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Objective Bayesian Inference for a Generalized
Marginal Random Effects Model

O. Bodnar∗, A. Link†, and C. Elster‡

Abstract. An objective Bayesian inference is proposed for the generalized mar-
ginal random effects model p(x|μ, σλ) = f((x − μ1)T (V + σ2

λI)
−1(x − μ1))/√

det(V + σ2
λI). The matrix V is assumed to be known, and the goal is to in-

fer μ given the observations x = (x1, . . . , xn)
T , while σλ is a nuisance parameter.

In metrology this model has been applied for the adjustment of inconsistent data
x1, . . . , xn, where the matrix V contains the uncertainties quoted for x1, . . . , xn.

We show that the reference prior for grouping {μ, σλ} is given by π(μ, σλ) ∝√
F22, where F22 denotes the lower right element of the Fisher information ma-

trix F. We give an explicit expression for the reference prior, and we also prove
propriety of the resulting posterior as well as the existence of mean and variance
of the marginal posterior for μ. Under the additional assumption of normality,
we relate the resulting reference analysis to that known for the conventional bal-
anced random effects model in the asymptotic case when the number of repeated
within-class observations for that model tends to infinity.

We investigate the frequentist properties of the proposed inference for the gen-
eralized marginal random effects model through simulations, and we also study its
robustness when the underlying distributional assumptions are violated. Finally,
we apply the model to the adjustment of current measurements of the Planck
constant.

Keywords: objective Bayesian inference, reference prior, random effects model.

1 Introduction

We consider the model

p(x|μ, σλ) =
1√

det(V + σ2
λI)

f
(
(x− μ1)T (V + σ2

λI)
−1(x− μ1)

)
, (1)

where 1 is a vector of ones, and I denotes the identity matrix of an appropriate order.
The goal is to infer μ given observations (x1, . . . , xn)

T = x. The n×n symmetric positive
definite matrix V is assumed to be known, while σλ denotes a nuisance parameter. In
the multivariate normal case, (1) is the marginal model of the random effects model

X = μ1+ λ+ ε with λ ∼ N(0, σ2
λI) and ε ∼ N(0,V), (2)

∗Physikalisch-Technische Bundesanstalt, Abbestrasse 2-l2, l0587 Berlin, Germany,
Olha.Bodnar@ptb.de

†Physikalisch-Technische Bundesanstalt, Abbestrasse 2-l2, l0587 Berlin, Germany,
Alfred.Link@ptb.de

‡Physikalisch-Technische Bundesanstalt, Abbestrasse 2-l2, l0587 Berlin, Germany,
Clemens.Elster@ptb.de

c© 2016 International Society for Bayesian Analysis DOI: 10.1214/14-BA933

http://bayesian.org
mailto:Olha.Bodnar@ptb.de
mailto:Alfred.Link@ptb.de
mailto:Clemens.Elster@ptb.de
http://dx.doi.org/10.1214/14-BA933


26 Bayesian Inference for Generalized Marginal Random Effects Model

where λ and ε are independent. We will therefore call (1) a generalized marginal ran-
dom effects model. For the particular normal case, we will refer to the model as the
normal marginal random effects model. We note that X|μ, σλ ∼ En(μ1,V + σ2

λI, f)
(n-dimensional elliptically contoured distribution with location vector μ1, dispersion
matrix (V + σ2

λI), and density generator f(·), cf. Gupta et al. (2013)) under (1), and
model (2) is obtained as a special case when setting f(u) = exp (−u/2) /(2π)n/2. Fol-
lowing the definition of elliptically contoured distributions (cf. Definition 1 in Gómez
et al. (2003)), the function f(·) should be a non-negative Lebesgue measurable function
on [0,∞) such that ∫ ∞

0

tn−1f(t2)dt < ∞

holds.

Model (1) is relevant in metrology for the adjustment of inconsistent data. For ex-
ample, under the additional assumption of normality, the model has been proposed for
the determination of a reference value required in the analysis of interlaboratory com-
parisons (see, e.g., Kacker (2004), Toman and Possolo (2009)), or for the determination
of a fundamental constant (cf. Toman et al. (2012)). The matrix V contains the un-
certainty assessments about X made by the corresponding laboratories, and the simple
model X ∼ N(μ1, Ṽ) is applied with Ṽ = V + σ2

λI. The additional term σ2
λI accounts

for a possible underrating of quoted uncertainties. However, the normality assumption
is rather stringent and may not be adequate which motivates our distributional general-
ization. We also refer to Rukhin and Possolo (2011) and Possolo (2013) who considered
model (2) with the normal distribution being replaced by a Laplace distribution and a
t-distribution, respectively.

The elements in the matrixV may actually be viewed as further parameters of model
(1) that ought to be included in a Bayesian inference. However, such a model is no longer
identifiable (from a single multivariate observation x), and a Bayesian inference based on
non-informative priors would not be possible then. Similar to applications in metrology,
model (1) with known V may be seen as a simple model for the inference of μ based
on a single observation x and a possibly underrated covariance matrix V. Formally, the
results given in this paper are conditional on V.

The one way random effects model (2) is a standard model in statistics that has long
been researched from both classical statistics (see, e.g., Cochran (1937, 1954), Yates
and Cochran (1938), Rao (1997), Searle et al. (2006)) and Bayesian statistics (cf., for
example, Hill (1965), Tiao and Tan (1965), Datta and Gosh (1995), Browne and Draper
(2006), Gelman (2006)). However, in the form (2), i.e., with known residual variance
and without repeated within-class observations, the random effects model has hardly
been treated in the statistical literature. One exception is Rukhin and Possolo (2011)
who considered this (type of) model, albeit with the Gaussian distributions replaced
by Laplace distributions. The one way random effects model is usually considered in
combination with repeated within-class observations, for instance in the form

Xij = μ+ λi + εij , where λi ∼ N(0, σ2
λ), and εij ∼ N(0, σ2) (3)
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for j = 1, . . . , ni and i = 1, . . . , n. Furthermore, the variance σ2 enters as a further

unknown. Software is widely available for the treatment of this model, e.g., in R Devel-

opment Core Team (2008), for both classical or Bayesian inferences. Also the Berger &

Bernardo reference prior has already been derived both for the balanced case (Berger

and Bernardo, 1992b) and the unbalanced case (Ye, 1990).

