random element of L2, can
be represented as

X(t) = μ(t) +

∞∑
i=1

√
λiZiφi(t), (5)

where {Z1, Z2, . . .} are uncorrelated random variables with unit variance and the con-
vergence is in mean square, uniformly on I. In this way, the eigenfunctions can be seen
as a way to decompose the process into orthogonal (uncorrelated) components. An im-
portant special case to note is that (5) holds pointwise on I almost surely if X is a
Gaussian process, and then each Zi is also a Gaussian random variable, and hence they
are all independent.

3 Model, Prior Specification, and Posterior
Computation

Let X1, X2, . . . be independent and identically distributed observations from a Gaussian
process, GP(μ, κ), on I = [0, 1], where μ is the mean function, and κ is the covariance
function. We will assume, however, that our observations have been contaminated with
additional noise, i.e., we observe noisy data on some grid of points {t1, . . . , tT }. We
assume that all of the data is observed on the same grid for simplicity of formulas. Let
Xi = (Xi(t1), . . . , Xi(tT ))

′ be the ith underlying discretized function, and let Y i =

Xi+ εi be the ith observation, where εi
iid∼ NT (0, σ

2IT ). Our goal will be to estimate κ
and the principal components it induces from data, and we will do so by placing priors
on all the parameters.

To put a prior on μ, we shall use a Gaussian process, which reduces to the multi-
variate normal distribution on the discretized observations. In putting a prior for κ, we
shall construct our prior based on an approximate spectral representation by truncating
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the series in (3), but allowing a prior on the number of terms to ensure full support. We
shall induce a prior on the eigenvalues and eigenfunctions indirectly from that on the
covariance matrix on the finite grid of time points, which will be chosen as the inverse
Wishart distribution.

Consider a given basis, {h1.h2, . . .}, for L2. Since any eigenfunction, φi, of Tκ can
be expanded as

φi =

∞∑
j=1

αijhj , (6)

a particularly convenient method of putting a prior on {φ1, φ2, . . .} is by truncating
(6) at some level, J ∈ N. Let hJ = (h1, . . . , hJ)

′. We will also truncate the expansion
of κ in (3) at some level, K ∈ N, putting a prior on the resulting coefficients and
also a prior on J . Since the finitely truncated series converges to (6) as J → ∞, this
procedure ensures that the resulting objects, {φ1, φ2, . . .}, get a fully supported prior if
the coefficients get such a prior for each value of J . Furthermore, a prior on κ is induced
by truncating (3) at level K, i.e. κ(s, t) =

∑K
i=1 λiφi(s)φi(t), and imposing a prior on

K. Let AKJ = ((αij)) be the K × J matrix of coefficients and φK = (φ1, . . . , φK)′ be
given by

φK = AKJhJ . (7)

Let ΛK = diag(λ1, . . . , λK). Then the prior on κ can be induced by the relation

κ(s, t) = h′
J(s)A

′
KJΛKAKJhJ(t), (8)

and priors on K and J . However, as mentioned above, instead of directly putting priors
on AKJ and ΛK , we proceed in the reverse order and induce priors on them through a
convenient prior on Σ = A′

KJΛKAKJ . Details of the specification are explained below.

3.1 Model and Priors

In the following, if K = J , it leads to substantial simplification, although such a choice
may lead to overfitting of the covariance function; it is reasonable to believe that more
basis functions would be needed than the number of principal components needed to
reconstruct the covariance function. We first describe the model for the case of K = J to
then motivate the low rank model (K < J). Conditional on K = J , the model and the
prior distribution can be described by the following hierarchical scheme for i = 1, . . . , n,

Y i
ind∼ NT (HJβi,J , σ

2I) (9a)

βi,J
iid∼ NJ(θ,Σ) (9b)

θ ∼ NJ(θ0, τΣ) (9c)

σ2 ∼ inv-Gamma(a, b) (9d)

Σ−1 ∼ Wishart(ν,Ξ−1) (9e)
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J ∼ Poisson(j0), truncated to {1, . . . , T − 1}, (9f)

where HJ is a T × J matrix whose columns consist of the basis functions evaluated at
all grid points. When convenient, we may drop the subscript from certain expressions.

The functions h(t)′βi, i = 1, . . . , n correspond to the underlying (unobserved) noise-
free functional observations. The function h(t)′θ corresponds to the overall population
mean for the functional observations, h(s)′Σh(t) is the covariance function of interest,
and Ah(t) is the vector of functional principal components. When estimating the full
model, that is, averaging across the posterior distribution of K, it is important to
restrict attention to parameters whose dimension does not depend on K. For example,
the covariance function evaluated at the observed grid points, HΣH ′, has dimension
T × T , and has meaning across values of K, whereas βi only has meaning for a given
value of K.

