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Pre-surgical fMRI Data Analysis Using
a Spatially Adaptive Conditionally

Autoregressive Model

Zhuqing Liu∗, Veronica J. Berrocal†,
Andreas J. Bartsch‡,§,¶, and Timothy D. Johnson‖

Abstract. Spatial smoothing is an essential step in the analysis of functional
magnetic resonance imaging (fMRI) data. One standard smoothing method is to
convolve the image data with a three-dimensional Gaussian kernel that applies a
fixed amount of smoothing to the entire image. In pre-surgical brain image analysis
where spatial accuracy is paramount, this method, however, is not reasonable
as it can blur the boundaries between activated and deactivated regions of the
brain. Moreover, while in a standard fMRI analysis strict false positive control is
desired, for pre-surgical planning false negatives are of greater concern. To this
end, we propose a novel spatially adaptive conditionally autoregressive model
with variances in the full conditional of the means that are proportional to error
variances, allowing the degree of smoothing to vary across the brain. Additionally,
we present a new loss function that allows for the asymmetric treatment of false
positives and false negatives. We compare our proposed model with two existing
spatially adaptive conditionally autoregressive models. Simulation studies show
that our model outperforms these other models; as a real model application, we
apply the proposed model to the pre-surgical fMRI data of two patients to assess
peri- and intra-tumoral brain activity.

Keywords: fMRI analysis, spatially adaptive CAR models, loss function,
pre-surgical mapping.

1 Introduction

Over the past two decades, researchers in the cognitive neurosciences have used func-
tional magnetic resonance imaging (fMRI) to study changes in brain activation brought
on by various experimental stimuli (Ogawa et al., 1990; Kwong et al., 1992). More re-
cently researchers have found fMRI useful in studying functional deficits in patients
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with neurological diseases or psychiatric disorders, as well as connectivity patterns dur-
ing rest. In addition, there is growing interest in using fMRI to map out functionally
relevant brain regions as a pre-surgical tool to aid neurosurgeons during the planning
stages of tumor resection (Bartsch et al., 2006; Sunaert, 2006; Bookheimer, 2007; Durnez
et al., 2013). Brain tumor resection is an arduous task. The surgeon’s goal is to remove
as much tumor as possible while preserving as much healthy brain tissue as possible;
especially avoiding the removal, and damage, of healthy regions of the brain that are
vital to the patient’s quality of life. The neurosurgeon may try to achieve this goal by
“awake craniotomy” and electrical stimulation mapping (ESM). That is, once the pa-
tient is conscious, the surgeon begins mapping out those regions of the brain near or
within the tumor, i.e., peri- or intra-tumor, that are vital to the patient’s quality of life
by asking the patient to perform certain tasks. During these tasks, the surgeon probes
the brain with an electrode that delivers a small amount of electrical current. Once the
task is disrupted, the surgeon places a small marker on that part of the brain that is
responsible for the task and will avoid that region during surgery. This surgical mapping
and tumor resection may take up to twelve hours or longer depending on the location
of the tumor relative to vital brain circuits and regions. These lengthy procedures place
great stress on both the patient and the surgeon. Additionally, ESM is subject to both
false-negative and false-positive results and is complicated by seizures in up to 15%
of the patients (Nossek et al., 2013). Mapping out these vital regions via fMRI prior
to surgery allows the surgeon to quickly hone in on these regions for verification, thus
speeding up the ESM and tumor resection. Thus, spatial precision of functionally rele-
vant regions, as defined by fMRI scans, is of utmost importance and is the motivation
for the work presented in this manuscript.

After acquisition of fMRI data, several steps are typically performed to map brain
activity since fMRI data, time series of three-dimensional volume data, each consisting
of thousands of uniformly spaced volume elements, called ‘voxels’ (Lindquist, 2008),
are intrinsically noisy. The steps typically are: (i) Pre-processing. This includes correc-
tion for motion and geometric distortions, image registration, temporal filtering, spatial
smoothing and pre-whitening; (ii) Fitting a general linear model to every time series at
each voxel, independently of one another. This step is referred to as a massive univariate
approach. The resulting image of standardized parameter values is called a Z-statistic
image, or map. In reality, the resulting standardized parameters all follow a student-T
distribution, however, since there are typically hundreds to thousands of observations in
each time series at each voxel, the normal distribution is a very good approximation; and
(iii) Performing hypothesis testing with correction for multiple comparisons. The two
most commonly used analysis tools are the Statistical Parametric Mapping (SPM) (Fris-
ton et al., 1994) software and the FMRIB Software Library (FSL) (Smith et al., 2004;
Woolrich et al., 2009). In the pre-processing step, the fMRI data are spatially smoothed
by convolving the data with a Gaussian kernel with spatial extent described by the full
width of the kernel at half its maximum height (FWHM) (Friston et al., 1995). Spatial
smoothing is an important preprocessing step that is performed to achieve two goals.
First, it increases the signal-to-noise ratio. Second, and more importantly, it helps guar-
antee that the assumptions of Gaussian random field theory, a method commonly used
in the following multiple comparisons procedure (Worsley et al., 1996), are satisfied.
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Although the Gaussian kernel approach is the most popular approach for smoothing
fMRI images, Holmes et al. (1996) point out several associated problems, one of which
is of great concern for pre-surgical planning: the spatial smoothing pre-processing step
uses a Gaussian kernel with a fixed FWHM and does not locally adapt the amount of
smoothing based on the data. This can cause some regions to be under-smoothed while
others to be over-smoothed, blurring out the boundaries of activated or deactivated
regions with null regions. (Null regions or voxels are defined as regions or voxels where
the Blood-Oxygenation-Level-Dependent (BOLD) signal (Ogawa et al., 1992) does not
change significantly between the fMRI control condition and the fMRI experimental
condition. Activated regions or voxels are those regions or voxels where the BOLD sig-
nal is significantly larger during the experimental condition as compared to the control
condition. Deactivated regions or voxels are those regions or voxels where the BOLD
signal is significantly smaller during the experimental condition compared to the con-
trol condition. A false negative occurs when a truly activated or deactivated voxel is
classified as null while a false positive occurs when a truly null voxel is classified as
either activated or deactivated.) Furthermore, for a small (relative to the FWHM of
the smoothing kernel) activated or deactivated region, global smoothing can completely
obliterate its significance. Thus, one important challenge facing pre-surgical fMRI is to
avoid blurring any sharp boundaries of activated or deactivated regions and to avoid
false-negatives by over-smoothing, ensuring spatial accuracy (Yoo et al., 2004).