We derive the Berger & Bernardo reference prior (cf. Berger and Bernardo (1992a))

for model (1) (with known V) based on the grouping {μ, σλ}. First we show that the

Fisher information matrix F does not depend on μ, and that hence the sought reference

prior is given by π(μ, σλ) ∝
√
F22. We then provide the reference prior in explicit form,

and we show propriety of the resulting posterior as well as the existence of mean and

variance of the marginal posterior for μ. We will establish a relationship between the

corresponding (marginal) reference posterior in the balanced case and the reference

posterior obtained for model (1) under the additional assumption of normality. The

inferential properties of the resulting posterior are investigated by simulations for several

density generators and a particular scenario, and we will report coverage probabilities

and mean lengths of 95% credible intervals. In addition, we study the robustness of the

inference when distributional assumptions are violated.

The paper is organized as follows. In Section 2, we derive the reference prior for

the generalized random effects model (1) and examine properties of the corresponding

posterior. We investigate the frequentist properties of the resulting inference in terms

of simulations for different distributions and a particular scenario in Section 3. In Sec-

tion 4, we finally consider as an example the adjustment of measurement results for the

Planck constant, and we compare our results to those published in the physical liter-

ature (cf. Mohr et al. (2012)). Section 5 presents concluding remarks and possibilities

of future research. For ease of notation we will subsequently suppress the dependence

of the results on V. Furthermore, the range of integrals is assumed to be R
n unless

indicated otherwise.

2 Reference prior and reference posterior

We start by deriving an explicit expression for the Fisher information matrix for model

(1). The information matrix does not depend on μ but only on the density generator

f(·), and hence the Berger & Bernardo reference prior for grouping {μ, σλ} follows

immediately. We then prove propriety of the resulting posterior, and also the existence

of mean and variance of the marginal posterior for μ. Finally, we present a relation

between the marginal reference posterior for μ for the normal marginal random effects

model and the reference posterior known for the balanced random effects model (2).

Lemma 1. The Fisher information matrix for model (1) is given by

F =

(
F11 0
0 F22

)
(4)
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where

F11 = 4 · 1T (V + σ2
λI)

−1/2E

⎛⎝ZZT

(
f ′ (ZTZ

)
f (ZTZ)

)2
⎞⎠ (V + σ2

λI)
−1/21,

F22 = 4σ2
λtr
(
(V + σ2

λI)
−2
)
E

(
(Z4

1 − Z2
1Z

2
2 )

(
f ′(ZTZ)

f(ZTZ)

)2
)
+

σ2
λ

(
tr
(
(V + σ2

λI)
−1
))2(

1 + 4E

(
Z2
1Z

2
2

(
f ′(ZTZ)

f(ZTZ)

)2
)

+ 4E

(
Z2
1

f ′(ZTZ)

f(ZTZ)

))
, (5)

with Z = (Z1, . . . , Zn)
T ∼ En(0, I, f).

Proof. Under model (1) the log-likelihood is given by

L(μ, σλ;x) = −1

2
log(det(V + σ2

λI)) + log
(
f
(
(x− μ1)T (V + σ2

λI)
−1(x− μ1)

))
from which we obtain

∂L(μ, σλ;x)

∂μ
= −2

1T (V + σ2
λI)

−1(x− μ1)f ′ ((x− μ1)T (V + σ2
λI)

−1(x− μ1)
)

f ((x− μ1)T (V + σ2
λI)

−1(x− μ1))

and

∂L(μ, σλ;x)

∂σλ
= −σλtr

(
(V + σ2

λI)
−1
)

− 2σλ(x− μ1)T (V + σ2
λI)

−2(x− μ1)
f ′ ((x− μ1)T (V + σ2

λI)
−1(x− μ1)

)
f ((x− μ1)T (V + σ2

λI)
−1(x− μ1))

.

Now, it holds that

E

(
∂L(μ, σλ;x)

∂μ

)2

=
4√

det(V + σ2
λI)

×
∫

f
(
(x− μ1)T (V + σ2

λI)
−1(x− μ1)

)
×
(
1T (V + σ2

λI)
−1(x− μ1)f ′ ((x− μ1)T (V + σ2

λI)
−1(x− μ1)

)
f ((x− μ1)T (V + σ2

λI)
−1(x− μ1))

)2

dx.

Making the transformation x = μ1+ (V+ σ2
λI)

1/2y with Jacobian
√
det(V + σ2

λI), we
obtain

F11 = E

(
∂L(μ, σλ;x)

∂μ

)2

= 4

∫ (
1T (V + σ2

λI)
−1/2yf ′ (yTy

))2
f (yTy)

dy
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= 4 · 1T (V + σ2
λI)

−1/2

(∫
yyT

(
f ′ (yTy

))2
f (yTy)

dy

)
(V + σ2

λI)
−1/21

= 4 · 1T (V + σ2
λI)

−1/2E

⎛⎝ZZT

(
f ′ (ZTZ

)
f (ZTZ)

)2
⎞⎠ (V + σ2

λI)
−1/21,

where Z ∼ En(0, I, f).

Similarly, using the transformation x = μ1+ (V + σ2
λI)

1/2y, the relation

F21 = E

(
∂L(μ, σλ;x)

∂μ

)(
∂L(μ, σλ;x)

∂σλ

)
= 2σλ1

T (V + σ2
λI)

−1/2

∫
h(y)dy,

follows, where

h(y) = yf ′ (yTy
)(

tr
(
(V + σ2

λI)
−1
)
+ 2

yT (V + σ2
λI)

−1yf ′ (yTy
)

f (yTy)

)
.

Since h(−y) = −h(y), we get F21 = 0.

Finally, using the same transformation, we obtain

F22 = E

(
∂L(μ, σλ;x)

∂σλ

)2

= σ2
λ

(
tr
(
(V + σ2

λI)
−1
))2

+ 4σ2
λ

∫ (
yT (V + σ2

λI)
−1yf ′ (yTy

))2
f (yTy)

dy

+ 4σ2
λtr
(
(V + σ2

λI)
−1
) ∫

yT (V + σ2
λI)

−1yf ′ (yTy
)
dy.