3.2 Low Rank Model

Because the Wishart distribution gives probability 1 to nonsingular matrices, if we wish
to allow the number of principal components, K, to be less than the number of basis
functions used in approximations, J , we should allow for singular Wishart matrices. The
most straightforward approach is to use a singular center matrix, of rank K, in the prior
specification. First, let Ξ = ULU ′, where U is orthogonal and L is the diagonal matrix
of ordered eigenvalues. Choose ΞK = UKLK(UK)′, where UK is the J × K matrix
formed by the first K columns of U , and LK is the K ×K matrix formed by first K
rows and K columns of L. This implies that although ΞK is J × J , it has rank K. Let
A+ denote the Moore–Penrose inverse of a matrix A. Then, if Ω1 ∼ Wishart(ν,Ξ+

K)
and Ω2 ∼ Wishart(ν,L−1

K ),

Ω1
d
= UKΩ2U

′
K

Ω+
1 = UKΩ−1

2 U ′
K .

This gives the motivation for our full, low-rank model:

Y i
ind∼ NT (HJUKβi,K , σ2I) (10a)

βi,K
iid∼ NK(θ,Σ) (10b)

θ ∼ NK(θ0, τΣ) (10c)

σ2 ∼ inv-Gamma(a, b) (10d)

Σ−1 ∼ Wishart(ν,L−1
K ) (10e)

J ∼ Poisson(j0), truncated to {1, . . . , T − 1}, (10f)

K ∼ Poisson(k0), truncated to {1, . . . , J}. (10g)

This model implies that UKΣ−1U ′
K ∼ Wishart(ν,Ξ+

K) that provides the singularity we
desire in our modeling. Because our prior puts mass on all (J,K) pairs with 1 ≤ K ≤ J ,
we still have a marginal full-rank model, but our posterior will be mixed over rank-
deficient models.
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3.3 Model Choice

There is a vast literature on Bayesian model choice, and many of the possible procedures
could be used for our purposes. Reversible jump Markov Chain Monte Carlo (MCMC)
(Green, 1995) has become a widely used method, but presents a major hurdle in our
case with the need for a proposal distribution when using the model that includes the
parameter Σ. The main challenge is respecting the positive definiteness of the matrix
when proposing a jump to a higher dimension. This can be overcome by marginalizing
out Σ, obtaining posterior samples of the βi’s, and, finally, generating samples for
HΣH ′, which would then all live in the same dimension, even though K might change
between steps.

The approach we take is to estimate the posterior distribution of K through ap-
proximations to the marginal likelihood for each model. We employ independent Gibbs
samplers for each value of K, and compute estimates of their marginal likelihood us-
ing results from Chib (1995). The obvious disadvantage of this strategy is the need to
run MCMC chains for each possible model. The likely faster convergence of the Gibbs
sampler, however, can partially offset the cost along with the ability to implement the
chains in parallel. In the application considered below, the relatively small number of
sampled time points lends itself well to this method, and gives much more confidence
in the convergence than other approaches not based on Gibbs sampling.

3.4 Choice of Hyperparameters

Especially in the case of the inverse Wishart prior, selection of the hyperparameters is
an important issue. Because of the link between principal components and covariance
estimation, prior elicitation can be done in either domain. However, some problems
can arise with what appears to be a good default choice. Specifically, because of the
required smoothness conditions on the covariance function, it is not possible to choose
the identity matrix as the center matrix for the inverse Wishart prior.

A sensible choice of Ξ (whose size depends on J) is given below. Using the prior
covariance function, construct the covariance matrix corresponding to the grid being
used; call this Σ∗. We then propose using Ξ−1 = (H ′H)−1H ′Σ∗H(H ′H)−1 as the
choice of hyperparameter, which can be seen as a least-squares projection. This matrix
can be shown to be invertible using the facts that H has full column rank because
it is comprised of function evaluation from an orthogonal set of functions, and Σ∗ is
invertible because it is derived from a valid covariance function of a vector without
linear restrictions. To complete the specification of the Wishart prior, for model (J,K),
a reasonable default choice for the degrees of freedom is ν = 2K, which, in the Gibbs
step described later, implies the mean of the inverse Wishart distribution that resembles
a typical covariance estimate with denominator n + k − 1. This choice is implemented
in the empirical comparisons below, and performs very competitively.

Finally, for the inverse gamma prior, the choice of (a, b) is very important since it
controls the amount of smoothing performed on the data. It corresponds to the prior
beliefs on the amount of sampling noise present in the data. It turns out that the
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choice is sensitive, and, in practice, several values should be tried when performing the
analysis. There is an empirical choice available for these hyperparameters. Let β̂i =
(U ′

KH ′
JHJU

′
K)−1U ′

KH ′
JY i be the ordinary least-squares estimate. It is well known

that, conditional on σ2 and {βi,K}ni=1, the quantity,

σ−2SSEi = σ−2‖Y i −HJUKβ̂i‖
iid∼ χ2

n−K .

It can be shown that the marginal distribution of SSEi, with σ2 integrated out, is
proportional to

ba

Γ(a)

(
b+

1

2

n∑
i=1

SSEi

)n(n−K)
2 −n+a+1

Γ

(
n(n−K)

2
− n+ a+ 1

)
. (11)

Using this, a and b can be chosen to be the values which maximize this quantity evalu-
ated at the data.

