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A Fully Nonparametric Modeling Approach to
Binary Regression

Maria DeYoreo∗ and Athanasios Kottas†

Abstract. We propose a general nonparametric Bayesian framework for binary
regression, which is built from modeling for the joint response–covariate distribu-
tion. The observed binary responses are assumed to arise from underlying contin-
uous random variables through discretization, and we model the joint distribution
of these latent responses and the covariates using a Dirichlet process mixture of
multivariate normals. We show that the kernel of the induced mixture model for
the observed data is identifiable upon a restriction on the latent variables. To al-
low for appropriate dependence structure while facilitating identifiability, we use
a square-root-free Cholesky decomposition of the covariance matrix in the normal
mixture kernel. In addition to allowing for the necessary restriction, this modeling
strategy provides substantial simplifications in implementation of Markov chain
Monte Carlo posterior simulation. We present two data examples taken from areas
for which the methodology is especially well suited. In particular, the first exam-
ple involves estimation of relationships between environmental variables, and the
second develops inference for natural selection surfaces in evolutionary biology.
Finally, we discuss extensions to regression settings with ordinal responses.

Keywords: Bayesian nonparametrics, Dirichlet process mixture model,
identifiability, Markov chain Monte Carlo, ordinal regression.

1 Introduction

Binary responses measured along with covariates are present in several problems in
science and engineering. From a modeling perspective, interest centers on determining
the regression relationship between the response and covariates. Standard approaches to
this problem – both classical and Bayesian – involve potentially restrictive distributional
assumptions as well as those of linearity in relating the response to the covariates.
Common modeling techniques result in a limited range of monotonic, symmetric trends
for the probability response curve, and assume that covariate effects are additive.

There has been substantial effort devoted to relaxing the functional form of the lin-
ear predictor through the use of basis functions, including spline based approaches (e.g.,
Denison et al., 2002), and generalized additive models (Hastie and Tibshirani, 1990),
applied in a Bayesian context by Wood and Kohn (1998). Under these approaches, the
linear predictor is modified by applying a smoothing function to each covariate sepa-
rately and assuming the transformed covariates are additive in their effects. However,
the underlying distributional assumption is still present through the link function.
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The motivation for Bayesian nonparametric methodology lies in the notion that the
model should support a wide range of distributional shapes and regression relationships.
In an effort to create more flexible models to combat overdispersion and asymmetry,
which the standard links cannot, several Bayesian semiparametric binary regression
methods have been developed. Early work has targeted either the link, treating it as a
random function with a nonparametric prior (Newton et al., 1996; Basu and Mukhopad-
hyay, 2000), or linearity, for instance, by viewing the intercept of the linear predictor
as arising from an unknown distribution (Follmann and Lamberdt, 1989; Mukhopadyay
and Gelfand, 1997; Walker and Mallick, 1997). More recently, Choudhuri et al. (2007)
relaxed the linearity assumption by placing a Gaussian process prior on the argument
of the inverse link. Trippa and Muliere (2009) assumed each binary response to arise
from a random colored tessellation, and placed a Dirichlet process (DP) prior (Ferguson,
1973) on the space of colored tessellations.

Shahbaba and Neal (2009), Dunson and Bhattacharya (2011), and Hannah et al.
(2011) have proposed nonparametric solutions to the regression problem with cate-
gorical responses. These approaches build off the work of Müller et al. (1996), which
modeled the joint distribution of continuous responses y and covariates x with a DP
mixture of normal distributions, inducing a flexible model for E(y | x). The idea of
inducing a regression model through the joint response–covariate distribution is attrac-
tive, since in many settings the covariates are not fixed prior to sampling, including
several applications in the environmental, biomedical, and social sciences.

We target problems of this type, proposing a flexible model for fully nonparamet-
ric binary regression, in which the responses and covariates arise together as random
vectors, requiring a model for their joint distribution. The foundation of the proposed
methodology is different from the existing nonparametric models for binary regres-
sion. We elaborate further in Section 2.4, but here note that a key feature of the
proposed model involves the introduction of latent continuous responses, in similar
spirit to parametric probit models; see, for instance, Albert and Chib (1993). Let
{(yi, xi) : i = 1, . . . , n} denote the data, where each observation consists of a binary re-
sponse yi along with a vector of covariates, xi = (xi1, . . . , xip). The continuous auxiliary
variables, zi, determine the observed binary responses yi by their sign, such that yi = 1
if and only if zi > 0. Instead of seeking a nonparametric model for the regression func-
tion, we estimate the joint distribution of latent responses and covariates, f(z, x), using
a DP mixture of multivariate normal distributions, which induces a flexible model for
the regression relationship, Pr(y = 1 | x). In addition to providing a general modeling
platform, the latent responses are conceptually meaningful in many applications. The
proposed model is shown to be identifiable provided the variance of z within each mix-
ture component is fixed, a restriction implemented through a square-root-free Cholesky
decomposition of the mixture kernel covariance matrix. This aspect of the model formu-
lation retains computational efficiency in Markov chain Monte Carlo (MCMC) posterior
simulation while enabling the use of priors more flexible than the inverse-Wishart distri-
bution. We develop two approaches to prior specification for the covariance parameters,
one which involves prior simulation and can be used for problems with a small number
of covariates, and a second which is more straightforward to apply as the dimension of
the covariate space increases.
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In Section 2, we formulate the mixture model for binary regression. We discuss
identifiability for the parameters of the mixture kernel distribution, as well as prior
specification approaches, and give details for posterior inference. We also discuss re-
lated work on Bayesian nonparametric regression to place our contribution within this
large body of literature. In Section 3, the methodology is applied to problems from
environmetrics and evolutionary biology, using two data sets from the literature for
illustration. The latter example involves estimation of fitness surfaces, a problem for
which our method is particularly powerful relative to existing approaches. Section 4
concludes with a summary and discussion of possible extensions. Technical details on
the identifiability result, prior specification and posterior simulation, and the expressions
for the model comparison criterion used in Section 3 are provided in the appendices.

2 Methodology

2.1 The modeling approach

Focusing on p continuous covariates, x = (x1, . . . , xp), and a single binary response
y, with corresponding latent continuous response z, a normal distribution is a natural
choice for the kernel in a mixture representation for f(z, x). The DP is then used as
a prior for the random mixing distribution G, to create a mixture model of the form:
f(z, x;G) =

∫
Np+1(z, x;μ,Σ)dG(μ,Σ), with G | α, ψ ∼ DP(α,G0(·;ψ)), where α is the

DP precision parameter, and ψ the parameters of the DP centering distribution.

According to the DP constructive definition (Sethuraman, 1994), a DP(α,G0) re-
alization G is almost surely of the form

∑∞
l=1 plδνl

, with νl independent realizations
from G0, and pl arising through stick-breaking from beta random variables. In par-
ticular, let ζm be independent beta(1, α), m = 1, 2, . . . , and define p1 = ζ1, and pl =

ζl
∏l−1

r=1(1−ζr), for l = 2, 3, . . . ; moreover, {ζm : m = 1, 2, . . . } and {νl : l = 1, 2, . . . } are
independent sequences of random variables. Applying the constructive definition with
νl = (μl,Σl), the model admits a representation as a countable mixture of multivariate
normals, f(z, x;G) =

∑∞
l=1 plNp+1(z, x;μl,Σl).

For the normal kernel distribution, let μz denote the mean of z, μx denote the mean
of x, and partition the covariance matrix such that Σzz = var(z), Σxx = cov(x), a p× p
matrix, and Σzx = cov(z, x), a row vector of length p. Then, integrating over the latent
response z, the induced model for the observables assumes the form

f(y, x;G) =

∞∑
l=1

plNp(x;μ
x
l ,Σ

xx
l )Bern

(
y; Φ

(
μz
l +Σzx

l (Σxx
l )−1(x− μx

l )

(Σzz
l − Σzx

l (Σxx
l )−1(Σzx

l )t)1/2

))
, (1)

where Φ(·) denotes the standard normal cumulative distribution function.

Flexible inference for the binary regression functional can be obtained through
Pr(y = 1 | x;G) = Pr(y = 1, x;G)/f(x;G). Marginalizing over z in f(z, x;G), the
marginal distribution for x is f(x;G) =

∑∞
l=1 plNp(x;μ

x
l ,Σ

xx
l ), and thus the conditional

regression function can be expressed as a weighted sum of the form
∑∞

l=1 wl(x)πl(x),
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with weights wl(x) = plNp(x;μ
x
l ,Σ

xx
l )/

∑∞
j=1 pjNp(x;μ

x
j ,Σ

xx
j ), and probabilities

πl(x) = Φ

(
μz
l +Σzx

l (Σxx
l )−1(x− μx

l )

(Σzz
l − Σzx

l (Σxx
l )−1(Σzx

l )t)1/2

)
. (2)

Hence, the modeling approach implies a nonparametric mixture of probit regressions
for the conditional response distribution. The probit probabilities, πl(x), are defined
through component-specific intercept and slope parameters. The corresponding mixture
weights, wl(x), depend on the covariates. As a consequence, the model structure allows
for general binary regression relationships by favoring sets of probit regressions with
varying weights depending on the location in the covariate space.