Decomposing V as V = HDHT , where D = diag(d1, . . . , dn) is the diagonal matrix
of eigenvalues and H the corresponding orthogonal matrix of eigenvectors, leads to∫

yT (V + σ2
λI)

−1yf ′ (yTy
)
dy =

n∑
i=1

{
(di + σ2

λ)
−1

∫
w2

i f
′ (wTw

)
dw

}
,

where the last equality is obtained by using the transformation w = HTy. Since∫
w2

i f
′ (wTw

)
dw = E

(
Z2
i

f ′(ZTZ)

f(ZTZ)

)
does not depend on i or on σλ, we get∫

yT (V + σ2
λI)

−1yf ′ (yTy
)
dy = tr

(
(V + σ2

λI)
−1
)
E

(
Z2
1

f ′(ZTZ)

f(ZTZ)

)
.
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Similarly, for the first integral we obtain∫ (
yT (V + σ2

λI)
−1yf ′ (yTy

))2
f (yTy)

dy

=

n∑
i=1

n∑
j=1

(di + σ2
λ)

−1(dj + σ2
λ)

−1

∫
w2

iw
2
j

f ′ (wTw
)2

f (wTw)
dw

=
n∑

i=1

(di + σ2
λ)

−2E

(
Z4
1

(
f ′(ZTZ)

f(ZTZ)

)2
)

+

n∑
i=1

n∑
j=1,j �=i

(di + σ2
λ)

−1(dj + σ2
λ)

−1E

(
Z2
1Z

2
2

(
f ′(ZTZ)

f(ZTZ)

)2
)

= tr
(
(V + σ2

λI)
−2
)
E

(
(Z4

1 − Z2
1Z

2
2 )

(
f ′(ZTZ)

f(ZTZ)

)2
)

+
(
tr
(
(V + σ2

λI)
−1
))2

E

(
Z2
1Z

2
2

(
f ′(ZTZ)

f(ZTZ)

)2
)
.

Putting the results for both integrals together completes the proof of the lemma.

The results of Lemma 1 show that the Fisher information matrix is finite if

E

(
Z1Z2

(
f ′(ZTZ)

f(ZTZ)

)2
)

< ∞, E

(
Z2
1

(
f ′(ZTZ)

f(ZTZ)

)2
)

< ∞, E

(
Z2
1

f ′(ZTZ)

f(ZTZ)

)
< ∞,

E

(
Z4
1

(
f ′(ZTZ)

f(ZTZ)

)2
)

< ∞, and E

(
Z2
1Z

2
2

(
f ′(ZTZ)

f(ZTZ)

)2
)

< ∞. (6)

The conditions in (6) depend only on the density generator f(·), i.e., on the type of
the elliptically contoured distribution. Consequently, throughout the paper, we assume
that the density generator is chosen such that the expectations in (6) are finite.

The reference prior for the generalized marginal random effects model is gener-
ally improper and needs to be determined as the limit of proper priors restricted to
a sequence of compact subsets for μ and σλ. Since the Fisher information matrix
(4) does not depend on μ, and by using a sequence of nested compact subsets of
the form Ωl

μ × Ωl
σλ
, l = 1, 2, . . ., where Ω1

μ ⊂ Ω2
μ ⊂ · · · with

⋃
Ωl

μ = (−∞,∞), and

Ω1
σλ

⊂ Ω2
σλ

⊂ · · · with
⋃

Ωl
σλ

= (0,∞), we immediately obtain from the Corollary to
Proposition 5.29 in Bernardo and Smith (2000) the Berger & Bernardo reference prior
π(μ, σλ) for the generalized marginal random effects model (1) and grouping {μ, σλ}
(i.e., with σλ as the nuisance parameter) as

π(μ, σλ) ∝
√
F22, (7)

where F22 is given by (5).

Next we show that the conditional reference posterior for μ belongs to the family of
elliptically contoured distributions.



O. Bodnar, A. Link, and C. Elster 31

Proposition 1. The conditional reference posterior π(μ|σλ,x) for the generalized mar-
ginal random effects model (1) and grouping {μ, σλ} (i.e., with σλ as the nuisance
parameter) is given by

π(μ|σλ,x) ∝ fσλ,x

(
1T (V + σ2

λI)
−11

(
μ− 1T (V + σ2

λI)
−1x

1T (V + σ2
λI)

−11

)2
)
,

where
fσλ,x (u) = f

(
xTR(σλ)x+ u

)
u ≥ 0, (8)

with

R(σλ) = (V + σ2
λI)

−1 − (V + σ2
λI)

−111T (V + σ2
λI)

−1

1T (V + σ2
λI)

−11
. (9)

Proof. The joint posterior for μ and σλ under the generalized marginal random effects
model (1) is given by

π(μ, σλ|x) ∝ π(μ, σλ)
f
(
(x− μ1)T (V + σ2

λI)
−1(x− μ1)

)√
det(V + σ2

λI)
.

In using (9) we get

(x− μ1)T (V + σ2
λI)

−1(x− μ1)

= xTR(σλ)x+ 1T (V + σ2
λI)

−11

(
μ− 1T (V + σ2

λI)
−1x

1T (V + σ2
λI)

−11

)2

.

Hence,

π(μ, σλ|x) ∝ π(μ, σλ)

×
f

(
xTR(σλ)x+ 1T (V + σ2

λI)
−11
(
μ− 1T (V+σ2

λI)
−1x

1T (V+σ2
λI)

−11

)2)
√

det(V + σ2
λI)

=
π(μ, σλ)√

det(V + σ2
λI)

fσλ,x

(
1T (V + σ2

λI)
−11

(
μ− 1T (V + σ2

λI)
−1x

1T (V + σ2
λI)

−11

)2
)
,

where fσλ,x(·) is given in (8). Noting that the reference prior π(μ, σλ) does not depend
on μ completes the proof of the proposition.

Proposition 2. The marginal posterior π(σλ|x) obtained for the reference prior (7) is
given by

π(σλ|x) ∝ C(σλ)

√
F22

det(V + σ2
λI) (1

T (V + σ2
λI)

−11)
, (10)

where F22 is given in (5) and

C(σλ) =

∫ ∞

−∞
fσλ,x

(
u2
)
du =

∫ ∞

−∞
f
(
xTR(σλ)x+ u2

)
du. (11)
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Proof. This result follows directly from (7), the fact that F22 does not depend on μ,
and the last equality in the proof of Proposition 1.