3.5 Posterior Computation

Posterior computation is done independently for each pair (J,K), 1 ≤ K ≤ J ≤ Jmax.
The primary advantage is the ability to implement a Gibbs sampler for each model.
Since the models are computed separately, they can be run in parallel to offset the
computation cost of running all models. Having independent samples for each model
also allows for the adjustment of the priors on J and K without the need to rerun the
MCMC chains. Finally, it provides full information for each individual model in the case
that a single model is desired, instead of a fully Bayesian, model-averaged posterior.

For a fixed pair (J,K), the Gibbs sampler following from the low rank model (10)
is as follows:

• For i = 1, . . . , n, sample βi,K from a K-dimensional Gaussian distribution with
mean (

σ−2U ′
KH ′

JHJUK +Σ−1
)−1 (

σ−1U ′
KH ′

JY i +Σ−1θ
)
,

and variance (
σ−2U ′

KH ′
JHJUK +Σ−1

)−1
.

• Sample θ from a K-dimensional Gaussian distribution,

N

((
n+ τ−1

)−1

(
n∑

i=1

βi,K + τ−1θ0

)
,
(
n+ τ−1

)−1
Σ

)
.

• Sample Σ−1 from a Wishart distribution with degrees of freedom ν + n+ 1, and
center matrix(

LK + τ−1 (θ − θ0) (θ − θ0)
′
+

n∑
i=1

(
βi,K − θ

) (
βi,K − θ

)′)−1

.
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• Finally, sample σ−2 from a gamma distribution with shape parameter a+n/2 and
rate parameter

b+
∑
i=1

∥∥Y i −HJUKβi,K

∥∥2 .
3.6 Alternative Posterior Computation

Conditional on (J,K), the posterior distribution can be obtained using a Gibbs sampling
scheme. When computation is performed within this paper, this was the implemented
approach. Model averaging over (J,K) can be obtained by using independent MCMC
chains for each value. We do wish to point out some equivalent models that have po-
tential computational benefits. Marginalizing out βi gives

Xi
iid∼ NT (HUθ, σ2I +HUΣU ′H ′)

θ ∼ NK(θ0, τΣ)

σ2 ∼ inv-Gamma(a, b)

Σ−1 ∼ Wishart(K,L−1)

K ∼ Poisson(k0), truncated to {1, . . . , T − 1},

for the top level. In this case, we see that, for the covariance to be an identifiable
parameter, we require that K < T , so that any prior that we use should have probability
one of meeting this restriction.

We can also marginalize out θ and Σ to obtain an equivalent prior for the βi’s.
Specifically, if we let BK = [β1,K |β2,K | · · · |βn,K ], and Θ0 = [θ0| · · · |θ0], then the
marginal prior on BK is the so-called matrix t-distribution (Lad, 1996) with density[

k∏
i=1

Γ
(
v+n+1−i

2

)
Γ
(
v+1−i

2

) ]
(detΞ)

v/2 (
det

(
I − (n+ τ)−11

))k/2
×

(
det

(
LK + (BK −Θ0)

[
I − (n+ τ)−11

]
(BK −Θ0)

′))−(v+n)/2
.

Since we have then lost conjugacy, we can also integrate out σ2 to represent the model
in terms of BK only. The joint density of (Y 1, . . . ,Y n) is proportional to(

1 +
1

2b

n∑
i=1

‖Y i −HJUKβi,K‖2
)−(a+nT/2)

. (12)

This formulation can be useful for implementing a reversible jump MCMC scheme,
so that proposals are not needed for the covariance parameter, which would require
positive definiteness constraints. It can also be used to obtain the posterior mode for
βi, i = 1, . . . , n. This can potentially be much faster than full MCMC, especially when
we would like to compare many different models. In either of these cases, we can use
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the following conditional posterior distributions, and expectations derived from them,
to infer on other parameters:

Σ|β,Y ∼ inv-Wishart (v + n,Σ∗) (13)

Σ∗ = L+

n∑
i=1

(βi − β̄)(βi − β̄)′ +
n

nτ + 1
(θ0 − β̄)(θ0 − β̄)′ (14)

θ|β,Y ,Σ ∼ N

(
θ0 + τ

∑n
i=1 βi

1 + nτ
, (v + n)Σ

)
. (15)

4 Asymptotic Results

We now study the posterior rate of contraction, εn, such that the posterior probability of
the Mnεn-ball around the true parameter given n observations tends to 1 as n increases
to infinity for any Mn → ∞.

Let Π denote the prior measure on P , the parameter space regarded as a subset of
all probability measures, with a typical element P having density p, and within which
exists the true measure, P0. For P,Q ∈ P , let

K(p, q) = P log
p

q
, V+(p, q) = P log2+

p

q
,

where log+ x = max(log x, 0). We will also make use of the Hellinger distance, defined

as dH(P,Q) = (
∫
(
√
p − √

q)2)1/2, and the Frobenius norm on matrices, which, for
A = ((aij)), is defined to be ‖A‖2F =

∑
i,j a

2
ij = tr(A′A).