The dependence structure of the mixture kernel in f(z, x;G) is key for general in-
ference about the implied binary regression function. However, is it sensible to leave all
elements of the kernel covariance matrix Σ unrestricted? In the case of a single mixture
component, which arises in the limit as α → 0+, the regression function Pr(y = 1 | x;G)
reduces to a normal cumulative distribution function, as given in (2). This function takes
the same value for any x when μz and Σzx are scaled by a positive constant c, and Σzz

by c2, indicating that different combinations of μ and Σ result in the same probability of
positive response. Hence, there is an identification problem if μ and Σ are unrestricted.
This limiting case of our model is a parametric probit model, albeit with random co-
variates. In this setting, if identification constraints are not imposed, prior distributions
become increasingly important yet difficult to specify, and the use of noninformative pri-
ors can be problematic and create computational difficulties (Hobert and Casella, 1996;
McCulloch et al., 2000; Koop, 2003). In addition, empirical evidence based on simu-
lated data – generated through multivariate normal mixtures for the latent response
and covariates – suggests that, without parameter restrictions, the correlations implied
by the covariance matrices Σl are not representative of the correlations that generated
the data. Moreover, the uncertainty bands for the estimated binary regression function
become excessively wide at the boundaries of the covariate space. Computational issues
involving the latent continuous responses diverging to ±∞ were also reported by Di
Lucca et al. (2013), where the kernel variance in a DP mixture of normal autoregressive
models was fixed to avoid this problem. For these reasons, and the fundamental belief
that within a particular mixture component the corresponding parameters should be
identifiable, we now focus on appropriately restricting the kernel of the mixture.

Here, we employ the standard definition of likelihood identifiability, such that a
parameter θ for a family of distributions {f(x | θ) : θ ∈ Θ} is identifiable if distinct
values of θ correspond to distinct probability density functions, that is, if θ �= θ′, then
f(x | θ) is not the same function of x as f(x | θ′). Under our setting, the focus is on the
kernel of the mixture model for the observed data, f(y, x;G), which has the form

k(y, x; η) = Np(x;μ
x,Σxx)Bern

(
y; Φ

(
μz +Σzx(Σxx)−1(x− μx)

(Σzz − Σzx(Σxx)−1(Σzx)t)1/2

))
, (3)

with η = (μx, μz,Σxx,Σzz,Σzx). Note that if z and x are independent in the normal mix-
ture kernel, the probability in the Bernoulli response becomes Φ(μz/(Σzz)1/2); hence,
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a restriction – for instance, on Σzz – is required for identifiability. This is in fact the
only restriction necessary to obtain an identifiable kernel, and we thus retain the ability
to estimate Σzx, which is significant in capturing the dependence of y on x under the
mixture distribution. The specific result is given in the following lemma whose proof
can be found in Appendix A.

Lemma 1. The parameters (μx, μz,Σxx,Σzx) are identifiable in the model for observed
data which has the form in (3), provided Σzz is fixed to a constant.

While intuitively straightforward, fixing Σzz to a constant is challenging opera-
tionally. The usual conditionally conjugate inverse-Wishart choice for G0(Σ) does not
offer the solution, since the single degree of freedom parameter of the inverse-Wishart
distribution does not allow for one element of Σ to be fixed while freely estimating the
rest of the matrix. One way to overcome this problem is to reparameterize Σ, using
a square-root-free Cholesky decomposition. This decomposition is useful for modeling
longitudinal data (Daniels and Pourahmadi, 2002), as well as specifying conditional in-
dependence assumptions for the elements of a normal random vector (Webb and Forster,
2008). Let β be a unit lower triangular matrix, and let Δ be a diagonal matrix with pos-
itive elements, (δ1, . . . , δp+1), such that Δ = βΣβt. Hence, Σ = β−1Δ(β−1)t, where β−1

is also lower triangular with all its diagonal elements equal to 1, and det(Σ) =
∏p+1

i=1 δi.
Moreover, δ1 = Σzz, and thus the identifiability restriction can be implemented by set-
ting the first element of Δ equal to a constant value; δ1 = 1 is used from this point
forward. Instead of mixing directly on Σ, the mixing takes place on β and the p free
elements of Δ, (δ2, . . . , δp+1). Hence, the mixture model for the joint density of the
latent response and covariates is now written as:

f(z, x;G) =
∞∑
l=1

plNp+1(z, x;μl, βl
−1Δl(β

−1
l )t). (4)

While this decomposition of Σ allows for the necessary flexibility in viewing only
part of the covariance matrix as random, its real utility lies in the existence of a condi-
tionally conjugate centering distribution G0, which enables development of an efficient
Gibbs sampler for posterior simulation. In particular, as shown in the next section, a
multivariate normal G0 component for the vector, β̃, of p(p+ 1)/2 = q free elements of
β, and independent inverse-gamma components for δ2, . . . , δp+1 result in full conditional
distributions which are multivariate normal and inverse-gamma, respectively. Therefore,
G0 comprises independent components for μ, β̃, and δ2, . . . , δp+1, such that it has the

form Np+1(μ;m,V )Nq(β̃; θ, C)
∏p+1

i=2 IG(δi; νi, si).

2.2 Posterior inference for binary regression

We implement posterior simulation using the blocked Gibbs sampler (Ishwaran and
Zarepour, 2000; Ishwaran and James, 2001), which is based on a finite truncation
approximation to G, motivated by the DP constructive definition. Specifically, G is
truncated to GN =

∑N
l=1 plδWl

, where Wl = (μl, β̃l,Δl), and p1, . . . , pN−1 are defined

through stick-breaking as in the DP definition, whereas pN = 1−
∑N−1

l=1 pl. Then, intro-
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ducing configuration variables L = (L1, . . . , Ln), each taking values in {1, . . . , N}, the
hierarchical model for the data, given the latent continuous responses, z = (z1, . . . , zn),
becomes

yi | zi ind.∼ 1(yi=1)1(zi>0) + 1(yi=0)1(zi≤0), i = 1, . . . , n,

(zi, xi) | W,Li
ind.∼ Np+1(zi, xi;μLi , β

−1
Li

ΔLi(β
−1
Li

)t), i = 1, . . . , n,

Li | p ind.∼
N∑
l=1

plδl(Li), i = 1, . . . , n,

Wl | ψ ind.∼ Np+1(μl;m,V )Nq(β̃l; θ, C)

p+1∏
i=2

IG(δi,l; νi, si) l = 1, . . . , N,

whereW = (W1, . . . ,WN ), and the prior density for p = (p1, . . . , pN ) is given by a special
case of the generalized Dirichlet distribution: αN−1pα−1

N (1 − p1)
−1(1 − (p1 + p2))

−1 ×
· · · × (1 −

∑N−2
l=1 pl)

−1. The full Bayesian model is completed with a gamma(aα, bα)
prior for α, with mean aα/bα, and with conditionally conjugate hyperpriors for ψ =
(m,V, θ, C, s2, . . . , sp+1), specifically: m ∼ Np+1(am, Bm), V ∼ IWp+1(aV , BV ), θ ∼
Nq(aθ, Bθ), C ∼ IWq(aC , BC), and si

ind.∼ gamma(asi , bsi), for i = 2, . . . , p + 1. Here,
S ∼ IWk(a,B) indicates that the k × k positive definite matrix S follows an inverse-
Wishart distribution with density proportional to |S|−(a+k+1)/2 exp{−0.5tr(BS−1)}.
The notation δi,l is used for element i of the vector δl corresponding to the diagonal of
Δl. Moreover, where convenient, we use the Σ notation for the structured covariance
matrix, where the elements of Σ are computed through Σ = β−1Δ(β−1)t.

A key feature of the modeling approach is that simulation from the full posterior
distribution, p(W,L, p, ψ, α, z|data), is possible via Gibbs sampling. We next discuss
posterior simulation details focusing on a result that enables Gibbs sampling updates for
the parameters that define the covariance matrices of the normal mixture components.