The result of Proposition 1 shows that the conditional posterior mean for μ given
σλ belongs to the family of elliptically contoured distributions. Using the properties of
the elliptically contoured distributions, we get

E (μ|σλ,x) =
1T (V + σ2

λI)
−1x

1T (V + σ2
λI)

−11

and

Var (μ|σλ,x) =
1

1T (V + σ2
λI)

−11
E
(
W 2|σλ,x

)
,

whereW |σλ,x ∼ E1(0, 1, cfσλ,x), if both quantities exist. As a result, mean and variance
of the marginal posterior π(μ|x) can be calculated by the following one-dimensional
integrals

E (μ|x) = E (E (μ|σλ,x)) (12)

and
Var (μ|x) = E (Var (μ|σλ,x)) + Var (E (μ|σλ,x)) , (13)

where the expectation in (12), and the expectation and the variance in (13), are calcu-
lated with respect to the marginal posterior π(σλ|x) given in (10).

In Theorem 1, we provide conditions on n which ensure propriety of the posterior
and also the existence of (12) and (13).

Theorem 1. The posterior π(μ, σλ|x) obtained for the reference prior from (7) is proper
if n ≥ 2, and for the according marginal posterior π(μ|x) mean or variance exist if n ≥ 3
or n ≥ 4, respectively.

Proof. The application of the joint posterior from the proof of Proposition 1 leads to∫ ∞

0

∫ ∞

−∞
π(μ, σλ|x)dμdσλ

∝
∫ ∞

0

√
F22√

det(V + σ2
λI)
√
1T (V + σ2

λI)
−11

C(σλ)dσλ,

where C(σλ) is given in (11). First, we note that no singularity is present at σλ = 0 and
that (cf., Lemma 9 in Gómez et al. (2003))

C(σλ = 0) ≤
∫ ∞

0

f(u)du < ∞.

At infinity we get

√
F22√

det(V + σ2
λI)
√
1T (V + σ2

λI)
−11

≈ σ−n
λ
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and

lim
σλ→∞

C(σλ) =

∫ ∞

−∞
lim

σλ→∞
f
(
xTR(σλ)x+ u2

)
du =

∫ ∞

−∞
f
(
u2
)
du < ∞.

Hence,

π(σλ|x) = O(σ−n
λ ) (14)

as σλ → ∞, and the posterior is proper if and only if n ≥ 2.

For the mean of the marginal posterior π(μ|x), we first note that (cf. Proposition 1)

μ|σλ,x ∼ E1

(
1T (V + σ2

λI)
−1x

1T (V + σ2
λI)

−11
,

1

1T (V + σ2
λI)

−11
, cfσλ,x

)
,

and thus

μ|σλ,x
d
=

1T (V + σ2
λI)

−1x

1T (V + σ2
λI)

−11
+

1√
1T (V + σ2

λI)
−11

W |σλ,x,

where W |σλ,x ∼ E1 (0, 1, cfσλ,x) and the symbol
d
= denotes equality in distribution.

Hence,

E(μ|x) = E (E(μ|σλ,x))

= E

(
1T (V + σ2

λI)
−1x

1T (V + σ2
λI)

−11

)
(15)

+ E

(
1√

1T (V + σ2
λI)

−11
E(W |σλ,x)

)
. (16)

Consequently, the mean of the marginal posterior π(μ|x) exists if and only if the expec-
tations (15) and (16) exist. Because no singularity is present at zero, fσλ,x(·) → f(·) as
σλ → ∞ (see the proof for propriety), and since also

1T (V + σ2
λI)

−1x

1T (V + σ2
λI)

−11
≈ 1Tx

n

holds as σλ → ∞, the expectation in (15) exists if and only if n ≥ 2. Furthermore, as

E

(
1√

1T (V + σ2
λI)

−11
E(W |σλ,x)

)

=

∫ ∞

0

1√
1T (V + σ2

λI)
−11

π(σλ|x)
∫ ∞

−∞
wfσλ,x(w

2)dwdσλ

→ I1 +
∫ ∞

σ
(∞)
λ

1√
1T (V + σ2

λI)
−11

π(σλ|x)
∫ ∞

−∞
wf(w2)dwdσλ

= I1 +
(∫ ∞

−∞
wf(w2)dw

)∫ ∞

σ
(∞)
λ

1√
1T (V + σ2

λI)
−11

π(σλ|x, )dσλ,
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for significantly large σ
(∞)
λ with I1 =

∫ σ(∞)
λ

0
π(σλ|x)√

1T (V+σ2
λI)

−11

∫∞
−∞ wfσλ,x(w

2)dwdσλ <

∞, and because
1√

1T (V + σ2
λI)

−11
≈ σλ√

n

holds for σλ → ∞ and π(σλ|x) = O(σ−n
λ ) asymptotically (cf. (14)), we get that the

expectation in (16) exists if and only if n ≥ 3, i.e., n ≥ 3 ensures that the mean of the
marginal posterior π(μ|x) exists.

Finally, using the expression for the variance of the marginal posterior π(μ|x) and
performing the same analysis, we conclude that the variance exists if

E

(
1

1T (V + σ2
λI)

−11
E(W 2|σλ,x)

)
< ∞,

which is true if and only if n ≥ 4.

Subsequently, we provide some further explicit results under the additional assump-
tion of normality, i.e., we assume f(u) = exp(−u/2)/(2π)n/2.

Theorem 2. The Berger & Bernardo reference prior π(μ, σλ) for the normal random
effects model (i.e., model (1) with f(u) = exp(−u/2)/(2π)n/2) and grouping {μ, σλ}
(i.e., with σλ as the nuisance parameter) is given by

π(μ, σλ) ∝
√

σ2
λ · tr ((V + σ2

λI)
−2).

Proof. For the normal marginal random effects model with f(u) = exp(−u/2)/(2π)n/2

we get f ′(u) = −f(u)/2, E(ZZT ) = I, E(Z4
1 ) = 3, E(Z2

1Z
2
2 ) = E(Z2

1 )E(Z2
2 ) = 1.

Application of Lemma 1 yields

F =

(
1T (V + σ2

λI)
−11 0

0 2σ2
λtr((V + σ2

λI)
−2)

)
,

and using (7) then completes the proof.

We note that this prior has already been used (but not derived) in Toman et al.
(2012). From Proposition 1 we immediately get that the conditional reference posterior
for μ is normally distributed

μ|σλ,x ∼ N

(
1T (V + σ2

λI)
−1x

1T (V + σ2
λI)

−11
,

1

1T (V + σ2
λI)

−11

)
, (17)

and from Proposition 2 (together with Theorem 2) we obtain the marginal posterior
π(σλ|x) as

π(σλ|x) ∝
√

σ2
λ · tr ((V + σ2

λI)
−2)√

det(V + σ2
λI)
√
1T (V + σ2

λI)
−11

exp

(
−1

2
xTR(σλ)x

)
, (18)
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where R(σλ) is defined in Proposition 1.