Our goal in this paper is to develop a statistical model that will adaptively smooth
pre-surgical fMRI data; smoothing more in regions where smoothness is warranted and
smoothing less in regions where it is not, for example, at the interface between activated
and null regions. We fit our model to the Z-statistic image in native space. (That is,
in the geometry of the subject’s brain. We do not register to a standard template,
however, geometric distortions are corrected, if necessary.) We use the FSL software to
perform both the preprocessing step and the massive univariate analysis that results in
a Z-statistic image. However, it is important to note that we do not spatially smooth
the data in the preprocessing step. A classical statistical method to smooth images
is to fit a linear model to the data with spatial random effects using an autonormal
model (Besag, 1974). Typically, the spatial random effects are assigned a conditionally
autoregressive (CAR) prior (Besag et al., 1991, BYM). In the BYM model, smoothing
is controlled by a global smoothing parameter, the spatial variance, and thus a fixed
amount of smoothing is applied to the entire image. However, global smoothing is not
always warranted and certain parameters in the CAR model can be assigned hyperprior
distributions that allow adaptive smoothing. For examples, see Brewer and Nolan (2007,
BN) and Reich and Hodges (2008, RH).

Brewer and Nolan (2007) allow for adaptive local smoothing by assigning each site
a variance parameter and setting the parameters in the autonormal model in (1) to
yield (7), while Reich and Hodges (2008) set them so to yield (8). The two models
differ on how the spatially adaptive variances of the full conditionals of the means are
defined, see (7) and (8). Though the RH and BN models are designed to achieve adaptive
local smoothing, application of these models to our fMRI data proved problematic. The
BN model over-smoothed the Z-statistic image while the RH model failed to converge
depending on the initial state of the Markov chain. These problems are most likely due to
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the size of the fMRI data (approximately 47000 voxels). We discuss these issues further
in Sections 4 and 5. More recently, Yue et al. (2010) introduced an adaptive spatial
smoothing model that uses a non-stationary spatial Gaussian Markov random field and
applied it to fMRI data. However, they only consider single slices—two dimensions in
space of the 3-dimensional fMRI time series data—applying their model to every slice
in the time series (computational considerations prevented them from modeling the full
3-dimensional time series data).

Another approach to avoid blurring of boundaries is to use a Potts model (Potts,
1952). Woolrich et al. (2005) proposed a parametric Potts model for image segmentation
that could be used for pre-surgical fMRI. Johnson et al. (2013) proposed a Bayesian non-
parametric Potts model and showed that the non-parametric Potts model has better
statistical properties if the parametric Potts model is mis-specified, and performed on
par with the parametric model when it is correctly specified. While the non-parametric
Potts model shows good statistical properties, there are practical issues with compu-
tational cost. Johnson et al. (2013) estimate two model parameters in the potential
function and both depend on an intractable normalizing constant. Thus, they use a
path sampling (Gelman and Meng, 1998) approach to estimate the log-ratio of these
normalizing constants on a two-dimensional grid of parameter values. The log-ratios
are determined via simulation in a pre-processing step and this step can take one week
or longer. Since pre-surgical fMRI analyses are performed in native space, this pre-
processing step must be performed for each individual. A possible delay in surgery to
obtain the final analysis is not acceptable. Recently, we learned of a method (Murray
et al., 2006) that can estimate these parameters in a Potts model without the pre-
processing step. However, we did not find any advantage with respect to computation
time over the method proposed by Johnson et al. (2013). Therefore, we propose a novel
model that adaptively and locally smooths the fMRI data. Compared to the BN and RH
models, our model offers a more intuitive interpretation and presents less problems dur-
ing model fitting. In particular, in our model we let the variances in the full conditional
of the means be proportional to the error variances, allowing the degree of smoothing to
vary across the brain. We call our model a conditionally weighted adaptive smoothing
model (CWAS; see Section 2.2.1 for details).

In pre-surgical fMRI data, false negatives (i.e., voxels falsely classified as null) are
more dangerous to the patient than false positives (i.e., voxels falsely classified as ac-
tivated or de-activated) since the former may result in the surgeon damaging healthy
tissue vital to quality of life (Haller and Bartsch, 2009). Building upon the work of
Müller et al. (2007), we propose a loss function to identify functionally active regions in
the brain that asymmetrically penalizes false negatives and false positives. We use the
proposed loss function to compare the performance of our model to that of the BN and
RH models. Simulation studies show that the proposed model outperforms the BN and
RH models in terms of false negative rates.

The remainder of this paper is organized as follows. We begin in Section 2 with a
description of the proposed CWAS model, a brief overview of the BN and RH models,
and our proposed loss function. We then discuss model implementation details in Sec-
tion 3. In Section 4, we present results from our simulation studies. We then apply our
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model to two pre-surgical fMRI data sets in Section 5 and compare results with those
from the BN and RH models. We conclude the paper in Section 6 with a discussion of
the contribution of this paper and future directions.

2 Model

2.1 The CAR model

Consider an unsmoothed 3-dimensional Z-statistic image. We use Y to represent its
Z-statistic intensity for the set of N voxels, where Yi is the intensity of the ith voxel,
for i = 1, . . . , N . We assume a first order neighborhood system with two voxels, i and
i′, neighbors if they share a common face, and we denote it by i ∼ i′. Suppose μi and
εi are the mean intensity and the random measurement error of voxel i, respectively,
with error εi ∼ N(0, σ2

i ), where N(a, b) denotes the normal distribution with mean a
and variance b. Denote the mean intensity vector by μ = (μ1, . . . , μN )T . In this context,
Y is the Z-statistic image and μ represents the smoothed Z-statistic image. We assume
Yi = μi + εi, i.e., Yi ∼ N(μi, σ

2
i ).

A classical statistical model to smooth images is the CAR model (Besag et al., 1991).
The CAR model is a specific form of the auto-normal model (Besag, 1974), the latter
being defined by the set of full conditionals:

[μi | μ(−i),B, φ2
i ] ∼ N

(∑
j
bijμj , φ

2
i

)
(1)

where μ(−i) is the (n− 1)-dimensional vector obtained from μ by removing μi, and B
is an N ×N matrix with elements bij , where bij = 0 if i = j.

Set wij = 1 if and only if voxels i and j are neighbors (note: a voxel is not a neighbor

of itself), set wi+ =
∑N

j=1 wij , and let W be the N ×N matrix with elements wij . The

CAR model is obtained when bij = wij/wi+ and φ2
i = τ2/wi+ with τ ∈ R

+. Then, the
full conditionals in (1) are

[μi | μ(−i),W , τ2] ∼ N
(∑

j
(wij/wi+)μj , τ

2/wi+

)
. (2)

Here
∑

j(wij/wi+)μj indicates the average of the μjs at voxels that are neighbors to
voxel i and thus the resulting μi is smoothed towards the mean of its neighbors. The
amount of smoothing in (2) is controlled by a global parameter τ2 while in the original
auto-normal model the amount of smoothing is controlled by the voxel-specific variance
φ2
i .

