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Predictions Based on the Clustering of
Heterogeneous Functions via Shape and

Subject-Specific Covariates

Garritt L. Page∗ and Fernando A. Quintana†

Abstract. We consider a study of players employed by teams who are members
of the National Basketball Association where units of observation are functional
curves that are realizations of production measurements taken through the course
of one’s career. The observed functional output displays large amounts of between
player heterogeneity in the sense that some individuals produce curves that are
fairly smooth while others are (much) more erratic. We argue that this variability
in curve shape is a feature that can be exploited to guide decision making, learn
about processes under study and improve prediction. In this paper we develop
a methodology that takes advantage of this feature when clustering functional
curves. Individual curves are flexibly modeled using Bayesian penalized B-splines
while a hierarchical structure allows the clustering to be guided by the smoothness
of individual curves. In a sense, the hierarchical structure balances the desire to
fit individual curves well while still producing meaningful clusters that are used
to guide prediction. We seamlessly incorporate available covariate information to
guide the clustering of curves non-parametrically through the use of a product
partition model prior for a random partition of individuals. Clustering based on
curve smoothness and subject-specific covariate information is particularly im-
portant in carrying out the two types of predictions that are of interest, those
that complete a partially observed curve from an active player, and those that
predict the entire career curve for a player yet to play in the National Basketball
Association.

Keywords: Product partition models, Nonparametric Bayes, Penalized splines,
Hierarchical models, Right censored data, NBA player production curves.

1 Introduction

In multi-subject studies where observations are considered to be functional realizations,
it is common to observe large amounts of between-subject heterogeneity in the sense
that some subjects produce curves that are quite smooth while others produce curves
that are (much) more erratic. Although not often explicitly considered when modeling
these types of data, the variability in curve shape can be an important feature that
may help distinguish individuals and lead to better understanding of processes under
study and/or better predictions. Often in these studies two types of predictions are
desired: those that predict the functional output across the entire time domain for
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a hypothetical new subject and those that complete a partially observed functional
response for subjects currently participating in the study. Explicitly considering curve
shape in modeling, in addition to considering relevant covariates, should improve both
types of predictions. This is particularly true of the application motivating the present
study. Decision makers of teams that belong to the National Basketball Association
(NBA) are very interested in being able to group and predict future performance of
basketball players that are employed or could possibly be employed by NBA teams.

Figure 1: Career game-by-game Game Score results for three NBA players. A loess
smoother with span equal to 0.3 is also provided.

The NBA is a North American professional mens basketball league that arguably
employs the worlds most gifted basketball players. The league’s popularity has steadily
increased and as a result player salaries have exploded. Personnel decisions in the NBA
(as in most professional sports leagues) are high-risk transactions. In the face of mas-
sive amounts uncertainty teams offer players guaranteed multi-year multi-million dollar
contracts and as a result mistakes in player acquisition are extremely expensive. Mak-
ing things even more treacherous are the abstruse rules governing player transactions
found in the collective bargaining agreement (CBA). Among other things, the CBA reg-
ulates the amount of resources dedicated to player acquisition. Teams that misallocate
player salary resources by over paying severely hinder a team’s future flexibility and
negatively impact a team’s future competitiveness and profitability for years. Because
of this, added value might be assigned to players who perform consistently compared
to those that are more up and down.

Figure 1 displays scatter-plots and loess curves (with a span of 0.3) of game-by-game
“production” for three NBA basketball players. Game-by-game “production” in Figure
1 is measured using the so called Game Score statistic (Hollinger 2002). More details
are provided in Section 2 and the Appendix, but for now it suffices to know that higher
values correspond with better performance and more production. Even though there
is a large amount of game-to-game and player-to-player variability in Game Score it is
still evident that production consistency between the three players varies. Erick Dampier
appears to have two spikes of improved production, Jarron Collin’s production oscillates
during the first part of his career while Ray Allen’s production is fairly smooth as it
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gradually increases and decreases with slight dip in the middle. Therefore curve shape
should contain information that is valuable in distinguishing between different types of
players and being able to assess their future value. Two types of predictions are used
to assess future value. The first considers players who are currently members of the
NBA and that will continue to participate in future games. Ray Allen in Figure 1 is an
example of such a player. Although he has already played in more than 1000 games,
he continues to play and predicting the performance for the remainder of his career
is of considerable interest. This type of prediction will be referred to as “active player
prediction”. The second type of prediction considers basketball players who have yet
to play in an NBA game but who have a skill set that will attract interest from NBA
teams. For these players, predicting the entire career production curve is of interest.
This type of prediction will be referred to as “career prediction”.

