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Equivariant and Scale-Free Tucker
Decomposition Models

Peter D. Hoff∗

Abstract. Analyses of array-valued datasets often involve reduced-rank array
approximations, typically obtained via least-squares or truncations of array de-
compositions. However, least-squares approximations tend to be noisy in high-
dimensional settings, and may not be appropriate for arrays that include discrete
or ordinal measurements. This article develops methodology to obtain low-rank
model-based representations of continuous, discrete and ordinal data arrays. The
model is based on a parameterization of the mean array as a multilinear prod-
uct of a reduced-rank core array and a set of index-specific orthogonal eigenvector
matrices. It is shown how orthogonally equivariant parameter estimates can be ob-
tained from Bayesian procedures under invariant prior distributions. Additionally,
priors on the core array are developed that act as regularizers, leading to improved
inference over the standard least-squares estimator, and providing robustness to
misspecification of the array rank. This model-based approach is extended to ac-
commodate discrete or ordinal data arrays using a semiparametric transformation
model. The resulting low-rank representation is scale-free, in the sense that it is
invariant to monotonic transformations of the data array. In an example analy-
sis of a multivariate discrete network dataset, this scale-free approach provides a
more complete description of data patterns.

Keywords: factor analysis, rank likelihood, social network, tensor, Tucker
product.

1 Introduction
Many datasets are naturally represented as multiway arrays, often referred to as ten-
sors. For example, data gathered under all combinations of levels of three conditions
can be expressed as a three-way array Y = {yi,j,k : i ∈ {1, . . . , n1}, j ∈ {1, . . . , n2}, k ∈
{1, . . . , n3}}. The index sets are referred to as the modes of the array, and an array
with K modes is typically referred to as a K-way array. Such array-valued datasets are
common in several disciplines, including chemometrics, signal processing and psycho-
metrics. Another class of array-valued data includes multivariate relational networks,
which consist of several types of relational measurements between pairs of nodes. Such
a dataset may be represented as a three-way array Y ∈ R

n×n×p, where n is the number
of nodes, p is the number of relation types, and the entries of Y are such that yi,j,k is
the value of the kth relation type from node i to j. For example, yi,j,1 may give the
number of emails sent from person i to person j and yi,j,2 may encode an evaluation
of i’s friendship to j measured on an ordinal scale. In this case, the three modes of
the array correspond to the initiator of the relation, the target of the relation and the
relation type, respectively.

∗Departments of Statistics and Biostatistics, University of Washington, Seattle, WA 98195-4322,
pdhoff@uw.edu

c© 2016 International Society for Bayesian Analysis DOI: 10.1214/14-BA934

http://bayesian.org
mailto:pdhoff@uw.edu
http://dx.doi.org/10.1214/14-BA934


628 Equivariant and Scale-Free Tucker Decomposition Models

A common framework for the analysis of array-valued data is a model of the form
Y = M + E, where Y is the observed array, M is a mean array describing a signal of
interest, and E is patternless noise. In many applications, it is assumed that M is low-
dimensional or of low rank, and it is desirable to estimate M under such an assumption.
In other applications, the modeling goal is to decompose the data into interpretable
sources of variation. In either case, a useful class of tools for describing heterogeneity in
array-valued datasets are array decompositions. One category of decompositions are the
“Tucker decompositions” (Tucker, 1964, 1966; Kolda and Bader, 2009), which express a
K-way data array Y as Y = S×{U1, . . . ,UK}, where S is a K-way core array, “×” is
a a multilinear operator known as the Tucker product and {U1, . . . ,UK} is a collection
of mode-specific factor matrices. De Lathauwer et al. (2000) study a particular type of
Tucker decomposition in which the Uk’s are orthogonal, and argue that this “higher-
order” singular value decomposition (HOSVD) is a natural extension of the matrix SVD
to arrays, with the core array S playing a role analogous to that of the singular values
of a matrix. Data analysis based on this decomposition often proceeds by obtaining a
low-rank representation of Y either via truncation of the core array or with a least-
squares approximation, and then using its mode-specific singular vectors to describe
the heterogeneity in the entries of Y along each of its K modes.

While providing a relatively simple approach to exploratory data-analysis, least-
squares methods may be limited in terms of their performance and applicability. For
example, least-squares methods tend to be noisy in multiparameter estimation problems,
leading many researchers to favor regularized procedures instead. Recent work on the
analysis of matrix-valued datasets indicates that soft-thresholding the singular values
of a data matrix can lead to improved estimation of its mean matrix as compared to
a least-squares approach (Mazumder et al., 2010; Cai et al., 2010; Josse and Sardy,
2013). Penalized approaches have also been studied in the context of array-valued data:
Recent theoretical work has focused on array completion problems, in which the task
is to recover a reduced-rank array based on random linear combinations of its elements
(Liu et al., 2009; Mu et al., 2013). The algorithms studied typically involve finding the
minimum rank among arrays that match the data at the observed entries. Variants
of these procedures include finding arrays that minimize different criteria while still
matching the observed data, or by minimizing a residual sum of squares subject to a
penalty on the fitted array (Tomioka et al., 2011).

However, such approximations of the raw data may be inappropriate when the data
are binary, ordinal or otherwise non-normally distributed. For example, Section 5 of this
article considers an analysis of skewed, discrete multivariate relational data. These data,
obtained from the GDELT project (Leetaru and Schrodt (2013), gdelt.utdallas.edu),
consist of weekly summaries of 20 different types of actions between the 30 most active
countries in the GDELT database in 2012. These data can be represented as a 30×30×
52× 20 four-way array Y, with entries {yi,j,k,t : 1 ≤ i, j ≤ 30, i �= j, 1 ≤ k ≤ 20, 1 ≤ t ≤
52}, where yi,j,k,t is the number of days in week t in which country i took action k with
country j as the target. A least-squares approximation to these data is problematic for
several reasons, one of which is that such an approximation predominantly represents
the small number of large entries of the array, and is therefore unrepresentative of
“most” of the data.

http://gdelt.utdallas.edu/
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As an alternative to least-squares procedures for estimation of a low-rank mean ar-
ray M, this article develops a model-based version of a penalized Tucker decomposition,
and an extension that can accommodate the analysis of discrete, ordinal or otherwise
non-normal data. This approach is distinct from existing least-squares and model-based
methods in the following ways: First, in contrast to least-squares or non-model-based
approaches, this model-based approach allows for adaptive penalization of mode-specific
eigenvalues, a complete inferential framework (allowing, for example, confidence inter-
val construction), and extension to non-normal data structures. In contrast to existing
model-based approaches, we derive our procedures using decision-theoretic considera-
tions, which lead to a generalized Bayes framework using invariant prior distributions
on the scale parameter and the orthogonal factor matrices {U1, . . . ,UK}. In this frame-
work, the factor matrices are orthogonal as in the HOSVD of De Lathauwer et al. (2000).
This is unlike existing model-based approaches such as in Chu and Ghahramani (2009),
who present a Tucker decomposition model and prior in which the core array S and
factor matrices {U1, . . . ,UK} all have i.i.d. standard normal entries (further resulting
in inference that is not scale equivariant). Additional identifiability considerations lead
to a particular form for a prior distribution over the core array S. This prior allows for
mode-specific penalization of the singular values, and also has an interpretation as a
version of normal factor analysis for array-valued data.

