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Expert Information and Nonparametric
Bayesian Inference of Rare Events

Hwan-sik Choi∗

Abstract. Prior distributions are important in Bayesian inference of rare events
because historical data information is scarce, and experts are an important source
of information for elicitation of a prior distribution. I propose a method to incor-
porate expert information into nonparametric Bayesian inference on rare events
when expert knowledge is elicited as moment conditions on a finite dimensional
parameter θ only. I generalize the Dirichlet process mixture model to merge expert
information into the Dirichlet process (DP) prior to satisfy expert’s moment con-
ditions. Among all the priors that comply with expert knowledge, we use the one
that is closest to the original DP prior in the Kullback–Leibler information crite-
rion. The resulting prior distribution is given by exponentially tilting the DP prior
along θ. I provide a Metropolis–Hastings algorithm to implement this approach
to sample from posterior distributions with exponentially tilted DP priors. The
proposed method combines prior information from a statistician and an expert by
finding the least-informative prior given expert information.

Keywords: Dirichlet process mixture, defaults, Kullback–Leibler information
criterion, maximum entropy, Metropolis–Hastings algorithm.

1 Introduction

I develop a nonparametric Bayesian framework that incorporates expert information
for inference of rare events. Inference of rare events such as defaults in a high grade
portfolio, extreme losses, and other catastrophic events is critical in measuring credit
risk and systemic risk, which are important in risk management for optimal hedging
and economic capital calculations. But inference of rare events is difficult because of
lack of historical data information. Therefore, it is important to use all sources of in-
formation including non-data information, and the Bayesian method provides a natural
and coherent mechanism of combining all available information. For rare events, the
use of non-informative or objective priors in a Bayesian model is often not satisfac-
tory because of the scarcity of information in data. Kiefer (2009, 2010) proposes to use
expert information for default estimation as an additional source of information, and
argues that the Bayesian approach is a natural theoretical framework to include expert
information for inference on rare events. He uses expert information to elicit the Beta
distribution prior or a mixture of the Beta distributions for a default probability. Al-
though Kiefer’s approach is illustrated with the binomial sampling distribution for the
number of defaults in a portfolio, it can be easily extended to any general parametric
models.
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In this paper, I argue that nonparametric models are useful for rare events, and
show that expert information can be effectively incorporated in nonparametric models
too. Consider the following situation for motivation of using nonparametric models for
rare events. Rare events are often associated with the tails of sampling distributions.
For this reason, rare events are also called tail-risk events. For a parametric model, a
finite number of parameters would determine the entire distribution, and inference of
tail probabilities can be done from inference of the finite dimensional parameter. In
this case, the problem of scarce tail-risk events is remedied by the use of the parametric
assumption, which is a strong form of non-data information. Consequently, a parametric
model improves the efficiency of using data information. However, when there is a
concern for misspecification, the impact of misspecification can be serious for inference
of tail-risk events. Since frequent events would dominate data information, they would
drive estimation of the parameters as well. But the frequent events may not be relevant
to tail-risk events if the model is misspecified. Moreover, it is difficult to check the
adequacy of a parametric model specifically for tail probabilities because of the scarcity
of rare events. For example, the maximum likelihood (ML) estimator for the mean
parameter of normal distributions with a known variance would be the sample mean,
which is a sufficient statistic. All inference can be done with the sufficient statistic. But
if the normal distributions are misspecified, it would be better to do inference on the tail
probabilities with emphasizing the observations far away from the sample mean since
they are more relevant. For this reason, using a nonparametric model can be appealing
for rare events when we do not have strong confidence in a parametric model.

Of course, an important disadvantage of nonparametric models is reduction in ef-
ficiency of using data. Therefore, additional information becomes very desirable, and
expert information is particularly useful as complementary information in this setting.
However, elicitation of expert opinion becomes difficult when the dimension of a model
parameter increases. Practically, it is easier for an expert to talk about a few aspects of
rare events rather than the entire shape of sampling distributions. My approach is to
elicit expert information on the distribution of a finite dimensional parameter derived
from the nonparametric Bayesian model. In particular, we consider the Dirichlet process
mixture (DPM) model, and incorporate the expert information in its prior.

The sampling distribution of the DPM model is an infinite mixture of a family of
distributions, and the mixing distribution works as an infinite dimensional parameter
of the model. The DPM model uses the Dirichlet process as a prior distribution over
the mixing distributions. Since the development of the DP by Freedman (1963), its
theoretical properties and usefulness in Bayesian analysis are shown by Ferguson (1973,
1974), Blackwell and MacQueen (1973), and Antoniak (1974). Especially, the DP is
widely used as a prior distribution of nonparametric Bayesian models. See Lo (1984)
for more information on the DP, and Ghosh and Ramamoorthi (2003) and Hjort et al.
(2010) for an overview of nonparametric Bayesian methods.

The DPM model has become popular with the development of the Markov Chain
Monte Carlo (MCMC) methods in Bayesian nonparametric modeling because of its flex-
ibility compared to a parametric model or a finite mixture model with a fixed number
of mixing components. To obtain the posterior distribution for the DPM model, various
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sampling schemes were developed. Blackwell and MacQueen (1973) develop Pólya urn
schemes for DP priors. Escobar (1994) and Escobar and West (1995) provide gener-
alized Pólya urn Gibbs samplers for the DPM model. MacEachern and Müller (1998)
consider the DPM models without conjugacy restrictions. Neal (2000), Ishwaran and
Zarepour (2000) and Ishwaran and James (2001) also provide generalized Pólya urn
Gibbs samplers and blocked Gibbs samplers for the general stick-breaking priors that
include DP priors as a special case. In economics, Hirano (2002) studies semiparametric
Bayesian inference for a panel model with a countable mixture of normally distributed
errors with mixing weights drawn from the DP. Griffin and Steel (2011) consider a se-
rially correlated sequence of DPs with applications to financial time series and GDP
data, and Jensen and Maheu (2010) use the DP for the distribution of errors that are
multiplied by the volatility process in a stochastic volatility model. Taddy and Kottas
(2010) apply the DPM model for inference in quantile regressions.