By Brook’s Lemma (Brook, 1964), the full conditionals in (2) imply the following
joint prior on μ up to a normalizing constant:

π(μ | τ2) ∝ exp
{
−0.5τ−2

∑
i∼j

(μi − μj)
2
}
,

which is also called pairwise difference prior since it only depends on the differences of
all neighbor pairs (Besag, 1993).
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2.2 Spatially adaptive CAR models

The CWAS model

We define our spatially adaptive CAR model on μ by specifying a specific form for the
variance φ2

i in (1). Instead of using a global parameter τ2 for all voxels as in the CAR
model, we let φ2

i vary across the brain and model it to be proportional to the error
variance σ2

i , i.e., φ
2
i = ciσ

2
i , where ci > 0. We still assume bij = wij/wi+. Then, our

spatially adaptive CAR model is defined through the following conditional distributions:

[μi | μ(−i),W , ci, σ
2
i ] ∼ N

(∑
j
(wij/wi+)μj , ciσ

2
i

)
, i = 1, . . . , N. (3)

To allow for more flexibility, we let the error variances vary spatially as well by
placing a CAR prior on their logarithm, that is,

[ln(σ2
i ) | ln(σ2

(−i)),W , λ2] ∼ N
(∑

j
(wij/wi+) ln(σ

2
j ), λ

2/wi+

)
. (4)

Equations (6) and (4) are the motivation for calling our model the conditionally weighted
adaptive smoothing (CWAS) model.

The entire CWAS model is as follows:

[yi | μi, σ
2
i ]

ind∼ N
(
μi, σ

2
i

)
, i = 1, . . . , N,[

μi | μ(−i), ci, σ
2
i

]
∼ N

(∑
j
(wij/wi+)μj , ciσ

2
i

)
, i = 1, . . . , N,[

ln(σ2
i ) | ln(σ2

(−i)),W , λ2
]

∼ N
(∑

j
(wij/wi+) ln(σ

2
j ), λ

2/wi+

)
, i = 1, . . . , N,

λ2 ∼ IG (a, b) ,

ci = pi/(1− pi), i = 1, . . . , N,

pi
iid∼ Beta (α, β) , (5)

with hyperprior parameters a = b = 1, α = β = 2. IG(·, ·) denotes the inverse gamma
distribution and Beta(·, ·) denotes the beta distribution. To simplify notation, we will
denote μ̃i =

∑
j(wij/wi+)μj . The pi above requires explaining. Let pi = ci/(1 + ci),

then the full conditional for μi is[
μi | yi,μ(−i), σ

2
i , pi

]
∼ N

(
piyi + (1− pi)μ̃i, piσ

2
i

)
. (6)

Each pi has an intuitive interpretation in our context: it is the parameter that controls
the amount of smoothing at voxel i. If pi > 0.5, more weight is placed on yi, resulting
in relatively less smoothing, while if pi < 0.5 more weight is placed on μ̃i, resulting in
relatively more smoothing. We will discuss our hyperprior choices in Section 4.

The BN and RH models

We now explain the differences between our proposed CWAS model and the two spatially
adaptive models proposed by Brewer and Nolan (2007, BH) and Reich and Hodges
(2008, RH), and our motivation for proposing a new model.
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In the BN model, instead of using spatially varying error variances, the authors
assume that yi = μi + εi, with εi ∼ N(0, σ2). In addition, in the BN model the prior
placed on μi is given by (1) with bij = wij{(τ2i + τ2j )[

∑
i∼j(τ

2
i + τ2j )

−1]}−1 and φ2
i =

[
∑

i∼j(τ
2
i + τ2j )

−1]−1. Specifically, the conditional distribution for μi in (1) is given by

[
μi | μ(−i), τ

2
]
∼ N

⎛⎝∑
i∼j

μj

τ2i + τ2j

(∑
i∼j

1

τ2i + τ2j

)−1

,

(∑
i∼j

1

τ2i + τ2j

)−1
⎞⎠ ,

(7)
where τ 2 = (τ1, . . . , τN ).

In the BN model, the authors use an empirical Bayesian method to specify the
hyperprior distributions on the τ2i s. They first fit the BYM model to their data to get
raw estimates of the μis. Then, they set the mean of the prior for each τ2i to be

Λ−1
i = wi+

[∑
j∈N(i)

(μi − μj)
2/wi+ − (

∑
j∈N(i)

(μi − μj)/wi+)
2

]
/2 ,

and implement their spatially adaptive smoothing model to get the final estimate of
μi. When we apply the BN model in our simulation study and to our data, we set
τ2i ∼ IG(2,Λ−1

i ), for each i.

Reich and Hodges (2008) take a different approach by setting bij and φ2
i in (1)

to wijτ
−1
j /

∑
i∼k τ

−1
k and τi/

∑
i∼j τ

−1
j , respectively. In the RH model the conditional

distributions of μi, i = 1, . . . , N are[
μi | μ(−i), τ

2
]
∼ N

(∑
i∼j

(
τ−1
j /

∑
i∼k

τ−1
k

)
μj , τi/

∑
i∼j

τ−1
j

)
. (8)

Similar to our CWAS model, in the RH model the authors assume that yi = μi + εi,
with εi ∼ N(0, σ2

i ). Both the σ2
i s and τ2i s vary spatially with CAR priors placed on their

logarithms:[
ln(σ2

i ) | ln(σ2
(−i)),W , λ2

]
∼ N

(∑
j
(wij/wi+) ln(σ

2
j ), λ

2/wi+

)
,[

ln(τ2i ) | ln(τ 2
(−i)),W , γ2

]
∼ N

(∑
j
(wij/wi+) ln(σ

2
j ), γ

2/wi+

)
, (9)

where λ2 and γ2 are both assumed to follow an inverse Gamma distribution, IG(1,1).

Our model is different from both the BN model and the RH model in the definitions
of the bij and φ2

i in (1). We believe that compared to the BN and RH models our model
offers a more intuitive interpretation. The model parameter pi for voxel i is the weight
placed on the data yi and controls the amount of smoothing in the CWAS model at
voxel i.

2.3 Loss function

The goal of using fMRI for pre-surgical planning is to identify which voxels did not
activate or deactivate and are safe to resect. After fitting our CWAS model to data, we
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use a Bayesian decision theoretic approach to classify voxels into two classes, null and
non-null (those voxels that are either activated or deactivated). A typical fMRI data
analysis places emphasis on only controlling the type I error. However, in pre-surgical
fMRI planning, surgeons are more concerned with false negatives since damage to false
negative regions of the brain may lead to irreversible deficits in function. Therefore,
we propose a novel loss function that explicitly controls both false negatives and false
positives, while at the same time allowing false negatives and false positives to be
treated asymmetrically in the loss function. Our loss function is a generalization of a
loss function proposed by Müller et al. (2007). Let μi indicate the mean intensity for
voxel i, ri ∈ {0, 1} denote the true binary state of voxel i (0 for null, 1 for non-null), and
δi ∈ {0, 1} represent the estimated state. Let μ = (μ1, . . . , μN ) and δ = (δ1, . . . , δN ) be
the vectors corresponding to all voxels and let k1, k2 and t be positive weights. Then
our proposed loss function is defined as follows:

L(μ, δ) =
∑

i
[−riδi − (1− ri)(1− δi) + k1ri(1− δi) + k2(1− ri)δi + tδi] .