The work presented here is related to some recently developed statistical models
that make use of the multilinear Tucker product. The core array S is penalized using a
class of array normal distributions, generated by the multilinear Tucker product (Hoff,
2011). Xu et al. (2012) develop a prior over the array normal model in which the mode-
specific covariance matrices are functions of a potentially infinite set of latent features.
In a similar vein, Fosdick and Hoff (2014) develop a version of factor analysis based
on the array normal model. The Tucker product has also been used to construct priors
in applications where it is the parameters in the model that are arrays: Bhattacharya
and Dunson (2012) use a Tucker product to develop a prior over probability distribu-
tions for multivariate categorical data, and Volfovsky and Hoff (2014) use a collection
of connected array normal distributions as a prior over parameter arrays in ANOVA
decompositions. Regarding penalization, Allen (2012) has proposed a sparsity penalty
on the factor matrices of a Tucker decomposition, thereby encouraging zeros in their
entries. While appropriate in some applications, procedures based on such a sparsity
penalty will not be orthogonally equivariant. In contrast, the uniform priors on the
factor matrices used in this article lead to orthogonally equivariant estimates, and pe-
nalization is focused on the core array in order to encourage low-rank approximations
to the data.

An outline of this paper is as follows: The next section provides a brief review of
array rank and Tucker decompositions. In Section 3, a parameterization of the Tucker
decomposition model is presented, along with a class of prior distributions that allow
for equivariant estimation of the model parameters. Section 4 develops a subclass of
priors that allows for mode-specific penalization of the singular values. In a simulation
study, estimates obtained using such prior distributions are shown to greatly outperform
the popular least-squares approach to estimation. Additionally, the proposed approach
performs as well as an “oracle” prior when no mode-specific penalization is warranted,
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and greatly outperforms such a prior when the rank of the model is misspecified. This
methodology is extended in Section 5 to accommodate discrete, ordinal and non-normal
data via a semiparametric transformation model, allowing for scale-free reduced-rank
representations of array data of diverse types. This extension is illustrated with an
analysis of discrete multivariate international relations data, for which a least-squares
approach is shown to be largely uninformative. Some additional model extensions are
discussed in Section 6, including an approach to accommodate continuous but heavy-
tailed data.

2 Review of array rank and Tucker decompositions

Recall that the rank of a matrix M ∈ R
n1×n2 is equal to the dimension of the linear

space spanned by the columns (or rows) of M. Now suppose M ∈ R
n1×n2×n3 is a three-

way array, with elements {mi,j,k : 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, 1 ≤ k ≤ n3}. The notion
of array rank considered by Tucker (1964), De Lathauwer et al. (2000) and others is
defined by the ranks of various reshapings of M into matrices, called matricizations. For
example, the mode-1 matricization M(1) of M is the n1× (n2n3) matrix having column
vectors of the form mj,k = (m1,j,k, . . . ,mn1,j,k)

T , that is, elements of M with varying
values of the first index and fixed values of the second and third indices. Heterogeneity
in the values of M ascribable to heterogeneity in the first index set can be described
in terms of the linear space spanned by the columns of M(1). The dimension r1 of
this linear space (which is equal to the rank of M(1)) is called the mode-1 rank of M.
The mode-2 and mode-3 matricizations of M can be formed similarly, and their ranks
provide the mode-2 rank r2 and mode-3 rank r3, respectively. The array rank of M is
the vector r = (r1, r2, r3), and is sometimes referred to as the multilinear rank. Unlike
the row and column ranks of a matrix, the ranks corresponding to the different modes
of an array are not generally equal.

Any matrix M ∈ R
n1×n2 can be expressed in terms of its SVD M = U1SU

T
2 where

S = diag(s1, . . . , sr), U1 ∈ Vr,n1 , U2 ∈ Vr,n2 and r ≤ n1 ∧ n2 is the rank of M. Here,
Vr,n is the space of n × r matrices with orthonormal columns, known as the Stiefel
manifold. As shown by De Lathauwer et al. (2000), an analogous representation holds
for any array. The analogy is most easily seen via vectorization: The SVD of a matrix M
yields a representation of m = vec(M) as m = (U2 ⊗U1) s, where s = vec(S) and “⊗”
is the Kronecker product. Similarly, every K-way array M of dimension n1 × · · · × nK

and rank r = (r1, . . . , rK) can be expressed as

m = (UK ⊗ · · · ⊗U1) s, (1)

where m is the vectorization of M, Uk ∈ Vrk,nk
for k ∈ {1, . . . ,K} and s is the

vectorization of an r1×· · ·×rK array S known as the “core array.” This representation is
often referred to as the higher-order SVD (HOSVD). More generally, any representation
of m of the form (1), without U1, . . . ,UK necessarily being orthogonal, is known as a
“Tucker decomposition.”

An equivalent representation of M that retains its array structure is obtained using
the so-called “Tucker product” (Tucker, 1964) of the core array S with the list of factor
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matrices U1, . . . ,UK . This representation expresses M as

M = S× {U1, . . . ,UK}, (2)

where the Tucker product “×” is defined by the equivalence between (1) and (2). More
generally, For A ∈ R

n1×···×nK , B ∈ R
r1×···×rK and Ck ∈ R

nk×rk , k = 1, . . . ,K, A =
B× {C1, . . . ,CK} means that vec(A) = (CK ⊗ · · · ⊗C1) vec(B).

For the calculations that follow it will be useful to re-express a Tucker decomposition
of M in terms of its matricizations. If M can be expressed as in (1) or (2), then it also
follows that for each k ∈ {1, . . . ,K},

M(k) = Uk S(k) (UK ⊗ · · ·Uk+1 ⊗Uk−1 ⊗ · · · ⊗U1)
T ≡ Uk S(k) U

T
−k, (3)

where M(k) and S(k) are the mode-k matricizations of M and S, respectively.

3 A model-based Tucker decomposition for arrays

A commonly used model of low-dimensional structure for a matrix-valued dataset Y ∈
R

n1×n2 is that Y is equal to some mean matrix M of rank r < n1 ∧ n2, plus an
error matrix σE having i.i.d. mean-zero entries with variance σ2. Let M = U1DUT

2

be the SVD of M and S = D/σ be the singular values scaled by the error standard
deviation σ. This model can be parameterized as Y = σU1SU

T
2 + σE, or alternatively

in vector form as y = σ(U2 ⊗U1) s+ σe, where y, s and e are the vectorizations of Y,
S and E respectively.