It has become fairly common to consider the longitudinal curves of the type just
described as discretized realizations of functional data. There is now a large literature
dedicated to functional data analysis (FDA) techniques. A few popular methods that are
actively being researched are functional principal components (Ramsay and Silverman
2005, chap. 6, Di et al. 2009), Gaussian process regression methods (Rasmussen and
Williams 2006, Behseta et al. 2005, and Zhu and Dunson 2013) and multi-level functional
basis expansion (Morris and Carroll 2006, DiMatteo et al. 2001, Biller 2000, Montagna
et al. 2012, Bigelow and Dunson 2007). When considering multiple-subject studies the
methods just described tend to separate individuals according to trend levels only, while
ignoring the shape of the longitudinal projections. Though the idea of explicitly using
shape or smoothness of curves to improve prediction is intuitively appealing there is
surprisingly very little in the statistical literature dedicated to it. The one article that
we are aware of is Zhu and Dunson (2012) whose focus is on estimating rate functions
through a complicated system of differential equations and using covariates to explain
variability in trajectories via stochastic volatility models. They applied their method to
a longitudinal multi-subject blood pressure study for pregnant women and noted that
blood pressure trajectories for normal women were more smooth relative to women with
preeclampsia. We however, take an entirely different approach. Instead of dealing with
a complicated system of differential equations we incorporate curve shape in modeling
through a penalty parameter analogous to that found in penalized splines.

Our model involves an implied distribution on partitions of players. The allocation
variables are treated as parameters and thus our approach may be seen as an extension
of latent class analysis (LCA) (Collins and Lanza 2010) which classifies individual player
curves into K pre-specificed clusters (see Dean and Raftery 2010 and Elliott et al. 2005).
Unlike LCA, our methodology does not require a fixed pre-specified number of clusters
as this is inferred from the corresponding posterior distribution on partitions. We briefly
note that there does exist a small literature dedicated to estimating certain aspects of
functional output such as dynamics (the speed of price increases and the rate at which
this speed changes) that depend on covariate information (see Wang et al. 2008 and Zhu
et al. 2011 and references therein). But these are not relevant to the current setting as
they fail to deal with multiple-subject studies nor do they use curve shape in prediction
and inference.
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In sports, Berry et al. (1999) model career trajectories (or aging curves) non para-

metrically in order to make historical comparisons of player’s abilities in baseball, hockey

and golf. Connolly and Rendleman Jr. (2008) consider career paths of golf players to

determine combinations of luck and skill required to win a golf tournament. Neither of

these works were interested in grouping players to carry out career and active player

predictions.

As noted, our principal goal is making active player and career predictions. If pre-

dictions are computed using methods that treat individual players independently, then

both types of predictions would be extremely poor as they would not be data driven.

One way of improving predictions is by borrowing strength (or sharing information)

among players whose career production curves might be deemed similar. A straight-

forward way of borrowing strength is by introducing player clusters. However, if all

individuals of the same cluster are restricted to have the same curve, then some indi-

viduals will invariably be poorly fit (too much borrowing of strength). Alternatively, if

curves of all individuals of the same cluster are completely unrestricted, then clustering

players would provide no predictive information (too little borrowing of strength). The

methodology proposed in this article is able to balance very well the desire to produce

good fitting individual curves while still producing clusters that allow enough borrowing

of strength among similar players to guide prediction. This is carried out by employing

a hierarchical model where subject-specific functions are modeled flexibly through a

linear combination of basis functions whose coefficients are drawn from cluster-specific

process level distributions. Doing this produces flexible subject-specific curves while still

being able to produce reasonably accurate predictions by pooling together players with

similar features/performances.