The terms in this loss function indicate: (i) two types of gains corresponding to correct
classification of an activated or deactivated voxel; −riδi, and of a null voxel; −(1−ri)(1−
δi); (ii) two types of losses corresponding to incorrect classification of an activated or
deactivated voxel; k1ri(1− δi), and of a null voxel; k2(1− ri)δi; and (iii) a penalty term
for the total number of discoveries ensuring parsimony,

∑
i tδi. Above, k1 is a weight for

incorrectly classified non-null voxels (false negatives) while k2 is a weight for incorrectly
classified null voxels (false positives). When k1 > k2 more weight is given to incorrectly
classified activated voxels relative to null voxels.

Given the data, the optimal decision rule is obtained when the posterior expected
loss

E (L(μ, δ | Y )) =
∑

i
[−(2 + k1 + k2)δi Pr(ri = 1 | Y ) + (1 + k1) Pr(ri = 1 | Y )

+ (1 + k2 + t)δi − 1]

is minimized. The optimal decision is

δ†i = I [Pr(ri = 1 | Y ) ≥ (1 + k2 + t)/(2 + k1 + k2)] .

However, we do not explicitly define Pr(ri = 1 | Y ) in our model. Instead, we consider
for each voxel i

f(mi) = f
(∣∣∣E(μi | Y )/

√
Var(μi | Y )

∣∣∣)
where f is some monotone function and mi can be consider as the strength of a voxel
being non-null (i.e., either activated or deactivated); with mi = 0 if ri = 0 and mi > 0
when ri = 1 (see Müller et al. (2007) for details). Our loss function is now

L(m, δ) =
∑

i
{−f(mi)δi − [1− f(mi)](1− δi) + k1f(mi)(1− δi)

+ k2[1− f(mi)]δi + tδi}

where m = (m1,m2, . . . ,mN ) and the optimal decision is

δ�i = I [f(m̂i) ≥ (1 + k2 + t)/(2 + k1 + k2)]
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and m̂i is the estimated posterior of mi. For the function f , a reasonable choice is that
by Gross and Binder (2014), that is, f(mi) = mi/qα(m) where qα is the (1−α)-quantile
function of its argument. By choosing an appropriate level of α, one can guard against
outliers. In our application, there does not appear to be any outliers, and so we choose
α = 0. That is, q0(m) ≡ max(m). Another appropriate choice would be α = 0.01. The
decision rule of our proposed loss function only depends on the values of the constants
k1, k2 and t. Once fixed, we have a uniform decision rule that we can apply across
different data sets.

3 Posterior estimation

3.1 The CWAS model

We now discuss posterior estimation for the parameters in our model. We implement
a hybrid Metropolis-within-Gibbs algorithm to sample the parameters from their full
conditionals. The full conditionals for μi, i = 1, . . . , N and λ2 are available in closed
form and are respectively the normal distribution given in (6) and an inverse gamma
distribution[

λ2 | σ2
]
∼ IG

(
a+ 0.5(N − 1), b+ 0.5

∑
i∼j

[
ln(σ2

i )− ln(σ2
j )
]2)

.

The prior and posterior for both σ2
i and ci are not conjugate pairs. The full conditionals,

up to a constant of proportionality, are:

π(σ2
i | yi,σ2

(−i),μ, λ
2) ∝ π(yi | μi, σ

2
i )π(σ

2
i | σ2

(−i), λ
2)π(μ | c,σ2), (10)

π(ci | c(−i),μ,σ
2) ∝ π(ci)π(μ | c,σ2), (11)

where the prior distribution of ci is induced by the prior distribution on pi. The prior
density of ci is

π(ci) = cα−1
i (1 + ci)

−(α+β)/B(α, β),

where B(·, ·) denotes the Beta function. We remark that although the cis are a priori
independent, they are spatially correlated in the posterior. The full conditional of ci is

π(ci | c(−i),μ,σ
2) ∝ c

− 1
2

i exp
{
− (μi − μ̃i)

2
/(2ciσ

2
i )
}
cα−1
i (1 + ci)

−(α+β).

Note that this full conditional depends on μ̃i =
∑

j(wij/wi+)μj—thus borrowing in-
formation from neighboring voxels. Furthermore, the posterior of ci depends on μi and
σ2
i which are explicitly dependent on their neighbors (both a priori and a posteriori).

Thus, the cis (and pis) are a posteriori correlated and borrow strength implicitly from
their neighboring values. In the Discussion section of the paper, we illustrate how one
can modify the priors on the pis so that they are spatially dependent a priori, which
may be desirable.

The full conditionals in (10) and (11) are intractable due to the fact that π(μ |
c,σ2) is intractable. By Brook’s Lemma (Brook, 1964), the prior of μ is guaranteed
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to exist. However, with our specification of the conditional priors on the μis in (5),
the prior of μ does not have a tractable density. To overcome this issue, we use the
pseudo-likelihood approach (Besag, 1975) to approximate the prior of μ, π(μ | c,σ2).
The pseudo-likelihood approximation was originally developed for spatial models by
Besag (1975) motivated by the computational intractability of the true likelihood. Besag
showed that parameter estimation using the pseudo-likelihood approximation is efficient
for simple Gaussian fields (Besag, 1977). The pseudo-likelihood approximation proposed
by Besag (1975) for μ is formulated as the product of all the full conditionals π(μi | ·):

π(μ | c,σ2) ≈
N∏
i=1

(2πciσ
2
i )

− 1
2 exp

{
− (μi − μ̃i)

2
/(2ciσ

2
i )
}
,

where c = (c1, . . . , cN )T and σ2 = (σ2
1 , . . . , σ

2
N )T . Since the full conditionals of σ2

i and
ci, i = 1, . . . , N, do not have closed forms, we draw samples from their full conditionals
using the Metropolis–Hastings algorithm (Hastings, 1970). Note that only the estimation
of the cis and the σ2

i s rely on the pseudo-likelihood approximation.

3.2 The BN and RH models

Brewer and Nolan (2007) also used the pseudo-likelihood approximation to the prior of
μ in their model. In their case, the prior for μ is approximated as

π(μ | τ2) ≈
N∏
i=1

(
2π∑

i∼j

(
τ2i + τ2j

)−1

)− 1
2

exp

⎧⎪⎨⎪⎩−

(
μi −

∑
i∼j

μj

τ2
i +τ2

j
/
∑

i∼j
1

τ2
i +τ2

j

)2
2
[∑

i∼j

(
τ2i + τ2j

)−1
]−1

⎫⎪⎬⎪⎭ .