Let P0 stand for the true distribution with density p0. In order to obtain the posterior
rate of convergence, εn, we apply Theorem 2.1 of Ghosal et al. (2000). Thus, we need
to verify that for a constant C > 0, and a sequence {Pn} of subsets of the parameter
space,

logN(εn/2,Pn, d) ≤ nε2n, (16)

Π(Pc
n) ≤ exp

(
−nε2n(C + 4)

)
, (17)

Π
(
P : K(p0, p) ≤ ε2n, V+(p0, p) ≤ ε2n

)
≥ exp(−nε2nC), (18)

where N(ε/2,Pn, d) is the covering number, i.e., the minimum number of d-balls of size
εn/2 needed to cover Pn.

We assume given values of J,K, and σ. We also make the simplifying assumption that
the functional observations have already been detrended, so that μ(·) ≡ 0 and the prior
mean, θ0 is also taken to be 0. The theorem is stated in terms of the Frobenius norm
on matrices. Now we state the main theorem of the paper on the rate of convergence of
our posterior.

Theorem 1. Let Y i
iid∼ NT (0, σ

2I + HUΣ0U
′H ′), i = 1, 2, . . . for a known σ2 and

K = K0 < T fixed. Using the inverse Wishart prior from above

Π
(
Σ : ‖Σ0 −Σ‖F ≥ Mnn

−1/2 logn|Y 1, . . . ,Y n

)
→ 0,
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as well as

Π
(
Σ :

∥∥Σ−1
0 −Σ−1

∥∥
F
≥ Mnn

−1/2 logn|Y 1, . . . ,Y n

)
→ 0.

4.1 Proofs

Lemma 1 (Kullback–Leibler divergence under information loss). Let X and Y be ran-
dom variables with densities p and q, respectively, and U be a random variable with
uniform distribution on the unit interval, independent of X and Y . Let p̃ and q̃ be
the densities of T (X,U) and T (Y, U), respectively, for a measurable function T . Then
K(p̃, q̃) ≤ K(p, q) and V+(p̃, q̃) ≤ V+(p, q).

This lemma can be proved by considering the conditional distributions of X given
T (X,U) and Y given T (Y, U), and using the convexity of the maps (u, v) �→ u log u

v and

(u, v) �→ u log2 u
v on the set u > v > 0. A complete proof may be found in Ghosal and

van der Vaart (2016, Appendix, Lemma B.12).

Next, we need a lemma relating the Hellinger distance to the Frobenius norm induced
on our parameter of interest. This next lemma will be used in the entropy calculation.

Lemma 2. Let d be the metric induced by the Hellinger distance on the k-dimensional
centered multivariate Gaussian family. Then

d(Σ1,Σ2) = dH(N(0,Σ1), N(0,Σ2)) ≤
∥∥∥Σ−1/2

1 (Σ2 −Σ1)Σ
−1/2
1

∥∥∥
F
. (19)

Furthermore, there exists δ > 0 and constant C > 0, depending on Σ1, such that, if
d(Σ1,Σ2) < δ, then ∥∥∥Σ−1/2

1 (Σ2 −Σ1)Σ
−1/2
1

∥∥∥
F
≤ Cd(Σ1,Σ2). (20)

Proof. Let {λj} be the eigenvalues of Σ
−1/2
1 Σ2Σ

−1/2
1 , which is a symmetric, positive-

definite matrix. Then for some orthogonal matrix P . Then, Σ
−1/2
1 Σ2Σ

−1/2
1 = PΛP ′,

where Λ = diag(λ1, . . . , λk). Then

dH(N(0,Σ1), N(0,Σ2))
2 = 1− det(Σ1)

1/4 det(Σ2)
1/4

det(12 (Σ1 +Σ2))1/2

= 1− det(Σ
−1/2
1 Σ2Σ

−1/2
1 )1/4

det(12 (Σ
−1/2
1 Σ2Σ

−1/2
1 + I))1/2

= 1−
∏k

j=1 λ
1/4
j(∏k

j=1
1
2 (λj + 1)

)1/2
. (21)

We now show that (21) is less than or equal to
∑k

j=1(λj − 1)2 by induction.
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For k = 1, define a function ξ(λ) = (λ − 1)2 + λ1/4( 12 (1 + λ))−1/2. We have that
ξ(0) = ξ(1) = 1, and we claim that ξ(λ) ≥ 1 for λ > 0. Now,

d

dλ
ξ(λ) =

(λ− 1)(8λ3/4(λ+ 1)3/2 −
√
2)

λ1/4(λ+ 1)1/2
. (22)

The two positive real roots of the numerator are 1 and 0.403. It can then be seen that
d
dλξ(λ) ≥ 0 for λ ≤ 0.403 or λ ≥ 1, and that d

dλξ(λ) ≤ 0 in between these values.
Taking this together, this implies that ξ(λ) ≥ 1 for all λ ≥ 0, which is equivalent to the
induction hypothesis for k = 1.