We note that for reasons of stability the term xTR(σλ)x in (18) ought to be evaluated
in numerical calculations as

xTR(σλ)x = min
μ

χ̃2(μ) = χ̃2(μ̆)

where
χ̃2(μ) = (x− μ1)

T
(V + σ2

λI)
−1 (x− μ1)

and

μ̆ =
1T (V + σ2

λI)
−1x

1T (V + σ2
λI)

−11
.

Unfortunately, no closed expression is available for the posterior π(μ|x), and nu-
merical means have to be applied. Markov chain Monte Carlo methods (cf. Robert and
Casella (2004)) may be used or, since only two parameters are involved in our prob-
lem, numerical integration (see, e.g., Evans and Swartz (2000)). The results reported in
Sections 3 and 4 were obtained by the latter approach.

The explicit formula for the marginal reference posterior π(σλ|x) given in (18),
together with the conditional posterior π(μ|σλ,x) from (17), can be utilized in the
numerical calculation of marginal posterior mean and standard deviation,

E (μ|x) =
∫ ∞

0

1T (V + σ2
λI)

−1x

1T (V + σ2
λI)

−11
π(σλ|x)dσλ,

and

Var (μ|x) =∫ ∞

0

{
1

1T (V + σ2
λI)

−11
+

(
Eμ|x− 1T (V + σ2

λI)
−1x

1T (V + σ2
λI)

−11

)2
}
π(σλ|x)dσλ.

A shortest 95% credible interval can be obtained by minimizing over β ∈ (0, 0.05) the
length of the interval

[a0.05−β , a1−β ],

where aγ is the solution of

γ =

∫ ∞

0

Φ

(
aγ ;

1T (V + σ2
λI)

−1x

1T (V + σ2
λI)

−11
,

1

1T (V + σ2
λI)

−11

)
π(σλ|x)dσλ. (19)

In (19), the symbol Φ(y; a, b2) denotes the distribution function of the normal distribu-
tion with mean a and variance b2 at y.

We finally note that the objective Bayesian inference obtained for the normal margin-
al random effects model is related to that obtained for the customary random effects
model (3) when using the corresponding reference prior given in Berger and Bernardo
(1992b) according to
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Theorem 3. Consider the balanced random effects model Mbrem (3) with n1 = n2 =
· · · = nn =: n0 and the normal marginal random effects model Mnmrem (i.e., model

(1) with f(u) = exp(−u/2)/(2π)n/2) where V =
σ2
0

n0
I with known σ0. Then asymp-

totically as n0 → ∞ the posterior π(μ, σλ|x,Mnmrem) obtained for the reference prior
from Theorem 2 coincides with the marginal posterior π(μ, σλ|x,Mbrem) obtained for
the reference prior π(μ, σλ, σ|Mbrem) ∝ σλσ

−1(n0σ
2
λ + σ2)−1 (derived in Berger and

Bernardo (1992b) for the grouping {μ, (σλ, σ)}) and model Mbrem (3), provided that the
underlying variance σ2 in Mbrem (3) equals σ2

0.

Proof. Using xi = (xi1, . . . , xin0)
T the likelihood under model Mbrem in (3) is

l(μ, σλ, σ;x1, . . . ,xn,Mbrem) ∝
n∏

i=1

exp
[
−1

2 (xi − μ1)T
(
σ2I+ σ2

λ11
T
)−1

(xi − μ1)
]

√
det (σ2I+ σ2

λ11
T )

.

From

(xi − μ1)T
(
σ2I+ σ2

λ11
T
)−1

(xi − μ1) =

(μ− μ̂)2
(
1T
(
σ2I+ σ2

λ11
T
)−1

1
)

+ xT
i

(
σ2I+ σ2

λ11
T
)−1

xi

− μ̂2
(
1T
(
σ2I+ σ2

λ11
T
)−1

1
)
,

where

μ̂ =
1T
(
σ2I+ σ2

λ11
T
)−1

xi

1T (σ2I+ σ2
λ11

T )
−1

1
,

together with (
σ2I+ σ2

λ11
T
)−1

= σ−2I− σ2
λ/σ

2

(n0σ2
λ + σ2)

11T ,

we immediately observe that

μ̂ =
1

n0
1Txi = xi

holds, as well as

1T
(
σ2I+ σ2

λ11
T
)−1

1 =
(
σ2/n0 + σ2

λ

)−1
.

From

xT
i

(
σ2I+ σ2

λ11
T
)−1

xi − μ̂2
(
1T
(
σ2I+ σ2

λ11
T
)−1

1
)
=

1

σ2

n0∑
j=1

(xij − xi)
2
,

and

det
(
σ2I+ σ2

λ11
T
)
=
(
σ2
)n0
(
σ2/n0 + σ2

λ

) (
σ2/n0

)−1
,
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we thus get

l(μ, σλ, σ;x1, . . . ,xn,Mbrem) ∝
n∏

i=1

⎧⎨⎩exp
(
−1

2
(μ−xi)

2

(σ2/n0+σ2
λ)

)
√

σ2/n0 + σ2
λ

×
exp
(
− 1

2σ2

∑n0

j=1 (xij − xi)
2
)

σ(n0−1)

⎫⎬⎭
∝

n∏
i=1

⎧⎨⎩exp
(
−1

2
(μ−xi)

2

(σ2/n0+σ2
λ)

)
√

σ2/n0 + σ2
λ

⎫⎬⎭×
exp
(
− n0

2σ2u
2
)

(σ/
√
n0)n(n0−1)

,

with u2 = 1
n0

∑n
i=1

∑n0

j=1 (xij − xi)
2
.

