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A Mixture Model for Rare and Clustered
Populations Under Adaptive Cluster Sampling

Kelly C. M. Gonçalves∗ and Fernando A. S. Moura†

Abstract. Rare populations, such as endangered species, drug users and individ-
uals infected by rare diseases, tend to cluster in regions. Adaptive cluster designs
are generally applied to obtain information from clustered and sparse populations.
The aim of this work is to propose a unit-level mixture model for clustered and
sparse populations when the data are obtained from an adaptive cluster sample.
Our approach considers heterogeneity among units belonging to different clusters.
The proposed model is evaluated using simulated data and a real experiment in
which adaptive samples were drawn from an enumeration of a waterfowl species
in a 5,000 km2 area of central Florida. The results show that the model is efficient
under many settings, even when the level of heterogeneity is low.
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1 Introduction

In many research studies, it is difficult to observe individuals or collect information from
them, such as in surveys of rare diseases, elusive individuals or unevenly distributed
individuals. According to McDonald (2004), rare populations present a few individuals
that are sparsely distributed in clusters across a large region. In those cases, the use of
conventional sampling methods is not recommended due to the high costs of locating
such individuals and the low precision achieved by employing design-based estimators.
For instance, suppose that the individuals of interest are spatially distributed in a region
upon which we superimpose a regular grid with N cells. Let Yi denote the grid cell count,
for example, the number of endangered plants or animals of interest in the ith grid cell,

where i = 1, . . . , N . The objective is to estimate the population total T =
∑N

i=1 Yi.

Grid cell sampling methods involve the selection of a subset with n < N grid cells and
the observation of the Yis for the selected grid cells. For rare and clustered populations,
most of the samples would consist mainly of empty grid cells, yielding poor estimates
of T . To overcome this difficulty, Thompson (1990) introduced adaptive cluster sampling
as a refined method for estimating the size of rare and clustered populations. The scheme
is useful for exploring such populations because it allows sampling efforts to be focused
on the surrounding non-empty grid cells in the sample. As stated in Thompson and
Seber (1996), adaptive sampling refers to designs in which the procedure for selecting
units to include in the sample may depend on the values of the variable of interest
observed during the survey. For instance, in a survey to assess the abundance of a rare
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animal species, neighboring sites may be added to the sample whenever the species is
encountered during the survey.

An adaptive sampling design begins with an initial probability sample of units,
which is selected using a standard sample design. Then, when it has found a non-empty
grid cell, it also surveys the neighbors of that cell and continues to survey neighbors
of non-empty cells until it obtains a set of contiguous non-empty grid cells surrounded
by empty grid cells. Selected empty grid cells attract no additional survey effort. This
procedure allows the collection of more useful data than simpler sampling methods that
ignore the population structure. Although the initial sample size is known, the final
sample size is a random variable and depends on the variable of interest. Therefore, to
be effective at moderate cost, this plan requires some prior knowledge of the structure
of the underlying population; see Thompson and Seber (1996) for further details.

The final sample consists of empty grid cells that are selected from the initial sample,
non-empty grid cells selected in the first stage and their non-empty neighbors. Thompson
(1990) refers to the sets of contiguous non-empty grid cells and their neighboring empty
grid cells as clusters. The set of contiguous non-empty grid cells within a cluster is called
a network. Empty cells are also defined as networks of size one. Thus, the population
may be partitioned not only into grid units but also into networks. It should be noted
that the final sample consists of a set of a random number of non-empty networks and
empty networks.

For the particular case in which the initial sample is a simple random sample without
replacement, Thompson (1990) derived inclusion probabilities for the networks observed
in the sample and used these probabilities to construct design-unbiased estimators of
T and their variances. Although the initial selection is without replacement, the same
network can be selected more than once, a problem that Thompson (1990) resolved by
allowing multiple inclusions of networks.

The first insight in Thompson (1990) is to base the analysis on networks and to
treat the empty edge units of the clusters as unobserved. Following this approach, the
estimator obtained does not use all the data information, and therefore it is not a
function of the minimal sufficient statistics. Thompson (1990) further suggested the
construction of estimators based on the complete set of observations by using the Rao–
Blackwell theorem for taking their conditional expectations given the minimal sufficient
statistic, which are the complete set of observations.

Adaptive cluster sampling has been performed on real problems and has been shown
to be more efficient than traditional grid cell sampling in various areas. For example,
Roesch (1993) and Philippi (2005) showed that this method is a viable alternative for
sampling forests with rare plants, Smith et al. (1995) evaluated the methodology for
rare species of waterfowl, and Conners and Schwager (2002) applied it to hydroacoustic
surveys in fisheries.

The first attempt to model data obtained by adaptive cluster sampling and to de-
velop a model-based Bayesian analysis was provided by Rapley and Welsh (2008). The
use of the Bayesian framework is a natural extension of the key idea behind adaptive
cluster sampling, which incorporates the prior knowledge of a clustered population into
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the inference, as well as into the sampling design. Their approach is based on modeling
at the network level. They developed a model for the network counts that considers the
informativeness of the adaptive cluster sampling design with respect to the number of
counts. However, a crucial aspect of their approach is that they do not model the spatial
locations of the networks. This lack of spatial information does not entail any loss of
information about the total population because, under the model, the population size
does not depend on where the networks are located. They thereby address a potentially
difficult problem and are able to proceed relatively simply.

Although the formulation developed by Rapley and Welsh (2008) has certain prac-
tical advantages, it does not permit the incorporation of more complex structures, such
as spatial dependence between units. Their model assumes homogeneity across all units,
even those belonging to different networks, which is equivalent to assuming that the ex-
pected total in a network is proportional to its size. However, these assumptions might
not be realistic in all real situations.

The aim of this work is to propose a unit-level mixture model for clustered and
sparse populations when the data are obtained from an adaptive cluster sample. Our
proposed mixture model considers heterogeneity among units belonging to different
clusters. As in Rapley and Welsh (2008), our model formulation does not include the
additional information provided by the edge units. Although, we are violating the suf-
ficiency principle, in our case, the information provided by the edge units is negligible
because the criterion used for adaptively sampling the neighboring units of a unit is
that it be non-empty, i.e., Yi > c = 0.

The paper is organized as follows. Section 2 presents the proposed model for esti-
mating the population total of rare and clustered populations from samples selected
using an adaptive cluster sampling design. It also discusses prior distributions that may
be used in this case. The inference developed specifically for fitting the proposed model
is discussed in Section 3, where we also assess the convergence of the Markov Chain
Monte Carlo (MCMC) methods by applying informal and formal convergence criteria.
Section 4 presents a simulation study for assessing the estimation of model parameters
under different scenarios. It also presents a prior sensitivity analysis of the two possible
prior distributions of the parameter that controls the degree of homogeneity among
units belonging to different clusters. A comparison of our approach with that of Rapley
and Welsh (2008) through design-based and model-based perspectives under different
scenarios is presented in Section 5. Finally, Section 6 presents some conclusions and
suggestions for further research.

2 A Poisson mixture model for unit counts

The basic mixture model for independent scalar or vector observations Yi, i = 1, . . . , n
is given by

Yi ∼
k∑

j=1

wjf(· | φj), i = 1, . . . , n, (1)
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where f(· | φ) is a given parametric family of densities indexed by a scalar or a vec-
tor φ. In general, the objective of the analysis is to make inferences about the un-
knowns: the number of groups k, the parameters φjs and the components’ weights wj ,

0 < wj < 1,
∑k

j=1 wj = 1. The mixture model in (1) is invariant to permutation of the
labels j = 1, . . . , k. Therefore, it is important to adopt unique labeling to ensure iden-
tifiability. For example, we can impose an ordering constraint on the φjs, such as φ1 <
φ2 < · · · < φk.

