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Rejoinder∗

Gustavo da Silva Ferreira† and Dani Gamerman‡

1 Introduction

We would like to start by thanking the Editor of BA for the opportunity to discuss our
work and the discussants Peter J. Diggle, Michael G. Chipeta, James V. Zidek, Noel
Cressie and Raymond L. Chambers for a very thorough evaluation of our contribution
and for their thoughts on the topic. Our rejoinder to the discussion will be presented
in the following topics: Preferential Sampling; Auxiliary Information; Models for [X|S];
Utility Functions; Sequential Design; and Approximations.

2 Preferential Sampling

Preferential sampling plays an important role in surveys routinely carried out by Offi-
cial Statistics agencies, as those developed in the Brazilian Institute of Geography and
Statistics (IBGE), the institution that one of us is affiliated to. So we are well aware of
the relevance of this issue. In addition to the areas of application of preferential sampling
cited by the discussants, it is important to mention the very topical area of publication
bias (see Bayarri and DeGroot, 1993; Franco et al., 2014).

The link between preferential sampling and the methodology of survey-sampling
presented by discussants is also very helpful in clarifying the similarities of approaches.
We agree with Cressie and Chambers (hereafter CC) that papers from the latter may
bring important aspects of sampling design to the context of Geostatistics. However,
an important distinction between the approaches is needed. While in the context of
survey methods the population size is generally fixed at a finite N , this feature is
not true in the context of Geostatistics. In fact, in Geostatistics a finite value of N
may only be associated with the discretization of a continuous process. Thus, part
of the similarity between the approaches stems from the current limitation of many
approaches to handle inference and prediction in Geostatistics appropriately due to the
use of discrete approximations.

We agree with Chipeta and Diggle (hereafter CD) that preferential sampling is a
method of adaptive design, which may depend on the previous design without relying
on the underlying process S. Similarly, inference may be simplified after assuming that
the process X is governed by the values of a spatially distributed covariate W , thus
rendering conditional independence between X and S given W . The main difficulty is
finding and quantifying such a covariate. We will return to this issue in the next section.
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3 Auxiliary Information

All discussants brought in the issue of replacement of some of the latent and unobserved
random processes by observed quantities. These processes are a mere artifact to best
represent our lack of knowledge about the true mechanism underlying the observation
processes, if such truth exists. If we knew what variables cause our observational pro-
cesses to behave as they do and were able to measure these quantities, we should use
them. Otherwise, models that incorporate relevant features such as smoothness of these
processes are a useful alternative. This issue is not only relevant to Spatial Statistics
but to any other area of Statistics where absence of complete knowledge of the sources
of variation forces the use of qualitative information in the form of latent processes, and
Gaussian processes are one of the most adequate choices as a first step.

We agree that covariates could (and should) be part of all model components. Co-
variates may also be used to construct a deterministic intensity function of the point
process X, or as proxy of a random process S in a model with a random intensity
function. They may reduce remaining spatial heterogeneity in the mean or covariance
structure of S, when available. CC suggested the use of other covariates Z, assumed to
be highly correlated with the process S, as a proxy. This is a practical solution that needs
to be used carefully. Despite simplifications produced in inference, it is important to
bear in mind that this solution may also introduce another source of error in the model.

However, despite being a natural choice, we do not always have available covariates.
In other situations, the covariates are available only in part of the region of interest.
In these cases, it is often necessary to interpolate values before including them in the
model, adding more uncertainty to the results.

4 Models for [X|S]
We agree that an appropriate model is crucial and robustness considerations are even
more important here. Many discussants of Diggle et al. (2010) seemed to agree that,
in practical situations, it is unlikely that the design is governed by a log-Gaussian
Cox process. This issue is in line with our views expressed in the first paragraph of
the previous section. In some cases, it may be enough to assume that the intensity of
the point process is somehow proportional to the underlying process at an appropriate
scale. In these cases, a log-linear intensity function may be seen as the first option for
approximation and may thus be a good starting point to mitigate and understand the
consequences of a preferential sample.