For the induction step, we define γ(λ) = λ1/4( 12 (1 + λ))−1/2 and claim that γ(λ) ≤ 1
for λ ≥ 0. This can be seen by the fact that γ(1) = 1 and

d

dλ
γ(λ) = −(λ− 1)2−3/2λ−3/4(λ+ 1)−3/2

satisfies d
dλγ(λ) ≥ 0 for 0 ≤ λ ≤ 1 and d

dλγ(λ) ≤ 0 for λ ≥ 1. So, by the induction
hypothesis and the case k = 1, we have that

1−
∏k

j=1 λ
1/4
j(∏k

j=1
1
2 (λj + 1)

)1/2
≤ 1− λ

1/4
k

( 12 (1 + λk))1/2
+

λ
1/4
k

( 12 (1 + λk))1/2

k−1∑
j=1

(λj − 1)2

≤
k∑

j=1

(λj − 1)2. (23)

The proof is now complete by noting that ‖Σ−1/2
1 (Σ2 − Σ1)Σ

−1/2
1 ‖F = tr(P (Λ −

I)P ′) =
∑k

j=1(λj − 1)2.

The reverse inequality can be established following the arguments given in Banerjee
and Ghosal (2015, Lemma A.1).

Proof of Theorem 1. Using the earlier notation, p0 = N(0, σ2I+HUΣ0U
′H ′) and p =

N(0, σ2I +HUΣU ′H ′). Let q0 = N(0,Σ0), q = N(0,Σ), and Σ∗ = Σ
−1/2
0 ΣΣ

−1/2
0 .

Hence, by Lemma 1, we obtain that

Π

(
P0 log

p0
p

≤ ε2n, P0(log+
p0
p
)2 ≤ ε2n

)
≥ Π

(
Q0 log

q0
q

≤ ε2n, Q0(log+
q0
q
)2 ≤ ε2n

)
= Π

(
tr(Σ∗)− k − log det(Σ∗) < 2ε2n, (tr(Σ

∗)− k)2 ≤ 4ε2n
)

= Π

⎛⎜⎝ k∑
j=1

(λj − 1− log λj) < 2ε2n,

⎛⎝ k∑
j=1

(λj − 1)2

⎞⎠2

≤ 4ε2n

⎞⎟⎠ , (24)
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where {λj}kj=1 are the eigenvalues of the matrix Σ∗. Now, Σ−1 ∼ Wishart(v,Ξ) implies

Σ∗ ∼ Wishart(v,Σ
1/2
0 ΞΣ

1/2
0 ). Now, for large enough n,

Π

⎛⎜⎝ k∑
j=1

(λj − 1− log λj) < 2ε2n,

⎛⎝ k∑
j=1

(λj − 1)2

⎞⎠2

≤ 4ε2n

⎞⎟⎠
≥ Π

⎛⎝ k∑
j=1

(λj − 1)2 < 2εn, λj ≥ 1, j = 1, . . . , k

⎞⎠
≥ Π

(
1 ≤ λj ≤ 1 + k−1/2

√
2ε1/2n

)
≥ Ckε

k2/4+k/4
n � exp(−nε2nC) (25)

for εn = n−1/2 logn, and some constants, C and Ck. The first inequality of (25) is
obtained by applying Lemma 1 of Shen et al. (2013); see Lemma 9.23 of Ghosal and
van der Vaart (2016) for a complete proof, including the case Ξ �= I.

Now, let Pn = {Σ : ‖Σ−1‖F ≤ n1/8}. Let d be the distance on the space of sym-
metric, positive definite matrices induced by the Hellinger metric on the multivariate
Gaussian family. For Σ1,Σ2 ∈ Pn, we have that

d(Σ1,Σ2) ≤
∥∥∥Σ−1/2

1 (Σ2 −Σ1)Σ
−1/2
1

∥∥∥
F
≤ ‖Σ−1

1 ‖F ‖Σ2 −Σ1‖F ≤ n1/8‖Σ2 −Σ1‖F ,
(26)

which implies that

logN(εn/2,Pn, d) ≤ logN(n−1/8εn/2,Pn, ‖ · ‖F ) ≤ k2 log

(
6n1/4

εn

)
� nε2n (27)

for the chosen εn. The second inequality on the preceding line is due to the fact that,
using the Frobenius norm, the space of positive definite k×k matrices can be viewed as
a subset of Rk2

(see Pollard (1990, Section 4) for the entropy calculation in Euclidean
space).

Finally,

Π
(
‖Σ−1‖F > n1/8

)
≤ Π

(
tr(Σ−1) > n1/8

)
≤ exp(−n1/8) det(I − 2Ξ)−v/2

� exp
(
−nε2n(C + 4)

)
(28)

for the chosen εn. The first inequality is true because of the relationship between the
Frobenius norm and the trace of a positive definite matrix. The second inequality follows
from Markov’s inequality using the moment generating function of tr(Σ−1) evaluated
at 1 (Muirhead, 2009).

This establishing the consistency result in terms of the Hellinger distance, specifi-
cally, as n → ∞,

Π
(
Σ : d (Σ,Σ0) ≥ Mnn

−1/2 logn|Y 1, . . . ,Y n

)
→ 0.
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Now, the reverse inequality of Lemma 2 implies the desired result in terms of the
Frobenius norm:

Π
(
Σ :

∥∥∥Σ−1/2
0 (Σ−Σ0)Σ

−1/2
0

∥∥∥
F
≥ Mnn

−1/2 logn|Y 1, . . . ,Y n

)
→ 0.