Viallefont et al. (2002) suggested a Poisson mixture model for coping with rare
events. The interest in this class of models arises here because it is applicable to het-
erogeneous populations consisting of groups j = 1, . . . , k of sizes proportional to wj ,
from which a random sample may be drawn. The identity of the group from which each
observation is drawn is unknown. As stated in Richardson and Green (1997), due to
computational costs, it is natural to regard the group label εi for the ith observation as
a latent variable and rewrite (1) as the following hierarchical model

Yi | φj , εi = j ∼ f(· | φj), with P (εi = j) = wj , i = 1, . . . , n, j = 1, . . . , k.

Let us consider a region Ω containing a sparse, clustered population of size T . We
superimpose a regular grid on Ω to partition it into N squares. A grid cell is non-empty
if it contains at least one observation and empty otherwise. Let X be the number of
non-empty grid cells in Ω. Let R ≤ X be the number of non-empty networks, and let
C = (C1, . . . , CR)

′ denote the number of non-empty grid cells within each network, such

that X =
∑R

j=1 Cj . As there are N −X empty grid cells, which are defined to be empty
networks of size one, there are N −X +R networks in Ω. Thus, it is possible to extend
the R-vector C to the vector Z = (C′,1′

N−X)′ of dimension N −X + R, where 1′
N−X

is a vector of ones with dimension N − X. Let Y = (Y1, . . . , YX)′ denote a vector of
cell counts, where its elements are the number of observations within each non-empty
unit; then, Yi ≥ 1. The primary goal is to make inferences about the total population
T =

∑X
i=1 Yi.

The proposed mixture model assumes that the R non-empty network mixture com-
ponents are heterogeneous, with weights wj that are proportional in each case to the
number of grid cells inside the networks Cj . Let us define the latent allocation variable
εi such that P (εi = j) = wj = Cj/X, i = 1, . . . , X and j = 1, . . . , R.

The mixture model is completed with the hierarchical structure proposed in Rapley
and Welsh (2008), where they assign distributions to X, R and C associated with the
non-empty grid cells and then, conditional on the network structure, model the network
counts Y for the non-empty networks.

Our proposed model can be stated as follows

Yi | εi = j, λj , X ∼ independent truncated Poisson(λj), Yi ≥ 1, (2a)

P (εi = j) = wj = Cj/X, i = 1, . . . , X and j = 1, . . . , R, (2b)

C− 1R | X,R ∼ Multinomial

(
X −R,

1

R
1R

)
,

R∑
i=1

Ci = X, (2c)
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R | X,β ∼ truncated Binomial (X,β), R = 1, . . . , X, (2d)

X | α ∼ truncated Binomial (N,α), X = 1, . . . , N, (2e)

where λj/{1 − exp(−λj)} is the mean of the truncated Poisson distribution and 1R is
the R-vector of ones. Note that, to avoid degeneracy, at least one non-empty network
is assumed to be in the region. Consequently, all of the distributions are left-truncated
at one.

The distributions stated in (2c), (2d) and (2e) are the same as in the model by Rapley
and Welsh (2008), but unlike their model, the analysis here is performed at the unit
level. In the Rapley and Welsh (2008) model, equations (2a) and (2b) are replaced with
independent Poisson distributions truncated at zero: Y.j | λ,R,C ∼ Poisson (λCj),
where Y.j =

∑
i∈Uj

Yi with Uj denoting the set of units that belong to the network
j, j = 1, . . . , R. Therefore, our model can accommodate heterogeneity between units
that belong to different networks, which is not considered in the approached proposed
by Rapley and Welsh (2008).

The adaptive design begins with a simple random sample without replacement of
fixed size and then follows with the adaptive design, yielding a particular sample s =
{i1, . . . , im} of size m taken from N − X + R networks of the population. Thus, the
mechanism depends only on the network structure, described by X,R and C, and needs
to be included in the model. However, because the same network can be selected more
than once in this procedure, we decided to sample networks directly via a sequential
procedure in which the ordered sample of networks is selected without replacement.
We implement this sampling procedure by selecting a grid cell in the set of N grid
cells, surveying that grid cell and, if it is non-empty, then surveying the entire network
containing the selected grid cell. We then remove this network from the population,
select one of the remaining grid cells and continue in this fashion until we have selected
m networks for the sample. Therefore, using this procedure, networks are sampled with
probability proportional to their size without replacement. This method was proposed
by Salehi and Seber (1997) and is a modification of the sample design proposed in
Thompson (1990) in which networks are sampled only once. Thus, in this paper, we
considered the sequential method with fixed sample size and not the precise sampling
mechanism proposed by Thompson (1990).

Note that the inclusion probability of a network depends on its size Zi, and the sam-
pling is informative because the components of the random vector Z are only observed
for the sampled networks after being selected. Thus, the probability of selecting the or-
dered sample s = {i1, . . . , im} of m networks must be included in the model likelihood.
The joint inclusion probability can be deduced as follows.

Let the event Aij = {the network ij be selected in the jth draw}. Thus, the proba-
bility of selecting the ordered sample s = {i1, . . . , im} of m networks can be written as
follows

p(s | X,R,C) = P (∩m
j=1Aij | X,R,C) = P (Ai1 | X,R,C)

(3)

×
m∏
j=2

P (Aij | ∩j−1
k=1Aik , X,R,C).
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Because the networks are sampled without replacement, the conditional probabilities
P (Ai1 | X,R,C) and P (Aij | ∩j−1

k=1Aik , X,R,C) in (3) are, respectively, given by

P (Ai1 | X,R,C) =
zi1 × gi1,1∑N−X+R

i=1 zi − zi0
,

(4)

P (Aij | ∩j−1
k=1Aik , X,R,C) =

zij × gij ,j∑N−X+R
i=1 zi −

∑j−1
k=0 zik

, j = 2, . . . ,m,

where gij ,j is the number of unselected networks of size zij after j − 1 networks have
been selected and zi0 = 0.

Substituting the equations in (4) into (3), we finally have

p(s | X,R,C) =

m∏
j=1

zij × gij ,j∑N−X+R
i=1 zi −

∑j−1
k=0 zik

. (5)

The sampling procedure entails observing Yi for the networks in the sample s. The input
variables are split into an observed and an unobserved component, using the subscripts
s and s̄, respectively. Thus, we have X = Xs + Xs̄, R = Rs + Rs̄, ε = (ε′s, ε

′
s̄)

′,
C = (C′

s,C
′
s̄)

′ and Y = (Y′
s,Y

′
s̄)

′.

