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Context-Dependent Score Based Bayesian
Information Criteria

N. T. Underhill∗ and J. Q. Smith†

Abstract. In a number of applications, we argue that standard Bayes factor
model comparison and selection may be inappropriate for decision making under
specific, utility-based, criteria. It has been suggested that the use of scoring rules
in this context allows greater flexibility: scores can be customised to a client’s
utility and model selection can proceed on the basis of the highest scoring model.
We argue here that the approach of comparing the cumulative scores of competing
models is not ideal because it tends to ignore a model’s ability to ‘catch up’ through
parameter learning. An alternative approach of selecting a model on its maximum
posterior score based on a plug in or posterior expected value is problematic in that
it uses the data twice in estimation and evaluation. We therefore introduce a new
Bayesian posterior score information criterion (BPSIC), which is a generalisation
of the Bayesian predictive information criterion proposed by Ando (2007). This
allows the analyst both to tailor an appropriate scoring function to the needs of the
ultimate decision maker and to correct appropriately for bias in using the data
on a posterior basis to revise parameter estimates. We show that this criterion
can provide a convenient method of initial model comparison when the number of
models under consideration is large or when computational burdens are high. We
illustrate the new methods with simulated examples and real data from the UK
electricity imbalance market.

Keywords: scoring rules, Bayesian model selection, information criteria, utility
based model selection.

1 Introduction

In practice, model selection is often undertaken in order to make sound predictions of
future values of one or more specific quantities of interest. An analyst may be concerned
with predicting certain marginals, conditional relationships or other quantities (for ex-
ample, quantiles), but have relatively little interest in the overall performance of models
across the full joint distribution.

Consider a high dimensional Gaussian network, which may have been built to exploit
a number of promising covariates or to allow the researcher to build up a plausible set
of connections between components hierarchically. For example, suppose the analyst is
ultimately interested in the dependence of demand, D, on price, V . Rather than mod-
elling this directly (which might require the elicitation of complex priors and likelihood
specifications beyond the experience of the analyst or subject matter experts), she con-
siders that it is more appropriate to build up a series of intermediate dependencies which
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are more readily modelled, understood and elicited. The hope is that the relationship
of interest can be established more accurately than through a more direct approach.

However, many standard model selection approaches, for example, Bayes factors, are
implicitly concerned with the performance of the model across the full joint distribution
rather than the subset of interest. In our example, the analyst is interested in choosing
between models based on their performance in predicting demand based on a change
in price, rather than including performance of the forecasts of intermediate variables
introduced solely for modelling convenience.

It is well known that the fact that the models being evaluated typically capture
the data generating process only in an approximate way presents challenges to the
procedure for model selection. Many standard model selection approaches, for example,
those using Bayes factors, assume an underlying M-closed context (Bernardo and Smith
(1994)), in which one of the models under consideration is asserted to be true. In all but
the simplest cases, this assumption is dubious. More usually, we operate in an M-open
context, in which the class of fitted models is simply a convenient proxy for an unknown
true model.

Once we accept that the model class under consideration cannot usually be guaran-
teed to correspond in its entirety to a comprehensive and exact representation of the
modeller’s belief about what might unfold, the focus immediately shifts to identifying
which aspects of the model performance are most important to the end user. Rather than
seeking to provide a complete and faithful portrayal or explanation of the underlying
physical, causative processes, the analyst aims at releasing to her clients a model which
is ‘the best available and good enough’ (‘requisite’ to use the terminology of Phillips
(1982)) to enable predictions to be made within acceptable bounds, where acceptability
is defined with reference to the end user’s utility function.

With growing access to larger datasets, and the associated interest in ‘big data’
and ‘big models’, we argue that such approximations will become more common and
necessary. One reason for this is the appetite to exploit large datasets in the absence
of a clearly defined structure a priori. For example, unsupervised learning (Gharamani
(2004)) on a large but incomplete data set provides opportunities to discover new pre-
dictive covariates, but also presents challenges in that the search for the best model
is likely to be pragmatically, rather than theoretically motivated. Even in those cases
where the modeller has access to greater insight into the underlying data structure and
relationships, the larger the size and nature of the data set, the less feasible it is to build
faithful probability structures over every aspect of the joint distribution.

This paper introduces a new approach in the form of a context dependent Bayesian
information criterion – the Bayesian Posterior Score Information Criterion (BPSIC)
which is based on a bias corrected posterior predictive expected score which can be
tailored to the utility of a model user.

In Section 2, we provide background to common approaches to utility based model
selection; Section 3 and the appendix contain the motivation for and derivation of
the proposed criterion. Section 4 illustrates the application of the criterion to some
stylised examples, together with analysis of situations in which the model is correctly and
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incorrectly specified under a variety of scoring rules. We also illustrate the advantages
of the posterior estimated score as opposed to an assessment of cumulative historical
performance when models improve performance through parameter updating in the light
of incoming data. In Section 5, we apply the selection criterion to a problem involving
the quantification of risk characteristics of imbalance prices in the UK electricity market.

2 Utility based model selection

Vehtari and Ojanen (2012) give a comprehensive survey of established and recent ap-
proaches in Bayesian model selection. This is framed in decision theoretic terms as
choosing the model Mk which maximises the expected utility:

Ū(Mk, âk) =

∫
u(Mk, âk, ỹ)p(ỹ | D,M�)dỹ, (1)

where âk is the prediction which would maximise the expected utility if model Mk were
to generate future data, and where we denote the true, but unknown, data generating
mechanism for the future observations y by M�.

A number of appropriate utilities have been proposed in the form of proper scor-
ing rules – functions of the elicited probability density and the values which materialise
(Winkler et al. (1996), Gneiting and Raftery (2007)). In the case of point predictive fore-
casting, Gneiting (2011) provides a comprehensive review of loss functions which target
particular aspects of the forecast. For example, the requirement to forecast prudential
reserves for regulatory and risk management applications require ensuring a good fit to
particular distribution quantiles, for which specific quantile and expectile scoring rules
have been developed (see Gneiting (2011) and below for specific examples of these).

More generally, Dawid (2007) formulates the role of proper scoring rules and their
related divergences in the context of a general decision problem where we have an
outcome space X, action space A, and loss function L. If P , Q are distributions over X,
Dawid (2007) defines:

• Bayes act aP := arg infa∈A L(P, a)

• Proper scoring rule S(x,Q) := L(x, aQ)

• Entropy function H(P ) := S(P, P )

• Divergence function d(P,Q) := S(P,Q)−H(P ),

where we denote L(P, a) = EP [L(X, a)], S(P,Q) = EP [L(X,Q)], where X ∼ P .