In the DPM model, a mixing distribution drawn from the DP determines the sam-
pling distribution F that is a member of the space F of all sampling distribution func-
tions of a nonparametric model. Therefore, the DP gives a distribution over the func-
tional space F . In the framework proposed in this paper, we consider a finite dimensional
vector θ of which the elements are some functionals of F ∈ F related to the rare events
that an expert has knowledge on. We elicit expert opinion about the distribution of θ
rather than the infinite dimensional space F . Elicitation of expert information requires
a careful design. Generally, it is easier for an expert to think about probabilities or
quantiles than moments. Kadane and Wolfson (1998) and Garthwaite et al. (2005) dis-
cuss the issues in elicitation of expert opinions. Kadane et al. (1996) study elicitation of
a subjective prior for Bayesian unit root models. Chaloner and Duncan (1983) develop
a computer scheme to elicit expert information from a predictive distribution.

In my approach, expert information is in the form of moment conditions on θ that
the DP prior may not satisfy. We combine the expert information and the DP prior
by modifying the DP prior to satisfy the moment conditions. Among all such modi-
fications, we find the prior distribution that is closest to the original DP prior in the
Kullback–Leibler information criterion. The resulting prior distribution is given by ex-
ponentially tilting the DP prior along θ. I also provide a Metropolis–Hastings algorithm
to implement my approach to draw a sample from the exponentially tilted DP prior.
The method proposed in this paper gives a simple way to combine the prior informa-
tion from a statistician and an expert by finding the least-informative prior given expert
information, based on a statistician’s prior.

2 Expert information in nonparametric Bayesian
inference

Consider the DPM model for n observations {yi}ni=1 given by

yi | ξi ∼ Kξi ,

ξi | G ∼ G,

G ∼ P ,
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where X ∼ F means the distribution of X is F , Kξi = K(·|ξi) is a distribution function
with a parameter ξi ∈ Ξ ⊂ Rd, and ξi is a random draw from a mixing measure G
defined on a probability space (Ξ, B), where B is a σ-field of subsets of Ξ. For notational
simplicity, I omit the subscript i. Let G be the space of all mixing measures on Ξ. In
the DPM model, a measure G ∈ G is thought to be an infinite dimensional parameter,
and the prior distribution of G is given by a Dirichlet process P = DP(α0G0) with a
concentration parameter α0 > 0 and a base distribution G0 ∈ G. The mean of DP(α0G0)
is G0, so we can write

EG = G0, (1)

where

EG =

∫
GP(dG).

The concentration parameter α0 is inversely related to the variance of DP(α0G0), and

we have G
d→ G0 as α0 → ∞. Any finite-dimensional distribution of DP(α0G0) is a

Dirichlet distribution, i.e., for an arbitrary finite measurable partition (B1, B2, . . . , BJ)
of Ξ, we have

(G(B1), G(B2), . . . , G(BJ )) ∼ Dirichlet(α0G0(B1), α0G0(B2), . . . , α0G0(BJ)),

and EG(B) = G0(B) for all B ∈ B. Because of
∑J

j=1 α0G0(Bj) = α0G0(Ξ) = α0, we
also call α0 the total mass parameter.

The distribution function F (y|G) of y given G can be written in a mixture form as

F (y|G) =

∫
K(y|ξ)G(dξ), (2)

where K(y|ξ) is used as the mixing kernel. For convenience of exposition of the main
idea, we also assume that the probability density function of K(y|ξ) exists for all ξ.
Then we can write the sampling density of y given G as

f(y|G) =

∫
k(y|ξ)G(dξ), (3)

where the mixing kernel k(y|ξ) is the probability density function of K(y|ξ).
In our framework, experts have information on an r-dimensional parameter of inter-

est

θ = ϕ(F (y|G)), (4)

where ϕ(·) is an r × 1 vector of functionals of the sampling distribution F (y|G) of y.
Note that the expected value of θ can be written as

Eθ =

∫
ϕ(F (y|G))P(dG).

The functional ϕ can be a linear functional such as moments of F (y|G), or a value of
the distribution function F (c|G) at a fixed point y = c. But it can also be a nonlinear
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functional such as quantiles, inter-quantile ranges, hazard functions of F (y|G), or the
quantities regarding the distribution of the maximum or minimum of n observations. See
Gelfand and Mukhopadhyay (1995) and Gelfand and Kottas (2002) for more examples
of ϕ and their properties. When ϕ is linear, from (2), we can simplify θ to a mixture of
ϕ(K(y|ξ)),

θ =

∫
ϕ(K(y|ξ))G(dξ), (5)

and using (1), the expected value of θ becomes

Eθ =

∫
ϕ(K(y|ξ))G0(dξ). (6)

An important class of a linear functional ϕ is given by

ϕ(F (y|G)) =

∫
h(y)f(y|G) dy,

where h : R → Rr. Note that if h(y) = yp, then θ becomes the pth order moment
of F (y|G), and if h(y) = I{y ≤ c}, where I(·) is an indicator function, then θ is the
cumulative distribution function evaluated at c. From (3), we can easily prove (5) by

θ =

∫
h(y)

∫
k(y|ξ)G(dξ) dy

=

∫∫
h(y)k(y|ξ) dy G(dξ)

=

∫
ϕ(K(y|ξ))G(dξ).

But for a general nonlinear functional ϕ, (5) or (6) would not hold. As suggested by
Kadane and Wolfson (1998), elicitation of expert information should include questions
about quantiles (nonlinear ϕ) or probabilities such as values of distribution functions
at fixed points (linear ϕ) rather than moments because moments are sensitive to tail
probabilities, thus, difficult to have good knowledge of.

We assume that expert’s information is in the form of l moment restrictions

Eg(θ) = 0, (7)

where g(·) is a function g : Rr → Rl. From (4), we can write (7) as

Eϕ̃(F (y|G)) = 0,

where ϕ̃ = g ◦ ϕ is an l-dimensional functional. If both g and ϕ are linear, ϕ̃ is a linear
functional and Eg(θ) is simplified to

Eg(θ) =

∫∫
ϕ̃(K(y|ξ))G(dξ)P(dG)
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=

∫
ϕ̃(K(y|ξ))G0(dξ). (8)

This implies that Eg(θ) depends on G0 only, when ϕ̃ is linear and G is from DP(α0G0).