Because the sampling procedure is informative, it is useful to divide the joint prob-
ability model into two parts: the model for the underlying complete data, including
both observed and unobserved components, and the model for the inclusion probabil-
ity vector, as stated in (5); see Pfeffermann et al. (2006) for further explanation. The
complete-data likelihood is defined as the product of these two factors, as stated by
Gelman et al. (1995). Thus, we can write the complete-data likelihood as

p({i1, . . . , im}, X,R, ε,C,Y | λ, α, β) = p({i1, . . . , im} | X,R,C)p(Y | ε,λ, X)

×p(ε | C, R,X)p(C | R,X)p(R | X,β)p(X | α)

=

m∏
l=1

zil × gil,l∑N−X+R
i=1 zi −

∑j−1
k=0 zik

×
Rs+Rs̄∏
j=1

∏
{i:εi=j}

λyi

j exp(−λj)

yi![1− exp(−λj)]
(6)

× 1

(Xs +Xs̄)Xs+Xs̄

Rs+Rs̄∏
j=1

C
Cj

j ×
Rs+Rs̄∏
j=1

1

(Cj − 1)!

(
1

Rs +Rs̄

)Cj−1

1

(Rs +Rs̄)!

βRs+Rs̄(1− β)Xs+Xs̄−Rs−Rs̄

1− (1− β)Xs+Xs̄
×N !

αXs+Xs̄(1− α)N−Xs−Xs̄

1− (1− α)N
.

It should be noted that expression (6) is useful for specifying a probability model
but does not present the actual likelihood of the data unless the variables are completely
observed. The appropriate likelihood of Bayesian inference for the actual information
available is obtained by summing over the unknown quantities, which are not otherwise
observed in the selected sample. The observed-data likelihood, conditional on λ, α and β,
is given by

p({i1, . . . , im}, Xs, Rs, εs,Cs,Ys) =
∑
Ys̄

∑
Cs̄

∑
εs̄

∑
Rs̄

∑
Xs̄

p({i1, . . . , im}, X,R, ε,C,Y).
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2.1 Prior distributions

In a Bayesian framework, the three unknowns α, β and λ are regarded as having been
drawn from appropriate prior distributions. Assume that these parameters are indepen-
dent; then, the joint prior distribution of (α, β,λ) is the product of their marginal prior
distributions, described here. Parameter α controls the expected number of non-empty
grid cells, and β controls the conditional expected number of non-empty networks. Fig-
ure 1 presents an illustration with certain artificial populations generated by model
(2) and certain values fixed for α and β. We also arbitrarily fixed λj = 10 for all
j = 1, . . . , R; thus, approximately 10 observations are expected in each unit. Because
model (2) does not provide information on the locations of the networks or on their
shapes, we used model (2) to generate X, R and Y, and conditional on these values,
we then sampled from the Poisson cluster process (cf. Diggle (2014), chap. 6, p. 101)
to generate the locations. Specifically, the R “parent locations” were generated from
a uniform distribution and the numbers of point-objects Y.j were dispersed in relation
to the parent locations with a symmetric Gaussian distribution with a fixed standard
deviation of 0.6.

Figure 1: Artificial populations generated by the proposed model with some fixed values
for α and β, and λj = 10, for all j = 1, . . . , R, in a regular grid with N = 400 units.

Because the aim of our approach is to survey sparse populations, when analyzing
Figure 1, it is reasonable to assume that both α and β parameters should typically be
small. To be uninformative with respect to these parameters, we should choose flat prior
distributions. However, we can assign prior distributions that incorporate our knowledge
of a rare and clustered population. In particular, we can assume that α ∼ Beta(aα, bα)
and β ∼ Beta(aβ , bβ) and choose values for the beta distribution’s parameters such that
α and β are within an interval centered on a small value with high probability. Here,
W ∼ Beta(a, b) generically denotes a beta-distributed random variable parameterized
with mean a/(a+ b) and variance ab(a+ b+ 1)−1(a+ b)−2.

To ensure identifiability, it is necessary to adopt a unique labeling. For the pro-
posed model in (2), unique labeling can be achieved by imposing a restriction on
λ = (λ1, . . . , λR)

′. However, it should be noted that λ, although entirely unknown,
has components associated with the sample whereby better estimates are expected.
Thus, let us define λ = (λs,λs̄)

′ such that λs refers to the networks observed in the
sample and λs̄ refers to the unobserved networks. Note that it is necessary to impose a
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restriction on λ to ensure the identifiability of the model. Nevertheless, this restriction
is only necessary for the elements of λ associated with the unknown networks, i.e., λs̄.

Let us assume the following for λ

λ | θ ∼ p(· | θ, R) such that λj < λj+1, ∀j ∈ [Rs + 1, Rs +Rs̄),

where p(· | θ, R) represents the prior distribution of λ, which depends on the number
of networks in the population R and on the vector of the hyperparameters θ.

We use two different prior distributions for λ. First, we assume that the joint prior
density for λ is given by the following

p(λ | θ, R) = Rs̄!

R∏
j=1

p(λj | θ) such that λj < λj+1, ∀j ∈ [Rs + 1, Rs +Rs̄). (7)

In particular, we consider p(λj |θ), j = 1, . . . , R all equal to the density of Gamma(d, ν),
with θ = (d, ν), and we introduce an additional hierarchical level by allowing ν to follow
Gamma(e, f) distribution. Here, Gamma(a, b) generically denotes a gamma distribution
with mean a/b and variance a/b2.

A standard approach for setting a gamma as a weakly informative prior is to choose
small values for its two parameters. However, such a distribution has a peak in the
neighborhood of zero, which might encourage the inclusion of components with very
small Poisson parameters, which would be difficult to estimate in general. Therefore,
we used a weakly informative prior based on Viallefont et al. (2002), i.e., Gamma(d, ν)
with d greater than one, to avoid an exponential shape without overly reducing the
distribution of the Coefficient of Variation (CV). Ideally, the parameter ν should be
set based on prior information. Nevertheless, Viallefont et al. (2002) suggested that the
prior mean d/ν be equal to the midrange of the observed data. However, in our case, we
also consider ν to be unknown, and hence we choose e and f in the prior of ν such that
the approximation to the mean of λj , d/(e/f), is equal to the midrange of the observed
data and that the variance e/f2 is relatively small. It should be noted that in the case
of samples with only empty units, we needed to add a small constant to the midrange
of the observed data to ensure that it be positive.

The other prior considered for λ is that introduced by Roeder and Wasserman (1997)
for normal mixtures as an explicit way to place an informative prior on the distance
between two consecutive λjs. Here, the hyperparameter θ is τ , a positive constant, and
the prior model is given by the following

p(λ | τ, R) = p(λR | λR−1, τ)p(λR−1 | λR−2, τ) · · · p(λ1), (8)

where p(λj | λj−1, τ) is N(λj−1,∞)(λj−1, τ), i.e., a normal centered at λj−1 with vari-
ance τ2, truncated to be greater than λj−1 and p(λ1) ∝ 1. This ordering ensures the
identifiability of the model.

Viallefont et al. (2002) illustrated the difficulty of eliciting τ and its clear influence
on the posterior distribution of the mixture parameters, as well as on the posterior
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distribution of the number of components. For example, if τ is very small compared
with the anticipated distance between two consecutive λjs, there will be a tendency
to fit intermediate components between the true ones and hence to find a posterior
distribution favoring higher values of R. This strategy yields a low prior probability that
any two neighboring components are more than τ standard deviations apart. Based on
a simulation study, Roeder and Wasserman (1997) recommend choosing τ = 5 because
this choice leads to reasonable density estimates.