For example, if we take the logarithmic density loss function L(x,Q) = − logQ(x),
the Bayes act aP is equal to P , the associated proper scoring rule is the logarithmic
scoring rule S(x,Q) = − logQ(x) and the divergence corresponds to Kullback–Leibler
divergence. Alternatively, in the case of quadratic loss, the loss function L(x, a) =
(a − x)2, the Bayes act aP corresponds to choosing μP , where μP is defined to be
the mean of the distribution defined by P , and the associated proper scoring rule is
S(x,Q) = (μQ − x)2.
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Note that in the second example, the scoring rule is not strictly proper (see, e.g.
Gneiting and Raftery (2007)) in the sense that the expected score will be maximised
by any distribution sharing the same mean as the the true distribution, P , and neither
is it local (see, e.g. Bernardo and Smith (1994)) in that it depends on values of the
density function of Q at points other than the observed value x. Bernardo (1979) shows
that the only strictly proper local scoring rule is the logarithmic score. For the purposes
here, we argue that locality is not a crucial property (although we accept that, from a
more theoretical standpoint, departure from locality may be at odds with the likelihood
principle – see Bernardo and Smith (1994) for a discussion of this point) – our central
concern is in choosing a loss function which targets a particular utility. It is interesting
to note that other authors have discarded the need for local scoring rules. For example,
Musio and Dawid (2013) advocate non-local scoring rules, albeit in their case to avoid
the need to calculate normalising constants.

In the M -closed case in which one of the models under consideration is, in fact, M�,
then under a zero–one utility, Bernardo and Smith (1994) show that the Bayes factor
(Kass and Raftery (1995)) leads to optimal selection. But despite its popularity, in the
M −open context which we consider here, automatic use of the Bayes factor to perform
model selection gives cause for concern. As Kadane and Dickey (1980) establish, the
Bayes factor will be only optimal in those situations in which we have a true model and
our utility takes the 0–1 form.

The Bayes factor criterion that we should select model Mi in preference to Mj if
p(x | Mi) > p(x | Mj) can equivalently be expressed in the form

− log p(x | Mi) < − log p(x | Mj) (2)

or, if observed data x comprises a series of observations which we can sequence x1, x2, . . . ,
xn, then Dawid (1984) establishes a prequential formulation of the form

n∑
k=1

− log p(xk | x1, . . . , xk−1,Mi) <

n∑
k=1

− log p(xk | x1, . . . , xk−1,Mj). (3)

In other words, we are selecting models based on their cumulative logarithmic score.
One problem with this approach is that the logarithmic score will significantly penalise
models which differ in the tails of the distribution where the log-predictive density is a
large negative number. If a user is more interested in performance in the body of the
distribution – in our example, suppose we are interested in system planning to meet
typical demand levels over a range of price scenarios – then this may place too much
emphasis on models which fit the tails accurately.

Suppose, for instance, that we have chosen to use a ‘big model’ Bayesian network
which introduces of a number of ‘intermediate’ dependencies – through modelled vari-
ables X = (X1, X2, . . . , Xn), where we denote the parents of Xi by Pa(Xi), the demand
D is represented by X1, price V is represented by Xn, and n is large.

If our interest lies either (a) in forecasting the marginal distribution of the variable
Xn, or (b) in the conditional distribution Xn | X1, then we are interested in the pre-
dictive utility only for these elements. If we denote the true data density by P , and the
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modelled density by Q, this might, for example, correspond to our interest in minimising
(a) the marginal Kullback–Leibler divergence:

KXn(P,Q) := KL(P (Xn), Q(Xn)).

or (b) the conditional Kullback–Leibler divergence

KXn|X1
(P,Q) := EP [KXn(P (Xn | x1), Q(Xn | x1))].

However, Bayes factor comparison will automatically include the model’s performance
on all other relationships, regardless of whether they are pertinent to the decision
maker’s utility. For example, in a simple case where the variables are independent,
we have

KL(P,Q) =
n∑

i=1

KXi(P,Q),

or more generally we will have

KL(P,Q) =

n∑
i=1

KXi|Pa(Xi)(P,Q),

so that the good performance of a model on the marginal or conditional dependency of
interest will be disguised by poor performance on the other marginals or conditionals
which are introduced by the model. If, for example, variable Xi for some 1 < i < n has
little or no influence over the marginal of interest, but has been poorly modelled, then
its introduction will have little impact on the performance of the model on the marginal
of interest, but it will have a larger negative impact on the overall model score.

The exact impact of this will depend on the extent to which data contains ‘unusual’
observations, but for high dimensional settings we can reasonably expect outliers on
some dimension. In big data contexts, therefore, outlying observations on aspects of the
model in which we are not interested can have a distorting impact on decisions taken if
we use the logarithmic score across the full joint distribution.

One solution is to choose a more appropriate scoring rule: in this case using the
relevant marginal and conditional logarithmic scores might be preferable. Even if, as
we will now assume for the remainder of this paper, the analyst has selected a scoring
rule appropriate to her application, there remains the problem of how to compute the
expected future utility in (1) for each model under consideration. It is this problem to
which we now turn our attention.

By analogy with the prequential representation of the Bayes factor as the cumula-
tive log-score of a series of one step ahead forecasts, we could compute a cumulative
realised score as an estimate for the expected future utility. There is a question around
the relevance of historical performance, as assessed via the cumulative score, to future
performance. van Erven et al. (2012) call this the ‘catch up’ effect: a model can ini-
tially perform poorly – for example, a vague prior has been used to initial data to
have a greater influence on parameter updating – but after a period of ‘training’, it
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may start to out-perform alternative models. Where a cumulative score is used, the
score may fail to identify this change point at an early stage. We illustrate this in
Section 4.

An alternative, at the other extreme, is to assess models based on their posterior
predictive performance, using the data observed as a proxy for new observations –
the posterior Bayes factor. This is problematic (see the discussion in Aitkin (1991))
in introducing a bias and overfitting: by using the data twice to derive the posterior
predictive distribution and assess this distribution the model can appear to perform
better than it would on a truly independent sample.

Gelfand and Dey (1994) present a framework in which the Bayes factor and posterior
Bayes factor can be regarded as special cases arising when the requirement to use the
a priori predictive density for model assessment is relaxed, thereby permitting more
general predictive densities to be employed. In this setting, one chooses between models
based on each model’s predictive density, updated on one subset of data, with perfor-
mance being assessed on another (not necessarily distinct) subset of the same data.
Such an approach not only avoids problems associated with improper priors when cal-
culating the Bayes factor, but also allows more general loss functions to be incorporated
in the model assessment. However, it leaves open two important questions: firstly, the
extent to which overlapping subsets introduce bias into the assessment, and secondly,
the extent to which the power of the assessment is reduced by assessing performance
on an incomplete sample of data. It is these aspects which we look to address through
the information criterion we introduce in this paper.

Two main approaches have been taken which attempt to compensate for these ef-
fects. Cross-validation (Stone (1974), Arlot and Celisse (2010)) assesses performance
by averaging predictive performance based on models built on one subset of the data,
with predictive performance judged on the data ‘left out’ of the the model construction.
Bernardo and Smith (1994), Key et al. (1999) and Vehtari (2001) are early examples of
the application of cross-validation to the estimation of general expected utilities, and
more recently Vehtari and Ojanen (2012) have also advocated this approach, although
it lacks a formal Bayesian foundation.