Now consider an analogous model for an array Y ∈ R
n1×···×nK . As in the matrix

case, the model is Y = M+σE, where M is an array with array rank r and E is a mean-
zero error array. Equation (1) says that this model can be expressed as y = σ(UK⊗· · ·⊗
U1) s + σe, where s ∈ R

r1···rK and Uk ∈ Vrk,nk
for each k = 1, . . . ,K. An equivalent

representation in terms of the Tucker product is that Y = σS × {U1, . . . ,UK} + σE.
This section discusses estimation of the unknown parameters (σ,U,S) in this Tucker
decomposition model (TDM) when the error E is assumed to consist of i.i.d. standard
normal random variables. Results on optimal equivariant estimation in the case that S
is known are used to motivate certain priors for equivariant Bayesian inference in the
more realistic case that S is unknown. It is shown that posterior inference under such
prior distributions can be made with a relatively straightforward Markov chain Monte
Carlo (MCMC) algorithm based on Gibbs sampling.

3.1 Equivariant estimation

First consider the (unrealistic) case that the core array S is known. Letting n =
n1 · · ·nK , r = r1 · · · rK and U = {U : U = UK ⊗ · · · ⊗ U1,Uk ∈ Vrk,nk

}, the nor-
mal TDM can be expressed as

y = σUs+ σe, e ∼ Nn(0, I), (σ,U) ∈ R
+ × U . (4)



632 Equivariant and Scale-Free Tucker Decomposition Models

Let W = {W : W = WK ⊗ · · · ⊗W1,Wk ∈ Onk
} be the space of Kronecker products

of orthogonal matrices, and note that WU ∈ U for all W ∈ W and U ∈ U . It follows
that the model (4) is invariant under the group of transformations on Y given by
G = {g : y → aWy, a > 0,W ∈ W}, which induces a group Ḡ on the parameter space
given by Ḡ = {ḡ : (σ,U) → (aσ,WU)}. This motivates the use of equivariant estimators
of σ and U. For example, it is natural to prefer estimators such that σ̂(aWy) = aσ̂(y),
so that a scale change to the data result in the same change to the estimate of the scale
parameter σ. Similarly, one may prefer estimators of U such that Û(aWy) = WÛ(y)
and estimators of m = σUs such that m̂(aWy) = aWm̂(y).

As with many invariant statistical models, risk-optimal equivariant decision rules
can be obtained as Bayes rules under a prior distribution derived from the group:

Proposition 1. Let θ = (σ,U) and Θ = R
+ × U . Under any invariant loss function

L(d, θ) the minimum risk equivariant decision rule δ(y) is given for each y by the
minimizer in d of ∫

L(d, θ)p(y|θ)πI(dθ),

where for measurable sets A ⊂ R
+ and B ⊂ U , πI(A × B) = πσ(A) × πU (B), with

πσ(A) =
∫
A
σ−1 dσ and πU corresponding to the (proper) probability distribution of

UK ⊗ · · · ⊗U1 when each Uk is uniformly distributed on Vrk,nk
.

This result is an application of more general results from invariant decision theory (a
proof is in the Appendix). To put the result more simply, optimal equivariant decision
rules can be obtained from the posterior distribution of (σ,U) under an improper prior
for σ with density 1/σ and independent uniform priors for U1, . . . ,UK . In what follows,
πσ and πU will refer to either these measures or their densities, depending on the context.

Unfortunately, uniformly optimal equivariant decision rules no longer exist under
this group when the core array s is unknown, as the best equivariant rule will depend
on s. This article focuses attention on Bayesian inference for (σ,U, s) using prior distri-
butions with densities of the form π(σ,U, s) = πσ(σ)πU (U)πs(s), where πs(s) is a proper
probability density on R

r1···rK for given ranks r1, . . . , rK . Although not corresponding to
a proper joint prior distribution (because of the improper prior on σ), such densities can
be used to construct proper posterior distributions that provide estimates of functions of
(σ,U, s) that are equivariant with respect to G and Ḡ = {ḡ : (σ,U, s) → (aσ,WU, s)}.
Addressing the propriety of such a posterior first, for each y ∈ R

n define a function
f(σ,U, s : y) so that f(σ,U, s : y) ∝ p(y|σ,U, s)× π(σ,U, s), where p(y|σ,U, s) is the
normal sampling density of y, having mean σUs and variance σ2I. If f is integrable
in (σ,U, s) for the observed value of y, a “posterior” probability distribution can be
defined via the density

π(σ,U, s|y) = f(σ,U, s : y)∫
f(σ,U, s : y) dσdUds

. (5)

That f is generally integrable can be seen by first integrating with respect to σ:∫ ∞

0

f(σ,U, s : y) dσ = πU (U)πs(s)

∫ ∞

0

p(y|σ,U, s)πσ(σ) dσ
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= πU (U)πs(s)

∫ ∞

0

(2π)−n/2σ−n−1 exp(−σ−2‖y −Us‖2/2) dσ

= πU (U)πs(s)× [ 12π
−n/2Γ(n/2)]× ‖y −Us‖−n .

Now ‖y −Us‖ ≥ ‖y − m̂‖, where m̂ is the least squares estimate of m. Since m̂ is of
reduced rank, ‖y−m̂‖ > 0 unless the array rank of y is less than or equal to that of the
fitted rank. Presuming this is not the case, it follows that ‖y−Us‖−n is bounded above
by ‖y−m̂‖−n. Since the priors for U and s are proper, the integral of ‖y−Us‖−n with
respect to πU (U) and πs(s) is finite and so (5) is a proper probability density.

As stated above, the decision rules obtained from such a posterior are not globally
risk optimal among equivariant rules, as optimal rules for (σ,U) depend on the unknown
value of s. However, such posterior distributions still provide equivariant inference in
the following sense:

Proposition 2. Let the prior for θ = (σ,U, s) be such that the marginal prior for
(σ,U) is the invariant prior πI and s is independent of (σ,U). Then for any a > 0,
W ∈ W and functions g : y → aWy and ḡ : (σ,U, s) → (aσ,WU, s),

Pr(θ ∈ A|y) = Pr(θ ∈ ḡA|gy)

for all measurable subsets A of R+ × U × R
r.

A proof is in the Appendix. The result says that, using such a prior, the belief that
the correct θ-value is in A having observed y is the same as the belief that the correct
θ-value is in ḡA having observed gy.

3.2 Posterior approximation via the Gibbs sampler

The results in the previous subsection hold as long as s is a priori independent of σ
and U and the prior for s is proper. The remainder of the article focuses attention
on normal priors for s, so that the joint prior distribution of (σ,U, s) has a density
of the form π(σ,U, s) = πI(σ,U) × πs(s), where πI is density of the invariant prior
discussed previously and πs is a zero-mean multivariate normal prior with covariance
matrix Ψ. Not only are such priors for s computationally convenient, but they lead
to an interpretation of the model as a multiway extension to a normal factor analysis
model, as will be discussed in the next section.