In addition to methods for obtaining a robust design against selection bias, alterna-
tive specifications for [X|S] may also contribute to a satisfactory model-based inference.
All discussants have correctly expressed concern about the sensitivity of the inference
to the choice of the model for the intensity function. We concur with their concern and
particularly welcome the use of non-parametric specifications to replace the parametric
specification of our paper. This is bound to lead to a more flexible and hence robust
alternative to the global linearity imposed by the α+βS predictor over the entire region
of interest.
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One approach following this path allows the regression coefficients’ processes α and β
to vary locally over space. Inference for these models may be performed in a simplified
fashion, via discretization of coefficients over sub-regions (Pinto Junior et al., 2015),
or exactly, by retaining the continuous variation of the infinite dimensional regression
coefficient process (Gonçalves and Gamerman, 2015). Another non-parametric approach
was proposed by Kottas and Sansó (2007), based on mixtures of Dirichlet process priors.
Their idea could be adapted to a prior for the intensity of a log-Gaussian Cox process
that (instead of being concentrated on) is only centered at α+βS, again allowing more
flexibility for the intensity.

Zidek also suggested an interesting situation where the generating process for the
locations is based on another process S∗. In this case, it is first necessary to assess
the degree of dependence between these two processes, that is, to evaluate if [S, S∗] =
[S][S∗]. If so, the researcher can consider the points X as ancillary for S and proceed
with the non-preferential, standard inference as usual. Otherwise, it may be necessary
to establish some form of dependence for [S|S∗] to be able to proceed with inference.
A bivariate specification for [S, S∗] may be one way forward (see Gamerman et al., 2007;
Crainiceanu et al., 2008).

In conclusion, our model for [X|S] seems to be able to highlight the effects of prefer-
ential sampling in the absence of a better understanding of the true causes of variation
or of relevant covariates, but more flexible forms are needed.

5 Utility Functions

We agree with CC’s suggestions about notation to improve the paper understanding.
In particular, we consider pertinent the suggestion of making sd explicit in the utility
function.

The choice of a particular utility function is a crucial step to obtaining the optimal
design. For this reason, we completely agree with CC that the questions how much?
and why? cannot be set aside while the researcher is planning a new location sample.

Utility functions based on predictive variance reductions have long been recognized
as appropriate to measure improvements in predictive accuracy. Zidek noted that more
general evaluation (of predictive/estimation performance) may require the use of other
utility functions. We already presented at least one alternative formulation early in the
paper to emphasize our adherence to this point and to detach ourselves from the initial
approaches based only on a single function, evaluating predictive errors. Our methods
apply equally well to any quantifiable utility function.

The combination of different goals — e.g., reducing predictive errors, reducing un-
certainty with respect to S, identifying thresholds, reducing estimation errors and eval-
uating costs involved — allows the researcher to obtain designs in complex situations.
Examples of complex utility functions with competing goals can be found in the re-
cent work of Müller et al. (2004), Ruiz-Cárdenas et al. (2012) and Ferreira (2015) to
name a few. Note that these goals may be competing, e.g., reduction of the nugget
effect estimation error assigns more utility to regions close to locations already sampled
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whereas reduction of predictive error assigns more utility for regions far from the points
already sampled. The additional challenge in this case is to weigh the various objectives
involved.

Alternatively, the use of entropy in the utility function is usually recommended
for situations where multiple goals are involved (Caselton and Zidek, 1984) but this
is not an easily implementable solution in practice. We do believe that in practical
situations the utility function needs to be specified by whoever is in charge of the
analysis, be it a regulatory body, a government institution or a researcher, with the
help of a statistician. The responsible entity must be able to value the worth of the
information each component of the utility provides. If one can answer, for example,
why predictive variance reduction is relevant, one must be able to assign its monetary
value; otherwise, one must reassess the relevance of each component included in the
utility function. This value is more easily combined with readily quantifiable monetary
components such as cost associated with each new location. An economist specialized
in the area of the study may be a useful addition to the team setting up this enterprise
at this stage.