One practical drawback of cross-validation is that it can be computationally complex
to rebuild models for multiple training samples, particularly where MCMC methods
are used to obtain parameter estimates. This may rule it out for initial exploratory
model comparison, in situations where a large number of candidate models are being
evaluated. Although computationally less expensive variants are available, for example,
where random sub-samples are used, there is a danger that they may omit important
observations. This could be a particular danger when our aim is to assess the model on
its ability to forecast tail quantiles of the distribution. Where smaller samples are used
to form the training data, this may not fully reflect the model’s ability to ‘catch up’
with a larger training sample.

The second approach, which we develop in this paper, is to construct an ‘information
criterion’ which seeks to adjust directly for the bias inherent in using the same data
twice. We provide a brief explanation of this method in the section below.
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3 Score based information criteria

Information criteria are designed to enable model performance to be assessed retro-
spectively and therefore need to correct for bias in using the same data for parameter
estimation and assessment. Akaike (1973) is a landmark: models are assessed on their
fit in terms of Kullback–Leibler divergence to a true model estimated by the AIC, while
from a Bayesian standpoint, Schwarz (1978) provides the first motivation for the use of
the BIC. The criterion

BIC = k logn− 2 log(L) (4)

is expressed in terms of the maximised log-likelihood, log(L) of the data together with
an adjustment, where k is the number of parameters in the model and n the number
of observations. Stone (1977) shows that AIC and leave-one-out cross-validation are
asymptotically equivalent methods.

Extending this measure to encompass a wider family of utilities requires criteria
which select the model with the smallest expected discrepancy (where the discrepancy
is defined by the analyst). Working in a frequentist context, Linhart and Zucchini (1986)
provide a substantial development. In brief, given an unknown true ‘operating model’,
F , a discrepancy function Δ(θ) = Δ(Gθ, F ) is chosen to assess candidate models G,
based on a consideration of the aspects of importance – popular divergences used for
this purpose are Kullback–Leibler divergence, Kolmogorov discrepancy and the Pearson
chi-squared discrepancy – and the expected discrepancy is estimated as

EF
[
Δ(θ̂)

]
≈ EF

[
Δn(θ̂) + Tr(Ω−1

n Σn)/n
]
, (5)

where θ̂ = argmin(Δn(θ)), Δn(θ) is the empirical discrepancy of the observed data,
and Ωn,Σn are estimators of the matrix (∂2Δ(θ0)/∂θi∂θj) and the covariance matrix
(
√
n∂Δn(θ0)/∂θi).

Claeskens and Hjort (2003) also explore this in a frequentist setting where the empha-
sis is on establishing one or more parameters or functions of parameters of a distribution
through the development of the focussed information criterion.

From a Bayesian perspective, use of point value ‘plug-in’ estimators and a subsequent
bias correction is problematic: it fails to account for the full uncertainty expressed by
the analyst’s posterior distribution (see, for example, the discussion in Celeux et al.
(2006)). The Deviance Information Criterion (Spiegelhalter et al. (2002)) sought to
address this by considering the posterior distribution of the data log-likelihood. Denoting
the posterior mean of the model parameters by θ̄, DIC is defined as

DIC = D̄ + pD = D(θ̄) + 2pD. (6)

The first term, denoted by D̄, represents the fit as defined by the posterior expec-
tation of the deviance:

D̄(θ) = Eθ|y [D(θ)] = Eθ|y [−2 log p(y | θ) + 2 log f(y)] ,
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where f(y) is an arbitrary standardising term which does not impact the model com-
parison, and the second measures the ‘complexity’ of the model, defined as

pD = Eθ|y [D]−D(Eθ|y [θ]).

Vehtari (2001) suggests an extension of the DIC to cope with arbitrary utilities, u,
of the form

ŪDIC = ū(Eθ [θ]) + 2(Eθ [ū(θ)]− ū(Eθ [θ])), (7)

where ū(θ) denotes the expected utility at the parameter value θ.

However, Ando (2007) observed that, if the function of the complexity term in DIC is
to compensate for bias in the posterior estimation of the model fit, then it is incorrectly
calculated. Ando (2007) introduces a Bayesian predictive information criterion (BPIC)
defined as

BPIC = −2Eθ|y [logL(y | θ)] + 2nb̂θ, (8)

with

nb̂θ = Eθ|y [log(L(y | θ)π(θ))]− log(L(y | θ̂n)π(θ̂n)) + Tr(J−1
n (θ̂n)In(θ̂n)) + p/2, (9)

p representing the dimension of the parameter vector θ, θ̂n the parameter value which
maximises n−1 log(L(y | θ)π(θ)) and In, Jn as defined in (10) below. See also Zhou
(2011) for further variants based on alternative estimators.

We have previously argued that in many applications, we are interested in estimating
the expected divergence of a model, where the divergence is based on the particular
scoring rule which reflects the end user’s utility. In other words, we seek an analogue
of the BPIC which allows us to assess, in a Bayesian fashion, the posterior expected
quantity Ez[Eθ|y[S(fθ, z)]], as a measure of discrepancy from the true data generating
process for z, for our chosen scoring rule S.

In particular, suppose that we observe n observations y = (y1, y2, . . . , yn) and we
are considering a candidate model M with probability density fθ := f(y | θ), prior
density π(θ) and posterior density π(θ | y), where we are interested in its ability to
minimise the expected divergence induced by the scoring function S(f, z) for future
observations z from the true data generating process. We define the cumulative score
CS(y | θ) :=

∑n
k=1 S(fθ, yk).

In Appendix A we generalise the proof in Ando (2007) to establish the following

result, where we denote by θ̂n the parameter value which maximises n−1 log(L(y |
θ)π(θ)), and assume that it is unique; we denote the posterior mean by θ̄n, and define
the matrices:

I(θ) = Ez

[
∂(log fθ(z) + log π0(θ))

∂θ

∂(log fθ(z) + log π0(θ))

∂θT

]
, (10)

J(θ) = −Ez

[
∂2(log fθ(z) + log π0(θ))

∂θ∂θT

]
,
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In(θ) =
1

n

n∑
k=1

(
∂(log fθ(yk) + log π(θ)/n)

∂θ

∂(log fθ(yk) + log π(θ)/n)

∂θT

)
,

Jn(θ) = − 1

n

n∑
k=1

(
∂2(log fθ(yk) + log π(θ)/n)

∂θ∂θT

)
,

JS
n (θ) = − 1

n

n∑
k=1

(
∂2(S(fθ, yk) + log π(θ)/n)

∂θ∂θT

)
,

US
n (θ) =

1

n

n∑
k=1

(
∂(S(fθ, yk) + log π(θ)/n)

∂θ

)
.

Theorem 1. Assume that:

1. log π(θ) = O(1),

2. θ0 := limn→∞ n−1 log π(θ) exists.