Finally, since Σ0 is a fixed matrix, the first stated result follows from the relation
‖AB‖F ≤ ‖A‖F ‖B‖F , for two matrices A and B. To derive the second assertion,
write Σ−1

0 −Σ−1 as Σ−1
0 (Σ−Σ0)Σ

−1 and apply the norm inequality repeatedly.

5 Simulation Study

To assess the finite-sample performance of the proposed method, we present the results
of a simulation study comparing the approach advocated herewithin to a recent fre-
quentist approach, FACE (Xiao et al., 2013), implemented using the refund package
in R.

5.1 Description of FACE

The frequentist method to which we compare our method is the “Fast Covariance Esti-
mation” (FACE) method of Xiao et al. (2013). It is a very common frequentist method
for the analysis of functional data, and has been made popular by the refund pack-
age available in R. The FACE estimator, F̃ , is simply a sandwich-smoothed sample
covariance matrix, that is

F̃ = SF̂S,

where F̂ is the sample covariance matrix and S is a symmetric “smoothing” matrix,
which is constructed using penalized B-splines. The form allows fast computation of the
estimator. Thus, the comparison to our Bayesian method can be seen as demonstrating
the potential benefits of a more complex method when the available computation allows
for a fully Bayesian method.

5.2 Results

Each data set consists of 20 noisy observations on an evenly spaced grid of 50 time
points in the interval [−1, 1]. The true underlying functional observations all have a
true mean of μ(t) = sin(2πt), and a covariance of either κ1(s, t) = exp{−3(t − s)2} or
κ2(s, t) = min{s + 1, t + 1}, depending on the experimental conditions. Independent
sampling noise is then added in the form of independent N(0, 0.3) random variables
(other values for the variance of the noise were considered, but the results remained
qualitatively very similar). The two methods are compared in the following realms: es-
timation of the mean function, estimation of the covariance function, estimation of the
principal components, and reconstruction of a new set of underlying functional observa-
tions (generated according to the same model). Function estimation is evaluated using
the supremum, L1 and L2 metrics, and principal component estimation is evaluated
using the angle between the estimate and the true function (this was chosen instead of
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Figure 1: Simulation Study: Boxplots for the simulation results corresponding to κ1

used for both the truth and the prior. Results are shown in pairs, with the left box (red
color) representing the proposed Bayesian procedure, and the right (black) representing
the FACE procedure. The value above each pair represents the proportion of data sets
in which the Bayesian procedure performed superiorly.

using squared distance, to take advantage of the Hilbert space structure). Observations
are always reconstructed using the first 4 principal components.

For each choice of κ1 and κ2 as the true covariance function, we ran two simula-
tions corresponding to choosing κ1 or κ2 as the prior covariance, yielding four total
experimental conditions. Each scenario is repeated 100 times.

The proposed Bayesian procedure is computed using a Gibbs sampler with 5000
burn-in iterations, and 5000 iterations to estimate posterior means. The concentration
parameter for the Wishart distribution, ν, was chosen to be 2K; this empirically seemed
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Figure 2: Simulation Study: Boxplots for the simulation results corresponding to κ1

used for the truth and κ2 used for the prior. Results are shown in pairs, with the left
box (red color) representing the proposed Bayesian procedure, and the right (black)
representing the FACE procedure. The value above each pair represents the proportion
of data sets in which the Bayesian procedure performed superiorly.

to be a reasonable default choice. Legendre polynomials were used as the orthonormal
basis, a Poisson prior with mean 7 was placed on the number of basis functions, and a
Poisson prior with mean 1 was placed on the number of principal components. However,
for the computation, only models with fewer than 20 basis functions were run, which
would correspond to a truncated prior. This practically had no effect on the results since
models outside that range had negligible posterior mass. See Figure 5 for examples of
the posterior distribution of (J,K). The principal components were estimated using the
decomposition of the estimated posterior mean of the covariance matrix. The results
can be seen in Figures 1–4.
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Figure 3: Simulation Study: Boxplots for the simulation results corresponding to κ2

used for both the truth and the prior. Results are shown in pairs, with the left box (red
color) representing the proposed Bayesian procedure, and the right (black) representing
the FACE procedure. The value above each pair represents the proportion of data sets
in which the Bayesian procedure performed superiorly.

As can be seen from the results, the Bayesian procedure performs consistently well
across the conditions in the estimation of the principal components themselves when
measured by the angle from the truth. The practical importance of prior information
can be seen in the improvements in reconstruction when the true covariance is used to
construct the prior. In the functional data setting, the smoothness of the underlying
true observations is usually well understood scientifically in an applied context, and
should be incorporated into the analysis. The overall picture that these results show is
that the proposed Bayesian method has the ability to perform competitively with the
most modern frequentist procedures when judged by repeated sampling criteria.
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Figure 4: Simulation Study: Boxplots for the simulation results corresponding to κ2

used for the truth and κ1 used for the prior. Results are shown in pairs, with the left
box (red color) representing the proposed Bayesian procedure, and the right (black)
representing the FACE procedure. The value above each pair represents the proportion
of data sets in which the Bayesian procedure performed superiorly.