Although the condition in (7) is in the form of moment restrictions, it accommodates
expert elicitation for a very wide range of quantities related to the distribution of θ be-
cause of the generality of g(·). Possible questions to experts include the α-level quantile
qα for α ∈ [0, 1] using g(θ) = I{θ ≤ qα} − α, the cumulative distribution function F (a)
at a ∈ R using g(θ) = I{θ ≤ a}−F (a), the probability α on any measurable interval A
using g(θ) = I{θ ∈ A} − α, and the pth moments mp using g(θ) = θp −mp. Moreover,
it is convenient to use the moment conditions to develop our method in the information
theoretic framework because there are well established results under moment restrictions
such as Csiszár (1975) in the information geometry literature.

Let

D(Q ‖ P) =

∫
log

(
dQ
dP

)
dQ

be the Kullback–Leibler information criterion (KLIC, Kullback and Leibler (1951),
White (1982)) from a measure Q to an equivalent measure P . The goal of this pa-
per is to merge the expert information (7) into the DP prior P by finding the prior that
is closest to P in the KLIC among the measures that satisfy (7). We get the new prior
by solving

min
Q∈Q

D(Q ‖ P), (9)

where

Q = {Q : EQg(θ) = 0},

and EQg(θ) =
∫
g(θ)Q(dG) is the expectation of g(θ) with respect to Q. The solution

Q∗ to (9) is well known and given by the Gibbs canonical density

π∗ =
dQ∗

dP =
exp(λ′

∗g(θ))

EP exp(λ′
∗g(θ))

. (10)

The coefficient vector λ∗ in (10) can be calculated by the unconstrained convex problem

min
λ

EP exp(λ′g(θ)), (11)

and the minimum KLIC with Q∗ is given by

D(Q∗ ‖ P) = − log(EP exp(λ′
∗g(θ))).

See Kitamura and Stutzer (1997) Section 2.2 for a short discussion on this result and
further reference. Note also that since D(Q ‖ P) is convex in Q, the uniqueness of the
solution Q∗ is guaranteed by the convexity of Q (Csiszár (1975), p. 147). Using the first
order condition ∫

g(θ) exp(λ′
∗g(θ))P(dG) = 0
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of (11), we can easily see that Q∗ satisfies (7) from

EQ∗
g(θ) =

∫
g(θ)Q∗(dG)

=

∫
g(θ)

(
exp(λ′

∗g(θ))

EP exp(λ′
∗g(θ))

)
P(dG)

= 0.

Intuitively, the solution Q∗ gives the least informative prior in Q. Geometrically
speaking, Q∗ is a projection of P on Q in the sense that Q∗ is the closest point on Q

from P in the divergence measure D(Q ‖ P). Of course, if we use a different divergence
measure such as the KLIC D(P ‖ Q) from P to Q as the minimization criterion, we
would get a different projection point. By considering more general divergence mea-
sures between P and Q, we can understand our projection Q∗ in a larger perspective.
Specifically, Amari (1982) considers a class of divergence measures D(α)(P ‖ Q) called
the α-divergence (|α| ≤ 1) from P to Q defined as

D(α)(P ‖ Q) =

∫
fα

(
dQ
dP

)
dP ,

where

fα(u) =

⎧⎪⎨
⎪⎩

4
1−α2

{
1− u(1+α)/2

}
for α 
= ±1,

u log u for α = 1,

− log(u) for α = −1.

The α-divergence has the duality

D(α)(P ‖ Q) = D(−α)(Q ‖ P),

and the (−1)-divergence D(−1)(P ‖ Q) is the KLIC from P to Q, i.e., D(−1)(P ‖
Q) = D(P ‖ Q). See also Amari (1985) Section 3.5 and Amari and Nagaoka (2000)
Section 3.2 for further discussion. The α-divergence is a special class of the f -divergence
of Csiszár (1967a,b). For discrete measures, the α-divergence is also equivalent to Rényi’s
information divergence (Rényi (1961)), of which another equivalent form is known as
the Cressie–Read power divergence family (Cressie and Read (1984)) in the generalized
empirical likelihood literature such as Newey and Smith (2004). From the duality of the
α-divergence, we can easily see that our minimization criterion D(Q ‖ P) in (9) is the 1-
divergence D(1)(P ‖ Q) from P to Q, or equivalently, the (−1)-divergence from Q to P .
In Amari’s terminology, Q∗ is called the 1-projection of P on Q because it minimizes
the 1-divergence from P to Q. In Csiszár (1975), Q∗ is also called the I-projection of P .
Because of the exponential form in (10), the 1-projection Q∗ is said to be given by the
exponential tilting of P . We call Q∗ the exponentially tilted DP prior or the ETDP
prior.

If both expert’s moment function g(·) and functional ϕ(·) are linear, then, from (8),
Eg(θ) = 0 becomes moment conditions that depend on the base distribution G0 only.
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Figure 1: Geometry of exponential tilting of DP priors. The set Q represents the priors
that satisfy expert’s moment conditions, D is the space of all DP priors, and C ⊂ D

is the conjugate family of DP priors. In our approach, a DP prior P = DP(α0G0) is
projected onto Q by the 1-projection of Amari (1982) minimizing Amari’s 1-divergence.
Q∗ represents the projected prior. Alternatively, P may be projected to the space D∩Q

of the DP priors that satisfy the moment conditions. The prior QD ∈ D ∩Q represents
the projected prior with this method. If there are conjugate priors that satisfy the
moment conditions, i.e., C ∩Q 
= ∅, P can be projected to the space C ∩Q. The prior
QC ∈ C ∩Q represents the projected prior in this case.

Consequently, Q∗ would depend on G0 only. If ϕ is nonlinear, the concentration param-
eter becomes important also. If the concentration parameter is small, Q∗ would depend
less on G0.

In Figure 1, I present the geometric interpretation of our approach and discuss some
alternative methods graphically. In the figure, the DP prior P is in the space D of all DP
priors. The ETDP prior Q∗ represents the 1-projection of P on Q. Although Q∗ is the
closest prior to P among all the priors that comply the expert opinion, we may consider
sub-optimal priors in consideration of convenience. For example, if we consider only the
DP priors that comply the expert opinion (D ∩Q), the 1-projection QD of P on D ∩Q

would be the prior that is closest to P . Another possibility is to consider only conjugate
DP priors shown as C ⊂ D in the figure. If C ∩ Q 
= ∅, then the 1-projection QC of
P on C ∩ Q is the closest prior to P among the conjugate DP priors that satisfy the
expert moment conditions. Although QD and QC are more familiar priors to use, it may
not be easy to find them. Also, QC may not exist when C is low-dimensional and there
are many expert moment conditions to satisfy. Although we do not investigate these
alternative methods further, these are important problems that deserve more attention.