3. J is non-singular at θ0, each of the elements of I(θ0) is continuously differentiable.

4. Regularity conditions (see, e.g. Chapter 3 of Barndorff-Nielsen and Cox (1989))
hold that ensure the Laplace approximation of the posterior distribution as
N(θ̂n, n

−1Jn(θ̂n)) is valid.

5. US
n (θ̂n) and (θ̄n − θ̂n) are uncorrelated.

We define the bias, bS, from estimating the posterior expected score by the mean of the
posterior scores of the observed data

bS := Ey

[
1

n
Eθ|y [CS(y | θ)]− Ez

[
Eθ|y [S(fθ, z)]

]]
. (11)

If we estimate the bias, bS, by the estimator b̂S, where

nb̂S = Eθ|y [CS(y | θ) + log π(θ)]− (CS(y | θ̂n) + log π(θ̂n))

+
1

2
Tr(JS

n (θ̂n)J
−1
n (θ̂n)) + Tr(JS

n (θ̂n)J
−1
n (θ̂n)In(θ̂n)J

−1
n (θ̂n))

+ n(cov(US
n (θ̂n), θ̄n)− US

n (θ̂n)(θ̄n − θ̂n)),

then we have

(nbS − nb̂S) = n cov(US
n (θ̂n), θ̄n) +Op(n

−1/2). (12)

Proof. See Appendix A.
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We now introduce the further assumption that the covariance term on the right
hand side of (12) is small in comparison to nb̂S . In practice, we have found common
scoring rules satisfy this condition. For example, for the logarithmic scoring rule the term
vanishes. In the case of piecewise linear scoring rules used for quantile scoring (which

we consider later), these have values of the derivative US
n (θ̂n) which are dominated by

a constant term depending solely on the number of observations exceeding a quantile
estimate, and therefore have an extremely low covariance with the level of the parameter
estimate θ̂n. Where novel scoring rules are being considered, possible violation of this
condition can be investigated, for example, by simulation.

We therefore propose a Bayesian Posterior Score Information Criterion de-
fined as

BPSIC = −2Eθ|y [CS(y | θ)] + 2nb̂S , (13)

with models with lower values of the BPSIC being preferred.

Note that:

1. When the scoring rule, S, selected is equal to the logarithmic score, then BPSIC
corresponds to BPIC.

2. All the relevant quantities can be readily computed, for example, from an MCMC
posterior sample, enabling its calculation to be incorporated as a standard routine
in the initial evaluation of multiple models, without the need to perform the
multiple estimation runs required for cross-validation.

3. Computation of JS(θ̂n) requires that the score function should have a finite second
derivative. This will not be the case at all points for some scoring functions, for
example, absolute loss, or piecewise linear functions. Although, in practice, we
have found that this tends not to be problematic in that the points at which the
derivatives of the scoring rule do not exist will tend not to concentrate around
the posterior mode, we indicate in the examples in the next section how routine
modifications can prevent problems occurring.

Use of the BPSIC should readily facilitate an initial comparison of future expected
utilities of models. In addition, if, for example, MCMC output is stored, then a future
user of a model should be able to re-assess its performance based on an alternative
scoring rule with a fairly straightforward recalculation.

In the next section, we illustrate the performance of the BPSIC with three examples
based on stylised simulated data. In Section 5, we illustrate the application to the
problem of predicting quantiles of UK electricity imbalance prices.

4 Simulation examples

4.1 Performance on different score functions

In this example, we compare estimates obtained using BPSIC to the actual bias. We
consider different score functions and situations in which the model is correctly and



N. T. Underhill and J. Q. Smith 1015

incorrectly specified. This gives an insight into the performance of the BPSIC approxi-
mation in a variety of applications.

In the correctly specified scenario, we consider a normal model M1 with unknown
mean μ, known variance σ2 = 0.52, and a conjugate prior μ ∼ N(0, 0.12). We assume
that the true data generating process is normally distributed with mean 0 and variance
0.52. In the incorrectly specified scenario, the normal model M1 has unknown mean μ,
known variance σ2 = 0.52, and a conjugate prior μ ∼ N(0, 52) and we assume that the
true data generating process is normally distributed with mean 1 and variance 22.

We consider four score functions (where we define these as the negative of the cor-
responding loss function), where the score S(fθ, yk) results under the model expressed
by the density function f at the parameter value θ, if the value yk is observed.

• Logarithmic predictive density. We define S(fθ, yk) = log fθ(yk). As we have seen,
maximising this score corresponds to minimising the Kullback–Leibler divergence.

• Quadratic score. We define S(fθ, yk) = −(μ(fθ) − yk)
2, where μ(fθ) denotes the

predictive mean of the distribution with density f . Although for the purposes
of the normal model example here, this reduces to a scaled version of the log-
density when a vague prior is chosen, when we include the more informative prior
specification we have adopted under the correctly specified model scenario, it also
results in a different weighting between prior and score function.

• Absolute loss. We define S(fθ, yk) = −|μ(fθ) − yk|. We remark that there are
undefined second derivatives at μ(fθ) = yk. Any problems encountered can be
addressed by approximating this by the Huber loss function, defined as

S(fθ, yk) =

{
−(μ(fθ)− yk)

2/2, if |μ(fθ)− yk| < k,

k(|μ(fθ)− yk| − k/2) otherwise.

• Quantile loss. This time, our focus of interest is in being able to forecast a specific
quantile – perhaps for a risk management application. We select a quantile scoring
rule, reflecting a focus on our ability to forecast the 0.95 quantile. A number of
quantile scoring rules have been established (see Gneiting and Raftery (2007));
here we make use of the asymmetric piecewise linear scoring function (see Gneiting
(2011) defined by

S(fθ, yk) = (yk − τ(fθ))(1(τ(fθ) > yk)− τ)

where 0 < τ < 1 is the quantile of interest, and τ(fθ) denotes the value predicted
by the density fθ.

As with absolute loss, one common feature of these scoring rules is that they are
piecewise linear, therefore having undefined second derivatives for some values. For
the computation of the BPSIC it is possible to make an adjustment by making
use of the quantile Huber loss proposed by Aravkin et al. (2014), which takes the
form:
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ρτ (fθ, yk) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

τ |yk − τ(fθ)| −
κτ2

2
, if yk − τ(fθ) < −τκ,

(1− τ) |yk − τ(fθ)| −
κ(1− τ)2

2
, if yk − τ(fθ) > (1− τ)κ,

1

2κ
(yk − τ(fθ))

2, otherwise,

where the value of κ is selected by the user as the threshold within which a
quadratic approximation replaces the corresponding piecewise linear scoring rule.

The graphs below show the result of comparing the average BPSIC bias with the
average actual bias (based on simulating future observations from the true distribution).
Figure 1 shows the results in the correctly specified model case; Figure 2 illustrates the
incorrectly specified case.

We observe that the bias in the first case where the prior is more informative is
lower, reflecting the greater weighting given to the prior compared to the new data.
The scale of the bias is dominated by the natural scale of the scores themselves. We
speculate that there is an additional effect in that greater bias is likely to be seen when
we use scores which are ‘closer’ to the logarithmic score: asymptotically, this score will
be maximised under Bayesian updating. We comment on this in our conclusion.