6 Canadian Weather Data

To illustrate our method on real data, we analyzed the popular Canadian weather
data, which is freely available in the fda package in R. The data was made popular by
Ramsay and Silverman (2005), and our analysis is consistent with theirs. These data
consist of 35 functional observations observed on a common grid of 365 time points.
They correspond to the average daily temperature of 35 Canadian cities. We employ
Legendre polynomials as the basis, with an unknown number of basis functions. We
use a modified Poisson distribution on K with mean 7, and truncated above at 30. The
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Figure 5: Simulation Study: Examples of the posterior distribution of models for each
of the four experimental conditions. Row 1 corresponds to κ1 as the prior, and column
1 corresponds to κ1 as the truth. The other row and column correspond to κ2.

parameter θ0 is taken to be zero, and the prior covariance function that is approximated
was κ(s, t) = exp{−3(s− t)2}. For each model, 180,000 MCMC iterations were used for
estimation after 20,000 burn-in iterations. Estimates are only calculated at the sampled
time points; if there are other time points of interest, ideally, they should be treated as
missing data and incorporated into the MCMC approximations.

In the posterior, almost all the mass lies on the model with J = 12,K = 12 (96.1%),
and a small amount on J = 16,K = 15 (3.9%); a plot of the marginal likelihoods for
each model can be seen in Figure 6. Posterior estimates shown are full model estimates,
although they will be extremely close to conditioning on the maximum a posteriori
model. The observations along with their smoothed estimates can be seen in Figure 7.
The estimated covariance function can be seen in Figure 8, along with the implied
principal components in Figure 9.
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Figure 6: Canadian Weather Data: Posterior probabilities for each model, (J,K). Only
models 1 ≤ K ≤ J ≤ 25 had prior mass.

Figure 7: Canadian Weather Data: Observations (dots) along with pointwise posterior
means (lines). The posterior means are the mean of HJUKβi,K over (J,K).

The first principal component represents the overall temperature of the city through-
out the year; it differentiates between generally “mild” and “cold” cities. The second
principal component seems to quantify the relative difference in temperature between
summer and winter months, and differentiates between cities that have a more flat tem-
perature function, compared to those with extremely cold winters. The higher order
principal components represent more complicated phenomena.
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Prior Truth MSE(Bayes) MSE(FACE) P(MSE(Bayes) < MSE(FACE))

PC1
κ1

κ1 0.066 0.075 0.78
κ2 0.020 0.016 0.26

κ2
κ1 0.053 0.068 0.60
κ2 0.011 0.017 0.89

PC2
κ1

κ1 0.073 0.088 0.84
κ2 0.048 0.069 0.92

κ2
κ1 0.076 0.086 0.60
κ2 0.025 0.071 0.98

PC3
κ1

κ1 0.045 0.065 0.93
κ2 0.074 0.101 0.98

κ2
κ1 0.078 0.064 0.31
κ2 0.031 0.104 0.98

Table 1: Simulation Study: Comparison of MSEs (Mean Squared Errors). Rows in dark
red text are experimental conditions where our method outperformed FACE. In all of
these cases the difference is significant in a frequentist sense with the null hypothesis
that there is equal probability of either method winning a trial.

Figure 8: Canadian Weather Data: Full posterior mean of the covariance function over
all (J,K) pairs.

7 Discussion

There are two points that warrant further discussion beyond what has already been pre-
sented: modifications to the model under special circumstances, and the computational
difficulties of fitting the model.

Although our method allows for the possibility that the number of basis functions
used for approximation and the number of principal components require different values,
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Figure 9: Canadian Weather Data: First four FPCAs corresponding to the full posterior
mean of the covariance function (Figure 8) along with their associated proportion of
variance explained.

in the form we present, the number of basis functions is the same for both mean and
covariance modeling. One possible concern is that, in the situation where the mean
function requires many more basis functions to be well-approximated compared with
the covariance function, the chosen value of K will be forced too high. Specifically, to
deal with this, we can allow for an extra overall mean term, η, in (10) that can capture
the excess roughness present in the mean:

Y i
ind∼ NT (HJUKβi,K + η, σ2I) (29a)

η ∼ NT (η0,Ψ). (29b)

Allowing Ψ to be full rank would be sure to provide great flexibility, but may lead to
over-fitting. A further modification could be to express η in the same basis domain as
the rest of the model, and let η = HMξ, M > K, with a prior on ξ. This is similar
to the approach in generalized additive models of allowing differing number of basis
functions for each component, and the addition of this term causes an identifiability
issue with the collection {βi,K}. This issue can be handled in a similar fashion to Lang
and Brezger (2004). A step-wise frequentist approach could be to de-mean the data
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before processing, possibly including smoothing, and then apply our method with θ

removed from the model, that is, βi,K
iid∼ NK(0,Σ) in (10).