An alternative approach to the method proposed in this paper is to impose expert
information on the base distribution G0 by asking experts about G0 directly. The main
problem of this approach is that it is difficult to elicit moment conditions from experts



H.-s. Choi 429

because it is hard for an expert to imagine the relationship between G0 and the distri-
bution of the quantity of interest θ such as default probabilities. Experts would have a
clearer idea on the distribution of θ rather than the distribution implied by G0. More-
over, the distribution of θ also depends on the DP prior’s concentration parameter on
which expert information is not solicited. It is also difficult to interpret the resulting
prior since it would not be the closest prior to the original DP prior in KLIC. On the
other hand, this approach has the advantage that the resulting prior after the expo-
nential tilting of G0 is also a DP, which allows us to use existing posterior simulation
techniques for DPM models.

The present paper is closely related to Kessler et al. (2015). In their work, expert
information is provided through specifying a marginal prior on θ. The expert’s knowl-
edge in my paper is limited to some aspects (moment conditions on θ) of the marginal
distribution of θ. In practice, it may be difficult to elicit from an expert the entire shape
of the marginal distribution of θ, but it is easy to ask some questions on various features
of the marginal distribution. In that case, the method proposed in the present paper
would be more useful. Also, the ETDP prior from this paper would be naturally closer
to the original non-expert DP prior than the one given by Kessler et al. (2015), because
the resulting prior is less informative than the one from Kessler et al. (2015). However,
the approach in Kessler et al. (2015) would be more reasonable when an expert strongly
believes that the marginal distribution of θ belongs to a certain parametric family. This
belief represents a much larger amount of information than what is considered in the
present paper.

I briefly discuss the issue of pooling information from multiple experts. When there
are more than one expert opinion, pooling of potentially conflicting information be-
comes an important issue. A simple pooling mechanisms would be the mixture pooling.
For example, suppose that we elicit opinions on the moment of a vector h(θ) of some
functions of θ from two experts, and they give us two conflicting moment conditions
Eh(θ) = c1 and Eh(θ) = c2. Let Q∗

1 and Q∗
2 be exponentially tilted priors based on the

two moment conditions. The mixture pooling considers the mixture prior Q∗ given by

dQ∗ = (1− w) dQ∗
1 + w dQ∗

2

with some weight w ∈ [0, 1]. The weights may be determined by some confidence mea-
sures on the quality of the expert information. The mixture pooling leads to the mixture
of the two moments because EQ∗

h(θ) = (1−w)EQ∗
1h(θ)+wEQ∗

2h(θ) = (1−w) c1+w c2.
Another possibility is the exponential pooling. The exponential pooling is to combine
the two priors Q∗

1 and Q∗
2 by

log dQ∗ = c+ (1− w) log dQ∗
1 + w log dQ∗

2

with a normalizing constant c. Because dQ∗
i /dP ∝ exp{λ′

ig(θ)}, where λi is the solution
from (11) for expert i = 1, 2, the exponential pooling would lead to the mixture of
the exponential tilting parameters λ1 and λ2. The resulting prior Q∗ after pooling
information is given by

dQ∗

dP ∝ exp{((1− w)λ′
1 + wλ′

2)g(θ)}.



430 Expert Information and Nonparametric Bayesian Inference

Of course, there are other alternative averaging schemes, and it would be interesting to
study relative advantages of different pooling mechanisms. In fact, pooling potentially
conflicting opinions is an important issue for far more general problems than the infer-
ence of rare events. A thorough discussion of this matter would require a separate paper.

In the following section, I develop a practical method to find Q∗ and implement
nonparametric Bayesian inference with Q∗ as a prior distribution.

3 Exponential tilting of Dirichlet process prior

3.1 Estimation of Gibbs measure

We find Q∗ by solving λ∗ from the sample version of (11) using simulated θ. To simu-
late θ, we first generate G from DP(α0G0) using the stick-breaking process of Sethura-
man (1994). Compared to the methods based on the standard Pólya urn Gibbs samplers,
the stick-breaking process is particularly useful for our approach because it does not
marginalize out θ for posterior simulation. A random measure G from the DP prior is
discrete almost surely, and can be written in a countable sum,

G =

∞∑
j=1

wjδξj , (12)

where wj are random weights independent of ξj , and δξ is the distribution concentrated
at a random point ξ. An important consequence of the almost sure discreteness of G is
that the sample from G shows clustering. If α0 is small, the clustering becomes more
severe, and there will be a fewer number of distinct clusters. The stick-breaking process
defines the DP through (12) by

ξj
iid∼ G0, (13)

w1 = V1, and

wj = Vj

j−1∏
k=1

(1− Vk), for j = 2, 3, . . . (14)

where Vk
iid∼ Beta(1, α0). Intuitively, the stick-breaking scheme starts with a stick with

length 1, and keeps cutting the fraction Vj of the remaining stick of length
∏j−1

k=1(1−Vk).
Then wj are the lengths of the pieces cut.

In fact, the discrete measure in (12) gives more general classes of random mea-
sures than DP priors. By generalizing the probability distribution of Vk, the stick-
breaking method can generate other classes of priors such as the two parameter Beta
process of Ishwaran and Zarepour (2000) and the two-parameter Poisson–Dirichlet pro-
cess (Pitman–Yor process) of Pitman and Yor (1997). The priors from the generalized
stick-breaking schemes applied to (12) are called the stick-breaking priors which include
DP priors as a simple special case. We consider DP priors only in this paper, but the
main idea can be easily extended to other stick-breaking priors.
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Once we have G, we can calculate θ from (4). Since G defined in (12) is an infinite
sum, we would have to approximate G by the truncated stick-breaking method. The
method is given by the finite sum

GN̄ =

N̄∑
j=1

wjδξj , (15)

where wj and ξj are from (13) and (14) except that VN̄ = 1. Let PN̄ be the distribution of
(15) generated by the truncated stick-breaking method. Ishwaran and Zarepour (2002)
show that, as N̄ → ∞,∫∫

f(x)G(dx)PN̄ (dG) →
∫∫

f(x)G(dx)P(dG),

for any bounded continuous real function f . Ishwaran and Zarepour (2000) show that
the approximation error of using PN̄ can be substantial when α0 is large, and N̄ should
increase as α0 increases. When the mixing kernel K(·|ξ) is a normal distribution, The-
orem 1 of Ishwaran and James (2002) show that the distance

∫
|fPN̄

(y) − fP(y)|dy
between the marginal densities fPN̄

(y) of y from PN̄ and fP(y) from P is proportional
to exp(−(N̄ − 1)/α0) for large N̄ . This implies that N̄ should increase proportionally
as α0 increases to get the same level of asymptotic approximation.