To illustrate the impact of employing different score functions on model selection,
we consider a stylised example. 200 data points were simulated from a mixture model
consisting of a Weibull(Shape = 5, Scale = 20) and a lognormal (Log-mean = 3, Log-
SD = 0.8) distribution, where the mixing proportion was weighted 0.8 Weibull and 0.2
lognormal.

MCMC was used to estimate two candidate models: a Weibull model and lognormal
model. For both models, Uniform(0, 100) distributions were used as parameter priors.
Figure 3 below shows the fitted posterior predictive densities together with the empirical
data density.

Table 1 shows the BPSIC values under each of the four measures considered earlier
in this section, for each of the two models.

Note that the lognormal model is favoured under the logarithmic score and absolute
loss, whereas the Weibull model is favoured if the squared error loss or quantile score is
used. If our interest is in the tail quantiles of the distribution, the Weibull model may be
a more appropriate model choice, even though it would not be chosen through a default
log-score procedure. We return to this theme in Section 5, when we consider a problem
of model choice motivated by a risk management requirement where the appropriate
utility relates to forecasts of distribution quantiles.

Log-Score Squared error Absolute Loss 0.95 Quantile

Weibull model 1,549.5 45,479.7 227.8 669.0
Lognormal model 1,502.3 46,890.5 219.3 759.6

Table 1: Comparison of BPSIC for different scoring functions.
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Figure 1: Performance of actual bias compared to asymptotic (BPSIC) bias. The true
data generating process is given by a N(0, 0.52) distribution. The model being assessed,
M1, is a normal distribution with unknown mean and known variance equal to the true
variance. The mean has a conjugate prior μ ∼ N(0, 0.12). The figure shows the simulated
average actual bias (7,000 simulations, with computation of the relevant expectations
for each simulation computed by 1,000 posterior parameter simulations), shown by the
solid red line and the average asymptotic bias (dotted black line) under four different
loss functions.

4.2 Comparison with cross-validation

The previous example showed a reasonable fit between the estimates provided by BPSIC
and the average bias across a number of loss functions. However, the practical applica-
tion of the criterion will depend also on the amount of additional variance introduced
through the bias correction.

In our next example, we compare the performance of the BPSIC and leave-one-out
cross-validation (LOO-CV). We use the same mis-specified example as previously, with
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Figure 2: Performance of actual bias compared to asymptotic (BPSIC) bias – mis-
specified model. The true data generating process is given by a N(1, 22) distribution.
The model being assessed, M1, is a normal distribution with unknown mean and fixed
variance of 0.52. The mean has a conjugate prior μ ∼ N(0, 52). The figure shows the
simulated average actual bias (7,000 simulations, with computation of the relevant ex-
pectations for each simulation computed by 1,000 posterior parameter simulations),
shown by the solid red line and the average asymptotic bias (dotted black line) under
four different loss functions.

the model M1 having unknown mean μ, known variance σ2 = 0.52, and a conjugate
prior μ ∼ N(0, 52) and the true data generating process being normally distributed
with mean 1 and variance 22.

This time, we select the quantile scoring rule, reflecting a focus on model performance
on forecasting the 0.95 quantile. We simulate 2000 scenarios in which a sample of 100
observations is used to generate an LOO-CV score, an (unadjusted) posterior score, the
BPSIC, and simulated ‘true score’. The results are shown in Figure 4.
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Figure 3: Comparison of posterior predictive densities relating to two candidate models
estimated using MCMC. The observed data consists of 200 points sampled from a
mixture of a Weibull(Shape = 5, Scale = 20) and a lognormal (Log-mean = 3, Log-
SD = 0.8) distribution, where the mixing proportion was weighted 0.8 Weibull and 0.2
lognormal. In the text we illustrate that under different scoring functions within the
BPSIC, different candidate models will be selected.

The LOO-CV and BPSIC estimation errors are extremely close, with the unadjusted
posterior score positively biased. The standard deviation of errors is almost identical in
the two methods. The amount of the bias correction is shown in the second graph, and
we also show the standard deviations of the individual ‘one-left-out’ predictive scores
which are averaged to form the LOO-CV estimate.

In this simulation, calculation of all BPSICs took approximately 35.7 minutes on a
medium specification PC, compared to 38.5 minutes for the LOO-CV method. However,
in this example, the model is a trivial one to re-estimate within each cross-validation. For
more complex models, where the Bayesian updating is more complex and might involve,
for example, MCMC, LOO-CV will incur an additional overhead approximately equal
to the sample size multiplied by the additional time necessary to estimate the posterior
parameters, For complex MCMC models, this could be prohibitive.
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Figure 4: Comparison of the BPSIC with leave-one-out cross-validation. The true data
generating process is given by a N(1, 22) distribution. The model being assessed, M1,
is a normal distribution with unknown mean and fixed variance of 0.52. The mean has
a conjugate prior μ ∼ N(0, 52). The scoring function chosen is the 0.95 asymmetric
piecewise linear quantile loss function. The figure shows the results of 2,000 simulations
of a sample size of 100. In each simulation the BPSIC is calculated using a sample
of 1,000 from the posterior distribution, and the ‘true’ scores are calculated on a new
sample of 1,000 observations generated from the true distribution. The first graph shows
the estimation error resulting from the leave-one-out, unadjusted posterior and adjusted
(BPSIC) score. The second graph shows the variation in the bias adjustment for the
BPSIC, and the final graph shows the standard deviation the individual ‘left out’ scores
which are averaged to form the LOO-CV estimate.

In the situation in which LOO-CV estimates are expensive to obtain, we might be
tempted to undertake a randomised selection of a subset of samples. However, in this
example, the additional variability introduced by using a smaller LOO sub-sample is
significantly in excess of that introduced by the bias adjustment by the BPSIC.
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We should remark that one advantage of the cross-validated score over the BPSIC
is that it would enable us to better assess performance of the predictive density of the
posterior predictive score. For many prediction problems, we are more concerned
with how the posterior predictive score will perform than we are with the average of
the scores across the posterior distribution. Note that, as the BPSIC is defined as an
average divergence (and therefore an estimate of Ez[Eθ|y[S(fθ, z)]]), this means that for
concave score functions such as the log-score, we will have

Ez

[
Eθ|y [S(fθ, z)]

]
≤ Ez

[
S(Eθ|y [fθ] , z)

]
, (14)

where Eθ|y[fθ] is the posterior predictive density. In this example, this will mean that
if our concern is when we should employ the posterior predictive distribution, this will
typically be earlier than that suggested by the BPSIC.