The updates for p and α are generic for any choice of mixture kernel; see Ishwaran
and Zarepour (2000). Each Li, i = 1, . . . , n, is sampled from a discrete distribution on
{1, . . . , N}, with probabilities proportional to plNp+1(zi, xi;μl,Σl), for l = 1, . . . , N . The
full conditional distributions for the components of ψ are easily found using standard
conjugate updating. The full conditional distribution for each zi is a truncated version
of the normal distribution N(μz

Li
+Σzx

Li
(Σxx

Li
)−1(xi − μx

Li
), 1−Σzx

Li
(Σxx

Li
)−1(Σzx

Li
)t), with

the restriction zi > 0 if yi = 1, and zi ≤ 0 if yi = 0. The updates for the latent
continuous responses are similar to the corresponding ones in Albert and Chib (1993),
where data augmentation techniques were applied for MCMC inference in parametric
models involving binary and ordinal data.

Letting {L∗
j : j = 1, . . . , n∗} be the vector of distinct values of L, the full conditional

for Wl is proportional to G0(Wl | ψ)
∏n∗

j=1

∏
{i:Li=L∗

j }
Np+1(zi, xi;μL∗

j
, β−1

L∗
j
ΔL∗

j
(β−1

L∗
j
)t).

If l /∈ {L∗
j : j = 1, . . . , n∗}, then Wl ∼ G0(· | ψ). If l ∈ {L∗

j : j = 1, . . . , n∗}, then the full

conditional distribution for each element of Wl = (μl, β̃l, δ2,l, . . . , δp+1,l) arises from the
product of a normal likelihood component, based on {(zi, xi) : Li = L∗

j}, and the base
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distribution G0. Therefore, when l = L∗
j , for j = 1, . . . , n∗, the full conditional for μl is

multivariate normal with mean vector (V −1+MlΣ
−1
l )−1(V −1m+Σ−1

l

∑
{i:Li=l}(zi, xi)

t)

and covariance matrix (V −1+MlΣ
−1
l )−1, whereMl = |{i : Li = l}| is the size of mixture

component l.

Lemma 2, whose proof can be found in Appendix A, provides the result for the
posterior full conditional distributions of the β̃l and the δi,l, for i = 2, . . . , p+1. Before

stating the lemma, we fix the required notation. As discussed earlier, vector β̃ consists of
the lower triangle of free elements of matrix β. For instance, if p = 2, the mixture kernel
is a trivariate normal, and the free elements of β are (β21, β31, β32), corresponding to β̃ =
(β̃1, β̃2, β̃3). The matrix Δ contains vector δ on its diagonal. Let r = p+1 represent the
dimension of the mixture kernel. Let di be a vector of length r(r− 1)/2 = q, containing
r − 1 nonzero terms, occurring in elements k(k + 1)/2 for k = 1, . . . , r − 1. Let Ti be a
block diagonal matrix of dimension q × q with r − 1 blocks, which can be constructed
from square matrices T 1

i , . . . , T
r−1
i of dimensions 1, . . . , r− 1. Matrix T j

i occurs in rows
and columns j(j − 1)/2 + 1 to j(j + 1)/2 of Ti.

Lemma 2. Consider the following Bayesian probability model:

(yi,1, . . . , yi,r) | μ, β̃, δ ind.∼ Nr(μ, β
−1Δ(β−1)t), i = 1, . . . , n,

with a multivariate normal prior for μ, independent inverse-gamma priors on the diago-
nal elements of Δ, δk ∼ IG(νk, sk), k = 1, . . . , r, and a multivariate normal prior on the
vector comprising the lower triangular elements of β, β̃ ∼ Nq(θ,D). Then, the posterior
full conditional distribution for δk, k = 1, . . . , r, is an inverse-gamma distribution with
shape parameter νk+0.5n and scale parameter sk+0.5

∑n
i=1{(yi,k−μk)+

∑
j<k βkj(yi,j−

μj)}2. In addition, the posterior full conditional for β̃ is multivariate normal with mean
vector (D−1+

∑n
i=1 Ti)

−1(D−1θ+
∑n

i=1 Tidi) and covariance matrix (D−1+
∑n

i=1 Ti)
−1.

Here, the non-zero elements of di are −(yi,2−μ2)/(yi,1−μ1), . . . ,−(yi,r−μr)/(yi,r−1−
μr−1), and the (m,n)-th element of matrix T j

i , for j = 1, . . . , r− 1, is given by T j
i,mn =

(yi,m − μm)(yi,n − μn)/δj+1, for m = 1, . . . , j, n = 1, . . . , j.

This lemma provides the information necessary to obtain the remaining full con-
ditional distributions, which are available in closed form. Let y∗i = (zi, xi) denote the
augmented latent response-covariate vector, such that y∗i,1 = zi and y∗i,j+1 = xij , for
j = 1, . . . , p. Then, when l = L∗

j , for j = 1, . . . , n∗, the full conditional distribu-
tion for δk,l is inverse-gamma with shape parameter νk + 0.5Ml and scale parameter
sk + 0.5

∑
{i:Li=L∗

j }
{(y∗i,k − μk,l) +

∑
j<k βkj,l(y

∗
i,j − μj,l)}2. The full conditional for

β̃l is multivariate normal with covariance matrix (C−1 +
∑

{i:Li=L∗
j }

Ti)
−1, and mean

vector (C−1 +
∑

{i:Li=L∗
j }

Ti)
−1(C−1θ +

∑
{i:Li=L∗

j }
Tidi). The p non-zero terms in the

vector di are −(y∗i,2 − μ2,l)/(y
∗
i,1 − μ1,l), . . . ,−(y∗i,p+1 − μp+1,l)/(y

∗
i,p − μp,l), and for

j = 1, . . . , p, the matrix T j
i contains elements T j

i,mn = (y∗i,m − μm,l)(y
∗
i,n − μn,l)/δj+1,l,

m = 1, . . . , j, n = 1, . . . , j.

We reiterate the significance of Lemmas 1 and 2: the former provides the identifiabil-
ity restriction for the mixture kernel covariance matrix; the latter yields computation-
ally tractable inference under the reparameterization used to incorporate the restriction.
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These results combined are key to implementation of the modeling approach. They al-
low us to avoid computational complications arising from a non-identifiable model, at
the same time enabling MCMC posterior simulation that is no more complicated than
for DP mixtures of normal distributions with unrestricted covariance matrices.

The mixing distribution G, approximated by GN = (p,W ), is imputed as a com-
ponent of the posterior simulation algorithm, enabling full inference for any functional
of f(y, x;G). The binary regression functional Pr(y = 1 | x;G) is the main quan-
tity of interest, and is estimated by Pr(y = 1, x;G)/f(x;G), where Pr(y = 1, x;G) =∑N

l=1 plNp(x;μ
x
l ,Σ

xx
l )πl(x), with πl(x) given in (2), and f(x;G) =

∑N
l=1 plNp(x;μ

x
l ,Σ

xx
l ).

Therefore, full inference for Pr(y = 1 | x;G) can be readily obtained for any covariate
value x, providing a point estimate along with uncertainty quantification for the bi-
nary regression function. Inference can also be obtained for the covariate distribution,
f(x;G), as well as the covariate distribution conditional on a particular value of y,
f(x | y;G), which we refer to as inverse inferences, discussed further in the context of
the data example of Section 3.1.

The truncation level for GN can be chosen to any desired level of accuracy, using
standard DP properties. For instance, a simple way to specify N is through the expecta-
tion for the partial sum of the original DP weights, E(

∑N
l=1 pl | α) = 1−{α/(α+1)}N .

This expression can be averaged over the prior for α to estimate the marginal prior
expectation E(

∑N
l=1 pl), which is used to specify N given a tolerance level for the ap-

proximation. For both data examples of Section 3, we used a gamma(1, 0.5) prior for

α, and set N = 75 which results in E(
∑75

l=1 pl) ≈ 0.99997. An alternative approach,
which involves also the sample size, is available through Theorem 2 in (Ishwaran and
James, 2001) which provides an (approximate) upper bound of 4n exp{−(N − 1)/α}
on the L1 distance between the prior predictive probability of the sample under the
infinite dimensional prior G and its truncated version GN . Using the 90th percentile of
the gamma(1, 0.5) prior as a (conservative) proxy for α in the expression for the upper
bound, and setting N = 75, we obtain that the L1 distance is smaller than 0.000047
and 0.000061 for the data sets of Sections 3.1 and 3.2, respectively.

As also pointed out by one of the referees, we note that there are alternative MCMC
methods for DP mixtures that avoid explicitly truncating the random mixing distri-
bution G; see, e.g., Griffin and Holmes (2010). These include MCMC algorithms that
build from the marginalized version of the model after integrating G over its DP prior
(e.g., Neal, 2000), as well as slice sampling algorithms (e.g., Kalli et al., 2011). These
methods are arguably preferable to the blocked Gibbs sampler if the inference objec-
tives are limited to posterior predictive estimation, which does not require posterior
samples for G. Evidently, under the joint modeling approach for the response–covariate
distribution, posterior simulation must be extended to G to obtain full inference about
regression functionals. Hence, in our context, truncation of G is necessary also under
the alternative MCMC algorithms; for instance, such truncation can be developed based
on the conditional posterior distribution for G if the model is fitted with a marginal
MCMC sampler (Gelfand and Kottas, 2002; Ishwaran and Zarepour, 2002). Our con-
tribution being on flexible mixture modeling for binary regression, we view the choice
of the posterior simulation method as one that should balance efficiency with ease of
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implementation. From a practical point of view, we have not observed any differences in
inference results obtained with the blocked Gibbs sampler and with marginal MCMC
algorithms augmented with posterior sampling for G.