Once we have GN̄ , we can estimate λ∗ with the following method. We solve the
minimization problem in (11) by substituting the expectation with the Monte Carlo
integration calculated with simulated θ using GN̄ . Let {θN̄m}Mm=1, where θN̄m =∑N̄

j=1 wmjϕ(K(y|ξmj)), be M values of simulated θ. Although {θN̄m} depends on N̄ ,

we drop the superscript N̄ for notational simplicity. The estimator λ̂M of λ∗ is given by

λ̂M = argmin
λ∈Λ

M−1
M∑

m=1

exp(λ′g(θm)), (16)

where Λ is a compact subset of Rl.

The estimator λ̂M above has the following maximum entropy interpretation. Let
{πm}Mm=1 be a discrete probability measure on the points {θm} such that 0 ≤ πm ≤ 1

and
∑M

m=1 πm = 1. Without any other constraints, the discrete measure that maximizes
the entropy

M∑
m=1

πm log(1/πm)

is given by the uniform discrete measure with πm = 1
M for m = 1, . . . , M . Consider

the expert information as the moment condition
∑M

m=1 πmg(θm) = 0 with respect to
the discrete measure. Of course, a discrete measure that incorporates the moment infor-
mation should have lower entropy than the uniform measure. We can find the discrete
measure that maximizes entropy under the expert’s moment constraints by solving

max
(π1,...,πM )

M∑
m=1

πm log(1/πm) (17)
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subject to

M∑
m=1

πmg(θm) = 0.

The solution {π̂m} to (17) is given by

π̂m =
exp

(
λ̂′
Mg(θm)

)
∑M

m=1 exp
(
λ̂′
Mg(θm)

) ,

where the Lagrange multiplier λ̂M turns out to be identical to the vector obtained from
(16). The entropy maximization property of the discrete measure {π̂m} is well known
in the empirical likelihood literature. See Kitamura and Stutzer (1997) and Newey and
Smith (2004) for further discussions.

It is easy to show that λ̂M is an asymptotically consistent estimator of λ∗ asM, N̄ →
∞. Let

LN̄
M (λ) = M−1

M∑
m=1

exp(λ′g(θm))

be the function to be minimized in (16), and L(λ) = EP exp(λ′g(θ)) be the objective

function from (11). Noting that λ̂M = argminλ∈Λ LN̄
M (λ) and λ∗ = argminλ L(λ), we

prove λ̂M
a.s.→ λ∗ as M, N̄ → ∞.

Assumption 1. The solution λ∗ = argminλ E
P exp(λ′g(θ)) of (11) is unique in Λ.

The above assumption ensures that the expert moment conditions are not linearly
dependent. Essentially, it implies that there is no redundant expert information.

Assumption 2. LN̄
M (λ)

a.s.→ L(λ) uniformly as M, N̄ → ∞.

Assumption 3. L(λ) is continuous on Λ.

Theorem 4. Let π̂M be the empirical distribution of {π̂m}, and π∗ be the change of

measure in (10). If Assumptions 1–3 hold, as M, N̄ → ∞, we have λ̂M
a.s.→ λ∗.

Proof. We use the argument in Theorem 4.2.1 of Bierens (1994). We first show

L(λ̂M )
a.s.→ L(λ∗).

We have

0 ≤ L(λ̂M )− L(λ∗) = L(λ̂M )− LN̄
M (λ̂M ) + LN̄

M (λ̂M )− L(λ∗)

≤ L(λ̂M )− LN̄
M (λ̂M ) + LN̄

M (λ∗)− L(λ∗)

≤ 2 sup
λ∈Λ

|LN̄
M (λ)− L(λ)| a.s.→ 0, (18)

asM, N̄ → ∞, from LN̄
M (λ̂M ) ≤ LN̄

M (λ∗) and almost sure uniform convergence of LN̄
M (λ)

to LN̄
M (λ). Since L(λ) is continuous and λ∗ is unique, we have λ̂M

a.s.→ λ∗ from (18).
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3.2 Implementation with a Metropolis–Hastings algorithm

Once we obtain λ̂M from (16), we can proceed with posterior simulations. I present a
Metropolis–Hastings (M–H) method to draw a sample from the posterior distribution
with the exponentially tilted DP prior. Let y = (y1, . . . , yn) be data and

Ψ(dG|y) ∝
n∏

i=1

f(yi|G)P(dG),

be the density Ψ of the posterior distribution of G in the DPM model. With expert
information, the posterior becomes

Ψ∗(dG|y) ∝
n∏

i=1

f(yi|G)π∗(θ)P(dG) =

n∏
i=1

f(yi|G)Q∗(dG).

We use an MCMC method to get simulated observations from the posterior distribution
Ψ∗. Because of the simple relationship between P and Q∗, the independence chain M–H
algorithm is particularly convenient for our problem. See Chib and Greenberg (1994)
and Chib and Greenberg (1995) for a review on various M–H algorithms. Considering
the relationship

Ψ∗(dG|y)
Ψ(dG|y) = π∗,

we use the posterior distribution Ψ with the original DP prior P as the proposal distri-
bution of the independence chain M–H algorithm. Then the acceptance of tth sample
G(t) in the MCMC chain depends on the quantity

π∗(θ(t))

π∗(θ(t−1))
,

which is approximated by

exp
(
λ̂′
Mg(θ(t))

)

exp
(
λ̂′
Mg(θ(t−1))

) ,

with the estimated λ̂M following the method described in the previous section. The tth
draw of G(t) is accepted with probability

min

⎧⎨
⎩1,

exp
(
λ̂′
Mg(θ(t))

)

exp
(
λ̂′
Mg(θ(t−1))

)
⎫⎬
⎭ ,

or G(t) = G(t−1) if rejected.