4.3 Posterior averaged performance in terms of ‘catching up’

We commented previously that the practice of comparing models on the basis of their
cumulative scores may be less than optimal. Informally, if we are interested in making
use of the models to make future predictions, we may be less concerned about their early
performance than in their more recent ‘track record’. This is likely to be particularly
pertinent in a high dimensional setting, where we require increasingly large ‘training
sets’ to calibrate model parameters. van Erven et al. (2012) study this ‘catch up’ effect,
and propose a solution in which a prior is placed over a switching distribution governing
which model should be used in making predictions at a given point in time. An alterna-
tive approach of ‘calibrating’ the models to a similar level of information on an initial
training sample, and then comparing models on their subsequent performance has been
proposed in Xu et al. (2011). Both approaches retain the Bayes factor (or equivalently,
the cumulative log-score) as the selection metric but, instead, make adjustments to
compensate for the catch up effect itself.

We suggest that an alternative approach is to discard the Bayes factor altogether as
being inappropriate for this type of problem – instead we should be estimating expected
future utility. Here we examine the ability of the BPSIC to assess the model’s perfor-
mance based on its current state (that is, taking into account parameter learning)
as an alternative to using modified Bayes factor selection. We use log-predictive utility
here, but other utilities would be similarly applicable.

We suppose that the true model is normally distributed N(0.2, 12). We wish to
compare two models M1: a fixed model normally distributed N(0, 12) and model M2

with known variance 12 but unknown mean μ ∼ N(1, 42). The relatively vague prior
on μ in model M2 means that, assessed on a sequential basis as data is received, M1

will initially perform better, but after sufficient observations, model M2 will become the
preferred model.

Figure 5 shows the results based on 1,000 simulations. If the Bayes factor (equiv-
alently, cumulative log-score) is used then on average, model M2 will only be chosen
when the cumulative log-score difference is lower than 0, that is after approximately
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Figure 5: Comparison of the performance of the cumulative log-score and posterior
average (estimated and true) log-scores. The true data generating process is given by
a N(0.2, 12) distribution. We compare two models: M1 is a fixed model consisting of
a normal distribution N(0, 12). Model M2 is a model with known (true) variance and
unknown mean μ, N(μ, 12), where the mean has a conjugate prior μ ∼ N(1, 42). The
figure shows the comparison scores averaged over 1,000 simulations.

170 observations. Naive assessment based on the uncorrected posterior log-score (that

is, the posterior Bayes factor of Aitkin (1991)) will result in selecting model M2 im-

mediately. If the true posterior log-score is used (with knowledge of the true data gen-

erating process) then model M2 should be preferred on average much earlier – ap-

proximately after 50 observations. We gain a very similar result using the corrected

estimate from the BPSIC (bottom left-hand graph). Of course, we would obtain very

similar results using cross-validation, but, in general, this is much more computationally

intensive.



N. T. Underhill and J. Q. Smith 1023

5 Quantile prediction – UK electricity market imbalance

Where the end goal is to select a model which is used to provide an estimate of ‘tail
risk’, the use of a suitably bias corrected scoring rule can be particularly appropriate.
In this section, we apply the BPSIC to the problem of risk management of imbalance
exposures to UK electricity market participants. Within the UK, an electricity balancing
mechanism is managed by the System Operator (National Grid) to ensure security of
supply. Market participants are required to inform the System Operator of their forecast
output (in the case of generators) and demand (in the case of suppliers) approximately
one hour in advance of each half hour’s electricity production.

Typically, it will be necessary for the System Operator to intervene to ensure the
actual electricity generated in a given period meets actual demand (which will be dif-
ferent from that implied by the aggregate of forecasts received due to forecast error).
In the situation we consider here, the overall system is short, in other words it is nec-
essary for the System Operator to seek additional sources of generation (for example,
requesting additional short term generation be activated or for certain high users to
reduce demand). The cost of these activities is reflected in the System Buy Price (SBP)
charged to those who have under-forecast demand or over-forecast supply, and this will
typically be significantly higher than the prevailing market price (in this situation, the
System Sell Price (SSP) will reflect a prevailing market price).

Accurate quantification of the amount of risk exposure to imbalance volumes is an
important consideration for all market participants. Typically, participants might agree
a core pricing model with fixed parameter values which is justified with reference to
overall fit to imbalance prices. In addition, suppliers of energy will need to charge a
risk premium on all contracts which contribute to system imbalance. The risk premium
is often based on an assessment of the 95th percentile, in accordance with market risk
practice within the financial services industry. For the quantification of the additional
risk premium it might be necessary to justify to the regulator if a different model to
the core model would be more appropriate to capture these aspects.

Imbalance data for each day in the period 17th October 2011 to 28th May 2014
was obtained from the Elexon data portal (https://www.elexonportal.co.uk). The
dataset used for modelling comprised the Net Imbalance Volume (NIV) (the total
amount of electricity (in MWh) by which the system was short or long compared to
forecast demand), SBP and SSP (both denominated in GBP/MWh). Prices and balanc-
ing behaviour vary throughout the day depending on the degree of demand across the
day, and for this exercise, we used data only for Settlement Period 16 (this corresponds
to a particular half hourly generation period on each day between 7.30 am and 8.00
am in the winter and between 6.30 am and 7.00 am in the summer). This resulted in a
sample size of 438.

We would expect the SBP to become more stressed in periods where the NIV is
higher. This might be the case, for example, where a power station suffers an unforeseen
outage, as in these situations the System Operator will be required to procure a substan-
tial amount of energy at very short notice, often being forced to make use of extremely
high cost sources of generation and/or high bids from commercial generators. The de-

https://www.elexonportal.co.uk
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gree of stress can be measured by the ratio of the SBP to a measure of typical prices
which are prevailing in the market – for this purpose we use the ratio of SBP to SSP.

Panels (a) and (b) in Figure 6 show a plot of the SBP/SSP compared to the NIV. As
can be seen, in addition to a positive relationship between the NIV and the SBP/SSP
ratio, there is also a significant skew in the residuals, as we would expect from an
increasingly expensive ‘supply stack’ of generation.

The skew-normal distribution (Azzalini (1986)) has been used successfully to reflect
skewness without the need for ancillary data transformation and was used to model this
aspect of the data. In particular, we selected a linear regression model with skew-normal
residuals of the form

fSN (yi;β1, β2, ω
2, α) =

2

ω
φ

(
yi − (β1 + β2xi)

ω

)
Φ(αω−1(yi − (β1 + β2xi))). (15)

MCMC was used to obtain posterior estimates (see Fruhwirth-Schnatter and Pyne
(2010)). In the first model, we fitted simultaneously all parameters: the linear regression
slope and intercept terms, together with the skew-normal parameters, using a vague
normal gamma prior (a diagonal matrix with entries of 0.01 for the precision matrix,
a mean of zero and Gamma(Shape = 0.01, Rate = 0.01) distribution). The posterior
distributions from 12,000 simulations with a burn in of 4.000 are shown in Figure 6.