2.3 Prior specification

We discuss two approaches to hyperprior specification considering the limiting case
of the model as α → 0+, which corresponds to a single mixture component. Both
approaches use an approximate range and center of x, say rx and cx, both vectors
of length p, with the objective being to center and scale the mixture kernel appro-
priately using only a small amount of prior information. Under the assumption of a
single mixture component, the marginal moments are given by E((z, x)t) = am, and
cov((z, x)t) = E(Σ) + Bm + (aV − p − 2)−1BV . We therefore set am = (0, cx), and let
Bm = 0.5diag(1, (rx1/4)

2, . . . , (rxp/4)
2), using cxj and (rxj /4)

2 as proxies for the marginal
mean and variance of xj , for j = 1, . . . , p. We set aV = p + 3, which yields a dis-
persed prior for V albeit with finite prior expectation, and determine BV such that
(aV −p−2)−1BV = Bm. Next, we must determine values for the prior hyperparameters
associated with β̃ and the δi, and this is where the two approaches differ.

The first approach uses prior simulation to induce approximately uniform(−1, 1)
priors on all correlations of the mixture kernel covariance matrix, while appropriately
centering the variances. Note that the number of correlations grows at a rate of O(p2),
making this approach practically feasible only for a small number of covariates. In
particular, with a single covariate the kernel covariance matrix comprises correlation,
ρ = −β̃(β̃2 + δ)−1/2, and variance, σ2 = β̃2 + δ. Here, β̃ and δ are scalar parameters
with G0 components N(θ, c) and IG(ν, s), respectively, and the hyperpriors are: θ ∼
N(aθ, bθ), c ∼ IG(ac, bc), and s ∼ gamma(as, bs). We set E(β̃) = aθ = 0, and build the
specification for the other hyperparameters from E(σ2) = bθ + b−1

s (ν − 1)−1as + (ac −
1)−1bc. We first fix the shape parameters ν, ac and as to values that yield relatively
large prior dispersion, for instance, ν = ac = 2 results in infinite prior variance for
the inverse-gamma distributions. Next, using (rx/4)2 as a proxy for E(σ2), we find
constants k1, k2, k3, where k1 + k2 + k3 = 1, such that k1(r

x/4)2 ≈ bθ, k2(r
x/4)2 ≈

b−1
s (ν− 1)−1as, and k3(r

x/4)2 ≈ (ac− 1)−1bc, while at the same time the induced prior
on ρ is approximately uniform on (−1, 1). Finally, with k1, k2, k3 specified, bθ, bs, and
bc can be determined accordingly.

While this approach is attractive when a relatively noninformative prior is desired, it
is difficult to implement with a moderate to large number of covariates. An alternative
strategy arises from studying the distribution which is implied for (β,Δ) if Σ is inverse-
Wishart distributed. Using properties of partitioned Wishart and inverse-Wishart ma-
trices (Box and Tiao, 1973; Eaton, 2007), it can be shown that Σ ∼ IWp+1(v, T ) implies

inverse-gamma distributions for the δi, and a normal distribution for β̃ given the δi. It is
customary to specify noninformative priors on the inverse-Wishart scale, usually fixing
the degrees of freedom parameter to a small value, and the inverse scale parameter to
be a diagonal matrix. Here, we use the smallest possible integer value for v that ensures
a finite expectation for the IWp+1(v, T ) distribution, that is, v = p+3, and set E(Σ) =
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T = diag(T1, . . . , Tp+1) = diag(1, (rx1/4)
2, . . . , (rxp/4)

2). Then, as shown in Appendix B,
the distributions implied on δi, for i = 2, . . . , p+ 1, are IG(0.5(v + i − (p + 1)), 0.5Ti).
Hence, we let νi = 0.5(v + i − (p + 1)), and E(si) = 0.5Ti; for the data examples
of Section 3, we worked with exponential priors for the si resulting in bsi = 2/Ti.
Moreover, the IWp+1(v, T ) distribution implies a normal distribution for the ith row

of matrix β, given δi; see Appendix B. This can be translated into a distribution for β̃
conditionally on the δi, specifically, a normal distribution with zero mean vector and
covariance matrix BD(S1, . . . , Sp), which denotes a block diagonal matrix with elements
Si = δi+1diag(T

−1
1 , . . . , T−1

i ), for i = 1, . . . , p. Now, after marginalizing out θ, the G0

prior component for β̃ becomes Nq(aθ, Bθ + C). We therefore specify aθ to be equal
to the zero mean vector, and since we have a further prior on C, and Si is a function
of δi+1, we set Bθ + E(C) = BD(Ŝ1, . . . , Ŝp), where Ŝi is a proxy for Si obtained by
replacing δi+1 with its marginal prior mean. Finally, Bθ and E(C) can be specified to
be equal to each other or assigned different portions of BD(Ŝ1, . . . , Ŝp).

2.4 Related work

The joint response–covariate modeling approach to construct general conditional re-
sponse distributions was presented originally by Müller et al. (1996), and has been
more recently studied in different settings; see, e.g., Müller and Quintana (2010), Park
and Dunson (2010), Taddy and Kottas (2010, 2012), and Wade et al. (2014). Existing
joint models which can be used for binary regression include those of Shahbaba and
Neal (2009), Dunson and Bhattacharya (2011) and Hannah et al. (2011). In Section 3.1,
we discuss the special case of our model arising from Σzx = 0 in the mixture kernel
covariance matrix, which has been previously proposed with the further restriction that
Σxx is diagonal (Dunson and Bhattacharya, 2011). There, the simplicity of indepen-
dence among covariates within mixture components was viewed as appealing, and the
response was modeled as independent of the covariates within the kernel, resulting in
what was termed a product-kernel. In a related approach, Shahbaba and Neal (2009)
also build a model for the joint distribution f(y, x) by separately estimating f(x) and
f(y | x), where the latter is assumed to be a multinomial logit model within a mixture
component. Due to the difficulties arising from estimation of full covariance matrices
unless the inflexible inverse-Wishart prior is used, they too take x1, . . . , xp to be inde-
pendent within each component. This idea was generalized by Hannah et al. (2011) to
allow any standard generalized linear model to replace the multinomial logit model.

The independence assumptions discussed above are, in general, restrictive. The pro-
posed justification is that because independence is imposed only within each component,
dependence arises when more than one component is contained in the mixture. There-
fore, the ability of product-kernel models to approximate the regression relationship and
the covariate distribution is enhanced through the mixture. However, in order to capture
the covariate distribution and the dependence of y on x in complex problems, there is
need for models which allow for dependence within clusters. Dunson and Bhattacharya
(2011) note that if interest centers on quantifying dependence, then there is no need to
introduce a response, and the method for joint modeling can still be used in this case. If
estimation of dependence is, in fact, the goal, this is clearly more adequately achieved
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when random variables are allowed to depend on one another through more than just
clustering. In this work, the introduction of latent variables and reparameterization of
the covariance matrix allow these assumptions to be relaxed.

The other main class of nonparametric regression models is based on a conditional
approach, in which f(y | x) is modeled directly through nonparametric mixtures; see,
e.g., the review in Müller and Mitra (2013). These models require a prior on the mix-
ing distribution indexed by x, and include the dependent Dirichlet process models of
MacEachern (2000), DeIorio et al. (2004), Gelfand et al. (2005), Griffin and Steel (2006),
Taddy (2010), as well as other approaches which do not retain the Dirichlet process
marginally (e.g., Dunson and Park, 2008; Rodriguez and Dunson, 2011). In general,
these modeling approaches require replication in the “covariate” x (e.g., space, time, or
a categorical covariate), which prohibits their use in our setting.

The nonparametric mixture regression model of Antoniano-Villalobos et al. (2014)
expresses the mixture kernel for y | x as a normal linear regression model, with weights
wj(x) ∝ pjk(x | ψj) for some kernel function k which has support on the covariate space.
The interpretation for wj(x) is through the probability that an observation with covari-
ate value x comes from the jth regression model, and this is not related to whether the
covariates are fixed or random. Our modeling formulation is fundamentally different in
terms of its motivation, as we begin with a model for the joint latent response-covariate
distribution, which implies a mixture form for f(z | x) with covariate-dependent weights
and kernels. This happens to have a similar form to the model of Antoniano-Villalobos
et al. (2014) when a normal kernel is chosen for k(x | ψj).