Let σ̃ = σ/
√
n0. The posterior for μ, σλ, σ̃ is given by

p(μ, σλ, σ̃|x1, . . . ,xn,Mbrem)

∝
n∏

i=1

⎧⎨⎩exp
(
−1

2
(μ−xi)

2

(σ̃2+σ2
λ)

)
√
σ̃2 + σ2

λ

⎫⎬⎭×
exp
(
− 1

2σ̃2u
2
)

σ̃n(n0−1)
σλσ̃

−1(σ2
λ + σ̃2)−1

=

n∏
i=1

⎧⎨⎩exp
(
−1

2
(μ−xi)

2

(σ̃2+σ2
λ)

)
√
σ̃2 + σ2

λ

⎫⎬⎭× σλ

σ2
λ + σ̃2

exp
(
− 1

2σ̃2u
2
)

σ̃n(n0−1)+1
,

which leads to

p(μ, σλ|x1, . . . ,xn,Mbrem) ∝
∫ ∞

0

n∏
i=1

⎧⎨⎩exp
(
−1

2
(μ−xi)

2

(σ̃2+σ2
λ)

)
√

σ̃2 + σ2
λ

⎫⎬⎭× σλ

σ2
λ + σ̃2

δn0(σ̃)dσ̃,

where

δn0(σ̃) ∝
exp
(
− 1

2σ̃2u
2
)

σ̃n(n0−1)+1

is a sequence of distributions whose variance tends to zero and which are asymptotically
concentrated at σ̃ = u/

√
nn0. Since u2 is consistent for nσ2

0 , it follows that asymptoti-
cally the distributions δn0(σ̃) have support only at σ0/

√
n0, and thus

lim
n0→∞

p(μ, σλ|x1, . . . ,xn,Mbrem)

∝ lim
n0→∞

∫ ∞

0

n∏
i=1

⎧⎨⎩exp
(
−1

2
(μ−xi)

2

(σ̃2+σ2
λ)

)
√

σ̃2 + σ2
λ

⎫⎬⎭× σλ

σ2
λ + σ̃2

δn0(σ̃)dσ̃

= σλ(v
2 + σ2

λ)
−1

n∏
i=1

exp
(
− (μ−xi)

2

v2+σ2
λ

)
√
v2 + σ2

λ

, (20)

where v2 = σ2
0/n0.
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But (20) is just the same as the reference posterior for model (2) when using the
reference prior from Theorem 2.

We note that Theorem 3 holds when the uncertainty with a single observation in the
marginal random effects model decreases with increasing n0. The same applies to the
uncertainty associated with the mean Xi =

∑n0

j=1 Xij/n0 of the repeated observations

in the balanced random effects model (2). As n0 → ∞ the unknown variance σ2 becomes
known, and so the means Xi =

∑
j Xij/n0 follow the normal marginal random effects

model. Theorem 3 ensures that this is reflected by the corresponding references analyses.

3 Simulation study

The frequentist properties of the reference posterior for the generalized marginal random
effects model (1) are investigated in terms of simulations for several density generators
f(·) and a particular scenario. We also explore the robustness of results when the as-
sumption about the density generator is violated. We focus on coverage probabilities and
mean lengths of shortest 95% credible intervals. The settings chosen for the simulations
are motivated by applications in metrology.

Without loss of generality, μ = 0 and σλ = 1 were used throughout. Two different
values of n were considered, namely n = 11 and n = 22, and the matrix V was taken
to be of autoregressive structure, i.e., V = U1/2ΩU1/2 with U = diag(u2

1, . . . , u
2
n) and

Ω = (ρ|i−j|)i,j=1,...,n. In order to capture different situations, the ui were chosen dif-
ferently for each single simulated data set. Specifically, the ui were drawn randomly
from a uniform distribution on the interval [0.01, 0.5]. Several values of ρ were used,
namely {−0.9,−0.6,−0.3, 0, 0.3, 0.6, 0.9}, and the following three density generators
considered:

(i) Normal marginal random effects model (1) with f(u) ∝ exp(−u/2);

(ii) Rescaled t3 marginal random effects model (1) with1 f(u) ∝ (1+u/(d−2))−(n+d)/2;

(iii) Laplace marginal random effects model (1) with (cf. Eltoft et al. (2006))

f(u) =
1

(2π)n/2

∫ ∞

0

z−n/2 exp
(
− u

2z
− z
)
dz

∝ u−n/4+1/2Kn/2−1(
√
2u),

where Kα(x) denotes the modified Bessel function of the second kind (see, e.g.,
Andrews et al. (2000)).

1Since the covariance matrix of a random vector which has a t-distribution with d degrees of freedom

is equal to d
d−2

(V + σ2
λI), we adjust the samples from t-distribution by the factor

√
d−2
d

in order to

ensure that the covariance matrices are the same in all scenarios. For Scenarios (i) and (iii), the
covariance matrix is equal to the dispersion matrix (V + σ2

λI).
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True/Fitted Normal t3 Laplace

Coverage Length Coverage Length Coverage Length
ρ = −0.9 0.947 1.323 ± 0.005 0.948 1.327 ± 0.005 0.953 1.309 ± 0.004
ρ = −0.6 0.950 1.337 ± 0.004 0.951 1.337 ± 0.004 0.950 1.315 ± 0.005
ρ = −0.3 0.952 1.369 ± 0.004 0.950 1.363 ± 0.005 0.951 1.325 ± 0.005

Normal ρ = 0.0 0.950 1.373 ± 0.004 0.947 1.366 ± 0.005 0.951 1.339 ± 0.004
ρ = 0.3 0.948 1.354 ± 0.004 0.948 1.350 ± 0.004 0.952 1.364 ± 0.004
ρ = 0.6 0.954 1.457 ± 0.004 0.952 1.450 ± 0.004 0.954 1.414 ± 0.004
ρ = 0.9 0.956 1.479 ± 0.004 0.951 1.471 ± 0.004 0.957 1.534 ± 0.004

Coverage Length Coverage Length Coverage Length
ρ = −0.9 0.948 1.057 ± 0.012 0.948 1.055 ± 0.012 0.942 1.043 ± 0.011
ρ = −0.6 0.944 1.070 ± 0.012 0.945 1.070 ± 0.012 0.940 1.044 ± 0.011
ρ = −0.3 0.952 1.068 ± 0.012 0.954 1.065 ± 0.012 0.941 1.053 ± 0.011

t3 ρ = 0.0 0.945 1.070 ± 0.010 0.945 1.065 ± 0.010 0.941 1.069 ± 0.011
ρ = 0.3 0.948 1.106 ± 0.011 0.947 1.093 ± 0.011 0.946 1.100 ± 0.011
ρ = 0.6 0.953 1.244 ± 0.012 0.952 1.213 ± 0.012 0.952 1.156 ± 0.011
ρ = 0.9 0.956 1.248 ± 0.010 0.953 1.216 ± 0.011 0.957 1.274 ± 0.011