3 Inference

The posterior distribution of the parametric vector Θ = (Xs̄, Rs̄, εs̄,Cs̄,Ys̄, α, β,λ, ν)
of model (2) cannot be obtained in closed form. Therefore, it is necessary to use some
numerical approximation methods. One alternative, which is often used and is feasible
to implement, is to generate samples from the marginal distributions of the parameters
based on the MCMC algorithm. Nevertheless, this method, as originally formulated, re-
quires the posterior distribution to have a density with respect to some fixed measure.
Thus, it cannot be used alone in this case, where the size of the parametric space is
also a parameter. We use an approach based on reversible jump MCMC (RJMCMC),
which was first proposed in Green (1995) and applied in mixture models with unknown
numbers of components by Richardson and Green (1997). The method essentially con-
sists of jumps between the parameter subspaces corresponding to different numbers of
components in the mixture.

For the proposed model (2), we used the steps specified below:

(i) update the parameters α, β, θ and λ;

(ii) update the unobserved variables Xs̄, Cs̄ and Ys̄;

(iii) update the allocation εs̄ such that Cs̄ is also updated; and

(iv) combine two networks into one, or split one network into two.

Steps (i)–(iii) are performed using the Gibbs sampler or a Metropolis–Hastings sam-
pler, and they do not change the dimensions of Θ. Note that, because the proposed
model (2) is defined only for the non-empty units, it is not possible to update the al-
location, thus resulting in networks without any observations. Consequently, this step
needs to be restricted such that each network must have at least one observation. The
full conditional distributions of the parameters are in Appendix A.

Step (iv) involves changing Rs̄ by 1 and making the necessary corresponding changes
to (λ,C, ε). We made a random choice between splitting and combining, with proba-
bilities depending on Rs̄. Let λ′

j = λj/{1 − exp(−λj)} be the mean of the truncated
Poisson distribution. The combination proposal begins by choosing a pair of components
(j1, j2) at random, such that λ′

j1
< λ′

j2
. These two components are merged, forming a

new component j∗. Now, we have to reallocate all of the observations with εi = j1 or
εi = j2 and create values for (wj∗ , λ

′
j∗). They are chosen such that
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wj∗ = wj1 + wj2 ,

wj∗λ
′
j∗ = wj1λ

′
j1 + wj2λ

′
j2 ,

and we must impose λ′
j−1 < λ′

j1
< λ′

j2
< λ′

j+1. A component j∗ is chosen at random
and split into j1 and j2. However, there are two degrees of freedom for achieving this
step, and hence we need to generate a two-dimensional random vector u = (u1, u2) to
specify the new parameters. Viallefont et al. (2002) presented some ways of proposing
a split that enforces the positivity constraint on Poisson parameters. In this work, we
used the one referenced as “SM2” in their paper. In particular, the proposed model (2)
is applicable to non-empty networks; thus, the split proposal also requires that both
networks have at least one observation. Therefore, networks with only one observation
cannot be chosen to be split. The acceptance probability for the split and combination
steps can also be found in Appendix A.

Although the expression above can be written in terms of λ′
j , the likelihood is ex-

pressed in terms of λj . Therefore, after step (iv), we need to obtain λj from λ′
j by

solving the equation λ′
j = λj/{1 − exp(−λj)}. Furthermore, although the target func-

tion is invertible, it involves a polynomial with an exponential function for which, in
general, it is impossible to obtain an exact analytical solution. When the value of λj

is sufficiently large, we can approximate λj by λ′
j (see Figure 2). However, for cases in

which this approximation is not good, we need to use a numerical approximation, such
as the Taylor approximation.

Figure 2: Comparison of the first-order moments of the Poisson distribution (—) and
of the Poisson distribution truncated at zero (- - -).

4 Simulation study

To assess the convergence of the RJMCMC estimation, we generated only one population
in an area with N = 400 units. See Appendix B for details concerning the convergence
diagnostic study. The results obtained from this study indicate that the MCMC chains
have converged.

To examine the performance of the Bayesian estimator and the influence of the dif-
ferent prior models on the Poisson parameters, we sampled several simulated clustered
populations and obtained samples from the posterior distributions of the model param-
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eters and population parameters. The population estimates were then compared with
the true values to evaluate the model’s performance.

4.1 Simulation scenarios

We generated 500 populations for each scenario that we considered. Twelve scenar-
ios were created by varying the values of N , R and X as well as by varying the λ
components. The values of parameters (α, β) were fixed such that their combinations
expressed different degrees of rare and clustered populations. For the first simulation
study, we considered only the gamma prior for λ; thus, we generated the values of the
components of λ as a gamma distribution with d = 1.1 and ν = 0.13. These values of d
and ν ensure that the generated populations provide heterogeneous networks. Finally,
an adaptive cluster sample of size m = 0.05 × N was selected from each population
without replacement.

Table 1 presents summary statistics with some frequentist measures of the poste-
rior distributions of the model parameters after reaching convergence for each of the
twelve evaluated scenarios. Table 1 reports the relative mean square error (RMSE),
the relative absolute error (RAE), the empirical nominal coverage of the 95% highest
posterior density (HPD) intervals measured in percentages (Cov.) and the respective
widths averaged over the 500 simulations (Wid.). Specifically, the summary statistics
of the components of the vector λ are calculated separately for the observed and non-
observed networks. To facilitate future comparisons, the widths presented for the total
T and for the components of the vectors λs and λs̄ are expressed in ratio form relative
to their true values.

Given the difficulty in making inference on a rare and clustered population, generally,
the parameters are not very badly estimated, except for the cases when N = 200,
(α, β) = (0.10, 0.10) and N = 200, (α, β) = (0.10, 0.15). This is not an unexpected
result because these two scenarios typically characterize an extremely small, rare and
clustered population and thus reliable estimation might be not achieved. This problem
may be overcome by increasing the initial sample size. The coverage of the 95% HPD
intervals is close to the nominal level. The less rare and clustered the population is,
the narrower the 95% HPD interval is. As expected, the results for λj obtained with
the samples containing the network j show smaller errors and are more precise than
the results that consider the samples in which the network j was not observed. As the
value of N increases, the RMSEs and RAEs of most of the parameters decrease. This
phenomenon may occur because the number of non-empty networks increases with N ,
improving the estimates of α and β and consequently of the other parameters. However,
for the same reason, for a fixed value of N , the errors decrease as the values of α and β
increase.

It is not possible to present the frequentist properties for each λj because the value
of R was not fixed over the simulations. Figure 3 presents the relative errors of λs and
λs̄ for all of the networks and all of the simulations for different values of α and β and
for N = 400. Note that, in all cases, the relative error is approximately zero and is
smaller for λs, as expected. Additionally, λs̄ is slightly underestimated.
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N = 200
(α, β) = (0.10, 0.10) (α, β) = (0.10, 0.15)

T α β ν λs λs̄ T α β ν λs λs̄

RMSE 0.21 0.38 0.53 0.56 0.03 0.29 0.22 0.29 0.29 0.39 0.03 0.28
RAE 0.35 0.17 0.25 0.60 0.12 0.46 0.36 0.16 0.35 0.47 0.13 0.45
Cov. 95.0 91.1 96.7 89.5 91.7 87.8 93.8 93.7 98.1 89.7 90.3 87.7
Wid. 1.60 0.20 0.31 0.28 0.58 1.23 1.60 0.19 0.31 0.28 0.57 1.26