For sampling from the proposal distribution Ψ, we use the blocked Gibbs algorithm of
Ishwaran and James (2001). The implementation of our approach combines the blocked
Gibbs algorithm and the independence chain M–H algorithm above. The posterior sim-
ulation cycles through the following steps. Let ξN̄ = {ξj}N̄j=1 and wN̄ = {wj}N̄j=1 from



434 Expert Information and Nonparametric Bayesian Inference

GN̄ in (15). Let ξ∗ = {ξ∗i }ni=1 be the vector of n i.i.d. random variables ξ∗i ∼ GN̄ which
are used to draw yi|ξ∗i ∼ Kξ∗i

. Since GN̄ is discrete, ξ∗i are drawn from the elements of

ξN̄ . Therefore, some ξ∗i may be same and some elements of ξN̄ may not be drawn at
all. For each j = 1, . . . , N̄ , define the set Ij = {i : ξ∗i = ξj} of the indices of ξ∗i that are
equal to ξj . When ξj was not drawn at all, then Ij = ∅.

1. Updating ξN̄ given wN̄ , ξ∗, and y. For j = 1, 2, . . . , N̄ , simulate ξj ∼ G0 for all j
with Ij = ∅, and draw ξj for Ij 
= ∅ from the density

p(ξj |ξ∗, wN̄ ,y) ∝ G0(dξj)
∏
i∈Ij

k(yi|ξj),

where k(·|·) is the density of the kernel function K(·|·) given in (2) and (3).

2. Updating ξ∗ given ξN̄ , wN̄ , and y. Draw (ξ∗i |ξN̄ , wN̄ ,y) independently from

ξ∗i |(ξN̄ , wN̄ ,y) ∼
N̄∑
j=1

wjδξj .

3. Updating wN̄ given ξ∗, ξN̄ , and y. Draw w1 = V1, and

wj = Vj

j−1∏
k=1

(1− Vk), for j = 2, 3, . . . , N̄ − 1,

where VN̄ = 1, Vk
iid∼ Beta(1+Card(Ik), α0+

∑N̄
k+1 Card(Ik)) for k = 1, . . . , N̄−1,

and Card(Ik) represents the cardinality of the set Ik.

4. Calculate the tth MCMC sample g(θ(t)) from (4) replacing G with GN̄ defined
from (ξN̄ , wN̄ ). The tth sample(ξ∗, ξN̄ , wN̄ ) is accepted with probability

min

⎧⎨
⎩1,

exp
(
λ̂′
Mg(θ(t))

)

exp
(
λ̂′
Mg(θ(t−1))

)
⎫⎬
⎭ ,

or replaced by the previous sample.

In Step 1, the updating of ξN̄ is simple if the base distribution G0 and the kernel function
K are conjugate. For this reason, we use normal–gamma conjugate distributions for the
examples and empirical applications in this paper. Steps 1–3 are the original blocked
Gibbs sampler, and our approach simply adds Step 4 for exponential tilting.

4 Dirichlet process mixture of normal distributions

To demonstrate the theory in this paper, we consider the DPM model with the family
of normal distributions as a kernel function. A normal mixture model is convenient
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and popularly used because the conjugacy with the normal–gamma distribution, often
used for G0, makes the MCMC procedure simple. Also, the normal kernel function can
generate fat-tailed distributions such as t-distributions with small degrees of freedom
by variance mixture with inverse Gamma distributions, which is a useful property for
inference of tail-risk events. We define the kernel function

K(y|ξ) = Φ(y|μ, 1/τ),

where ξ = (μ, τ) is defined on Ξ = R × R+, and Φ(·|μ, 1/τ) is a normal distribution
function with mean μ and variance 1/τ , where τ is a precision parameter. The prior
DP(α0G0) on G is given by a concentration parameter α0 and a base distribution G0 on
(μ, τ) ∈ R×R+ distributed as a normal–gamma distribution G0 = NG(μ0, n0, ν0, σ

2
0)

for which
μ|τ ∼ N(μ0, (n0τ)

−1),

and
τ ∼ Γ(ν0/2, ν0σ

2
0/2),

where Γ(a, b) is a gamma distribution with the shape parameter a and the rate pa-
rameter b. Therefore, DP(α0G0) is defined with 5 parameters (α0, μ0, n0, ν0, σ

2
0). The

normal–gamma distribution is a convenient choice for the DPM of normal distribution
because of its conjugacy with the normal kernel function. Note that α0 represents the
concentration of G around G0, n0 is related to the concentration of μ around μ0 of G0,
and ν0 is for the concentration of τ in G0. Therefore, (α0, n0, ν0) jointly determines the
effective sample size of the prior distribution, and smaller values of these parameters
imply more diffuse priors.

In our numerical example, we assume a mixture of two normal distributions as the
true distribution. We set n = 20 and generate i.i.d. data {yi}20i=1 from the mixture of
N(1, 1) and N(15, 1) with weights 5% and 95%, respectively. Specifically, y1, . . . , y20
are calculated from

yi = WiY1i + (1−Wi)Y2i, (19)

where Wi = 1 with probability 5% or 0 with 95%, and Y1i ∼ N(1, 1) and Y2i ∼ N(15, 1).
This distribution has a small bump on the left tail which is hard to discover in data.
We set the DP prior DP(α0G0) with μ0 = 15, n0 = 1, ν0 = 6, σ2

0 = 15, and α0 = 4.
We use N̄ = 80 for GN̄ to approximate G. The parameter of interest θ is the left-tail
probability θ = P{yi ≤ 0} given G, which would represent the probability of default if
yi is an equity value. The true value of θ is 0.793% calculated from (19). We assume
that the expert information is

P{θ ≤ 0.01} = 50% and P{θ ≤ 0.005} = 25%.

This means g(θ) = (I{θ ≤ 0.01} − 0.5, I{θ ≤ 0.005} − 0.25)′ for the moment condition
Eg(θ) = 0.