Reich and Hodges (2008) use the following joint prior distribution for μ:

π(μ | τ 2) ∝ |Q| 12 exp
{
−0.5

∑
i∼j

(μi − μj)
2
/(τiτj)

}
,

where the matrix Q has entries Qii =
∑

i∼j τ
−2
ij and Qij = −I(i ∼ j)τ−2

ij , while the
determinant of Q is calculated as the product of all positive eigenvalues of the non-
negative definite matrix Q. For our Z-statistic image with approximately 47000 voxels
(after skull stripping and exclusion of non-brain voxels), computing the determinant
of Q is computationally infeasible; therefore, when we apply the RH model to our Z-
statistic image, we implement a pseudo-likelihood approach to approximate the prior of
μ with

π(μ | τ2) ≈
N∏
i=1

(
2πτi∑
i∼j τ

−1
j

)− 1
2

exp

⎧⎨⎩−
(
μi −

∑
i∼j

τ−1
j μj∑
i∼k τ

−1
k

)2

/

(
2τi∑

i∼j τ
−1
j

)⎫⎬⎭ .

4 Simulation studies

We conducted simulation studies to investigate the performance of the proposed CWAS
model. In the simulation studies, we (i) investigate sensitivity to different prior speci-
fications on the pis; (ii) demonstrate the relationship between the number of correctly



Z. Liu, V. J. Berrocal, A. J. Bartsch, and T. D. Johnson 609

classified activated voxels and the thresholds used to detect activation regions for the
simulated fMRI data with different signal to noise ratios; and (iii) compare the perfor-
mance of our proposed CWAS model with that of the BN and RH models.

Center Voxel [20,40,10] [36,50,18] [31,35,20] [53,29,25] [40,40,30] [46,25,33]
Effect Size 10 8 6 4 2 1
Radius 2 4 1 2 4 1

Table 1: Locations, effect sizes and radii of the 6 activated regions in the simulation
studies.

For simulation purposes, we used the neuRosim package described in Welvaert et al.
(2011) to simulate a set of four-dimensional fMRI data. The detailed settings used
for data generation are elaborated as follows. A boxcar block design was used for the
stimulus function, with each on/off episode lasting 20 seconds. Repetition time (TR)
is set to two seconds with a total of 100 scans in each simulated data set. Thus each
simulated experiment lasts 200 seconds, with activation onset at 21, 61, 101, 141, and
181 seconds. The stimulus function is convolved with a gamma hemodynamic response
function (HRF). The brain mask for the simulated data is chosen to be the same as that
of the patient described in Section 5. The brain mask is a three-dimensional 64×64×40
binary array indicating whether an element in the array corresponds to a voxel in the
brain. There are six spherical activation regions with different sizes and HRF signal
magnitudes. Details of the six activation regions are shown in Table 1. The baseline
signal is set to 250 and the signal fading rate is set to 0.01 as suggested by Welvaert
et al. (2011). The noise is a mixture of Gaussian white noise (30%), and spatial noise
(70%) with default auto-correlation coefficient equal to 0.75. We simulated 50 data sets
for each signal-to-noise ratio (SNR) considered (SNR = 1, 2 and 3). The average SNR
is defined as SNR= S̄/σN , where S̄ represents the average magnitude of the signal, and
σN stands for the standard deviation of the noise (Krüger and Glover, 2001). Z-statistic
images were created using FEAT within the FSL (Smith et al., 2004) software package
with spatial smoothing turned off in the preprocessing stage. Based on these settings,
each Z-statistic image contains a total of 46932 voxels, 328 of which are truly active.

The 150 simulated data sets were then fitted with the CWAS, RH, and BN models.
For all three models, we ran the MCMC algorithm for 150,000 iterations with the first
100,000 iterations discarded as burn-in. The RH model encountered convergence prob-
lems that might be attributable to (i) the large data size, or (ii) the pseudo-likelihood
approximation. However, when the RH model did converge, our model always converged
faster. We visually assessed the traceplots based on which we concluded our model con-
verged faster. Convergence was further verified using the Gelman–Rubin convergence
diagnostic statistic (Gelman and Rubin, 1992; Brooks and Gelman, 1998). For cases
when the RH model did not converge, we reran the MCMC simulations using a differ-
ent starting value so that all models were compared using the same 150 simulated data
sets.

To investigate sensitivity to different prior specifications under the CWAS model,
we considered three Beta distributions, Beta(2,2), Beta(1,3) and Beta(3,1), as the hy-
perprior distribution of the pis. We also attempted to control the amount of smoothing
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Figure 1: False negative rate vs threshold in the simulation studies. For each signal to
noise ratio, we take the average of the false negative rate over 50 simulations using
different Beta prior distributions for the pis in our CWAS model. For comparison we
also include results using the BN and RH models. Threshold varies from 0 to 1.

in the RH model by implementing different hyperpriors on λ2 or γ2 (see (9)). However,
smoothing was rather insensitive to the prior information unless we specified a very tight
prior. A similar phenomenon was observed for the BN model. We applied our proposed
loss function and summarized the false negative rate (FNR) for all three models. Instead
of using a fixed threshold derived by minimizing the posterior expected loss and holding
the constants k1, k2 and t in the loss function fixed, we varied the threshold from 0 to
1 to demonstrate the trade-off between threshold and true positive counts. For each
SNR, Figure 1 shows the average FNR over the 50 simulated data sets versus threshold.
Each curve denotes a different amount of smoothing for the CWAS model. Beta(2,2),
Beta(3,1) and Beta (1,3) are different priors for the smoothing parameters pi, which
represents the weight assigned to the data point yi: a larger pi implies less smoothing
at voxel i. As shown in Figure 1, the curve corresponding to Beta(1,3) results in the
largest amount of smoothing and has the lowest FNR compared to the other two priors
at a SNR of 1. On the other hand, the curve corresponding to Beta(1,3) has the largest
FNR when the SNR is 3. This is consistent with our intuition that less smoothing is
necessary as the SNR increases. We also note that our model has a consistently lower
FNR than the other two models for a large range of thresholds.

We compared the smoothed Z-statistic images derived from the three models applied
on one selected simulated data set. Figure 2 shows the comparison between the posterior
estimates of the mean intensities from the three spatially adaptive smoothing models
when SNR = 2. Similar results, not shown, were obtained for signal-to-noise ratios equal
to 1 and 3 as well. The top row of Figure 2 displays the true activation regions in four
sagittal slices of the brain, while the second row presents the simulated data with noise
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Figure 2: Comparison of the posterior estimates of the mean intensities from the three
different spatially adaptive smoothing models when SNR = 2. The top row shows the
truly activated regions in four sagittal slices of the brain (one of the six simulated regions
does not appear in these four slices). The second row shows the simulated Z-statistic
images (with no smoothing). The third through fifth rows show the marginal posterior
means of μ from the three spatially adaptive smoothing models.
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added. By comparing row 3 through 5, it is evident that the amount of smoothing varies
among the three models. The BN model severely smoothes the data. The RH model also
tends to oversmooth the data. Our model smoothes the simulated data the least and
it achieves the goal of balancing smoothing and retaining relatively sharp boundaries
between activated and non-activated areas.