Regarding other nonparametric models for categorical responses built through latent
variables, Di Lucca et al. (2013) present a model for a time series of binary responses
induced from a DP mixture of normal autoregressive models for the latent responses
conditional on fixed covariates, with mixture weights that are not covariate-dependent.
While not a regression model, Canale and Dunson (2011) also use discretized latent
variables, modeled with a DP mixture of normals, to model discrete count variables.

3 Data illustrations

3.1 Ozone data

Ozone is a gas which has detrimental consequences when it occurs near the Earth’s
surface. Ground-level ozone is a harmful pollutant, making up most of the smog which
is visible in the sky over large cities. Because of the effects ozone has on the environment
and our health, its concentration is monitored by environmental agencies. Rather than
recording the actual concentration, presence or absence of an exceedance over a given
ozone concentration threshold may be measured, and the number of ozone exceedances
in a particular area is of interest.

To develop an illustrative example, we work with data set ozone from the “Elem-
StatLearn” R package. The data set includes measurements of ozone concentration in
parts per billion, wind speed in miles per hour, temperature in degrees Fahrenheit, and
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radiation in langleys, recorded over 111 days from May to September of 1973 in New
York. To construct a binary ozone exceedance response, we define an exceedance as an
ozone concentration which is larger than 70 parts per billion, a threshold determined to
provide an appropriate degree of public health protection (The Environmental Protec-
tion Agency, 2014). Therefore, we can model the probability of an ozone exceedance as
a function of wind speed, temperature, and radiation, using the DP mixture binary re-
gression model. In addition, the modeling approach is evidently appropriate here, since
it is natural to estimate conditional relationships between the four environmental vari-
ables through modeling the stochastic mechanism for their joint distribution. We are
not suggesting dichotomizing a continuous response in practice, but use this example
to illustrate a practically relevant setting in which a binary response may arise as a
discretized version of a continuous response. Moreover, the existence of the continuous
ozone concentrations enables comparison of inferences from the binary regression model
with a model based on the actual continuous responses.

Prior specification was performed using the first approach discussed in Section 2.3
that favors uniform priors for the correlations of the kernel covariance matrix. Although
the corresponding priors were not all close to the uniform on (−1, 1) under the inverse-
Wishart prior specification approach, both methods resulted in prior mean estimates
for Pr(y = 1 | xj) that were, for each of the three random covariates, roughly constant
around 0.5, with 90% interval bands that essentially span the unit interval. All posterior
inference results discussed below were robust to the prior choice.

The marginal binary response curves for the probability of exceedance as a function
of wind speed, temperature, and radiation, are shown in the top row of Figure 1. There
is a decreasing trend in probability as wind speed increases, with the probability being
essentially 0 when wind speed is greater than 15 mph. The opposite trend is observed
with temperature, as the probability of exceedance is near 0 when temperature is less
than 75 degrees, and above 0.8 when temperature exceeds 90 degrees. A non-monotonic
unimodal response curve is obtained as a function of radiation, with peak probability
occurring at moderate values of radiation, and declining with higher and lower values.
Bivariate surfaces indicating probability of exceedance as a function of temperature and
wind speed, as well as radiation and wind speed, are shown in Figure 2. An attractive
feature of the joint modeling approach, relative to models that treat the covariates as
fixed, is that interactions and dependence between covariates are naturally accounted
for, without the need to make simplifying assumptions (such as additivity in covariate
effects) or to accommodate interactions with additional terms.

For this illustrative data example, the continuous ozone concentration responses are
also available. We can therefore compare the binary regression model inferences for
Pr(y = 1 | xj) with the ones for Pr(z > 70 | xj), under the corresponding density
estimation model – a DP mixture based on a four-dimensional normal kernel with un-
restricted covariance matrix – applied to the original data set {(zi, xi) : i = 1, . . . , 111}.
Results are shown in the bottom row of Figure 1, based on a prior choice for the density
estimation model that induces prior estimates for the Pr(z > 70 | xj) curves that are
similarly diffuse to the ones for Pr(y = 1 | xj). Save for some differences in the un-
certainty bands, the density estimation model reveals similar trends for the regression
functions to the ones uncovered by the binary regression model.
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Figure 1: Ozone data. Posterior mean (solid line) and 90% uncertainty bands (in gray)
for probability of exceedance versus wind speed (left panels), temperature (middle pan-
els), and radiation (right panels). The top row plots results under the binary regression
model, including the binary response data in each panel. The bottom row shows results
under the density estimation model. Refer to Section 3.1 for further details.

As another appealing consequence of estimating the joint response–covariate dis-
tribution, we can obtain inference for the distribution of covariates conditional on a
particular value of y. These inverse inferences may be of interest in many settings, as
they indicate how the covariate distribution differs given a positive versus a negative
binary response. Such inferences are not possible under a model directly for the condi-
tional response distribution (with the implicit assumption of fixed covariates). Figure 3
shows estimates for the density of each covariate conditional on the binary exceedance
response, f(xj | y = 1) and f(xj | y = 0), for j = 1, 2, 3. Note that when an ex-
ceedance occurs, temperature is generally higher and wind speed lower. In addition, the
conditional densities associated with an exceedance have smaller dispersion than those
associated with a non-exceedance, indicating that a smaller range of covariate values
are supported when an exceedance occurs.

Recall from Section 2.1 that if we make the simplifying assumption Σzx = 0 for
the covariance matrix of the kernel in f(z, x;G), we obtain a kernel for f(y, x;G)
that comprises independent components Np(x;μ

x,Σxx) and Bern(y; Φ(μz)). The im-
plied conditional regression function is again a weighted sum of probabilities with the
same covariate-dependent weights as the proposed model, but probabilities which are
not functions of x; the probability πl(x) in expression (2) reduces to πl = Φ(μz

l ). This
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Figure 2: Ozone data. Posterior mean surface for probability of exceedance versus tem-
perature and wind speed (left panel), and radiation and wind speed (right panel). Prob-
abilities ranging from 0 to 1 are indicated by a spectrum of colors from white to red.

Figure 3: Ozone data. Posterior mean estimates (solid lines) and 90% uncertainty bands
(dashed lines) for the density of wind speed (left panel), temperature (middle panel),
and radiation (right panel), given an ozone concentration exceedance (blue) and non-
exceedance (black).

is a limitation, as all dependence must be captured through clustering. As discussed in
Section 2.4, mixtures of this product-kernel form have been previously proposed in the
literature (Dunson and Bhattacharya, 2011).

We fitted the simpler product-kernel model to the ozone data, using hyperpriors
that induce similarly diffuse prior estimates for the regression functions with the gen-
eral binary regression model. Differences in the response probabilities produced by the
product-kernel mixture model (not shown here) tend to occur at peaks or low points
of the curves in Figure 1. In general, the product-kernel model underestimates the
probability surface or curve when it takes a high value, and overestimates regions of
low probability. In addition, the uncertainty bands from the product-kernel model are
generally wider than those produced by the proposed model.
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For a more formal comparison, we use the posterior predictive loss criterion of
Gelfand and Ghosh (1998). The criterion favors the model m that minimizes the pre-
dictive loss measure Dk(m) = P (m) + {k/(k + 1)}G(m), with penalty term P (m) =∑n

i=1 var
(m)(ynew,i | data), and goodness of fit term G(m) =

∑n
i=1{yi − E(m)(ynew,i |

data)}2. Here, E(m)(ynew,i | data) is the mean under model m of the posterior predic-
tive distribution for replicated response ynew,i with corresponding covariate value xi.
The variance is similarly defined. Details involving expressions contributing to Dk(m)
for each model are given in Appendix C, but note that computations are based on
the conditional posterior predictive distribution of y given x. The penalty term under
the product-kernel model is 10.17, while it is 7.95 under the proposed model, and the
goodness of fit terms are 4.17 and 4.08, respectively. Hence, regardless of the choice for
constant k, the criterion favors the general DP mixture binary regression model.

3.2 Estimating natural selection functions in song sparrows

In addition to enabling more general modeling of binary regression relationships, the
latent variables may be practically relevant in specific applications. Often, we may
only observe whether or not some event occurred, although there exists an underlying
continuous response which drives the binary observation. The ozone data was used to
illustrate an environmental application for which the latent continuous responses are
actually present. In applications in biology, the latent response may represent maturity,
which is recorded on a discretized scale, or an unobservable trait or measure of health.
In general, the continuous responses may be latent either because they are actually
unobservable, or as consequence of recording taking place on a discretized scale. As an
example of the former scenario, consider a binary response which represents survival.
While we only observe survival on a binary scale, it is meaningful to conceptualize an
underlying process which drives survival. Quantifying the probability of survival as a
function of phenotypic traits is of great interest in evolutionary biology (Lande and
Arnold, 1983; Schluter, 1988; Janzen and Stern, 1998). Survival can be thought of as a
measure of fitness, and the fitness surface describes the relationship between phenotypic
traits and fitness. The proposed methodology is particularly well-suited for this area of
application, as it allows flexible inference for the shape of the fitness surface and for the
distribution of population traits under a joint modeling framework that incorporates
the scientifically relevant latent fitness responses.