Coverage Length Coverage Length Coverage Length
ρ = −0.9 0.952 1.195 ± 0.010 0.952 1.195 ± 0.010 0.939 1.167 ± 0.010
ρ = −0.6 0.948 1.195 ± 0.010 0.946 1.188 ± 0.010 0.934 1.171 ± 0.010
ρ = −0.3 0.953 1.203 ± 0.010 0.952 1.198 ± 0.010 0.933 1.179 ± 0.010

Laplace ρ = 0.0 0.947 1.220 ± 0.010 0.944 1.121 ± 0.010 0.936 1.194 ± 0.010
ρ = 0.3 0.955 1.268 ± 0.010 0.951 1.248 ± 0.010 0.940 1.221 ± 0.010
ρ = 0.6 0.956 1.230 ± 0.010 0.953 1.221 ± 0.010 0.945 1.270 ± 0.010
ρ = 0.9 0.957 1.342 ± 0.009 0.954 1.322 ± 0.009 0.946 1.380 ± 0.009

Table 1: Coverage probabilities and mean lengths of 95% (shortest) credible intervals
for n = 11. Each row refers to a particular scenario and has been analyzed in turn by
assuming all three density generators. An upper bound on the standard error of the
reported coverages is 0.007.

Scenario (i) presents the most famous elliptical model which is used in many appli-
cations in metrology. In contrast, both models from scenarios (ii) and (iii) correspond
to heavy-tailed elliptically contoured distributions.

For all three scenarios coverage probabilities and mean lengths of credible intervals
were determined. Note that since the ui and hence the matrix V are varied for each
simulated data set the reported coverage probabilities are average coverage probabili-
ties where the average refers to different situations. Each single data set was analyzed
using (in turn) the density generator of all three scenarios. In this way, the robustness
of the analyses w.r.t. the distributional assumption is investigated. For each scenario
(and each chosen correlation ρ) 5.000 data sets were drawn and analyzed. Tables 1 and
2 contain the corresponding results. For each reported mean length we state the stan-
dard deviation of the corresponding 5.000 samples divided by

√
5.000; for the coverage

probability we give an upper bound of the standard deviation of the estimates.

For all considered scenarios and choices of ρ coverage probabilities are close to 95%,
and similar mean lengths of 95% credible intervals are observed when the density gener-
ator is changed in the analysis. Hence, the results are robust against a mis-specification
of the underlying distribution. Interestingly, coverage probabilities for credible intervals
obtained under the assumption of the Laplace distribution are slightly smaller than
those calculated under the normal distribution and the t-distribution when the true
model is Scenario (iii) and n = 11. This difference becomes negligible if n increases
(see Table 2). Credible intervals calculated in the case of positive correlations are larger
than those obtained for negative correlations. For n = 22 (Table 2) results are similar to
those for n = 11 (Table 1). A difference is observed in the mean lengths of 95% credible
intervals which are for n = 11 larger by a factor of about

√
2, which is expected since

the sample size is doubled.
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True/Fitted Normal t3 Laplace

Coverage Length Coverage Length Coverage Length
ρ = −0.9 0.951 0.884 ± 0.002 0.951 0.887 ± 0.002 0.944 0.880 ± 0.002
ρ = −0.6 0.948 0.900 ± 0.002 0.947 0.901 ± 0.002 0.945 0.885 ± 0.002
ρ = −0.3 0.954 0.895 ± 0.002 0.953 0.895 ± 0.002 0.945 0.893 ± 0.002

Normal ρ = 0.0 0.950 0.914 ± 0.002 0.949 0.912 ± 0.002 0.946 0.904 ± 0.002
ρ = 0.3 0.950 0.927 ± 0.002 0.949 0.924 ± 0.002 0.945 0.924 ± 0.002
ρ = 0.6 0.955 0.965 ± 0.002 0.952 0.959 ± 0.002 0.947 0.966 ± 0.002
ρ = 0.9 0.951 1.145 ± 0.002 0.941 1.120 ± 0.002 0.947 1.102 ± 0.002

Coverage Length Coverage Length Coverage Length
ρ = −0.9 0.944 0.710 ± 0.009 0.944 0.712 ± 0.009 0.939 0.700 ± 0.009
ρ = −0.6 0.945 0.703 ± 0.007 0.946 0.705 ± 0.007 0.938 0.704 ± 0.010
ρ = −0.3 0.948 0.723 ± 0.007 0.947 0.721 ± 0.007 0.939 0.710 ± 0.009

t3 ρ = 0.0 0.947 0.739 ± 0.008 0.945 0.734 ± 0.008 0.940 0.721 ± 0.009
ρ = 0.3 0.955 0.761 ± 0.010 0.951 0.752 ± 0.010 0.945 0.744 ± 0.009
ρ = 0.6 0.954 0.763 ± 0.007 0.951 0.749 ± 0.007 0.951 0.788 ± 0.009
ρ = 0.9 0.965 1.018 ± 0.007 0.957 0.966 ± 0.007 0.952 0.908 ± 0.009

Coverage Length Coverage Length Coverage Length
ρ = −0.9 0.949 0.779 ± 0.006 0.949 0.780 ± 0.006 0.945 0.766 ± 0.006
ρ = −0.6 0.950 0.798 ± 0.006 0.950 0.798 ± 0.006 0.944 0.771 ± 0.006
ρ = −0.3 0.951 0.801 ± 0.006 0.950 0.798 ± 0.006 0.940 0.777 ± 0.006

Laplace ρ = 0.0 0.949 0.804 ± 0.006 0.949 0.800 ± 0.006 0.942 0.789 ± 0.006
ρ = 0.3 0.948 0.819 ± 0.006 0.948 0.813 ± 0.006 0.948 0.809 ± 0.006
ρ = 0.6 0.959 0.841 ± 0.006 0.958 0.830 ± 0.006 0.951 0.851 ± 0.006
ρ = 0.9 0.948 1.011 ± 0.006 0.948 0.980 ± 0.006 0.949 0.968 ± 0.006

Table 2: Coverage probabilities and mean lengths of 95% (shortest) credible intervals
for n = 22. Each row refers to a particular scenario and has been analyzed in turn by
assuming all three density generators. An upper bound on the standard error of the
reported coverages is 0.007.