(α, β) = (0.15, 0.1) (α, β) = (0.15, 0.15)
RMSE 0.09 0.20 0.50 0.22 0.02 0.31 0.06 0.10 0.19 0.32 0.02 0.27
RAE 0.24 0.31 0.45 0.40 0.11 0.46 0.21 0.27 0.21 0.47 0.10 0.41
Cov. 94.6 90.9 97.1 90.2 93.6 89.1 97.3 97.0 98.5 90.5 94.1 89.8
Wid. 1.22 0.19 0.21 0.22 0.50 1.33 1.24 0.20 0.23 0.21 0.56 1.51

N = 400
(α, β) = (0.10, 0.10) (α, β) = (0.10, 0.15)

T α β ν λs λs̄ T α β ν λs λs̄

RMSE 0.06 0.15 0.42 0.14 0.02 0.29 0.05 0.08 0.15 0.10 0.02 0.31
RAE 0.21 0.32 0.35 0.28 0.10 0.43 0.20 0.23 0.29 0.21 0.12 0.43
Cov. 96.7 91.1 96.0 90.8 94.2 91.0 96.8 95.1 98.1 90.5 94.3 91.8
Wid. 1.04 0.09 0.20 0.19 0.47 1.38 1.05 0.10 0.21 0.18 0.55 1.64

(α, β) = (0.15, 0.1) (α, β) = (0.15, 0.15)
RMSE 0.04 0.06 0.35 0.04 0.02 0.30 0.05 0.03 0.15 0.03 0.02 0.36
RAE 0.18 0.18 0.39 0.18 0.09 0.42 0.20 0.15 0.21 0.15 0.10 0.43
Cov. 93.4 91.2 96.9 96.7 94.2 93.9 92.4 97.0 98.7 96.5 93.5 95.6
Wid. 0.79 0.11 0.15 0.14 0.45 1.43 0.77 0.11 0.16 0.13 0.51 1.77

N = 600
(α, β) = (0.10, 0.10) (α, β) = (0.10, 0.15)

T α β ν λs λs̄ T α β ν λs λs̄

RMSE 0.04 0.05 0.25 0.10 0.02 0.32 0.05 0.03 0.11 0.09 0.02 0.35
RAE 0.17 0.17 0.28 0.12 0.09 0.42 0.20 0.14 0.26 0.11 0.11 0.42
Cov. 96.3 91.8 98.1 98.0 93.5 93.1 92.8 97.5 98.3 97.0 93.8 96.1
Wid. 0.79 0.08 0.22 0.20 0.46 1.40 0.78 0.08 0.23 0.19 0.52 1.70

(α, β) = (0.15, 0.10) (α, β) = (0.15, 0.15)
RMSE 0.05 0.04 0.21 0.06 0.01 0.37 0.09 0.08 0.06 0.05 0.02 0.35
RAE 0.19 0.17 0.30 0.09 0.09 0.44 0.29 0.24 0.18 0.09 0.10 0.43
Cov. 90.4 91.1 98.7 98.9 95.3 96.0 90.0 90.5 98.8 98.4 95.5 96.8
Wid. 0.78 0.08 0.17 0.18 0.43 1.49 0.53 0.08 0.20 0.17 0.53 1.79

Table 1: Summary measurements of the point and 95% HPD interval estimates of the
model and population parameters over 500 simulations for different values of α, β andN .
The reported results for λs and λs̄ are obtained by averaging over the sampled and not
sampled λjs, respectively.

The 500 populations were previously generated by fixing the parameters of λj ’s
gamma distribution at d = 1.1 and ν = 0.13, yielding a mean of 8.5 and a CV of 95%.
The aim was to evaluate the performance of the proposed model with respect to the
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Figure 3: Relative errors for λs and λs̄ over 500 simulations, for N = 400 and for
different values of α and β.

level of homogeneity. We considered two further CV values, 25% and 50%, with the
means fixed at 8.5 for both. Then, we calculated the two sets of values of d and ν.
When the CV was fixed at 50%, we obtained d = 4 and ν = 0.47; when the CV equaled
25%, the result was d = 16 and ν = 1.89.

Figure 4 displays the densities of λj for each fixed value of the CV. Note that, as the
CV decreases, the prior distribution for λj becomes more concentrated and symmetri-
cal around the mean of the distribution; consequently, the networks will become more
homogeneous with respect to the total in their units.

Figure 4: Prior distributions to λj used in the simulations obtained by varying the value
of the CV of the distribution.

We generated two other sets of populations by fixing the CVs of the λj distributions
at 50% and 25%, respectively. The population size was set at N = 400, and a m = 5%N
adaptive sample was taken from it.

Table 2 presents summary measurements of the estimators over the 500 popula-
tions generated for the two values considered for the CV. Note that, even for the more
homogeneous cases, the proposed model (2) has reasonable performance, resulting in
parameter estimates with relatively small errors and 95% HPD intervals with coverage
probabilities near the fixed nominal levels. The less rare and clustered the population
is, the more precisely estimated the model parameters are.
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CV = 50%
(α, β) = (0.10, 0.10) (α, β) = (0.10, 0.15)

T α β ν λs λs̄ T α β ν λs λs̄

RMSE 0.13 0.15 0.52 0.16 0.02 0.04 0.06 0.09 0.18 0.10 0.02 0.03
RAE 0.26 0.32 0.27 0.30 0.10 0.15 0.18 0.24 0.36 0.23 0.11 0.15
Cov. 95.3 87.2 97.0 95.3 94.7 97.0 96.7 95.0 98.2 95.0 94.5 97.6
Wid. 1.38 0.11 0.26 0.91 0.51 1.27 1.24 0.11 0.27 0.82 0.55 1.31

(α, β) = (0.15, 0.1) (α, β) = (0.15, 0.15)
RMSE 0.03 0.04 0.40 0.08 0.02 0.03 0.03 0.03 0.10 0.06 0.02 0.03
RAE 0.15 0.15 0.50 0.21 0.10 0.12 0.16 0.14 0.26 0.18 0.10 0.13
Cov. 96.5 94.7 97.3 97.8 95.6 98.0 95.8 97.3 98.0 97.5 95.8 97.9
Wid. 0.95 0.11 0.23 0.75 0.48 1.28 0.92 0.11 0.24 0.70 0.53 1.36

CV = 25%
(α, β) = (0.10, 0.10) (α, β) = (0.10, 0.15)

RMSE 0.09 0.30 0.50 0.36 0.03 0.08 0.05 0.18 0.12 0.34 0.03 0.08
RAE 0.23 0.48 0.37 0.47 0.13 0.24 0.19 0.37 0.29 0.44 0.14 0.26
Cov. 89.7 86.8 98.0 75.0 85.7 82.2 94.7 90.1 98.2 74.9 85.7 81.0
Wid. 0.96 0.12 0.25 3.01 0.47 0.70 0.91 0.12 0.27 2.83 0.51 0.75

(α, β) = (0.15, 0.1) (α, β) = (0.15, 0.15)
RMSE 0.03 0.08 0.41 0.25 0.02 0.03 0.04 0.05 0.07 0.19 0.02 0.04
RAE 0.14 0.22 0.49 0.34 0.10 0.15 0.17 0.15 0.21 0.24 0.11 0.17
Cov. 96.6 91.7 97.5 80.8 94.6 94.4 91.9 92.5 98.3 83.2 93.3 94.8
Wid. 0.70 0.12 0.22 2.48 0.46 0.74 0.70 0.12 0.23 2.25 0.50 0.79

Table 2: Summary measurements of the point and 95% HPD interval estimates of the
model parameters over 500 simulations obtained by varying the level of homogeneity in
λ and expressed as the CV of its distribution, for N = 400. The reported results for λs

and λs̄ are obtained by averaging over the sampled and not sampled λjs, respectively.