In our model, having covariate dependent clusters is crucial to carrying out career

prediction as these are produced using the predictive distribution available from the

covariate dependent clustering mechanism. Also, shape dependent clusters are useful

to carrying out active player predictions as incomplete active player curves are filled

in using curves of retired players that have similar career trajectories. There has been

work regarding completing curves (Goldberg et al. 2014 work out Best Linear Unbiased

Predictors (BLUPS) for past and future curve segments) and local borrowing of strength

to fit global curves (Petrone et al. 2009 employ functional Dirichlet processes to group

Gaussian process realizations), but the approaches developed and purposes are very

much different from the present study.

The remainder of the article is organized as follows. Section 2 describes the data

collected and employed in the analysis. Section 3 provides details regarding the develop-

ment of the methodology highlighting model components associated with cluster-specific

curve smoothness and active player prediction. Section 4 provides details regarding com-

putation of posterior and predictive distributions. In Section 5 we provide details of a

small simulation study. Results from the analysis of the NBA application are provided

in Section 6. Finally, we provide some concluding remarks in Section 7.
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2 Description of Data

We collected common game-by-game (including playoffs) modern basketball metrics
for each player drafted into the NBA during the years 1992-2004 (Shaquille O’Neal
to Dwight Howard) that participated in at least one game up through the 2009/2010
season. This resulted in 576 players with number of games played ranging from 2 to
1383 games. A few of the players appeared in very few games and are not representative
of a typical NBA player. Because of this, and to reduce the noise introduced by the
careers of players that contain little information regarding the processes of interest, we
restrict our attention to players with at least three seasons of experience (the rookie
contract length of the 2005 CBA). Also, to retain enough games to get a reasonable
sense of a player’s ability we only include players who played at least a half a season’s
worth of games (42). Finally, we excluded the following 8 players whose careers were cut
short either by career ending injuries or untimely deaths: Bryant Reeves, Malik Sealy,
Eddy Curry, Jason Collier, Eddie Griffin, Yao Ming, T. J. Ford, and Gilbert Arenas.
This resulted in 408 players with number of games played through the 2009/2010 season
ranging from 45 to 1383. Of the 408 players, 263 are classified as “retired” as they did
not play beyond the 2009/2010 season.

Measuring game-by-game production is not straightforward as there are numerous,
difficult to measure factors that influence player performance. Because of this no gold
standard basketball production metric exists. That said, one that has become somewhat
popular is John Hollinger’s so called Game Score which is a linear combination of
common variables that are recorded for each player through out the course of a game
(e.g., number of baskets made and number of steals acquired. More details can be found
in the Appendix and at Hollinger 2002). This metric will be used as our response variable
and therefore a representation of a player’s game productivity. Though Game Score has
deficiencies (e.g., weighted heavily towards offensive output and doesn’t account for
quality of opponent), it provides a fairly accurate indicator of player production for
any given game. The maximum Game Score collected is 63.5 (corresponding to Kobe
Bryant’s 81 point game). The minimum Game Score was -9.9 and the average Game
Score among all players is 8.1. An alternative to raw Game Score is a standardized Game
Score where standardization is carried out by dividing Game Score by the minutes played
in each game, thus removing Games Score’s dependence on minutes played. However,
players whose production is not negatively impacted by increased minutes are more
valuable than those who are less efficient with increased game time and distinguishing
between these types of players is desirable. For this reason we opt to use raw Game
Score values.

For an aging (or time) variable there are various units that could be used. For
example, age, number of accumulated minutes played, or simply the number of games
played are all reasonable. Since each of these measurements are only available to us
on a game-by-game basis, the shape (or smoothness) of the curve remains unchanged
regardless of age unit employed. Thus for sake of expositional clarity we use number of
games played (see Figure 1 as an example).