5 Application to pre-surgical fMRI data

The motivation of this work is to establish and test the performance of a novel, spatially
adaptive smoothing model for pre-surgical fMRI data. In this section, we illustrate the
application of our proposed CWAS model to the fMRI data from two brain tumor
patients and compare it with the RH and BN models. Both patients were pre-surgically
mapped by fMRI to determine the peri- and potentially intra-tumoral regions of the
brain vital for speech and language functions in order to optimize (a) access to the
tumor, (b) intra-operative ESM at a limited number of predefined cortical sites and (c)
extent of resection without inflicting new aphasic deficits.

The first patient’s tumor was located in proximity to the so-called dorsal stream
of speech and language while the second patient’s tumor was in proximity to the so-
called ventral stream (Hickok and Poeppel, 2007). Consequently, two different fMRI
paradigms were applied, specifically challenging functions of the dorsal and ventral
stream (see below). A 30 seconds ON/OFF-boxcar block design was used in both cases,
and task speed was adjusted to the individual’s optimal performance level. Data on the
first patient are from a 32 year old, right-handed woman who had initially experienced a
seizure and was then brought into the emergency room, still with difficulties speaking. In
particular, she had persistent problems repeating phonemically challenging phrases. In
the fMRI paradigm, the patient was therefore instructed and cued to alternate between
the silent recitation of challenging tongue twister phrases (ON) and covert repetition of
the unchallenging, rhythmic phoneme sequence “tock-tock-tock” (OFF). After partial
resection, the tumor, in the left insular and inferior frontal lobe, was classified as an
oligodendroglioma with anaplastic components (see the structural MRI scan in the left
panel of Figure 3 and Figure 4). Data on the second patient are from a 62 year old,
right-handed woman who presented difficulties with word finding, comprehension and
reading but who did not display signs of agraphia. In the fMRI paradigm, the patient was
therefore asked to silently read non-final embedded clause sentences (ON) alternating
with consonant strings (OFF). After partial resection, the tumor, located in the left
middle and inferior temporal gyrus, was classified as a glioblastoma multiforme (GBM)
with intra-tumoral hemorrhages (see Figure 5).

Both fMRI studies were recorded on a 3 Tesla TimTrio scanner (TQ engine, 32
channel head coil; Siemens Medical Solutions, Erlangen) using gradient-echo (GE) echo-
planar imaging (EPI) at the following parameters: TR = 3000 ms, TE = 30 ms, echo
spacing = 0.69 ms, GRAPPA acceleration factor 2, n = 160 volumes in time, 64×64×40
voxels in space (3.00 × 3.00 × 3.00 mm3 resolution, with an additional 15% inter-slice
gap). Geometric distortions were corrected using an additional GE fieldmap scan. High-
resolution anatomical T2-weighted FLAIR- (fluid-attenuated inversion recovery) and
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Figure 3: Pre-surgical fMRI imaging. The left panel shows a FLAIR (fluid-attenuated
inversion recovery) image where the tumor of the first patient is evident. The right
panel shows the unsmoothed Z-statistic image. The Z-statistic image generated by mass-
univariate general linear modeling is related to the probability of brain activation.

T1-weighted MPRAGE (magnetization-prepared rapid gradient echo) sequences were
recorded as well for intra-operative neuro-navigation, cortical surface reconstruction and
the display of fMRI results (cf. Figures 4 and 5). A distortion-corrected 3-dimensional
Z-statistic image was estimated in native GE-EPI space (64× 64× 40 voxels) for each
patient using the FEAT analysis tool v.6.00 (with convolution of the design matrix by
the canonical double-gamma hemodynamic response function, HRF, and inclusion of
temporal derivatives) in FSL 5.0.7 (http://www.fmrib.ox.ac.uk/fsl/, Smith et al.
(2004); Woolrich et al. (2009)). Spatial smoothing was turned off during the prepro-
cessing stage, motion correction was performed and data were temporally filtered using
a high-pass cutoff of 90 seconds (default Gaussian-weighted least-squares straight line
fitting). A single sagittal slice of the resulting Z-statistic image of the first patient is
shown in the right panel of Figure 3.

In the following analysis, we fit our proposed CWAS model to these Z-statistic im-
ages. Bayesian decision theory, using the loss function defined in Section 2.3, is subse-
quently used to identify activated and deactivated voxels. For comparison, results from
the RH and BN models are shown as well (cf. Figures 4 and 5). We ran our model
for 50,000 iterations after a burn-in of 100,000 (total iterations 150,000). The MCMC
algorithm takes approximately 1 hour CPU time on an iMAC with a 3.2 GHz Intel Core
i5 processor with 16 GB of memory.

Based on our simulation studies, we use a Beta(2,2) prior for the parameters pi, i =
1, . . . , N , since this prior showed consistently good performance in identifying activated
regions over a large range of thresholds for SNR = 2, 3. Welvaert et al. (2011) demon-
strated that the estimated SNR from real fMRI data is around 3.87. Next, we want to
determine a threshold to identify activated and deactivated voxels. Since, in pre-surgical
fMRI, misclassification of activated or deactivated voxels is more important than false
positives, we set k1 = 11, k2 = 1, t = 1 in the posterior expected loss function. This
results in a loss that penalizes false negatives 11 times more heavily than false posi-
tives and was determined by expert opinion (A.J. Bartsch) and is concordant with the

http://www.fmrib.ox.ac.uk/fsl/


614 Spatially Adaptive CAR Model

Figure 4: Results for patient 1: CWAS, RH and BN models. The top row shows results
on the loss function scale projected onto the cortical surface. In the bottom row, the
loss function has been truncated below by 0.2 and above by –0.2—indicating those re-
gions that survived thresholding. Values above 0.8 are mapped to 0.8 and values below
–0.8 are mapped to –0.8 to give a better dynamic range of colors. Red to yellow denote
increasingly strong activation. Dark blue to bright blue denote increasingly strong de-
activation. In the lower right panel, the tip of the pars triangularis of the inferior frontal
gyrus is marked with a white asterisk * and the peri-Sylvian supramarginal gyrus (SMG
or area Spt) is marked with a slightly rotated white bracket].

results obtained by ESM (see below). We classify any voxel whose posterior expected
mean intensity is positive, i.e., E(μi | Y ) > 0, and for which f(mi) = mi/q0(m) ≥ 0.2
as activated. Conversely, those voxels for which the posterior expected mean intensity
is negative, i.e., E(μi | Y ) < 0, and f(mi) ≥ 0.2 are considered deactivated.