The final issue is the computational difficulties in fitting the full model. The ap-
proach we have taken is to run independent MCMC chains for each pair of values
(J,K), 1 ≤ K ≤ J ≤ Jmax, up to some predefined value, Jmax. The software ap-
proach the we have implemented will be made available on one of the authors’ website
(https://www.ajsuarez.com). It uses R’s C interface to be able to take advantage of
using OpenMP for parallelization of the MCMC chains. Specifically, for each value of
J , the models, 1 ≤ K ≤ J , are run in parallel batches. For example of computation
time, on a data set containing 50 functional observations at 100 time points, fitting all
models up to Jmax = 25 takes approximately 3 seconds per 1000 MCMC steps on a
6-core Intel Haswell CPU running at 4 GHz. Computation increases on the order of
J2
max, and this dominates compared with the time points. For an MCMC procedure

that provides full information on each individual model, we believe this approach to be
worth the computational time.
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Horváth, L. and Kokoszka, P. (2012). Inference for Functional Data with Applica-
tions, volume 200. Springer. MR2920735. doi: http://dx.doi.org/10.1007/978-
1-4614-3655-3. 311

https://www.ajsuarez.com
http://www.ams.org/mathscinet-getitem?mr=0229475
http://www.ams.org/mathscinet-getitem?mr=3321485
http://dx.doi.org/10.1016/j.jmva.2015.01.015
http://www.ams.org/mathscinet-getitem?mr=2201368
http://dx.doi.org/10.1093/biomet/92.2.419
http://www.ams.org/mathscinet-getitem?mr=1379473
http://www.ams.org/mathscinet-getitem?mr=1790007
http://dx.doi.org/10.1214/aos/1016218228
http://www.ams.org/mathscinet-getitem?mr=1380810
http://dx.doi.org/10.1093/biomet/82.4.711
http://www.ams.org/mathscinet-getitem?mr=2920735
http://dx.doi.org/10.1007/978-1-4614-3655-3
http://dx.doi.org/10.1007/978-1-4614-3655-3


A. J. Suarez and S. Ghosal 333

Jolliffe, I. T. (1986). Principal Component Analysis, volume 487. Springer-Verlag New
York. MR2036084. 311

Lad, F. (1996). Operational Subjective Statistical Methods: a Mathematical, Philosoph-
ical, and Historical Introduction. Wiley Series in Probability and Statistics. Wiley.
MR1421323. 318

Lang, S. and Brezger, A. (2004). “Bayesian P-splines.” Journal of Computational
and Graphical Statistics, 13(1): 183–212. MR2044877. doi: http://dx.doi.org/10.
1198/1061860043010. 331

Muirhead, R. J. (2009). Aspects of Multivariate Statistical Theory. Wiley–Interscience.
MR0652932. 322

Pollard, D. (1990). Empirical Processes: Theory and Applications. NSF–CBMS Regional
Conference Series in Probability and Statistics. Institute of Mathematical Statistics.
MR1089429. 322

Ramsay, J. and Silverman, B. (2005). Functional Data Analysis. Springer. MR2168993.
311, 327

Shen, W., Tokdar, S. T., and Ghosal, S. (2013). “Adaptive Bayesian multivariate den-
sity estimation with Dirichlet mixtures.” Biometrika, 100(3): 623–640. MR3094441.
doi: http://dx.doi.org/10.1093/biomet/ast015. 322

Tipping, M. E. and Bishop, C. M. (1999). “Probabilistic principal component analysis.”
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61(3):
611–622. MR1707864. doi: http://dx.doi.org/10.1111/1467-9868.00196. 311

van der Linde, A. (2008). “Variational Bayesian functional PCA.” Computational
Statistics & Data Analysis, 53(2): 517–533. MR2649106. doi: http://dx.doi.org/
10.1016/j.csda.2008.09.015. 312

Xiao, L., Ruppert, D., Zipunnikov, V., and Crainiceanu, C. (2013). “Fast covariance
estimation for high-dimensional functional data.” arXiv:1306.5718. MR3439382.
doi: http://dx.doi.org/10.1007/s11222-014-9485-x. 323

Acknowledgments

Research is partially supported by NSF grant number DMS-1106570.

http://www.ams.org/mathscinet-getitem?mr=2036084
http://www.ams.org/mathscinet-getitem?mr=1421323
http://www.ams.org/mathscinet-getitem?mr=2044877
http://dx.doi.org/10.1198/1061860043010
http://dx.doi.org/10.1198/1061860043010
http://www.ams.org/mathscinet-getitem?mr=0652932
http://www.ams.org/mathscinet-getitem?mr=1089429
http://www.ams.org/mathscinet-getitem?mr=2168993
http://www.ams.org/mathscinet-getitem?mr=3094441
http://dx.doi.org/10.1093/biomet/ast015
http://www.ams.org/mathscinet-getitem?mr=1707864
http://dx.doi.org/10.1111/1467-9868.00196
http://www.ams.org/mathscinet-getitem?mr=2649106
http://dx.doi.org/10.1016/j.csda.2008.09.015
http://dx.doi.org/10.1016/j.csda.2008.09.015
http://arxiv.org/abs/arXiv:1306.5718
http://www.ams.org/mathscinet-getitem?mr=3439382
http://dx.doi.org/10.1007/s11222-014-9485-x

	Introduction
	Background
	Model, Prior Specification, and Posterior Computation
	Model and Priors
	Low Rank Model
	Model Choice
	Choice of Hyperparameters
	Posterior Computation
	Alternative Posterior Computation

	Asymptotic Results
	Proofs

	Simulation Study
	Description of FACE
	Results

	Canadian Weather Data
	Discussion
	References