The relative errors of T do not vary significantly with the values of the CV, except
when (α, β) = (0.10, 0.10), for which, on average, smaller numbers of non-empty net-
works in the generated populations are found. In addition, the relative errors for λs̄ are
smaller than the errors obtained when the CV is fixed at 95%, although the errors for ν
become larger. Furthermore, as the CV decreases, the empirical coverage of the nominal
95% HPD intervals is underestimated, primarily with respect to ν and λ.

4.2 Prior sensitivity analysis

In this section, we compare the performance of the two prior distributions considered for
λ. To obtain simulation results for each component λj of λ using a different method from
the previous section, the values of R were fixed. The population size was set at N = 400
with (α, β) = (0.15, 0.10). These settings were chosen to provide populations that are
as rare and clustered as possible. Then, we conducted a large number of simulations
until we reached 500 populations with R = 5; another 500 populations were generated
with R = 6, followed by another 500 populations with R = 7. We considered only these
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values of R because the others had much lower probabilities of being generated in this
simulation scenario with (α, β) = (0.15, 0.10). Furthermore, because we were specifying
two different priors for λ, we fixed the λ’s components at (4.5, 4.8, 8.0, 11.3, 13.8) for
R = 5, at (3.9, 6.4, 6.9, 7.1, 10.5, 14.8) for R = 6 and at (4.8, 7.4, 9.5, 10.1, 11.4, 11.7, 14.5)
for R = 7. These values were generated from a uniform distribution defined on the
interval (3, 15).

All of the results shown hereafter correspond to 100,000 RJMCMC sweeps, after a
burn-in of 10,000 iterations; the chain was then thinned by taking every 10th sample
value. We used the same prior distribution for α and β described in the previous section.
For λ, we considered the gamma prior distribution used in the previous simulation study
and the prior λj | λj−1 ∼ N(λj−1,∞)(λj−1, τ) with τ ∈ {1, 5, 10, 20}.

Figure 5 depicts the 95% HPD interval obtained for R for each λ prior assumed
when we fit the model for one of the 500 populations generated. The parameter R was
much more sensitive to the value of τ assigned for the normal prior given in (8). In
addition, the R posterior distribution was relatively vague when τ = 1. However, as τ
increased, this behavior was attenuated.

Figure 5: The 95% HPD interval of R for different prior distributions of λ. The crosses
represent the median of the distribution, the circle represents the true value of R, and
the line represents the 95% HPD interval.

The gamma prior and the normal one with τ = 20 yielded approximately the same
95% HPD interval for R. This behavior was observed for nearly all of the 500 simulation
samples. Thus, henceforth, we do not consider the normal λ prior with τ = 1.

Figure 6 presents the RMSE for each λj displayed for samples when the network j
is observed (a) and when it is not (b) for the four λ priors employed. Figure 6 shows
that the gamma prior provides a smaller RMSE than the normal prior in most cases,
notably for the smaller λjs. These results do not depend heavily on the values of τ . As
expected, the RMSE values of the λjs for non-sampled networks (j /∈ s) are greater
than the RMSE values of the λjs for sample networks (j ∈ s).

Because total population prediction is the main aim in this context, we also evalu-
ated the impact of those prior distributions on the posterior distribution of T . Figure 7
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Figure 6: RMSE of each λj assuming different priors for λ. The results with the gamma
prior distribution and the normal prior distribution with τ = 5, τ = 10 and τ = 20
are represented by the empty circles and the line, the triangles and the dashed line, the
cross and the dotted line, and the full circle and the dot-dashed line, respectively.

displays the RMSE of T , the nominal coverage of the 95% HPD interval and its respec-

tive width for each considered value of R. We can observe from Figure 7 that the RMSEs

obtained using the gamma λ prior are always smaller than the RMSEs obtained using

the normal λ prior. However, the 95% HPD intervals based on the normal λ prior have

higher coverage than the nominal level and higher width than when using the gamma

λ prior. Note that for a fixed value of R, the results provided by the normal prior are

very similar for all values of τ .

Figure 7: RMSEs, coverages and widths of the 95% HPD intervals for the population
total T for each prior distribution assumed for λ and for each R fixed. The results for
R = 5, R = 6 and R = 7 are represented by the empty circles and the line, the triangles
and the dashed line, and the cross and the dotted line, respectively.
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5 Comparison with the network model

The mixture model (2) has been presented as an alternative to the model of Rapley
and Welsh (2008). The mixture model (2) is principally useful when we cannot assume
homogeneity between networks with respect to the number of observations inside them
and when the expected number of observations inside any network is not proportional
to its respective area size. The key idea of this paper is to improve on the population
estimates obtained by Rapley andWelsh (2008) through the use of a model that accounts
for heterogeneity between networks. This is accomplished by modeling at the unit level
rather than at the network level.

To assess the effectiveness of our methodology, we compared the results of our ap-
proach to those obtained in Rapley and Welsh (2008). The first comparison consists
of a design-based experiment with a real population, and the second study is a model-
based experiment. To fit both models, we assigned the same prior distributions used in
Subsection 4.1. To conduct the MCMC and RJMCMC simulations, we generated two
chains of 100,000 iterations each, discarded the first 10,000 and then thinned the chain
by taking every 90th sample value to obtain 1,000 independent samples.

5.1 A design-based experiment

We evaluated the proposed model (2) by performing a design-based experiment in which
adaptive samples were drawn from a real, fixed population. Design-based studies are
used in the context of survey sampling inference to evaluate the performance of model-
based estimators under repeated samples taken from a real, fixed population where a
characteristic of interest is known for all its units. This real population can be a census
or a large sample that is assumed, for evaluation purposes, to be the population. The
main aim of this design-based experiment is to analyze the frequentist properties of the
total estimators using both approaches.

The population used here for design-based evaluation is the same as that described
in Smith et al. (1995) and consists of counts of a waterfowl species, called the blue-
winged teal, in a 5,000 km2 area of central Florida in 1992. Figure 8 shows the counts
of blue-winged teals in a grid with N = 200 units. Note that these counts are sparse
and clustered, justifying the use of adaptive sampling.

The study consists of 600 replications of a 10% adaptive sample of the population.
Because the blue-winged teal population is extremely sparse and clustered, there are
many samples that consist either of only empty networks or networks with only one
unit each. These samples are expected to be of limited use in accurately estimating
the total population. Thus, the results must ultimately be affected. Henceforth, we will
refer to the model of Rapley and Welsh (2008) as the ‘network model’. Note that the
assumptions of their model are not wholly suitable for the blue-winged teal data. In
contrast to their model, our proposed model assumes heterogeneity among units, which
seems more reasonable when we analyze Figure 8. Furthermore, note that there are
two units with a number of blue-winged teal that differs substantially from the others,
and hence if the samples selected do not contain this network, it will be very difficult
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Figure 8: Counts of blue-winged teals in central Florida in 1992 in a grid with N = 200
units.

to accurately estimate the total population. Thus, we evaluated the performance of the
estimators using the number of elements that are not in this network. After omitting that
network from the population, the population total target parameter becomes T = 365.