Figures 4 and 5 display the activated and deactivated regions, for the two patients,
projected onto the cortical surface identified by the CWAS, RH and BN models. Re-
construction of the cortical surface, surface editing to visualize the tumor, transforma-
tion/projection of the statistical maps onto the pial surface and the underlying volume
space was performed using FreeSurfer v.5.3.0 (http://surfer.nmr.mgh.harvard.edu/;
Fischl (2012)) and its recon-all, reg-feat2anat and feat2surf scripts. Left hemispheres
are visualized using Freeview (part of FreeSurfer). A minimal amount of smoothing was
applied to the pial surface and surface projection of the data, respectively, and is the re-

http://surfer.nmr.mgh.harvard.edu/
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Figure 5: Results of the CWAS, RH and BN models for patient 2 (cf. Figure 4 for
further explanations). In the lower right panel, the superior temporal sulcus (STS or
t1) is marked with a black arrowhead and the middle temporal gyrus (MTG or T2) is
marked with a black #.

sult of a spline interpolation of the data into the high-resolution (1.00×1.00×1.00 mm3)
anatomical volume space. The tumors are made visible through an edited “hole”, i.e.,
a topological defect, of the cortical surface.

Although surgeons are more concerned with activated regions, in Figures 4 and 5
we also present deactivation regions because in brain tumor patients even decreases in
the BOLD signal may be related to brain activation (Fujiwara et al., 2004; Hsu et al.,
2004; Ulmer et al., 2004; Bartsch et al., 2006). As a result, deactivated voxels should
be considered in the loss function (although we acknowledge that “paradoxical” BOLD
signal decreases may often represent a rather slightly, i.e., by the order of a few seconds,
increased delay of the peri- or intra-tumoral HRF and are then less likely to reflect
true brain activation in fMRI designs of longer blocks such as 30 seconds modeled with
temporal derivatives).

Activated and deactivated areas detected by the BN model are clearly less exten-
sive than those obtained by either the CWAS or RH model. While the BN model still
performed reasonably in the case of the first patient (Figure 4), it clearly did not in
the case of the second patient (Figure 5). On the other hand, activated and deactivated
regions detected by the RH model are obviously larger and “smoother”, i.e., more con-
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tinuously distributed over surface vertices/volume voxels, than those obtained under
the CWAS model. Under the RH model, the spatial extent exceeded beyond what is
expected according to expert opinion (A.J. Bartsch) in both clinical cases.

Furthermore, these impressions and superiority of the CWAS model were confirmed
by intra-operative ESM in both patients—in the first patient, there was fading evidence
for activation according to the RH model at the tip of the pars trigangularis of the
inferior frontal gyrus (IFG or F3) towards the Sylvian fissure which was eloquent based
on electrical stimulation (i.e., ESM evoked speech arrest at this location) and active
according to the CWAS results. Compared to the BN model, CWAS results seemed
superior at the peri-Sylvian supramarginal gyrus (SMG) of the inferior parietal lobule
(P2) which was not stimulated by ESM in this case but is a known speech center of the
dorsal stream, i.e., the Sylvian fissure at the parietotemporal boundary (or Spt) area
(cf. Hickok and Poeppel (2007)).

In the second patient, the BN model essentially failed to reveal peri- or intra-tumoral
fMRI activations. Here, the RH model suggested high probabilities of activation in the
middle temporal gyrus (MTG or T2) which were only confirmed for the area around
the superior temporal sulcus (STS or t1) by ESM at approximately the line indicated
by the CWAS statistical image thresholded at ≥ 0.20 (cf. lower left panel in Figure 5).

Evidence for intra-tumoral fMRI activations was low according to all three models
in the first patient and essentially absent on the thresholded CWAS, RN and BH maps
(cf. Figure 4, lower panel). This was confirmed by ESM which did not lead to speech
arrest or other speech and language disturbances during awake craniotomy upon stim-
ulation of the tumor itself. In this case, the resection was limited by proximity to and
infiltration of the arcuate fasciculus by the tumor (not shown; cf. Bartsch et al. (2014),
with Figure 23.14 there for illustration and further discussion of eloquent fiber path-
ways that can be tracked by diffusion-weighted imaging and are similarly important for
pre-surgical planning). On the contrary, there was evidence for intra-tumoral activa-
tions in the second patient according to the CWAS and RH model which survived the
thresholding only in CWAS (cf. Figure 5). ESM of the tumor in this case did, in fact,
worsen naming, comprehension and reading performance in the patient and eventually
lead to speech arrest which limited the surgical resection. Function in tumor is a known
phenomenon to occur primarily in highly malignant tumors (like GBM in the second
patient; Ojemann et al. (1996)). Note that the correspondence between ESM and the
CWAS, RH and BN maps was assessed after the surgery and was not used for the actual
medical decision making.

We conclude this section with a discussion on the quality of the model parameter
estimates. Given the large number of parameters in the CWAS model, one may wonder
whether there is enough information in the data to inform on all of the parameters. The
answer is yes. Patient 1’s dataset consists of approximately 47000 voxels and patient 2’s
dataset consists of approximately 54000 voxels. For each voxel, there are three parame-
ters to estimate, μi, pi, and σ2

i . Although there are many more parameters to estimate
than voxels, there is information in the data to estimate all of the parameters. First,
the Gelman–Rubin diagnostic statistic shows that the MCMC chains for the μis, σ

2
i s,

and pis all have converged. For each parameter, the Gelman–Rubin R statistic (Gelman
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μis pis σ2
i s

Patient 1 (0.999952, 1.000414) (0.999954, 1.027688) (0.999953, 1.000770)
Patient 2 (0.999953, 1.000486) (0.999950, 1.000052) (0.999950, 1.000466)

Table 2: The ranges of the Gelman–Rubin diagnostic statistic for the μis, pis, and σ2
i s.

Figure 6: (a)–(c) Scatterplots of posterior mean estimates from two independent MCMC
runs from patient 1; (d) Histogram of the posterior estimates of pis with red line indi-
cating the sampling distribution of the posterior means of pis from patient 1 run 1.

and Rubin, 1992; Brooks and Gelman, 1998) is calculated from five MCMC simulations
with different starting values. The ranges of the Gelman–Rubin diagnostic statistic for
the μis, pis, and σ2

i s are shown in Table 2. All ranges are below the suggested threshold
of 1.2. Note that we used the univariate Gelman–Rubin diagnostic statistic. Although
there is a multivariate version, it is not possible to use it in our application as we have
far too many parameters.

Figure 6 (a)–(c) and Figure 7 (a)–(c) display scatterplots of these parameters from
two independent MCMC runs from patient 1 and patient 2, respectively. These figures
further corroborate the conclusions from the Gelman–Rubin statistic. In Figure 6 (d)
and Figure 7 (d), we also show a histogram of all of the posterior means of the pis for
each patient. The red curves, overlaying the histograms, are the theoretical distribution
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Figure 7: (a)–(c) Scatterplots of posterior mean estimates from two independent MCMC
runs from patient 2; (d) Histogram of the posterior estimates of pis with red line indi-
cating the sampling distribution of the posterior means of pis from patient 2 run 1.

of the posterior expectation of the pis under the assumption that the data are completely
uninformative and the pis are independent. It is evident from these two figures that the
data are informing the pis, even though we assume that they are independent a priori.
Figure 8 shows a histogram of the MCMC standard errors of the μis and a scatterplot
of MCMC standard errors versus the marginal posterior mean estimates of the μis for
each patient. MCMC standard errors were calculated using the “mcmcse” package in R
(Flegal and Hughes, 2012) with the default batch means method (Flegal et al., 2008).