The fact that the reference posterior is not much affected by the density generator
(chosen for the analysis) is similar to the situation met for a general location–scale
model such as p(x|μ, σB) = f((x − μ1)T (σ2

BV)−1(x − μ1))/
√

det(σ2
BV). Fernández

and Steel (1999) have derived the reference prior for such models, and Arellano-Valle
et al. (2006) as well as Osiewalski and Steel (1993) have given results which show that
the posterior for such a general location–scale model does not depend on the density
generator f(·).2

4 Adjustment of measurements for the Planck constant

As an application we consider the adjustment of measurements for the Planck constant.
Table 3 and Figure 1 show the measurement results from Table XXVI in Mohr et al.
(2012). The data are estimates of the Planck constant and the goal is to derive an
improved estimate by combining these data. An accurate estimate of the Planck constant
is required in order to re-define the kilogram (cf. Mills et al. (2006)), and therefore the
reliability of the uncertainty quoted for a combined estimate is important. In Mohr
et al. (2012), the data have already been analyzed and we show the according results
in Table 4.

The data in Table 3 appear to be inconsistent w.r.t. quoted uncertainties,3 cf. Toman
et al. (2012). We applied the generalized marginal random effects model (2) to model the
data and to infer μ. As density generator we used a normal distribution, a t-distribution

2We are grateful to a referee for pointing out this fact.
3The matrix V has been taken as follows: the diagonal elements are the squared quoted standard

uncertainties, accompanied with four non-zero off-diagonal elements Vij = ρijuiuj with correlations
ρij that were reported (and accounted for) in Mohr et al. (2012), see Table 3.
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Identification h/(Js) Relative standard uncertainty
NPL-79 6.6260730× 10−34 1.0× 10−6

NIST-80 6.6260657× 10−34 1.3× 10−6

NMI-89 6.6260684× 10−34 5.4× 10−7

NPL-90 6.6260682× 10−34 2.0× 10−7

PTB-91 6.6260670× 10−34 6.3× 10−7

NIM-95 6.626071× 10−34 1.6× 10−6

NIST-98 6.62606891× 10−34 8.7× 10−8

NIST-07 6.62606891× 10−34 3.6× 10−8

METAS-11 6.6260691× 10−34 2.9× 10−7

IAC-11 6.62607009× 10−34 3.0× 10−8

NPL-12 6.6260712× 10−34 2.0× 10−7

Table 3: Values for the Planck constant from Table XXVI in Mohr et al. (2012) sorted
according to the time of measurement. In Table XXI of Mohr et al. (2012), also the
correlations, r(NIST-98,NIST-07) = 0.14 and r(NPL-90,NPL-12) = 0.003, were given.

Method μ̂× 1034 Js u(μ̂)/μ̂× 108 (CI− μ̂)/μ̂× 108

GMREM (normal distribution) 6.6260694 7.2 [−14.9,13.8]
GMREM (t-distribution) 6.6260693 6.6 [−13.7,12.8]
GMREM (Laplace distribution) 6.6260693 6.6 [−13.5,13.6]
Codata2010 6.6260696 4.4 –

Table 4: Estimates μ̂ for the Planck constant obtained from the data from Table 3, to-
gether with relative posterior standard deviations and ‘relative’ 95% credible intervals
obtained for the generalized marginal random effects model (GMREM) using a normal
distribution, a (rescaled) t-distribution with 3 degrees of freedom, and a Laplace dis-
tribution. In addition, the CODATA 2010 results are given, where the CODATA 2010
estimate has been rounded in accordance with its uncertainty.

with 3 degrees of freedom, and a Laplace distribution. The results4 are given in Table

4 and illustrated in Figure 1. Figure 2 shows the marginal posteriors for μ obtained for

the three density generators.

The estimates obtained for the generalized marginal random effects models and the

three density generators are similar, and they are consistent with the result given in

Mohr et al. (2012). However, the standard uncertainties obtained for the generalized

marginal random effects models are significantly larger than the standard uncertainty

quoted for the Codata 2010 result, with the results obtained for the normal marginal

random effects model being most conservative. Since the reliability in the uncertainty

quoted for the Planck constant is important, we would rather recommend the results

obtained by the normal marginal random effects model than those published in the

physical literature.

4The data of Table 3 including one further result have already been analyzed in Toman et al. (2012)
using the normal marginal random effects model with a diagonal matrix V = diag(u2

1, . . . , u
2
n).
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Figure 1: The data for the Planck constant from Table 3 together with estimates ob-
tained by the generalized marginal random effects model (with three different density
generators) as well as the adjusted value given in Mohr et al. (2012). Error bars indicate
standard uncertainties.

5 Discussion

We have introduced the generalized marginal random effects model p(x|μ, σλ) = f((x−
μ1)T (V + σ2

λI)
−1(x − μ1))/

√
det(V + σ2

λI) for the purpose of adjusting measurement

results that are inconsistent with respect to the uncertainties quoted for them. When the

density generator f(·) is a normal distribution, the model corresponds to a marginal ran-

dom effects model, but this is not true in general. We considered an objective Bayesian

inference for this model and derived the Berger & Bernardo reference prior for grouping

{μ, σλ}. The corresponding reference posterior has sound theoretical properties, i.e., the

posterior, as well as first and second moments, of the marginal posterior for μ exist un-

der mild assumptions, and the resulting inference also showed good frequentist behavior

in a simulation study.

The results of the objective Bayesian inference appear to be insensitive with respect

to the assumed underlying distribution. This motivates to use the assumption of a

normal distribution from the start for which the model is equivalent to a random effects

model. The fact that the reference posterior seems to be insensitive with respect to

the density generator f(·) is similar to the situation of the general location–scale model

where the reference posterior for the location parameter is a t-distribution independently

from the type of the underlying distribution used (cf. Osiewalski and Steel (1993),

Fernández and Steel (1999), Arellano-Valle et al. (2006)).
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Figure 2: Posterior distributions for μ, together with means and credible intervals, ob-
tained for the Planck data from Table 3 on the basis of the generalized marginal ran-
dom effects model using as the density generators a normal distribution (black line),
a t-distribution with 3 degrees of freedom (red line), and a Laplace distribution (blue
line).

Future research may generalize the results of this paper by relaxing the assumption
that the matrix V is known exactly. Instead, one may treat this matrix as further
unknowns in connection with an informative prior centered around the uncertainties
quoted for the measurement results.
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