Posterior inference under such a prior can be made via a reasonably straightforward
Gibbs sampling algorithm that approximates the posterior distribution of (σ2,U, s)
given y. The algorithm proceeds by iteratively updating the values of these parameters
as follows:

1. Simulate (σ2, s) from π(σ2, s|y,U) as follows:

(a) simulate σ2 from π(σ2|y,U), an inverse-Gamma distribution;

(b) simulate s from π(s|y,U, σ2), a multivariate normal distribution.
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2. For k ∈ {1, . . . ,K}, simulate Uk from π(Uk|y, s, {Uj : j �= k}, σ2), a von Mises–
Fisher distribution on Vrk,nk

.

Repeated iteration of the above procedure generates a Markov chain whose stationary
distribution is the posterior distribution of (σ2,U, s) given y.

Full conditional distribution of (σ2, s). Recall that the model for y is y = σUs +
σe, e ∼ Nn(0, I), where n =

∏
nk. The normal prior s ∼ Nr(0,Ψ) implies that,

unconditionally on s, y is multivariate normal with mean 0 and covariance matrix

E[yyT |U, σ] = σ2E[UssTUT + eeT + 2UseT ] = σ2
(
UΨUT + I

)
.

Based on this result, standard calculations show that the conditional distribution of σ2

used in step 1 of the above algorithm is an inverse-gamma(n/2,yT (UΨUT + I)−1y/2)
distribution. Now given σ and U, the model can be expressed as y/σ = Us+ e where
the entries of e are i.i.d. standard normal random variables. This has the same form as a
regression model with s playing the role of the vector of unknown regression coefficients.
Combining this “regression likelihood” with the normal prior s ∼ Nr(0,Ψ) gives a
normal full conditional distribution for s with mean and variance given as follows:

Var[s|y,U, σ2,Ψ] = Ψ̃ = (Ψ−1 + I)−1, E[s|y,U, σ2,Ψ] = Ψ̃UTy/σ.

The next section discusses specification and estimation of Ψ, and its relationship to the
mode-specific singular values of the mean array M.

Full conditional distribution of U: Let Y(1), S(1) and E(1) be the mode-1 matri-
cizations of the arrays Y, S and E, respectively. The model can then be written as
Y(1)/σ = U1S(1)U

T
−1 + E(1) where U−1 = (UK ⊗ · · · ⊗U2) and the elements of E(1)

are i.i.d. standard normal random variables. Since the prior for U1 is the uniform dis-
tribution on Vr1,m1 , its full conditional distribution is proportional to the density of
Y(1):

π(U1| . . .) ∝U1 p(Y(1)|S,U, σ2
e) ∝U1 exp(−1

2‖Y(1)/σ −U1S(1)U
T
−1‖2)

∝U1 etr(UT
1 Y(1)U−1S

T
(1))/σ) ≡ etr(UT

1 H)

where H = Y(1)U−1S
T
(1)/σ, and etr(A) is exp(trace(A)). This is proportional to the

matrix-variate von Mises–Fisher distribution vMF(H) on Vr1,m1 . An algorithm for direct
simulation from vMF(H) is described in Hoff (2009). The full conditional distributions
of U2, . . . ,UK can be derived analogously.

4 Estimation of Ψ

The covariance matrix Ψ of the core array S can be viewed as a description of the scale
of M relative to the scale σ of the error, or alternatively, as a penalty on the magnitude
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of S that serves to provide a regularized estimator of the mean array M = σS×U. In
practice, an appropriate value of Ψ may not be known in advance, and therefore must
be estimated from the data. This section discusses estimation of Ψ in the context of
two models for S. The first of these is simply that vec(S) = s ∼ Nr(0, τ

2I), where τ2

is a scale parameter to be estimated. In a simulation study, it is shown that this model
provides better estimates of M than those obtained by minimizing the residual sum of
squares. However, this simple covariance model shrinks all values of S equally, and does
not recognize the array structure of S. As an alternative to this homoscedastic i.i.d.
model, a heteroscedastic separable variance model is developed, of the form Cov[s] =
τ2ΛK ⊗ · · · ⊗ Λ1, where each Λk is a diagonal matrix with positive entries that sum
to 1. Such a model allows for separate penalization of the mode-specific eigenvalues
of the array M. Such penalization is useful when it is feared that the fitted rank r is
larger than the actual rank of the mean array for some of the modes. In such cases,
it is desirable to have a procedure that can shrink the estimate of M towards arrays
with lower mode-specific ranks. This section first derives this heteroscedastic model and
provides some interpretation of the parameters, and then illustrates in a simulation
study how estimators based on this model can shrink towards low-rank solutions when
the fitted rank is too large.

4.1 Derivation and interpretation of the heteroscedastic model

Even if s were observed, unrestricted estimation of Ψ based on the model s ∼ Nr(0,Ψ)
would be problematic, as s corresponds to only a single realization from the Nr(0,Ψ)
distribution. Instead, consider first estimation of Ψ restricted to the class of separable
covariance matrices, so that Ψ = ΨK ⊗ · · · ⊗Ψ1, where each Ψk is an rk × rk positive
definite matrix. Now recall that marginally over s, the distribution for y = vec(Y)
is a mean-zero n-variate normal distribution with covariance matrix proportional to
UΨUT + I. As U and Ψ are both separable, it follows that

Cov[y|σ,U,Ψ]/σ2 = UΨUT + I = (UKΨKUT
K ⊗ · · · ⊗U1Ψ1U

T
1 ) + I. (6)

This covariance model is similar to that of a factor analysis model, in which the co-
variance matrix is represented as a reduced-rank positive semidefinite matrix plus a
full-rank diagonal matrix of positive entries. As with factor analysis, the covariance
model above is not identifiable unless restrictions are placed on the Ψk’s. First, the
eigenvectors of each Ψk are not identifiable: If Ψk = VkΛkV

T
k is the eigendecompo-

sition of Ψk, then UkΨkU
T
k = ŨkΛkŨk

T
, where Ũk = UkV

T
k ∈ Vrk,nk

. Second, the
scales of theΨk’s are not separately identifiable: For example, replacement of (Ψk1 ,Ψk2)
with (cΨk1 ,Ψk2/c) does not change the covariance matrix. With this in mind, Ψ is pa-
rameterized as Ψ = τ2(ΛK ⊗ · · · ⊗Λ1) where τ2 > 0 and for each k, Λk is an rk × rk
diagonal matrix of positive entries that sum to 1.