As alternative models, which would need to be separately justified to a regulator,
we constrained the intercept term, β1, at different values between 0.2 and 1.2. BPSIC
values were computed for the standard logarithmic score and also the 0.95 quantile
scoring rule, reflecting the possible focus of interest of a risk management decision using
this model to price an appropriate risk premium. In Figure 7, we show the corresponding
BPSIC at various values. In particular, the model with the value of β1 close to that fitted
freely gives the highest BPSIC logarithmic score. However, if our interest is in fitting
accurately to the prediction of the 0.95 quantile, the graphs show that models with a
lower intercept value provide a greater expected future utility.

Table 2 summarises the information criteria output for the fitted model, together
with the highest scoring models under logarithmic and quantile scoring criteria. Al-
though not considered here, it is easy to see how such a table could be extended to
include other scoring rules reflecting the diverse utilities of the possible future user base
for a model. Such an extension could enable a more informed selection of the most
appropriate model implementation and parameterisation for a particular need.

Fitted Intercept = 0.6 Intercept = 1.0

BPSIC(log-score) 124.1 340.8 123.9
Asymptotic bias(log-score) 3.7 4.4 4.5
BPSIC(percentile score) 46.2 41.5 46.8
Asymptotic bias(percentile score) 2.5 3.4 3.4

Table 2: Comparison of BPSIC for fitted and fixed intercepts – skew-normal model.
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Figure 6: Estimation of the relationship between Net Imbalance Volume (NIV) and
System Buy Price / System Sell Price (SBP/SSP) ratio. Panel (a) shows data between
October 2011 and May 2014 relating to settlement period 16 for those occasions when
the system was short. MCMC was used to estimate jointly the linear regression pa-
rameters relating the SBP/SSP ratio to the NIV. In order to compare visually the
residual distribution against the skew normal distribution, Panel (b) shows residuals
from the linear regression model (see (15)) relating SBP/SSP to NIV. Panels (c) to
(f) show the posterior parameter estimates obtained from fitting the linear regression
model with skew normal residuals estimated using a 12,000 simulation MCMC sample
with a burn-in of 4,000 simulations.

6 Discussion

This paper introduces a Bayesian score based information criterion which is an estimate

of the posterior weighted average of out of sample performance for a user defined scoring
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Figure 7: Comparison of the BPSIC obtained for models with fixed intercept values
in the linear regression. Note that the minimum BPSIC log-score is obtained with an
intercept value of approximately 1.0, consistent with the posterior estimates in Figure 6
when a vague prior is placed on the intercept. However, models fitted with lower values
of the intercept have lower BPSIC quantile score, reflecting the increased skewness fitted
by these models.

function relevant to the problem at hand. The effects of the bias inherent in using the
observed data for the dual purposes of posterior updating and model selection are
controlled through the incorporation of an asymptotic bias correction which is derived
by applying the results in Ando (2007).

We believe the measure may enable analysts to incorporate in their model assess-
ments more realistic utility functions which are tailored to the aims of their end users.
We also suggest that this technique has a complementary role to play alongside more
established procedures, for example, cross-validated estimates, particularly when these
prove impracticable for computational reasons. However, in order to increase our un-
derstanding of the situations in which this approach is likely to be optimally employed,
we would be interested in exploring the following areas:

Particularly for small data sets, it seems intuitively plausible that cross-validation
will suffer when influential elements are omitted, and that the bias corrected approach
may have some advantages here. It would be interesting to understand better the trade-
offs in these situations. Stone (1977) establishes asymptotic equivalence of leave-one-out
cross-validation and AIC. A further area of research would be to investigate whether
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similar results can be obtained between cross-validated scoring rules and the analogous
BPSIC measure.

Comparison of the asymptotic bias and true bias, particularly with small data sets,
has shown that, in some situations, the true bias may be systematically over- or under-
estimated. While we have found the size of this discrepancy to be relatively small in
comparison to the underlying cumulative score, it would be useful to understand further
whether there are further correction terms which might be introduced to compensate.
We suspect that these may be a consequence of the underpinning Laplace and other first
order approximations, though further research is required in this area. We would also be
interested in finding out more about any relationships between the extent to which the
candidate models are close to the ‘true’ model and the accuracy of the approximation
and implications this may have for the application of the approach in M -open and
M -closed situations.

In an M -open context, there is the vexed question of how, if at all, Bayes updating
should proceed. It is not within the scope of this paper to comment further on this per
se, but rather to remark that it seems to us there is an interesting connection between
the amount of bias in updating and assessing a model using the same data, and the
similarity between the metric for model assessment and the target divergence which the
update seeks to optimise.

For example, standard Bayesian updating results asymptotically in a posterior which
minimises the Kullback–Leibler divergence to the true model (Berk (1966)). This is the
same metric which we use to assess the model under the log-score, and therefore the bias
here we would expect to be greater than if we score the model with, for example, a quan-
tile score. Bissiri et al. (2013) proposes application of alternative updating mechanisms
to the Bayes rule inM -open contexts. These take the form of π(θ | y) ∝ exp(l(θ, y))π(θ),
for a loss function of interest l(θ, y), acknowledging that in an M -open context it is not
necessarily true that one set of parameters will be optimal under all losses. Under such
updating procedures, we can derive a similar information criterion to the BPSIC, where
the relevant matrices and posterior modes are replaced with their analogues under the
alternative loss functions. Here we might expect the bias to be greater if the loss function
chosen is comparable to the score function.

We have remarked that our methods may be particularly applicable in big data con-
texts, where model selection may reflect the decision maker’s utility more accurately
by using a BPSIC based on, for example, the relevant marginal and conditional loga-
rithmic scores of the variables of interest within a larger model. Another benefit of this
relates to the lower bias correction term which is applied in these situations. Typically
where cumulative (joint) logarithmic scores are concerned, this will be of the order of
the number of parameters in the model, say p. By examining the BPSIC bias correction
term in (11), it will be seen that the corresponding term is Tr(JS

n (θ̂n)J
−1
n (θ̂n)). So when

other, more tailored, scores are used the bias adjustment will typically be significantly
lower. This is because JS

n (θ̂n) will take zero values on those parameters which do not
impact the utility under consideration. For example, in the case of a conditional distri-
bution where parameters separate, the bias correction term will equate to the number
of parameters involved in the representation of the relevant conditional distribution.
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Appendix A: Proof of Theorem

The proof uses the method which is introduced in Ando (2007), adjusted to allow for

the fact that the estimator θ̂�n which maximises the scoring function may differ from the

posterior mode θ̂n. In particular, this means that the expansion around the posterior
mode requires the relevant first derivatives.

A.1 Notation

We suppose that n observations y = (y1, y2, . . . , yn) are generated from the true process
with probability density g(y). We assume that a model M with probability density fθ :=
f(y | θ) and prior density π(θ) is being considered as a candidate model for approximat-
ing the true data generating process. We denote the likelihood L(y | θ) =

∏n
k=1 fθ(yk).

We define log π0(θ) := limn→∞ n−1 log π(θ), and in accordance with Assumption 2 of
Theorem 1 assume that this exists. We further assume that the parameter vector θ is
of dimension p.

Suppose we are interested in the model which minimises the expected divergence
induced by the scoring function S(f, z) for observations z from the true data generating
process. We define the cumulative score CS(y | θ) :=

∑n
k=1 S(fθ, yk).