Figure 12 in Appendix C shows the trace plot with the posterior distribution of
parameters α and β and the population total when fitting both models for one of the
samples selected. The gray line represents the true value of the population total. Both
models tend to overestimate the total, but in the network model, this issue is more
perceptible. The convergence was also assessed for this selected sample. Table 6 in Ap-
pendix C presents the values of the Geweke and Raftery–Lewis criteria. Analyzing Fig-
ure 12 and Table 6 leads us to conclude that convergence appears to have been reached.
The same conclusion was achieved for all 600 samples selected from this population.

A summary comparison of the population total estimators using the relative bias
(RB), RAE, CV and the empirical coverage of the nominal 95% HPD intervals and their
widths (expressed as their respective ratios to the true values and averaged over the 600
samples) are presented in Table 3. We also compared the results from our technique and
the approach developed by Rapley and Welsh (2008) to the results obtained by applying
an unbiased Raj’s estimator. Salehi and Seber (1997) offered details on how to apply
Raj’s estimator in adaptive cluster sampling without replacement. This estimator of the
population total is based only on the information contained in the selected networks, i.e.,
ignoring the information in the edge units. In this case, we used a normal approximation
to set the 95% confidence interval to the population total.

The results in Table 3 are obtained considering all 600 replications generated and
excluding from the analysis the replications having either only empty networks or net-
works with only one unit each (in parenthesis).

Table 3 shows that the Bayes estimator produced by the network model’s fit seems
to be nearly unbiased. Although it is well-known that Raj’s estimator is unbiased, both
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estimators have larger RAEs than our proposed estimator (2). Moreover, our proposed
estimator has a smaller variance than the network and Raj’s estimators. Raj’s estimator
has a much larger variance than its counterparts.

The network model produces 95% HPD intervals that have lower nominal coverages
than the others, even when excluding the samples with either only empty networks or
networks with only one unit each. Furthermore, our proposed model appears to be more
efficient when applied to these data.

RB RAE Coverage Width CV (T̂ )

Mixture model –0.10 (–0.04) 0.22 (0.12) 69.8 (89.1) 0.41 (0.47) 0.34 (0.27)
Network model 0.04 (0.15) 0.32 (0.24) 60.1 (77.2) 0.85 (0.93) 0.53 (0.45)
Raj’s estimator –0.02 (0.52) 0.95 (0.98) 69.8 (89.1) 2.79 (4.28) 0.96 (0.89)

Table 3: Summary measurements of the point and interval estimates of the total popu-
lation, obtained by fitting the proposed and network models and Raj’s estimator.

Figure 9 shows the boxplots of the relative errors of the Bayes estimators obtained
when fitting each model and Raj’s estimator, based on all 600 replications (a) and
excluding the replications having either only empty networks or networks with only one
unit each (b). Here again, we see that the relative errors obtained for our proposed
model are lower than its counterparts.

Figure 9: Boxplots with the relative errors for T , obtained from the fits of the mixture
and network models and from Raj’s estimator.

5.2 A model-based experiment

The purpose of this simulation study was to compare the performance of the network and
mixture models when the populations were generated according to the mixture model.
We considered two scenarios. For the first scenario, we used the same populations of 500
generated in the simulation study presented in Section 4.1 and fitted the network model
to evaluate its performance. In particular, we considered the case in which (α, β) =
(0.15, 0.10). For the second scenario, we generated the components of λ according to
a gamma distribution with CV=25%. Thus, we expected that the performance of the
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network model would improve because the degree of homogeneity of λ’s components
was higher than in the first scenario (CV=50%).

Table 4 displays some of the frequentist properties of the estimators obtained by
fitting the network and mixture models. To facilitate the comparison, the results when
fitting the mixture model with the same populations are presented in parentheses in
Table 4. Regarding the estimation of T , both models have equivalent performance when
CV=25%. However, as the degree of homogeneity decreases, the mixture model performs
considerably better than the network model. However, the network model exhibits better
performance than the mixture model with respect to the parameter β in both scenarios.

CV=25% CV=50%
T α β T α β

RMSE 0.03 (0.03) 0.05 (0.08) 0.18 (0.41) 0.05 (0.03) 0.04 (0.04) 0.10 (0.40)
RAE 0.17 (0.14) 0.16 (0.22) 0.32 (0.49) 0.21 (0.15) 0.19 (0.15) 0.37 (0.50)
Cov. 96.8 (96.6) 97.1 (91.7) 95.6 (97.5) 95.6 (96.5) 98.1 (94.7) 97.4 (97.3)
Wid. 0.86 (0.70) 0.16 (0.12) 0.19 (0.22) 0.85 (0.95) 0.16 (0.11) 0.18 (0.23)

Table 4: Summary measurements of the point and 95% HPD interval estimates of the
network and mixture (in parentheses) models’ parameters over 500 simulations where
λs were generated from a gamma distribution with CV=25% or 50%, for N = 400 and
(α, β) = (0.15, 0.10).

Finally, we present the boxplots of the relative error of T for both models in Fig-
ure 10. The conclusion is analogous to the other measurements. In particular, the esti-
mator provided by the network model seems to underestimate T in both scenarios.

Figure 10: Boxplots with the relative errors for T for the 500 samples, obtained by
the fits of the proposed and the network models, for a gamma distribution for λ with
CV=25% and CV=50%.

Therefore, from those results, we concluded that the performance of the evaluated
models becomes similar as the level of homogeneity between networks increases. The
main difference is the number of parameters to estimate and the computational effort,
which is more significant when fitting the mixture model.
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6 Conclusions and suggestions for future work

We have considered the problem of estimating the total number of individuals in a
rare and clustered population. Our approach is to model the observed counts in grid
cells, selected by adaptive cluster sampling, and then to use model-based analysis to
estimate the total population. The proposed model is an alternative to the model of
Rapley and Welsh (2008) because it models the grid cells instead of the networks and
assumes heterogeneity across units that belong to different networks. Nevertheless, it
requires considerable computational effort and should therefore be used only if the data
support it. However, simulation studies show that it might become sensible to employ
the mixture model as an alternative to the network model as the homogeneity between
networks decreases.

More general assumptions can also be considered and modeled within this frame-
work. For example, in the same network, units near the centroid should have higher
frequencies than units that are far from the centroid. It is possible to consider this
assumption in the proposed model.

Note that the parameters of the response variable associated with the unobserved
components present some estimation difficulties. Therefore, the prior distribution should
be carefully elicited.

The main findings of this work encourage an extension of the model-based analysis to
other adaptive sampling plans, which uncover more information about the population.
One example is adaptive cluster double sampling, which was proposed by Felix-Medina
and Thompson (2004) and allows the sampler to control the number of measurements
of the variable of interest and to use auxiliary information.

Appendix A: Full conditional distributions and
acceptance probability for the split or
combination moves

Combining the joint likelihood (6) with the prior distribution, we can easily obtain the
full conditional distributions of Xs̄, Rs̄, εs̄,Cs̄,Ys̄, α, β,λ and ν

[α | ·] ∝ αXs+Xs̄(1− α)N−Xs−Xs̄

1− (1− α)N
αaα−1(1− α)bα−1,

[β | ·] ∝ βRs+Rs̄(1− β)Xs+Xs̄−Rs−Rs̄

1− (1− β)Xs+Xs̄
βaβ−1(1− β)bβ−1,

[λj | ·] ∝
λ

∑
{i:εi=j} Yi+d−1

j exp{−λj(ν + Cj)}
1− exp(−λj)

,

[Xs̄,Cs̄ | ·] ∝
m∏
l=1

Zil × gil,l∑N−X+R
i=1 Zi −

∑l−1
k=0 Zik

αXs̄(1− α)−Xs̄

(N −Xs −Xs̄)!