As an illustration, we consider a standard data set from the relevant literature that
records overwinter mortality along with six morphological traits in a population of 145
female song sparrows (Schluter and Smith, 1986). The traits measured consist of weight,
wing length, tarsus length, beak length, beak depth, and beak width. Our initial analysis
included four traits – weight, wing length, tarsus length, and beak length – as beak width
and depth are highly discretized, correlated with beak length, and did not appear to be
associated with a trend in survival. This analysis revealed tarsus length and beak length
to be the main targets of selection, which is consistent with the findings of Schluter and
Smith (1986). A key objective in this example is to obtain inferences for functionals
used to assess the strength and form of natural selection acting on phenotypic traits,
and we thus focus on the two traits associated with survival.
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Figure 4: Song sparrows data. Posterior mean (solid line) and 90% uncertainty bands
(in gray) for the probability of survival as a function of tarsus length (left panel) and
beak length (right panel). Plotted in each panel are the corresponding observations.

The model was applied with standardized covariates tarsus length (x1) and beak
length (x2), measured in millimeters, using the second approach to prior specification
involving the inverse-Wishart distribution. The estimated selection curves are shown in
Figure 4, revealing a strong decreasing trend in fitness over tarsus length, in which a
sparrow with tarsus length 20.55 millimeters has a 10% lower probability of surviving
overwinter than a sparrow with tarsus length just 0.5 mm shorter. The opposite trend
in fitness is present over beak length, as longer beaks are associated with higher prob-
abilities of survival. The posterior median estimate for the probability of survival as a
function of both traits (Figure 5, left panel) confirms that the combination of long beaks
and short tarsi is optimal for fitness; importantly, it also indicates that a short tarsus
provides the more significant contribution to higher probability of survival. The cor-
responding posterior interquartile range estimate (Figure 5, right panel) depicts more
uncertainty in the survival probability surface for sparrows having both a short beak
and short tarsus, and those with both a long beak and long tarsus.

For each of the two traits, we estimated the standardized directional selection differ-
ential, x̄∗

j − x̄j , which provides a measure of selection intensity representing the change
in mean value of a phenotype produced by selection (Lande and Arnold, 1983). Here,
x̄j =

∫
xjf(xj)dxj is the mean value of phenotypic trait xj before selection, and x̄∗

j =∫
xjf(xj | y = 1)dxj = {Pr(y = 1)}−1

∫
xjPr(y = 1, xj)dxj is the mean value after

selection; the marginal probability Pr(y = 1) is referred to as mean absolute fitness.

Under our model, x̄j =
∑N

l=1 plμ
xj

l , the mean absolute fitness is given by
∑N

l=1 plΦ(μ
z
l ),

and
∫
xjPr(y = 1, xj ;GN )dxj is approximated with a Riemann sum. The posterior

mean estimate for the standardized selection differential for tarsus length was −0.31,
with a 90% posterior credible interval of (−0.46,−0.18). For beak length, the poste-
rior mean and 90% credible interval for the standardized selection differential were 0.22
and (0.09, 0.36). Note that these intervals do not contain zero. Combined with the esti-
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Figure 5: Song sparrows data. Posterior median surface (left panel) and interquartile
range surface (right panel) for the probability of survival as a function of tarsus length
and beak length.

mated regression curves, these results give strong evidence that directional selection is
acting on tarsus length and beak length, favoring sparrows with long beaks and short
tarsi.

The average gradient of the selection surface, weighted by the phenotype distribu-
tion, is given under our model by the vector(∫

∂Pr(y = 1 | x;GN )

∂x1
f(x;GN )dx,

∫
∂Pr(y = 1 | x;GN )

∂x2
f(x;GN )dx

)t

.

Under a linear regression structure with a multivariate normal distribution for the phe-
notypic traits, the selection gradient is equivalent to the vector of linear regression
slopes (Lande and Arnold, 1983). Janzen and Stern (1998) do not incorporate in their
approach a distributional assumption for f(x), and approximate the jth selection gra-
dient by n−1

∑n
i=1 ∂Pr(y = 1 | x)/∂xj |x=xi . Our joint mixture modeling approach

avoids the assumption of normality for the phenotypic distribution, as well as the need
to estimate the integral by assuming the sample represents the population distribution.
The integrand of the jth component of the selection gradient vector can be written as
{∂Pr(y = 1, x;GN )/∂xj} − {Pr(y = 1 | x;GN )∂f(x;GN )/∂xj}, for j = 1, 2. We omit
the specific expressions for each of these two terms, but note that both are analytically
available as a consequence of the mixture of normals representation for f(z, x;GN ).
Finally, the average gradient of the relative selection surface, also referred to as the
directional selection gradient by Lande and Arnold (1983), is obtained by dividing each
element of the selection gradient vector by mean absolute fitness. We obtained poste-
rior mean estimates of −0.27 and 0.18, with corresponding 90% credible intervals of
(−0.40,−0.14) and (0.06, 0.31), for the directional selection gradient associated with
tarsus length and beak length, respectively.



838 A Fully Nonparametric Modeling Approach to Binary Regression

Figure 6: Song sparrows data. Posterior predictive samples for corr(z, x1) (left panel),
corr(z, x2) (middle panel), and corr(x1, x2) (right panel).

The presence of stabilizing or disruptive selection can be explored by considering the
change in the phenotypic variance–covariance matrix due to selection, that is, the change
from the pre-selection covariance matrix P , with elements

∫
(x1 − x̄1, x2 − x̄2)

t(x1 −
x̄1, x2 − x̄2)f(x)dx, to the post-selection covariance matrix P ∗, with elements

∫
(x1 −

x̄∗
1, x2− x̄∗

2)
t(x1− x̄∗

1, x2− x̄∗
2)f(x | y = 1)dx. The stabilizing selection differential matrix

is given by P ∗ − P + (x̄∗
1 − x̄1, x̄

∗
2 − x̄2)

t(x̄∗
1 − x̄1, x̄

∗
2 − x̄2) (Lande and Arnold, 1983),

where negative values for a particular trait indicate the presence of stabilizing selection,
while positive values indicate disruptive selection. The posterior mean for the matrix
element corresponding to tarsus length is 0.038, that for beak length is −0.020, and
the off-diagonal element has a posterior mean of −0.018. The 90% posterior credible
intervals for each element of the matrix all include zero, indicating lack of significant
evidence for stabilizing or disruptive selection acting on either trait.

Finally, as a means to check if a kernel with independent components for x and y
would be adequate for this data example, we study in posterior predictive space the
correlations between the latent response and the two traits. Denoting by Θ the vector
comprising all model parameters, the joint posterior predictive distribution is given by
p(z, x | data) =

∫ ∑N
l=1 plN3(z, x;μl,Σl)p(Θ | data) dΘ, which requires sampling one

of (Σ1, . . . ,ΣN ) with probabilities p1, . . . , pN for each set of posterior samples. The
correlations resulting from these posterior predictive draws for the kernel covariance
matrix are plotted in Figure 6. These results suggest that it would be restrictive to
force uncorrelated mixture kernel components, since the distribution of correlations for
(z, x1) is right-skewed and centered on negative values, while that for (z, x2) is mainly
focused on positive values and left-skewed, a pattern which is consistent with the shape
of the estimated binary regression curves.

4 Discussion

We have presented a flexible method for estimating the regression relationship between
binary responses and continuous covariates, which is built from a DP mixture model
for the latent response–covariate distribution. Identifiability was established for the
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parameters of the mixture kernel. In order to impose the restriction which is necessary
for identifiability, the covariance matrix of the normal kernel was reparamaterized in
such a way that allows for viewing only part of the matrix as random, while retaining
the desirable features of conjugacy. Full conditional distributions were derived for the
random elements of the covariance matrix, providing the key component of an efficient
Markov chain Monte Carlo algorithm for posterior simulation. Two strategies for prior
specification were discussed. The methodology was illustrated with two data examples
that were chosen to indicate the practical utility of the modeling approach for problems
in the environmental sciences and in population biology. In particular, estimation of
fitness and natural selection functions is an active research area in evolutionary biology
that can substantially benefit from Bayesian nonparametric joint modeling techniques,
due to the need to model the fitness function flexibly as well as estimate the distribution
of the (random) phenotypic traits associated with specific selection functionals.