The parameters Λ1, . . . ,ΛK can be interpreted in terms of the prior or penalty
they induce over the mode-specific eigenvalues of the mean array M = σS×U. These
eigenvalues are often of interest in multiway data analysis as they describe the extent
to which the variation along a mode can be attributed to a small set of orthogonal
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factors. To relate these eigenvalues to the Λk’s, recall that M(1) = σU1S(1)U
T
(−1), and

so M(1)M
T
(1) = σ2U1S(1)S

T
(1)U

T
1 . Now S(1) is equal in distribution to τΛ

1/2
1 ZΛ

1/2
−1 ,

where Λ−1 = ΛK ⊗ · · · ⊗ Λ2 and Z is an r1 × r−1 matrix of independent standard
normal entries. This gives

E[M(1)M
T
(1)] = σ2τ2U1Λ

1/2
1 E[ZΛ−1Z

T ]Λ
1/2
1 UT

1

= σ2τ2U1Λ
1/2
1 (tr(Λ−1)I)Λ

1/2
1 UT

1 = σ2τ2U1Λ1U
T
1 , (7)

where the last calculation follows because the sum of the entries of each Λk is 1, making
tr(Λ−1) = 1. Based on this calculation for M(1) (and analogous calculations for the
other M(k)’s), τ

2 is seen to be the expected squared magnitude of the mean array M
relative to the error variance σ2, and each Λk is the (scaled) diagonal eigenvalue matrix
of E[M(k)M

T
(k)]. Additionally, if one or more of the diagonal elements of Λk are very

close to zero, then M(k) will be very close to a matrix of rank less than rk.

The separable model s ∼ Nr(0, τ
2ΛK ⊗ · · · ⊗Λ1) also provides a link to the param-

eterization of the core array used in the HOSVD of De Lathauwer et al. (2000). In this
latter approach, the core S of the data array Y has the property of “all-orthogonality”,
in that for each k, S(k)S

T
(k) is a diagonal matrix whose elements can be thought of as the

mode-k eigenvalues of Y. Similarly, the separable covariance model proposed here for
the core S of the mean array M has the property of all-orthogonality in expectation: For
each k = 1, . . . ,K, E[S(k)S

T
(k)] = τ2Λk, a diagonal matrix. From (7), Λk can be viewed

as the eigenvalues of the expected sum of squares matrix E[M(k)M
T
(k)], or alternatively

as the mode-k eigenvalues in the marginal covariance model for Y given in (6).

4.2 Simulation study

A natural estimator of the reduced-rank mean array M based on the data array Y is
the minimizer of the residual sum of squares ‖Y − M‖2. If K > 2 the least-squares
estimator of M is not available in closed form, and so standard practice is to obtain a
local minimizer M̂ALS via an alternating least-squares (ALS) algorithm. The algorithm
minimizes the sum of squares iteratively in the mode-specific eigenvectors of M, a
process that has been called “higher order orthogonal iteration” (HOOI) (De Lathauwer
et al., 2000).

One might anticipate that estimates of the mean array M based on the homoscedas-
tic model for S, in which s ∼ Nr(0, τ

2I), will outperform M̂ALS due to the ability of the
former to shrink the values of S and the tendency of least-squares estimators to overfit,
particularly for large values of r. It might be further anticipated that the heteroscedastic
covariance model for S, in which s ∼ Nr(0, τ

2(ΛK ⊗ · · · ⊗ Λ1)), will outperform the
homoscedastic model when r is chosen to be too large, as the heteroscedastic model
allows for mode-specific shrinkage of the mean array towards estimates of lower rank.
However, such desirable performance in the case of a misspecified rank may come at the
expense of poorer performance when the rank is correctly specified.

These possibilities were investigated with a simulation study comparing three dif-
ferent estimators of the mean array M:
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1. M̂ALS, obtained with the ALS algorithm;

2. M̂HOM, the posterior mean under the homoscedastic model s ∼ Nr(0, τ
2I);

3. M̂HET, the posterior mean under the heteroscedastic model s ∼ Nr(0, τ
2ΛK ⊗

· · · ⊗Λ1).

The Bayes estimator M̂HOM was obtained using a conjugate inverse-gamma(ν0/2, τ
2
0 /2)

prior for τ2, where ν0 = 1 and τ20 =
∏K

k=1 nk/rk. This value of τ20 makes the expected
prior magnitude of the mean array equal to that of the error, so that E[‖M‖2] = E[‖E‖2]
a priori. The Bayes estimator M̂HET was obtained under a prior on (τ2,Λ1, . . . ,ΛK)
in which τ2 has an inverse-gamma(1/2, τ20 /2) distribution and the diagonal elements of

each Λk are uniform on the rk-dimensional simplex. The value of τ20 =
∏K

k=1 nk was

chosen so that E[‖M‖2] = E[‖E‖2] a priori, as with the prior used to obtain M̂HOM.
The uniform priors on the Λk’s are not conjugate, and so the Markov chain for posterior
estimation in this model relies on a Metropolis–Hastings update for these parameters.

Three-dimensional data arrays Y ∈ R
60×50×40 were simulated according to the

following procedure: For a given rank vector r0 = (r01, r02, r03),

1. Simulate Uk ∼ uniform(Vr0k,nk
) for each k ∈ {1, 2, 3};

2. Simulate s ∼ Nr(0, ψ ×
(∏K

k=1 r
2
0k

)−1/3

× I);

3. Let M = S× {U1, . . . ,UK}, where vec(S) = s;

4. Let Y = M+E, where E has i.i.d. standard normal entries.

Data were generated under two values of r0 and two values of ψ for a total of four
different conditions. The values of r0 included a “low-rank” condition r0 = (6, 5, 4)
and a “high-rank” condition r0 = (30, 25, 20), and the values of ψ included a “low-
signal” condition ψ = 1000 and a “high-signal” condition ψ = 2000. Ten datasets were
generated under each of these four conditions, for a total of forty simulated datasets.
For each dataset, M̂ALS, M̂HOM and M̂HET were obtained with the assumed rank r
equal to the true rank r0. Each Bayesian estimate was obtained via 11,000 iterations of
the MCMC algorithm described in the previous section. The first 1000 iterations of each
Markov chain were dropped to allow for convergence to the stationary distribution, and
parameter values were saved every 10th iteration thereafter, resulting in 1000 simulated
values of M with which to approximate its posterior mean. Convergence and mixing
of the Markov chains were monitored via traceplots of the simulated values of σ2 and
τ2, as well as their effective sample sizes, which roughly measure the approximation
variability of the posterior mean estimates relative to those that would be obtained
from independent Monte Carlo simulations. Effective sample sizes for σ2 and τ2 were
above 300 for all scenarios and datasets, and close to half the Markov chains attained
the maximum possible value of 1000.
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rank r0 = (6, 5, 4) r0 = (30, 25, 20)
signal low high low high

RSE(M̂ALS) 0.195 0.088 0.848 0.379

RSE(M̂HOM) 0.165 0.082 0.485 0.280

RSE(M̂HET) 0.165 0.082 0.489 0.281

Table 1: Relative squared estimation errors.

rank r0 = (6, 5, 4) r0 = (30, 25, 20)
signal low high low high

RSE(M̂ALS) 0.855 0.404 4.840 2.420

RSE(M̂HOM) 0.260 0.141 1.364 0.840

RSE(M̂HET) 0.166 0.082 0.495 0.284

Table 2: Relative squared estimation errors when the fitted rank is twice that of r0.