6 Discussion

In this paper, we propose an alternative model to the NP-Potts model developed by
Johnson et al. (2013) for analyzing pre-surgical fMRI data. We have developed a novel
spatially adaptive smoothing model (CWAS) that allows the data to determine where
and how much smoothing should occur in the Z-statistic image. We have incorporated a
Bayesian decision theoretical approach to classify the voxels into activation, deactivation
and null states. Simulating from the posterior of the CWAS model is much more com-
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Figure 8: MCMC standard errors (SE) for the μis: (Left column) Histograms of the
MCMC standard errors for the μis for patient 1 (a) and patient 2 (c); (Right column)
Scatterplots of MCMC standard errors versus marginal posterior means of the μis for
patient 1 (b) and patient 2 (d).

putationally efficient than simulating from the non-parametric Potts model proposed
by Johnson et al. (2013). The MCMC algorithm for the CWAS model takes one hour
to run on an iMac (3.2 GHZ Intel Core i5, 16 GB memory). The computational cost
of the NP-Potts model is on the same order as that of the CWAS model only after the
ratios of the normalizing constants have been computed. However, it takes more than
one week to obtain good estimates of these ratios, rendering the algorithm impractical.
Simulation results show that our model outperforms the two existing spatially adaptive
smoothing models proposed by Brewer and Nolan (2007) and Reich and Hodges (2008).
Finally, our model is easy to implement and converges faster than the other two.

Due to the computational intractability of the true likelihood, we resort to the
pseudo-likelihood approximation proposed by Besag (1975) for the joint distribution
of μ. Although the pseudo-likelihood approximation solves the problem and Besag
(1977) showed that parameter estimation using this approach is efficient for simple
Gaussian fields, using the pseudo-likelihood approximation brings up some issues. The
MCMC samples do not come from the true model, and thus the inference is actually
based on the likelihood from a misspecified model. It has been shown that the credi-
ble intervals based on MCMC samples from pseudo-likelihood have smaller empirical
coverage than the nominal and less than the ones from true likelihood. Shaby (2014)
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has proposed an adjustment for the MCMC samples, called the open faced sandwich
(OFS) adjustment, to obtain the correct interval widths and coverage. We looked into
the pseudo-likelihood adjustment method described by Shaby (2014) and found that
it is impossible to apply it to our results. First, the OFS adjustment doesn’t adjust
the Bayesian estimators when the loss function used for Bayesian estimation is squared
error loss. In this case, the Bayesian estimators are the posterior means and the OFS
adjustment cancels out. Thus, the posterior means of the adjusted samples are exactly
equal to that of the non-adjusted samples. Hence, under squared error loss, the OFS
adjustment only adjusts the width of the credible intervals. In our case, that means
that the OFS adjustment only affects the estimates of the mis since the mis depend
on the variance of the MCMC samples. However, to do the adjustment, we would need
to estimate Ω = Q−1P

1
2Q

1
2 , where Ω, Q and P are n × n matrices, with n number of

parameters. Although it is possible to estimate Q and P post hoc, our model has tens
of thousands of parameters, thus to derive Ω we need to determine the inverse of a huge
matrix, which is computationally intractable. We note that the examples considered by
Shaby (2014) all have less than 5 parameters.

In fMRI studies, controlling the family-wise error rate (FWER) by restricting to
anatomical region-of-interests (ROIs) can increase the statistical sensitivity since the
number of multiple comparisons is drastically reduced. However, there is no loss (other
than computational) for performing a whole brain analysis. In fact, a whole brain analy-
sis has several advantages. In principle, brain activations are task- or condition-specific.
This becomes obvious when you compare the activations in Figures 4 and 5. The tongue-
twister task is phonetically and motorically challenging and therefore more centered
to the anterior speech areas involving the precentral gyrus (Figure 4), while reading
nonfinal embedded clause sentences involves more posterior speech and language areas
including the angular gyrus and the so-called ventral stream of speech and language in
general (Figure 5). However, contrary to the primary motor or visual system, for ex-
ample, speech and language have no ‘absolute’ cortical representations (Bartsch et al.,
2014). That is, you cannot use anatomical landmarks alone (like the central sulcus to
delineate precentral gyrus of the primary motor system) to predict the areas where
activations can be expected. In fact, this is reason why we often, and primarily, map
speech and language. Furthermore, in presurgical fMRI of patients with brain lesions,
compensatory mechanisms and ‘neuroplasticity’ may lead to atypical and unexpected
activations (at the border or even outside anatomical ROIs defined by task-specific
functional activations evoked in a group of healthy comparison subjects, for example)
which we don’t want to miss. Last but not least, performing a whole-brain analysis
instead of an analysis restricted to predefined anatomical ROIs (as derived from prior
functional studies, for example) or even just the intratumoral and peritumoral regions
and the potential routes of neurosurgical access allows us to assess the general pattern of
activation and deactivation, with both the expected as well as unexpected components
(Figures 4 and 5), which proves very helpful to assure that the experiment worked (even
in brain areas remote from the tumor). This is also why almost all presurgical fMRI
studies record the data from the entire brain. Taken together, the whole-brain approach
does not involve a statistical penalty for our analysis but provides us with a much richer
set of information.
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We applied the CWAS model to Z-statistics images from a mass univariate GLM
approach. However, our model can be applied to the statistical output of independent
component analyses (ICA) such as FSL’s MELODIC (Beckmann and Smith, 2004). For
speech and language mapping by fMRI, ICA may be more appropriate because it does
not assume that brain activation is maintained at a similar level during one block (which
is quite unlikely given the rather lengthy blocks of about 30 seconds in clinical fMRI).

A further extension to the CWAS model would be to modify the priors on the
pis so that they are explicitly spatially dependent a priori. In this paper, the prior
distribution of the cis is induced by the prior distribution on the pis and the pis/cis

are independent since pi
iid∼ Beta(α, β), i = 1, . . . , N . If one wished to model the pis as

spatially dependent, while retaining control on the degree of smoothing, a prior which
combines the feature of a CAR prior and a Beta distribution could be employed:

π(pi) ∝ exp
{
−0.5

∑
i∼j

(pi − pj)
2/ϕ2 + (α− 1) log pi + (β − 1) log(1− pi)

}
.

Another interesting extension of the CWAS model would be to modify it to accom-
modate multiple fMRI studies from the same patient, or multiple runs using the same
paradigm. Consider, for example, a sentence completion experiment being performed in
addition to a tongue-twister experiment. If there is any correlation between the two Z-
statistic images, a bivariate CWAS model may be able to leverage it and produce more
accurate results. Furthermore, instead of using it across different runs with different
paradigms, such a model may especially be helpful in analyzing multiple runs using the
same paradigm where, normally, a second level fixed-effects analysis is conducted. We
are currently investigating several multivariate spatially adaptive CAR models for such
analyses.
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