For estimation of λ∗, we first set M = 5,000,000 and simulate {θm}Mm=1 by using
the truncated stick-breaking process in (15) with N̄ = 80 from DP(α0G0). Since a

larger value of M would increase the precision of the estimator λ̂M , in practice, one can
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experiment with different values of M to check if λ̂M is relatively stable for M > M0 for
a large M0. For the examples in this paper, I find that, roughly speaking, M > 100,000
is sufficiently large. To implement the exponential tilting, we solve

λ̂M = argmin
λ∈Λ

M−1
M∑

m=1

exp(λ′g(θm)),

to get λ̂′
M = (0.038, −0.66) from the simulated {θm}Mm=1. Since π∗ ∝ exp(λ′

∗g(θ)), we
can get some idea of the direction of the exponential tilting with the estimated sign
of λ′

∗g(θ). When θ > 0.01, we have λ̂′
Mg(θ) = 0.146 > 0, but λ̂′

Mg(θ) = −0.476 < 0
if θ ≤ 0.005. This implies that the exponential tilting of DP(α0G0) would put higher
weights on large θ than small θ by tilting the prior distribution of θ toward θ = 1.
In other words, the expert emphasizes that θ should be larger than what DP(α0G0)
would generate. Consequently, the prior that complies with the expert information favors
distributions with larger left-tail probabilities than DP(α0G0).

Since we have λ̂M , we can draw a sample from the posterior distribution using
the M–H algorithm described in the previous section. For the MCMC procedure, we
perform 500,100 MCMC iterations, discard the first 100 iterations for burn-in, and use
every 10th state for thinning after the burn-in period. After thinning, we get 50,000
draws of θ.

In the first row of Figure 2, the prior (left panel) and posterior (right panel) densities
of θ are shown with and without expert information, labeled as “Expert” and “DP”,
respectively. The vertical lines represent the true value of θ. As expected from the
estimated exponential tilting parameter λ̂M , the posterior distribution of θ is tilted
toward large θ. The second row shows the first 500 MCMC draws of θ from the posterior
simulations without (left panel) and with (right panel) the expert information to check
good mixing of the MCMC sample. The effective sample sizes are calculated from the
full 50,000 MCMC draws.

An interesting quantity in the analysis of rare events is the number of occurrences
of rare events given a sample size. For the probability of default θ, the probability that
we observe k defaults out of n i.i.d. observations is given by the binomial distribution

Hn
k =

(
n

k

)
θk(1− θ)k. (20)

We can calculate the posterior distribution of the probability H20
1 of having one

default out of 20 observations. The third row of Figure 2 shows the prior and posterior
densities of H20

1 with and without the expert information labeled as “Expert” and
“DP”, respectively. Since the expert information favors the distributions with large left-
tail probabilities, the distribution of the probability H20

1 with the expert information
(“Expert”) is tilted toward θ = 1 compared to the distribution without the expert
information (“DP”).
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Figure 2: In the first row, we have the prior (left panel) and the posterior (right panel)
distributions of θ with and without expert information (labeled as “Expert” and “DP”,
respectively). The vertical lines represent the true value of θ. The second row shows
some values of θ from the posterior simulation without (left panel) and with (right
panel) expert information. The third row shows the prior (left panel) and the posterior
(right panel) distributions of the probability of one default out of 20 observations with
(“Expert”) and without (“DP”) expert information.
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Date Return Date Return Date Return

10/21/1957 −2.93 5/24/1976 −1.80 12/18/1995 −1.55
11/24/1958 −2.60 7/27/1977 −1.63 3/8/1996 −3.08
8/10/1959 −2.09 10/31/1978 −2.01 10/27/1997 −6.87
9/19/1960 −2.27 10/9/1979 −2.96 8/31/1998 −6.80
4/24/1961 −2.08 3/17/1980 −3.01 10/15/1999 −2.81
5/28/1962 −6.68 8/24/1981 −2.89 4/14/2000 −5.83
11/22/1963 −2.81 10/25/1982 −3.97 9/17/2001 −4.92
2/5/1964 −2.70 1/24/1983 −2.70 9/3/2002 −4.15

6/28/1965 −1.76 2/8/1984 −1.82 3/24/2003 −3.52
8/29/1966 −2.46 7/29/1985 −1.46 8/5/2004 −1.63
5/31/1967 −1.56 9/11/1986 −4.81 4/15/2005 −1.67
3/14/1968 −1.90 10/19/1987 −20.47 1/20/2006 −1.83
7/28/1969 −1.90 1/8/1988 −6.77 2/27/2007 −3.47
5/4/1970 −3.00 10/13/1989 −6.12 10/15/2008 −9.03

6/18/1971 −1.52 8/6/1990 −3.02 1/20/2009 −5.28
5/9/1972 −1.32 11/15/1991 −3.66 5/20/2010 −3.90

11/19/1973 −3.05 4/7/1992 −1.86 8/8/2011 −6.66
11/18/1974 −3.67 2/16/1993 −2.40 6/1/2012 −2.46
3/24/1975 −2.36 2/4/1994 −2.27 6/20/2013 −2.50

Table 1: Worst daily returns (%) of the year from 1957 to 2013. Max= −1.32%, min=
−20.47%, mean= −3.55%, median= −2.81%, and standard deviation= 2.87%.

5 Application to extreme losses from stock index
investment

We consider inference of tail probabilities for stock index returns. We use the daily
S&P500 index data (series ID: SP500) from the Federal Reserve Economic Data (FRED)
maintained by the Federal Reserve Bank of St. Louis. We define the daily S&P500 index
return on day d as rd = (pd − pd−1)/pd−1 with daily S&P500 index values pd ignoring
missing values and holidays. Our main variable of interest is

Xt = Worst daily return rd of the year t,

for t = 1957 ∼ 2013. We get 57 observations of Xt.

Table 1 shows the sample. The sample mean and median are −3.55% and −2.81%,
respectively, the lower and upper empirical quartiles are −3.90% and −1.90%, and the
sample standard deviation is 2.87%. The sample shows high skewness. The worst daily
return −20.47% occurred on the black Monday 1987/10/19. The second worst daily
return −9.03% was on 2008/10/15 during the recent recession. We are interested in the
probability that the worst daily return of the next year would be lower than −10%, i.e.,

θ = P{X2014 < −10%}.
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For normalization, we use
Yt = − log(−Xt)

instead of Xt after assuming P(Xt < 0) = 1. All observations are assumed to be i.i.d.
given a mixing measure G. Suppose that our expert thinks that the chance that the
worst daily return in 2014 falls below −10% is equally likely to be above or below 4%.
If we condition that θ is below 4%, then the expert thinks that the chances of θ be-
ing above and below 2% are equally likely. This expert information is summarized by
P{θ < 0.04} = 50% and P{θ < 0.02} = 25%. As before, we use the DPM of nor-
mal distributions for Yt. The DP prior DP(α0G0) used for this empirical application is
from α0 = 4, and the normal–gamma base distribution G0 = NG(μ0, n0, ν0, σ

2
0) with

μ0 = 3.5, n0 = 1, ν0 = 8, σ2
0 = .25.