For each estimator and each simulation condition, a relative squared estimation error
(RSE) was computed by averaging the value of ‖M−M̂‖2/‖M‖2 across the 10 datasets.

These values are given in Table 1. Note that M̂HOM is to some extent an “oracle”
estimator, in that it is based on a prior distribution that was used to simulate the data
(although M̂HOM requires estimation of τ2). Nevertheless, in the low-rank case (r0 =
(6, 5, 4)), the two Bayes estimators performed nearly identically in terms of RSE, and the

ALS estimator performed slightly worse. In terms of variability across datasets, M̂HOM

outperformed M̂ALS for all datasets, and outperformed M̂HET in 10 of the 20 datasets.
The story is similar for the 20 high-rank datasets (r0 = (30, 25, 20)), except that ALS
performs more poorly in this case than in the low-rank case, presumably because of the
much larger number of parameters and the general tendency of least-squares estimators
to overfit the data. Regarding this, the residual squared error ‖Y − M̂‖2 was lower for
the ALS estimator than the Bayes estimators across all datasets and scenarios.

For the same 40 simulated datasets, estimates M̂ALS, M̂HOM and M̂HET were also
obtained using a fitted rank of r = 2×r0, that is, twice the actual rank of M. Note that
in the high-rank scenario the fitted rank is r = (60, 50, 40), which is the dimension of
the data array. In this case, the estimates are of full rank and so in particular the ALS
estimate is simply Y. Also, the Bayes estimates in this full rank case were obtained
using a proper gamma(1/2, 1/2) prior distribution for σ2 to guarantee the propriety
of the posterior (recall the discussion in Section 2). Relative squared errors (RSEs)

for these misspecified-rank estimators are given in Table 2. Not surprisingly, M̂ALS

performs poorly across all scenarios, and roughly 4 to 6 times worse than it does when
the rank is correctly specified. The Bayes estimator M̂HOM performs reasonably well in
the low-rank scenario, but roughly 3 times worse than it does in the high-rank scenario
with correctly specified rank. In contrast, the performance of M̂HET with a misspecified
rank is nearly identical to its performance with a correctly specified rank. This suggests
that the heteroscedastic model for S is able to shrink the estimate of M towards arrays
of the correct rank.
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Figure 1: Difference of eigenvalues between M̂(1)M̂
T
(1) and M(1)M

T
(1). Estimates in the

first row are based on a true rank of r0 = (6, 5, 4) and a fitted rank of r = (12, 10, 8).
Estimates in the second row are based on a true rank of r0 = (30, 25, 20) and a fitted
rank of r = (60, 50, 40).

This is explored further in Figure 1. For each Bayesian estimate M̂ obtained with
a misspecified rank, its mode-1 matricization M̂(1) was constructed and the normal-

ized eigenvalues of M̂(1)M̂
T
(1) were computed, from which the normalized eigenvalues

of M(1)M
T
(1) were subtracted off, where M(1) is the mode-1 matricization of the true

mean array M. These eigenvalue differences are plotted across datasets and conditions
in Figure 1. For example, the plot in the upper-left corner of the figure shows results
under the low-signal low-rank condition, for which the true rank is r = (6, 5, 4) but the

fitted rank is r = (12, 10, 8). Each black line corresponds to the eigenvalues of M̂(1)M̂
T
(1)

obtained under the heteroscedastic model minus the eigenvalues of M(1)M
T
(1), for one of

the 10 simulated datasets. The gray lines correspond to the analogous differences under
the homoscedastic model. The results indicate that the homoscedastic model generally
underestimates non-zero eigenvalues and substantially overestimates zero eigenvalues.
In contrast, the heteroscedastic model generally does a very good job of estimating the
zero eigenvalues as being very nearly zero. However, for the non-zero eigenvalues, the
estimated eigenvalues for the the heteroscedastic model are somewhat too “steep”, over-
estimating the true large non-zero eigenvalues and underestimating the small non-zero
eigenvalues. A larger signal appears to ameliorate these biases, as the differences be-
tween estimated and true eigenvalues is diminished in going from the low-signal to the
high-signal scenario. However, the presence of such biases suggests exploration of more
complex adaptive penalties or hierarchical priors, i.e., ones that could more flexibly
adapt to the shape of the eigenspectra in the observed data. For example, a beta(a, b)
prior over the diagonal elements of Λk could be used instead of the uniform prior. How-
ever, in the absence of prior information about the eigenspectra, the values of a and b
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would need to be obtained from the data. Such an empirical Bayes approach would be
similar in spirit to the two-parameter matrix regularizer of Josse and Sardy (2013).

Regarding computation time, iteration of the ALS algorithm is generally faster than
iteration of the Gibbs sampler. For example, for the low-rank scenario (r0 = r =
(6, 5, 4)), each scan of the Gibbs sampler is about 2.5 times slower than each iteration of
the ALS algorithm (about 0.26 seconds versus 0.11 seconds in R on a desktop computer).
For the high-rank scenario (r0 = r = (30, 25, 20)), the Gibbs sampler is a little over four
times slower. The increase is due to the fact that simulation of the components of U
from their full conditional distribution involves a rejection sampler for each column of
each Uk matrix. While the per-iteration computational burdens of these two approaches
are comparable, obtaining a precise approximation to the posterior distribution of M
will generally take substantially longer than obtaining an approximate least-squares es-
timate: The former may require thousands of iterations of the Gibbs sampler, while the
latter generally requires an order of magnitude fewer iterations of the ALS algorithm.
However, if the goal is only to obtain a posterior mean estimate of M, a substantially
shortened Gibbs sampler may be sufficient: In the low-rank case, a 10,000-iteration
Gibbs sampler gave an RSE of M̂HET that was about 15% lower than that of M̂ALS

(see Table 1). However, a Gibbs sampler with only 1,000 iterations provided an RSE for

M̂HET that was 14% lower than that of M̂ALS. In other words, most of the improvement
of M̂HET over M̂ALS can be obtained using a relatively short Gibbs sampler.

5 A scale-free Tucker decomposition model

In this section the TDM is extended in order to analyze data arrays for which the
assumption of normally distributed errors is inappropriate. The approach presented is
based upon a transformation model in which the observed data array is modeled as
an unknown increasing function of a latent array that follows a normal TDM. The
model fitting procedure provides parameter estimates that are invariant to monotonic
transformations of the data array, thereby giving a “scale-free” TDM. This approach
is motivated and illustrated with an analysis of discrete multivariate data on relations
between countries in the year 2012.