As demonstrated with the two data examples, treating the covariates as random,
for applications where this is appropriate, is beneficial in achieving flexible inference
for regression functionals. However, if x is fixed by experimental design, then we do
not recommend the joint approach as unnecessary resources may be spent on capturing
the marginal distribution of x. Moreover, as observed by Wade et al. (2014), when
x is very high dimensional, its likelihood may dominate the posterior and lead to an
unnecessarily large number of mixture components in order to capture the conditional
response distribution.

The proposed modeling approach relies on the choice of the multivariate normal
distribution for the mixture kernel. This choice can accommodate essentially any type
of continuous covariate, possibly through use of appropriate transformation. It can also
handle ordinal categorical covariates x by incorporating in the model associated con-
tinuous variables, xc, such that x arises from xc through discretization. In particular,
although in this case inferences were not affected, beak length in the data example of
Section 3.2 was recorded only to the nearest tenth, and it could therefore be treated as
a discrete covariate.

This work lays in place the foundations for a variety of extensions to ordinal regres-
sion problems involving data of different types. In particular, extensions of the mod-
eling approach to incorporate ordinal and mixed ordinal-continuous responses follow
naturally. In analogy with the binary setting, a univariate ordinal response y with K
categories may be thought to arise as a discretized version of an underlying continuous
response z, such that y = k if and only if γk−1 < z ≤ γk, for k = 2, . . . ,K−1, and y = 1
or y = K if and only if z ≤ γ1 or z > γK−1. A normal DP mixture model can again be
used for (z, x). However, extending the argument in Kottas et al. (2005), it can be shown
that if K ≥ 3 all elements of the kernel covariance matrix are identifiable when the cut-
off points, γ1, . . . , γK−1, are fixed. A key feature of the nonparametric mixture modeling
framework is that we can obtain general inference with fixed cut-off points, resulting
in a great advantage over parametric models, the implementation of which involves
computationally challenging cut-off point estimation. In the case of multivariate ordinal
regression, each response may be assumed to arise from its own underlying continuous
response. Modeling these latent continuous responses jointly with the covariates in the
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kernel sets the stage for flexible inference on the relationship between the multivariate
ordinal response and the covariates, as well as among the ordinal responses. Finally,
we can consider mixed ordinal-continuous responses, using a multivariate normal kernel
for the latent responses, continuous responses, and covariates. We will report on these
modeling extensions in a future manuscript.

Appendix A: Proofs of Lemmas 1 and 2

Proof of Lemma 1

Recall the kernel distribution in (3) for which we wish to prove that parameters
(μx, μz,Σxx,Σzx) are identifiable, fixing Σzz = 1. Assume that

k(y, x;μx
1 , μ

z
1,Σ

xx
1 ,Σzx

1 ) = k(y, x;μx
2 , μ

z
2,Σ

xx
2 ,Σzx

2 ). (5)

If this implies (μx
1 , μ

z
1,Σ

xx
1 ,Σzx

1 ) = (μx
2 , μ

z
2,Σ

xx
2 ,Σzx

2 ), then (μx, μz,Σxx,Σzx) are iden-
tifiable.

From (5), it must be the case that Np(x;μ
x
1 ,Σ

xx
1 ) = Np(x;μ

x
2 ,Σ

xx
2 ). This follows from

summing each side of (5) over the two possible values of y. Because the mean vector
and covariance matrix are identifiable for the multivariate normal likelihood, it can be
concluded that μx

1 = μx
2 , and Σxx

1 = Σxx
2 . Now, after this simplification, each side of the

equality in (5) consists of a Bernoulli distribution for y | x, and since y is either 0 or
1, the corresponding Bernoulli probabilities must be equal. Since Φ is a monotonically
increasing function of its argument, the arguments of Φ are equal, that is,

μz
1 +Σzx

1 (Σxx)−1(x− μx)

(1− Σzx
1 (Σxx)−1(Σzx

1 )t)1/2
=

μz
2 +Σzx

2 (Σxx)−1(x− μx)

(1− Σzx
2 (Σxx)−1(Σzx

2 )t)1/2
.

This can be written in the form atx + b = 0, and in order to hold true for all x, each
element of vector a must be 0, and scalar b must be 0. The two equations a = 0 and
b = 0 require

Σzx
1

(1− Σzx
1 (Σxx)−1(Σzx

1 )t)1/2
=

Σzx
2

(1− Σzx
2 (Σxx)−1(Σzx

2 )t)1/2
, (6)

μz
1 − Σzx

1 (Σxx)−1μx

(1− Σzx
1 (Σxx)−1(Σzx

1 )t)1/2
=

μz
2 − Σzx

2 (Σxx)−1μx

(1− Σzx
2 (Σxx)−1(Σzx

2 )t)1/2
. (7)

Using (6), (7) can be replaced by μz
1Σ

zx
2 = μz

2Σ
zx
1 . Writing these two equations compo-

nent-wise, and letting Σzx
ji denote element i of the vector Σzx

j , results in two systems of
p equations:

(Σzx
1i )

2

1− Σzx
1 (Σxx)−1(Σzx

1 )t
=

(Σzx
2i )

2

1− Σzx
2 (Σxx)−1(Σzx

2 )t
, i = 1, . . . , p, (8)

μz
1Σ

zx
2i = μz

2Σ
zx
1i , i = 1, . . . , p. (9)
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When p = 1 such that Σzx is a scalar, (8) becomes |Σzx
1 | = |Σzx

2 |, which has only the
solution Σzx

1 = Σzx
2 , since Σzx

1 = −Σzx
2 would violate (6). Then from (9) we conclude

μz
1 = μz

2.

In general, with p covariates, (8) can be written as

(Σzx
1i )

2 − (Σzx
1i )

2

p∑
k=1

p∑
j=1

Σzx
2jΣ

zx
2k(Σ

xx)−1
jk = (Σzx

2i )
2 − (Σzx

2i )
2

p∑
k=1

p∑
j=1

Σzx
1jΣ

zx
1k(Σ

xx)−1
jk

for i = 1, . . . , p. Because (9) implies Σzx
1l Σ

zx
2m = Σzx

1mΣzx
2l for any l,m = 1, . . . , p, the

equation reduces to (Σzx
1i )

2 = (Σzx
2i )

2. The constraint Σzx
1l Σ

zx
2m = Σzx

1mΣzx
2l leaves only

Σzx
1 = −Σzx

2 and Σzx
1 = Σzx

2 as possible solutions. The first can be eliminated as well,
since this contradicts (6). This leaves as the only feasible solution Σzx

1 = Σzx
2 , which

implies μz
1 = μz

2 from (9).

It has been shown that if k(y, x;μx
1 , μ

z
1,Σ

xx
1 ,Σzx

1 ) = k(y, x;μx
2 , μ

z
2,Σ

xx
2 ,Σzx

2 ), then
this implies (μx

1 , μ
z
1,Σ

xx
1 ,Σzx

1 ) = (μx
2 , μ

z
2,Σ

xx
2 ,Σzx

2 ). Therefore, applying directly the
definition, the parameters (μx, μz,Σxx,Σzx) are identifiable in the kernel of the mixture.

Proof of Lemma 2

Consider y = (y1, . . . , yr)|μ, β,Δ ∼ Nr(μ, β
−1Δ(β−1)t), such that the likelihood for β is

proportional to exp{−(y−μ)tβtΔ−1β(y−μ)}. First, focus on determining the likelihood
for β̃, a vector of length q = r(r− 1)/2. Write β(y−μ) as M(1, β̃t)t, for a matrix M , of
dimension r×(q+1) which has row i containing i nonzero elements, the first being (yi−
μi), occurring in column 1, and the rest being (y1 −μ1), . . . , (yi−1 −μi−1), occurring in
columns 2+(i−1)(i−2)/2 to i+(i−1)(i−2)/2. Then, the likelihood for β̃ can be written
proportional to exp{−(1, β̃t)M tΔ−1M(1, β̃t)t}. Let C = M tΔ−1M . If there exists a
symmetric, positive definite matrix T and vector d for which (1, β̃t)C(1, β̃t)t = β̃tT β̃ −
2β̃tTd + R, where R is a constant that does not depend on β̃, then the likelihood for
β̃ corresponds to a normal distribution with mean vector d and covariance matrix T−1.
The left side of the above equation is C11+2

∑q+1
j=2 β̃j−1C1j +

∑q+1
j=2

∑q+1
i=2 β̃j−1β̃i−1Cij ,

and the last of these terms is just β̃tCq×qβ̃, where Cq×q denotes the q× q submatrix of
C obtained by deleting the first row and column of C. Therefore, with T = Cq×q, we

seek d such that −β̃tTd =
∑q+1

j=2 β̃j−1C1j . Equating the coefficient associated with β̃i,
i = 1, . . . , q, on each side of the equation results in a system of q equations:

−
q∑

j=1

djTi−1,j = C1i, i = 2, . . . , q + 1. (10)

As explained in Section 2.2, T is a block diagonal matrix which can be constructed from
square matrices T 1, . . . , T r−1, of dimensions 1, . . . , r − 1, where

T j
mn = (ym − μm)(yn − μn)/δj+1, m = 1, . . . , j, n = 1, . . . , j. (11)

The symmetry of T follows from the symmetry of C, but it remains to be shown that
T is positive definite. For a non-zero vector v, we must have vtTv > 0. When r = 2,
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vtTv becomes v21(y1 −μ1)
2/δ2. When r = 3, vtTv is the sum of the result for r = 2 and

the term (v2(y1 − μ1) + v3(y2 − μ2))
2/δ3. For r = 4, the term (v4(y1 − μ1) + v5(y2 −

μ2) + v6(y3 − μ3))
2/δ4 is added to the result for r = 3. In general, a term of the form

(vq−r+2(y1−μ1)+· · ·+vq(yr−1−μr−1))
2/δr is added in going from r−1 to r dimensions.