(1− β)Xs̄

(1− (1− β)Xs+Xs̄)
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× (Xs +Xs̄)
−(Xs+Xs̄)

∏
{j:j∈s̄}

C
Cj

j

∏
{j:j∈s̄}

1

(Cj − 1)!
R−(Xs̄−Rs̄)

×
∏

{j:j∈s̄}

exp{−λjCj}
[1− exp(−λj)]Cj

,

Yi ∼ Truncated Poisson(λj), {i : εi = j, j ∈ s̄},

[εi = j | ·] ∝ Cj

Xs +Xs̄

λYi
j exp(−λj)

Yi![1− exp(−λj)]
, j ∈ s̄,

ν ∼ Gamma

⎛
⎝(Rs +Rs̄)d+ e, f +

Rs+Rs̄∑
j=1

λj

⎞
⎠ .

For the split step, to obtain the acceptance probability it is necessary to simulate
(u1, u2) from distributions with densities g1 and g2, respectively. The probability of
acceptance, assuming the gamma prior distribution for λ, is min(1, A) with

A =
exp{−(cj1λj1 + cj2λj2)}λ

∑
{i:εi=j1} yi

j1
λ

∑
{i:εi=j2} yi

j2
(1− exp(−λj1))

−cj1 (1− exp(−λj2))
−cj2

exp{−cj∗λj∗}λ
∑

{i:εi=j∗} yi

j∗ (1− exp(−λj∗))−cj∗

p({ij1 , ij2})
p({ij∗})

× p(Rs̄ + 1)

p(Rs̄)
× (cj∗ − 1)!

(cj1 − 1)!(cj2 − 1)!
(Rs +Rs̄)

−(cj1+cj2−cj∗ ) ×
c
cj1
j1

c
cj2
j2

c
cj∗
j∗

× (Rs̄ + 1)

× νd

Γ(d)

(
λj1λj2

λj∗

)d−1

exp{−ν(λj1 + λj2 − λj∗)}

×
pRs̄|Rs̄+1

pRs̄+1|Rs̄
Pallocq(u1)q(u2)

× |J |,

where pRs̄+1|Rs̄
is the probability of choosing the split step, Palloc is the probability

that this particular allocation is made, and |J | is the Jacobian of the transformation
(wj∗ , λ

′
j∗) to (wj1 , wj2 , λ

′
j1
, λ′

j2
). For the corresponding combination step, the acceptance

probability is min(1, A−1), and simple adaptations must be made because the proposal
reduces the number of non-sampled networks by 1.

Appendix B: Assessment of MCMC and RJMCMC with
one simulated data set

To check the convergence of the RJMCMC estimation, we generated only one population
in an area with N = 400 units, fixing α = 0.15 and β = 0.10. The values of the
components of λ were generated from a gamma distribution centered on 8.5 with a CV
equal to 95%, resulting in a gamma distribution with parameters d = 1.1 and ν = 0.13.
Then, we selected a sample ofm = 20 networks using the adaptive design. We considered
the prior distributions described in Section 2.1. For α and β, we chose aα = 3, bα = 15,
aβ = 1 and bβ = 9, which parallel the prior distributions considered by Rapley and
Welsh (2008). These values are suitable when the only knowledge that can be obtained
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Figure 11: Posterior densities for certain model parameters and the population total
T for an artificial population. The vertical solid line is the true value fixed in the
simulation, and the dashed line is the 95% HPD interval.

about the underlying population is that it is sparse and clustered. For λ, we considered
only the gamma prior given in (7) used in the generation of the artificial data. The
population generated yielded R = 8 networks, the value of the population total T was
457, and the networks observed were s = {2, 4, 7}, labeled such that the components of
λ were in increasing order.

For the RJMCMC simulations, we generated 100,000 samples from the posterior
distribution, discarded the first 10,000, and then thinned the chain by taking every
90th sample value. Figure 11 displays the histogram with the posterior densities of α,
β, ν, λ and T for the generated population. The posterior densities of λ’s components
are conditional on the posterior samples, for which the estimated value of R is equal
to eight. The solid and the dashed lines represent the true value and the 95% HPD
interval, respectively. Note that most of the parameters are well estimated, with their
true values lying within the 95% HPD interval.

Note that some λjs associated with unobserved networks have bimodal posterior
distributions and lower precision. This behavior is expected in the posterior densities
of mixture model parameters obtained by RJMCMC and is generally associated with
the labeling at each sweep; see Richardson and Green (1997) for details. For instance,
let us consider the case of two normal distributions that are unambiguously labeled.
The posterior distribution of the two means could overlap, but the extent of the overlap
depends on its separation and the sample size. When the means are well separated, the



542 A Mixture Model Under Adaptive Cluster Sampling

labels of the realizations from the posterior obtained by ordering their means generally
coincide with the labels of the population. As the separation reduces, “label switching”
may occur. This problem can be minimized by choosing to order other parameters of
the mixture components, for example, the variance. In our case, this bimodality does
not appear in all of the simulations, only in simulations generated by the λjs that are
not well separated. Nevertheless, the bimodality influences neither the convergence of
the other parameters nor the most important quantity: the total T .

The λjs associated with the sampled networks present better estimates than the
λjs associated with the non-sampled networks. This result is expected because we have
specific information for the sampled networks.

Two other diagnostics were used to show that convergence was achieved: the Geweke
and the Raftery–Lewis diagnostics. The first was proposed by Geweke (1992) and is
based on a test of the equality of the means of the first and last parts of the Markov
chain. If the samples are drawn from the stationary distribution of the chain, the two
means are equal, and Geweke’s statistic has an asymptotically standard normal dis-
tribution. The second was proposed in Raftery and Lewis (1992) and calculates the
number of iterations required to estimate a quantile with a desired accuracy and a cer-
tain probability. The minimum length is the required sample size for a chain with no
correlation between consecutive samples. An estimate dependence factor of the extent
to which autocorrelation inflates the required sample size is also provided. Values for
the factor that are larger than 5 indicate strong autocorrelation, which may be due to a
poor choice of starting value, high posterior correlations or stickiness of the MCMC algo-
rithm. Table 5 presents the value of Geweke’s statistic and the value of the dependence
factor. The results for both criteria indicate that the MCMC chains have converged.

α β ν T λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

Geweke 0.7 –0.4 –1.6 0.4 1.4 –1.3 1.4 –0.4 1.5 1.5 1.2 1.5
R–L 1.3 1.1 1.1 1.8 0.9 1.0 1.0 1.0 0.9 1.0 1.1 1.1

Table 5: Geweke and Raftery–Lewis (R–L) convergence diagnostics for all of the param-
eters estimated for the artificial population.

Appendix C: Assessment of MCMC and RJMCMC with
real data

Geweke Raftery–Lewis
Param Mixture Network Mixture Network

α –0.13 –0.10 1.02 1.21
β 0.72 –0.67 1.15 2.56
T –1.38 –0.30 3.22 1.33

Table 6: Geweke and Raftery–Lewis convergence diagnostics for some of the parameters
estimated for the real population for both models.
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Figure 12: Trace plot with the posterior densities of α, β and T obtained from the
fits of the proposed and the network models. The gray line represents the true value
of T .
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