We denote θ0, θ̂n as the parameter values which maximise Ez[log(fθ(z)π0(θ))] and
n−1 log(L(y | θ)π(θ)), respectively, and assume that these are unique. We define θ̄n
as the posterior mean for θ, and define the matrices and estimators I(θ), J(θ), JS(θ),
US(θ), In(θ), Jn(θ), J

S
n (θ), U

S
n (θ) as on page 9.

Ando (2007) establishes the following results for θn and θ0 assuming the appropriate
regularity conditions in Assumption 3 of the Theorem 1.

Lemma 2. (θ̂n − θ0) converges in distribution to N(0, n−1J−1(θ0)I(θ0)J
−1(θ0)).

Proof. See Ando (2007).

Lemma 3. In accordance with Assumption 4 of Theorem 1, if we assume that appropri-
ate regularity conditions (see, e.g. Chapter 3 of Barndorff-Nielsen and Cox (1989)) hold

that ensure the Laplace approximation of the posterior distribution as N(θ̂n, n
−1Jn(θ̂n))

is valid, we have:

Ey

[
Eθ|y

[
(θ − θ0)(θ − θ0)

T
]]

=
1

n
J−1(θ0) +

1

n
J−1(θ0)I(θ0)J

−1(θ0) +Op(n
−3/2). (16)

Proof. See Ando (2007).

Proof of Theorem 1. We express the bias as the sum of three expected values:

E1 = Ey

[
1

n
Eθ|y [CS(y | θ)]− 1

n
(CS(y | θ0) + log π(θ0))

]
, (17)
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E2 = Ey

[
1

n
(CS(y | θ0) + log π(θ0))− Ez [S(fθ0 , z) + log π0(θ0)]

]
,

E3 = Ey

[
Ez [S(fθ0 , z) + log π0(θ0)]− Ez

[
Eθ|y [S(fθ, z)]

]]
.

Approximating E1

To approximate E1, we perform a Taylor expansion of CS(y | θ0)+ log π(θ0) around the

posterior mode θ̂n, where we obtain:

CS(y | θ0) + log π(θ0) = CS(y | θ̂n) + log π(θ̂n) + n(θ0 − θ̂n)U
S
n (θ̂n)

− n/2(θ0 − θ̂n)
TJS

n (θ̂n)(θ0 − θ̂n) +Op(n
−1/2),

and so we have

E1 =
1

n
Ey

[
Eθ|y [CS(y | θ)]− (CS(y | θ̂n) + log π(θ̂n))

]

− Ey

[
US
n (θ̂n)(θ0 − θ̂n)

]
+

1

2
Tr(Ey

[
JS
n (θ̂n)(θ0 − θ̂n)(θ0 − θ̂n)

T
]
) +Op(n

−3/2).

Using Lemma 2, we then have

E1 =
1

n
Ey

[
Eθ|y [CS(y | θ)]− (CS(y | θ̂n) + log π(θ̂n))

]
(18)

+
1

2n
Tr(JS(θ0)J

−1(θ0)I(θ0)J
−1(θ0))− Ey

[
US
n (θ̂n)(θ0 − θ̂n)

]
+Op(n

−3/2).

Approximating E2

We can ignore the term E2 as we have:

E2 = Ey [S(fθ0 , y) + log π0(θ0)]− Ez [S(fθ0 , z) + log π0(θ0)]− log π0(θ0) +
1

n
log π(θ0),

and therefore we have E2 = op(n
−1) under Assumption 1 of Theorem 1 that log π(θ) =

O(1).

Approximating E3

For the term E3, we perform a Taylor expansion around θ0. Writing

E3 = Ez [S(fθ0 , z) + log π0(θ0)]− Ey

[
Eθ|y [Ez [(S(fθ, z) + log π0(θ)]]

]
+ Ey

[
Eθ|y [log π0(θ)]

]
,

if we expand around θ0, then we have

E3 = Ez [S(fθ0 , z) + log π0(θ0)]−Ez [(S(fθ0 , z) + log π0(θ0)]−US(θ0)Ey

[
Eθ|y [(θ − θ0)]

]
+

1

2
Tr(JS(θ0)Ey

[
Eθ|y

[
(θ − θ0)(θ − θ0)

T
]]
) + Ey

[
Eθ|y [log π0(θ)]

]
+Op(n

−3/2).
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Applying Lemma 3 gives

E3 =
1

2n
Tr(JS(θ0)(J

−1(θ0) + J−1(θ0)I(θ0)J
−1(θ0)) +

1

n
Ey

[
Eθ|y [log π(θ)]

]
− US(θ0)Ey

[
Eθ|y [(θ − θ0)]

]
+Op(n

−3/2).

Approximating total bias
Combining the terms then gives the bias estimator

nbS = Ey

[
Eθ|y [CS(y | θ) + log π(θ)]− (CS(y | θ̂n) + log π(θ̂n))

]

+
1

2
Tr(JS(θ0)J

−1(θ0)) + Tr(JS(θ0)J
−1(θ0)I(θ0)J

−1(θ0)).

− nEy

[
US
n (θ̂n)(θ0 − θ̂n)

]
− nUS(θ0)Ey

[
Eθ|y [(θ − θ0)]

]
+Op(n

−1/2).

We can rearrange the final two terms as

− nEy

[
US
n (θ̂n)(θ0 − θ̂n) + US(θ0)(θ̄n − θ0)

]

= −nEy

[
US
n (θ̂n)(θ̄n − θ̂n)

]
+ nEy

[
(US

n (θ̂n)− US(θ0))(θ̄n − θ0)
]
.

The first term vanishes where posterior modes and means are equal (as would be
the case, for example, under conjugate symmetric priors). Where not, we make use of

Assumption 5 in Theorem 1 that US
n (θ̂n) and (θ̄n − θ̂n) are uncorrelated, to express the

expectation as −nUS
n (θ̂n)(θ̄n − θ̂n) +Op(n

−1/2).

We rewrite the second term as

Ey

[√
n(US

n (θ̂n)− US(θ0))
√
n(θ̄n − θ0)

]

= Ey

[√
n(US

n (θ̂n)− US(θ0))
]
Ey

[√
n(θ̄n − θ0)

]
+ n cov(US

n (θ̂n), θ̄n)

= n cov(US
n (θ̂n), θ̄n) +Op(n

−1/2),

Replacing quantities with their estimators, we then have:

nbS = Eθ|y [CS(y | θ) + log π(θ)]− (CS(y | θ̂n) + log π(θ̂n))− nUS
n (θ̂n)(θ̄n − θ̂n)

+
1

2
Tr(JS

n (θ̂n)J
−1
n (θ̂n)) + Tr(JS

n (θ̂n)J
−1
n (θ̂n)In(θ̂n)J

−1
n (θ̂n))

+ n cov(US
n (θ̂n), θ̄n) +Op(n

−1/2),

from which the result follows.
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