5.1 Data description

The motivating application of this section is to obtain a low-rank representation of
a relational dataset on actions between countries, available from the GDELT project
(gdeltproject.org). The data analyzed consist of a weekly summary of 20 different types
of actions between the 30 most active countries in the GDELT database in 2012. These
data can be represented as a 30× 30× 20× 52 four-way array Y, with entries {yi,j,k,t :
1 ≤ i, j ≤ 30, i �= j, 1 ≤ k ≤ 20, 1 ≤ t ≤ 52} where yi,j,k,t is the number of days in week
t in which country i took action k with country j as the target. The types of actions
include “positive” actions such as diplomatic cooperation and the provision of aid, as
well as “negative” actions such as the expression of disapproval, military threats and
military conflict (a list of the action types is given in Table 3). Figure 2 provides a

http://gdeltproject.org/
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Figure 2: Networks corresponding to two of the twenty action types.

graphical summary of the array Y for two of the twenty action types. To construct this
figure, counts for each of the action types between each ordered pair of countries were
summed across the 52 weeks of the year and then dichotomized, so that a link between
two countries indicates the presence of the action type for at least one day of the year.

The data array Y has nearly one million entries but is very sparse, with just over 2%
of the entries being non-zero. This sparsity varies by action type from a high of about
12% for the action “consult” to a low of less than 0.01% for the action “use uncon-
ventional mass violence.” Sparsity also varies considerably by country: The first panel
of Figure 3 plots outdegrees and indegrees of each country, computed (for country i)
as

∑
jkt yi,j,k,t and

∑
jkt yj,i,k,t, respectively. These two measures of activity are highly

correlated across countries, with Syria being somewhat of an outlier, being the target
of more actions than it initiates. Additionally, the counts for each action are highly
skewed: There are more counts of zero than counts of one, more counts of one than
counts of two, and so on. This is illustrated in the second panel of Figure 3, which gives
the empirical distribution of the non-zero entries of Y.

Figure 3: Descriptive data plots. The left panel shows country-specific outdegrees and
indegrees on the log-scale. The right panel gives a histogram of the non-zero action
counts.
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5.2 Scale free TDM

Existing array decomposition methods applied directly to these data would be problem-
atic for several reasons. One particular issue in applying matrix or array decomposition
methods to relational datasets is that self-relations are typically undefined, that is,
yi,i,k,t is not defined for any i, k or t. This issue can be addressed via an alternating
least-squares algorithm that iterates between fitting a reduced-rank model and replacing
any missing values with fitted values (see, for example, Ward and Hoff (2007) for details
on such an algorithm applied to matrix-valued relational data). A more serious problem
is that the discrete or ordinal nature of many relational datasets makes least-squares
methods of limited use. For example, as will be illustrated at the end of this section, a
reduced rank representation of the GDELT data array Y obtained via alternating least
squares generally represents the largest data values at the expense of other interesting
features of the data.

While the normal TDM model presented in the previous section may not be appro-
priate for ordinal or discrete data, the normal model can be extended to accommodate
such data via a latent variable formulation, in which the entries of Y are modeled as
a non-decreasing function of the elements of a latent array Z that follows the Tucker
decomposition model. If the elements of Y take on a known finite number of possible
values, then such an approach can be viewed as similar to an ordered probit model.

In many datasets one of the indices of the array Y represents variables having
different scales. For example, the large heterogeneity in sparsity between the 20 different
action types in the GDELT dataset suggests modeling the different types on different
scales. As another example, consider an n × n × 2 relational array where yi,j,1 is the
number of emails sent from person i to person j, and yi,j,2 encodes an evaluation of
i’s friendship to j on an ordinal scale. In such a case, it may not make sense to model
yi,j,1 and yi,j,2 as the same transformation of the latent variables zi,j,1 and zi,j,2. In
particular, the number of levels of the two variables may be different. For cases such as
these, a more appropriate transformation model may be one with with variable-specific
transformations, so that

Z = S× {U1, . . . ,UK}+E, vec(E) ∼ Nn(0, I), yi,j = gj(zi,j), (8)

where i ∈ {1, . . . , n1} × · · · × {1, . . . , nK−1}, j ∈ {1, . . . , nK}, and for notational con-
venience the variables to be modeled on different scales are indexed by the Kth mode
of the array. Note that the scale parameter σ from the TDM in the previous sections
would be confounded with the transformations g1, . . . , gnK

, and so can be set to 1.

In the case that the transformations g1, . . . , gnK
are nuisance parameters, scale-free

estimation of (S,U) can be obtained using a rank likelihood LR, defined as

LR(S,U : Y) = Pr(Z ∈ R(Y)|S,U),

where R(Y) is the set of Z-values consistent with the observed data Y and the fact
that the functions g1, . . . , gnK

are non-decreasing. This set can be expressed as

R(Y) = {Z : max{zi′,j : yi′,j < yi,j} < zi,j < min{zi′,j : yi,j < yi′,j}}.
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A feature of estimates obtained from the rank likelihood is that they are scale-free: The
set R(Y) is invariant to strictly increasing transformations of the data, and therefore
so is LR.

While maximum likelihood estimation using the rank likelihood is generally compu-
tationally intractable, Bayesian inference using this likelihood is feasible via the Gibbs
sampler (see Hoff (2007) and Hoff (2008) for applications of the rank likelihood to semi-
parametric copula and regression models, respectively). Under a prior distribution for
(S,U) from the previous section, posterior estimates for this scale-free TDM can be
obtained via a simple extension of the previous algorithm. The extended algorithm can
be roughly understood as follows: If Z were observed, parameter estimates could be
obtained from the MCMC algorithm for the normal TDM. As Z is not observed, the
algorithm requires additional steps in order to integrate over the possible values of Z.
This can be done by simulating values of the elements of Z from their full conditional
distributions at each step of the Markov chain. Specifically, posterior approximation for
this scale-free TDM can proceed by iterating the following steps: Given current values
(Z,S,U),

1. Update (S,U) as in the case of the normal TDM, with Z taking on the role of Y;

2. Update the elements of Z given Y, S and U as follows:

(a) Compute M = S× {U1, . . . ,UK};
(b) Simulate each zi,j from the constrained normal(mi,j , 1) distribution, con-

strained so that max{zi′,j : yi′,j < yi,j} < zi,j < min{zi′,j : yi,j < yi′,j}.

Iteration of steps 1 and 2 generates a Markov chain, samples from which approximate
the posterior distribution proportional to LR(S,U : Y)×π(S,U). As mentioned above,
parameter estimates obtained from this posterior distribution are invariant to monotonic
transformations of each variable along the Kth mode of the array. For this reason, this
estimation procedure and the resulting estimates can be referred to as a scale-free Tucker
decomposition (SFTD).