Clearly, T is positive semidefinite. However, to have vtTv > 0, and all elements of T
strictly positive, it must be the case that yi �= μi, for i = 1, . . . , r − 1, which holds true
with probability 1, since μ is a continuous random vector.

We now derive the form of the mean vector d. Because T is sparse, the system of
q equations (10) can be divided into r − 1 sets of equations, where set j consists of j
equations with j unknowns, d1+j(j−1)/2, . . . , dj(j+1)/2. Let the index 1 + j(j − 1)/2 be
denoted by (1) and let the index j(j+1)/2 be denoted by (j). Set the first j−1 of these
elements equal to 0, so that d1+j(j−1)/2 = · · · = dj(j+1)/2−1 = 0. Then the j equations
become

− d(j)T(1),(j) = C1,(1)+1, . . . ,−d(j)T(j),(j) = C1,(j)+1. (12)

The solution d(j) = −(yj+1 − μj+1)/(yj − μj) satisfies these j equalities (12), since
the elements C1,(1)+1, . . . , C1,(j)+1 are (y1−μ1)(yj+1−μj+1)/δj+1, . . . , (yj −μj)(yj+1−
μj+1)/δj+1, and the elements T(1),(j), . . . , T(j),(j) are (y1 − μ1)(yj − μj)/δj+1, . . . , (yj −
μj)(yj − μj)/δj+1, as given in (11), so that

−C1,(1)+1/T(1),(j) = · · · = −C1,(j)+1/T(j),(j) = −(yj+1 − μj+1)/(yj − μj).

With n data vectors, (yi,1, . . . , yi,r), for i = 1, . . . , n, the likelihood for β̃ is propor-
tional to a normal with mean (

∑n
i=1 Ti)

−1(
∑n

i=1 Tidi), and covariance matrix
(
∑n

i=1 Ti)
−1, where Ti and di are computed using the ith observation. When combined

with a normal prior for β̃, the full conditional is also normal.

Next, consider the likelihood for the δk, which up to the proportionality constant

is given by
∏r

k=1 δ
−1/2
k exp{−tr(βtΔ−1β(y − μ)(y − μ)t)/2}. By properties of trace,

tr(βtΔ−1β(y − μ)(y − μ)t) = tr(β(y − μ)(y − μ)tβtΔ−1). Let A = β(y − μ)(y − μ)tβt.
Since Δ is diagonal with δ on the diagonal, the likelihood for each δk is proportional to

δ
−1/2
k exp{−Akk/(2δk)}. The diagonal elements of A are the squares of β(y− μ), which
are Akk = {(yk −μk)+

∑
j<k βkj(yj −μj)}2. Then, with n data vectors, (yi,1, . . . , yi,r),

i = 1, . . . , n, the likelihood for δk, k = 1, . . . , r, is proportional to an inverse-gamma with
shape parameter (n/2)− 1 and scale parameter 0.5

∑n
i=1{(yi,k − μk) +

∑
j<k βkj(yi,j −

μj)}2. When combined with an inverse-gamma prior, this results in a posterior full
conditional distribution which is inverse-gamma.

Appendix B: Distributions implied by the inverse-Wishart

Assume Σ ∼ IWr(v, T ), with r = p+1, and partition Σ into blocks, Σ11, Σ12, Σ21, and
Σ22, of dimensions q×q, q×(r−q), (r−q)×q, and (r−q)×(r−q), respectively. Moreover,
consider the corresponding partition for matrix T . Then, applying Propositions 8.7 and
8.8 of Eaton (2007), we obtain:

(a) Σ11 ∼ IWq(v − (r − q), T11).
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(b) Σ22·1 ∼ IWr−q(v, T22·1), where Σ22·1 = Σ22 − Σ21Σ
−1
11 Σ12 and T22·1 = T22 −

T21T
−1
11 T12.

(c) Σ−1
11 Σ12|Σ−1

22·1 ∼ MNq,r−q(T
−1
11 T12, T

−1
11 ,Σ22·1), that is, a matrix normal distribu-

tion; thus, conditionally on Σ22·1, vec(Σ
−1
11 Σ12) ∼ Nq(r−q)(vec(T

−1
11 T12), T

−1
11 ⊗ Σ22·1).

We now assume T is diagonal, with elements (T1, . . . , Tp+1), as this is the case
relevant to our prior specification approach. Let T i = diag(T1, . . . , Ti). Applying result
(b) with q = p, we obtain δp+1 ∼ IG(0.5v, 0.5Tp+1). This uses the fact that Σ22·1 =
δp+1 as a consequence of the (β,Δ) parameterization, and the simplification of T22·1 to
T22 = Tp+1 when T is diagonal. Applying result (a) with q = p, we obtain the marginal
distribution of the upper left p dimensional block of the covariance matrix Σ, which is
Σ1:p,1:p ∼ IWp(v − 1, T p). Next, using result (b) for matrix Σ1:p,1:p with q = p− 1, we
have δp ∼ IG(0.5(v − 1), 0.5Tp), since (Σ1:p,1:p)22·1 = δp. Analogously, applying results
(a) and (b) in succession, we obtain δi ∼ IG(0.5(v+i−(p+1)), 0.5Ti), for i = 2, . . . , p+1.

For each i = 2, . . . , p+1, result (a) yields an IWi(v+ i− (p+1), T i) distribution for
Σ1:i,1:i, that is, for the upper left block of Σ of dimension i. Then, applying result (c) to
Σ1:i,1:i with q = i−1, we obtain (−βi,1, . . . ,−βi,i−1)

t|δi ∼ Ni−1((0, . . . , 0)
t, δi(T

i−1)−1),
for i = 2, . . . , p+1. This uses the fact that (T i)12 = (0, . . . , 0)t, vec((Σ1:i,1:i)

−1
11 (Σ1:i,1:i)12)

= (−βi,1, . . . ,−βi,i−1)
t, and (Σ1:i,1:i)22·1 = δi.

Appendix C: Model comparison criterion

The predictive loss measure used for model comparison in Section 3.1 requires for each
model m the posterior predictive mean, E(m)(ynew,i|data), and posterior predictive vari-
ance, var(m)(ynew,i|data), for replicated response ynew,i with associated covariate vec-
tor xi.

Denote generically by Θ the full parameter vector for either the product-kernel model
or for the more general binary regression model developed in Section 2. For the for-
mer model, E(y|xi, data) = {p(xi|data)}−1

∫ ∑N
l=1 plNp(xi;μ

x
l ,Σ

xx
l )Φ(μz

l ) p(Θ|data)dΘ,

with p(xi|data) =
∫ ∑N

l=1 plNp(xi;μ
x
l ,Σ

xx
l ) p(Θ|data)dΘ, and E(y2|xi, data) also has

the same form. Under the proposed model, E(y|xi, data) is given by

{p(xi|data)}−1

∫ N∑
l=1

plNp(xi;μ
x
l ,Σ

xx
l )Φ

(
μz
l +Σzx

l (Σxx
l )−1(xi − μx

l )

(Σzz
l − Σzx

l (Σxx
l )−1(Σzx

l )t)1/2

)
p(Θ|data)dΘ

where p(xi|data) =
∫ ∑N

l=1 plNp(xi;μ
x
l ,Σ

xx
l ) p(Θ|data)dΘ, and, again, E(y|xi, data) =

E(y2|xi, data). Hence, under both models, straightforward Monte Carlo integration us-
ing the posterior samples for model parameters yields estimates for the required poste-
rior predictive means and variances.
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