6 Sequential Design

The approach we used for design (Müller, 1999) allows the planning of m new sampling
sites according to the utility function defined by the researcher. This design plan can be
sequential or not, while the underlying process S can be static or dynamic in time. In
cases where S is a dynamic process, planning of a sequential design scheme is a natural
choice. However, in the case where S is fixed in time, one can also plan a sequential
design, although it is not possible to ensure that the resulting design will be optimal.
Actually, a sequential sample design can be a simple and cheap solution, especially in
situations where the costs are not fixed and can increase before obtaining the desired
new sample locations.

We anticipate difficulties to assigning a distribution for [d|S,x] without reducing the
flexibility of the model, when a sequential-sampling-design strategy to update θ and S
through [d|x,y] is built. It would be necessary to assess whether the initial sample is
preferential in cases suggested by CC with a pilot study. If it is possible to assume that
the pilot phase is non-preferential, then this information will be ancillary to inference.
On the other hand, if the pilot sample is preferential, then it is possible to incorporate
this information by performing modifications in [X|S]. Note that this may remove the
Poissonity of the model for [X|S], due to repulsions that may occur around previously
selected locations. This will imply more difficulty for likelihood approaches and opens
up for interesting research questions.

The case of a dynamic underlying process is more complex. We visualize the following
generalization of the 2-stage set-up proposed by CD. In cases where samples are taken
at different times in a multi-stage scenario, we may have

[Y,X, S] =
∏

t

[Yt|Y1:t−1, X1:t, St][Xt|X1:t−1, S1:t][St|S1:t−1],



G. S. Ferreira and D. Gamerman 757

where Za:b = (Za, Za+1, . . . , Zb−1, Zb), for a < b integers, and dependence on hyperpa-
rameters was removed from the notation as in CD. Conditional independence between
observations given the corresponding underlying processes may be assumed in some
cases leading to [Yt|Y1:t−1, X1:t, St] = [Yt|Xt, St]. Similarly, [Xt|X1:t−1, S1:t] = [Xt|St]
may be assumed for some sampling schemes, although the general formulation may be
required in some cases (see the paragraph above). Further simplification such as those
suggested by CD may be assumed, depending on the situation. Ferreira (2015) worked
on a similar structure, simplified by his non-preferential sampling scheme.

In the practical situation presented by CD, where the sampling order is a crucial
factor, a simple utility function based on predictive variance reductions or exceedances
probably would not be enough to produce a satisfactory sample design. In challenging
situations like this, it would be necessary to choose more complex forms to reward each
sample unit, at each time, in a sequential sampling scheme.

7 Approximations

Questioning the stationarity assumption is a mandatory task in any Spatial Statistics
problem. Stationarity can always be seen as an approximation to a more complex un-
derlying dependence. But it turns out that in many practical situations it has proved to
be a reasonable, viable solution. Alternatively, approaches based on convolution process
(Higdon, 2002) or the use of more flexible (non-parametric) structures to enhance the
spatial dependence structure of S can be used. Again, covariates are always relevant
options to handle the large-scale heterogeneity considered by CD. Obviously, an increase
in the complexity of the model can also complicate the evaluation of the utility function
used to obtain the optimal design and parsimony may have to be called into action.

We agree with Zidek that other approximation of V (S|x,y) could be used in this
step. A simpler, but expensive, alternative is to generate sub-chains in order to estimate
this quantity during MCMC. Alternative analytical approaches may be preferred to
avoid the increasing computational cost. It is important to emphasize that

• The approximation was only used to evaluate the utility function, since an analyt-
ical expression for V (S|x,y) is not available; the values of S were always sampled
from the correct distribution [S|y,x];

• Other utility functions, as those used in our case study, may not require any
approximation.
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