Then we estimate the exponential tilting parameter λ∗ from the minimization prob-
lem in (16) with simulated θ from DP(α0G0). As in the example in the previous section,
we simulate five million values of θ with the truncated stick-breaking process in (15)

with N̄ = 80, and get λ̂M = (0.117, 0.505). From the estimated tilting parameter, we

have λ̂′
Mg(θ) < 0 for large θ but λ̂′

Mg(θ) > 0 for small θ. Therefore, we know from π∗ ∝
exp(λ′

∗g(θ)) that the exponentially tilted prior puts lower weights for large θ than small
θ relative to the DP prior. This implies that the expert thinks that the probability of θ is
generally smaller than what the DP prior suggests. Using λ̂M , we proceed to the poste-
rior simulation with the M–H algorithm in Section 3. All the other settings such as burn-
in and thinning parameters are identical to the example given in the previous section.

In the first row in Figure 3, the prior densities of θ with and without expert infor-
mation are shown as “Expert” and “DP”, respectively, in the left panel. As discussed,
the expert prior shows tilting toward small θ compared to the DP prior. The posterior
densities with and without expert information in the right panel also show the effect of
exponential tilting. The second row shows the first 500 MCMC draws of θ from the pos-
terior simulations without (left panel) and with (right panel) expert information, which
suggest good mixing of the MCMC sample. The effective sample sizes are calculated
from the full 50,000 MCMC draws. The left panel of the third row in the figure shows
the DP prior (“DP prior”) and posterior densities of the probability H57

1 , as defined
in (20), that we observe exactly one year with the event {Xt < −10%} in the next 57
years. The posterior densities with and without the expert information are labeled as
“Expert” and “DP”, respectively. With expert’s information, there is a slightly more
chance to have θ around 3.5%. The right panel of the third row is the DP prior and
the posterior densities with and without the expert information of the probability that
the worst daily return of the year is lower than −10% during the next 57 years, which
is equal to 1−H57

0 . With the expert opinion incorporated, we can see that the chance
of having a large value of 1 − H57

0 is slightly smaller than what is from the posterior
without expert information.

6 Conclusion and extensions

The method proposed in this paper deals with the problem of potential misspecification
in parametric models and the scarcity of data information for inference of rare events
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Figure 3: In the first row, we have the prior (left panel) and the posterior (right panel)
distributions of θ with and without expert information (labeled as “Expert” and “DP”,
respectively). The second row shows some values of θ from the posterior simulation
without (left panel) and with (right panel) expert information. The third row shows
the DP prior (labeled as “DP prior”) and posterior distributions with and without
expert information (labeled as “Expert” and “DP”, respectively) of the probability that
{Xt < −10%} occurs exactly once in the next 57 years (left panel) and the probability
that {Xt < −10%} occurs at least once in the next 57 years (right panel).
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by using nonparametric models and incorporating expert information. Elicitation of
expert information can be easily done with carefully designed interviews, and the prior
that comply with the expert information can be obtained with the straightforward
M–H method proposed in this paper. Therefore, when historical data are scarce and
it is hard to find a reasonable parametric model, this paper’s approach could be an
attractive choice.

The main idea of this paper can be extended in several directions. First, an inter-
esting topic would be an extension to a semiparametric model defined with a set of
moment conditions on data such as

∫
m(y;β) f(y|G) dy = 0, where the function m(y;β)

is an γm-dimensional vector of moments of y for a γβ-dimensional vector β of parameter
of interest. Note that β, which is of interest to a modeler, may not be same as θ, which
is of interest to an expert. When γm = γβ , the parameter β is exactly identified by
solving

∫
m(y;β) f(y|G) dy = 0 for each given G. This implies that the condition is not

binding for G at all, and does not restrict the prior on G. But if γm > γβ , we have
over-identifying moment conditions that some G may not satisfy. Then the prior must
be modified, so that G that violates the moment conditions are excluded. Therefore,
imposing over-identifying moment conditions on data is equivalent to considering only
the priors with a lower dimensional support, which entails a degenerate prior. For ex-
ample, the zero-mean condition

∫
yf(y|G) dy = 0 reduces the dimension of the support

of a prior P because some G ∼ P that violate this moment condition must be excluded.
Compare this with the expert’s moment condition E(θ) = 0, where θ ≡

∫
yf(y|G) dy is

the mean. While the expert information reduces the dimension of the space of priors
only, the zero-mean condition on data would reduce the dimension of the support of
priors by restricting the prior space to the subspace with θ = 0. In that sense, over-
identifying moment conditions on data are an extremely strong form of expert informa-
tion with which the expert is sure on certain aspects of data. Conceptually, this idea
can be implemented in the following way. We first begin with the DP prior DP(α0G0).
A random draw G ∈ G from DP(α0G0) would not satisfy

∫
m(y;β) f(y|G) dy = 0 for

any β if γm > γβ . Therefore, G may be projected onto the sub-space Ḡ that satisfies
the moment condition on data. For this projection, we can use Amari’s 1-projection.
We would first find the projection G∗(β) that is closest from G with respect to the
1-divergence for each β. Among all G∗(β), we may pick G∗(β∗) that is closest to G with
respect to the 1-divergence as the final projection. Applying this projection for all G ∈ G
defines a degenerate prior P∗ from which a random draw is in Ḡ with probability one.
Once we have the prior P∗, then we can incorporate expert information by applying
the 1-projection of P∗ onto Q again. Essentially, this approach uses the information
in moment conditions on data followed by expert information. See Kitamura and Otsu
(2011) for an alternative framework for semiparametric models.

Another interesting topic for future research is to consider covariates in our approach.
For example, we can consider implementing our method to Bayesian density regressions
with DP priors that depend on covariates. MacEachern (1999, 2000) consider dependent
Dirichlet processes and more general dependent nonparametric processes that include
the hierarchical Dirichlet processes, nonparametric density regressions, and other models
as special cases. Bush and MacEachern (1996) consider using a DP as the distribution of
random effects that vary over sub-blocks of a sample. Li et al. (2011) propose a technique
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for identifiability of inference in a nonparametric Bayesian random effect model. It would
be interesting to investigate how my approach extends to these settings.
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