5.3 Analysis of GDELT data

A rank r = (4, 4, 4, 4) representation of the GDELT data was obtained from the SFTD
procedure described above using the heteroscedastic prior described in Section 4 and
modeling the 20 action types on different scales. A rank of 4 for each mode was chosen
because of the substantial heterogeneity in the degrees as displayed in the first panel
of Figure 3. A standard approach to representing such heterogeneity would be with an
additive model in which the entries of M are expressed as the sum of mode-specific
effects, for example, mi,j,k,t = ai + bj + ck + dt. Such an additive effects model has a
rank of (2, 2, 2, 2). A rank (4, 4, 4, 4) approximation was fit to Y in order to capture the
rank (2, 2, 2, 2) additive effects along with two additional dimensions of non-additive
data patterns, which are shown below.
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The MCMC algorithm described above was run for 55,000 iterations. The first 5,000
iterations were dropped to allow for convergence, and parameter values were saved every
10th iteration thereafter. This resulted in 5,000 simulated values of the parameters with
which to approximate posterior quantities of interest. Mixing of the Markov chain was
evaluated with traceplots and effective sample sizes of τ2 and the eigenvalue parameters
Λ1, . . . ,Λ4. The effective sample size for τ2 was 1197. Effective sample sizes for the
eigenvalues ranged between 371 and 1266, with a mean of 678. The first eigenvalues of
the third and fourth modes (corresponding to action type and week) are close to one
with high posterior probability, meaning that M(3) and M(4) are both close to being
rank-1 matrices. Eigenspectra of the first and second modes (corresponding to initiators
and targets of the actions) were more evenly distributed. For both of these two modes,
the first two eigenvectors predominantly represented the heterogeneity in outdegrees
and indegrees. To examine non-additive patterns in the data, the posterior mean array
M̂ was centered along each index of each mode, creating an array M̃ representing the
non-additive patterns in the data.

The first two left singular vectors of M̃(1), M̃(2) and M̃(3) are displayed in Figure 4.

The first two plots indicate strong geographic patterns in the first two modes of M̃.
These patterns indicate that, after accounting for additive effects, countries that have
similar patterns of activity in the dataset are typically close to one another geograph-
ically. The converse is not generally true: PSE and ISR are far apart from SYR, IRQ
and IRN on the plot, indicating heterogeneity in the dataset that is non-geographic.
The third plot in Figure 4 displays the singular vectors of M̃(3) corresponding to the
different action types. Plotting symbols “+” and “−” are used to indicate actions that
are categorized as “positive” or “negative”, respectively. The singular vectors of M̃(3)

distinguish somewhat the two types of actions, but there is considerable overlap. This
is not too surprising, since countries that interact frequently with each other generally
relate both positively and negatively during the course of the year.

The utility of the SFTD in comparison to a least-squares approach can be seen by
contrasting this scale-free representation of Y given in Figure 4 to an analogous least-
squares representation shown in in Figure 5. This plot gives the first two singular vectors

Figure 4: The first two left singular vectors of M̃(1), M̃(2) and M̃(3), from the SFTD
of Y.
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Figure 5: The first two left singular vectors of M̃ALS(1), M̃ALS(2), and M̃ALS(3).

of the first three modes of M̃ALS, where M̃ALS was constructed as with the SFTD except
using a rank (4,4,4,4) alternating least-squares approximation M̂ALS to Y instead of

the posterior mean array M̂. The least squares approach is primarily identifying the
countries that have the most number of data values of 7 (the highest value possible),
at the expense of representing the other patterns in the data. For example, the first
singular vectors of the both the first- and second-mode matricizations of M̃ALS are
essentially devoted to distinguishing the USA from the other countries.

The posterior mean array M̂ and the least squares representation M̂ALS can also
be evaluated in terms of how well they represent the rank ordering of the values of Y.
This is done by computing Kendall’s τ , a scale-free measure of association, between
the entries of Y and each of the two low-rank representations M̂ and M̂ALS. This is
done separately for each of the 20 action types in order to evaluate any heterogeneity
in performance. As shown in Table 3, the SFTD representation has a higher degree
of association with the ranks of Y than the least-squares representation for all action
types. This is perhaps not too surprising – the SFTD is inherently scale-free, and so
M̂ is only representing information about the rank ordering of the entries of Y. In
contrast, M̂ALS must also represent differences in magnitude. For these highly skewed
data, a good representation of large differences in magnitude comes at the cost of a
poorer representation of small differences, which constitute most of the differences in
the entries of Y.

action M̂ALS M̂ action M̂ALS M̂ action M̂ALS M̂
statement 0.66 0.74 yield 0.65 0.77 exhibit force 0.76 0.88
appeal 0.65 0.75 investigate 0.63 0.75 reduce relations 0.61 0.77
cooperative intent 0.63 0.7 demand 0.68 0.84 coerce 0.57 0.69
consult 0.58 0.65 disapprove 0.69 0.8 assault 0.58 0.76
diplomatic coop 0.57 0.67 reject 0.76 0.84 fight 0.65 0.77
material coop 0.58 0.7 threaten 0.65 0.82 mass violence 0.83 0.91
aid 0.66 0.79 protest 0.66 0.81

Table 3: Kendall’s τ measure of association between Y and M̂ALS and M̂.
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6 Discussion

While the objectives of an array-valued data analysis may be primarily descriptive,
model-based approaches may be appealing for a variety of reasons. For example, reg-
ularized data descriptions may be obtained using model-based Bayesian procedures,
with the prior acting as a penalty term. This article has developed a parameteriza-
tion of the normal Tucker decomposition model that allows for scale-equivariant and
orthogonally-equivariant estimates and data descriptions, while still allowing for penal-
ization of mode-specific singular values. Such regularized estimates can greatly improve
upon least-squares estimates in situations where the data array is equal to a reduced-
rank mean array plus noise. Another benefit of the model-based approach is its exten-
sibility to a variety of different data types and data analysis scenarios. For example,
the semiparametric transformation model developed in Section 5 provides a scale-free
reduced-rank representation for data arrays that consist of discrete, ordinal or other
types of measurements for which a least squares criterion is not appropriate.

The Gaussian model described in Sections 3 and 4 can also be extended to ac-
commodate non-normal data that is continuous but heavy-tailed, using scale mixtures
of Gaussian error distributions (Fernández and Steel, 2000). Operationally, the error
structure is represented as E = G ◦W, where G is a Gaussian array, W is an array of
latent variables and “◦” is the Hadamard (elementwise) product. For example, gamma-
distributed entries for W lead to t-distributed errors. Posterior inference for such a
model can be obtained via an additional Gibbs sampling step in the MCMC algorithm
presented in Section 4.

An additional extension of the model would be to data analysis situations in which it
is desired to account for known explanatory factors or patterns in the data. For example,
one extension of the model used to analyze the GDELT data in Section 5 takes the form

Z = 〈X,B〉+ S× {U1, . . . ,UK}+E,

vec(E) ∼ N(0,Σ(ρ)⊗ I⊗ I⊗ I)

whereX andB represent arrays of known explanatory variables and unknown regression
coefficients, respectively, and Σ(ρ) is some simple one-parameter model that accounts
for some of the temporal dependence in the data. In such a model, the reduced rank
term S × {U1, . . . ,UK} would express data patterns not accounted for by 〈X,B〉 or
Σ(ρ). Bayesian inference for parameters in such a model could be obtained by adding
steps to the MCMC algorithm outlined in this article.

Replication code for the results in Sections 4 and 5 is available at the author’s
website: www.stat.washington.edu/~hoff.
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