Through exploratory analysis we identified three covariates that in addition to being
of interest in their own right are informative in grouping players. These are age during
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first game played (measured in years), experience before being drafted into the NBA
(High School basketball only, some Collegiate basketball, or International basketball),
and draft order. Draft order is the order in which players are selected in their respective
drafts. For example, a player with draft order 1 implies he was the first player selected
in his respective draft, and draft order 2 implies he was the second player selected etc.
In Section 3 we describe how draft order is used explicitly to predict total games played
for active players, but as a covariate used to influence clustering we categorize a player’s
draft order as being a top five pick, a first round pick (excluding the first five) and a
second round pick. (Since 1989 the NBA draft has consisted of two rounds.) Table 1
provides the number of players in each of the nine categories. Other baseline covariates
were considered such as position, height, and other physiological characteristics but
preliminary research indicated they were not useful in partitioning players with regards
to production.

Table 1: Total number of players in each of the nine categories.

Experience
Draft High School College International
Top 5 7 51 4
1st Round 15 200 25
2nd Round 1 98 8

3 Model Description and Development

We first consider the model’s clustering mechanism highlighting its dependence on
subject-specific covariates. Secondly, the likelihood structure incorporating the num-
ber of games played and career length (which are right censored for active players) is
detailed. Lastly, we describe the hierarchical component which balances goodness of
individual fit with ability to produce clusters that are able to guide prediction.

3.1 Product Partition Model with Covariates (PPMx)

Let i = 1, . . . ,m index the m players in the study. Further, let ρ = {S1, . . . , Skm}
denote a partitioning (or clustering) of the m individuals into km subsets such that
i ∈ Sj implies that individual i belongs to cluster j. Alternatively, we will denote
cluster membership using s1, . . . , sm where si = j implies i ∈ Sj . Let xi = (xi1, xi2, xi3)
denote player i’s covariate vector with xi1 corresponding to age, xi2 experience and xi3

draft order. Let x�
j = {xi : i ∈ Sj} be the partitioned covariate vector. Our approach

is to first directly model ρ with the covariate dependent product partition model of
Müller et al. (2011) (which will be referred to as the PPMx model) and then construct
a hierarchical model given the partition (as opposed to introducing latent variables
that indirectly induce a partitioning of individuals). The PPMx prior incorporates the
idea that individuals with similar covariate values are more likely a priori to belong to
the same cluster relative to individuals with dissimilar covariate values. Additionally,
this prior is very simple, highly customizable, seamlessly incorporates different types of
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covariates (e.g., continuous or categorical), and is particularly well suited for prediction
(something that is of interest here). An alternative method not considered here can be
found in Park and Dunson (2010). The PPMx prior consists of a cohesion function,
c(Sj) ≥ 0 for Sj ⊂ {1, . . . , n}, and a nonnegative similarity function g(x�

j ). The former
measures the tightness of how likely elements of Sj are clustered a priori and the latter
formalizes the similarity of the xi’s by producing larger values of g(x�

j ) for xi’s that are
more similar. The form of the PPMx prior is simply the following product (for more
details see Müller et al. 2011)

P (ρ|x) ∝
km∏
j=1

c(Sj)g(x
�
j ). (1)

A simple example of a cohesion function that produces a Dirichlet Process type
partitioning is c(Sj) = M × (|Sj |−1)! for some positive M and | · | denoting cardinality.
Regarding possible similarity functions, Müller et al. (2011) provide a bit of exposition
for different types of covariates (e.g., continuous, ordinal, or categorical). Generically
speaking they suggest the following structure

g(x�
j ) =

∫ ∏
i∈Sj

q(xi|ζj)q(ζj)dζj . (2)

where ζj is a latent variable and q(·|ζj) and q(·) are (typically) conjugate probability
models. This structure is not necessarily used for its probabilistic properties (indeed x
is not even random), but rather as a means to measure the similarity of the covariates in
cluster Sj . In reality any function that produces larger values as the entries of x�

j become

more similar can be considered as a similarity function. For example g(x�
j ) = exp{−s2j}

where s2j is the empirical variance of x�
j is a completely reasonable similarity function

for continuous covariates.

It turns out that the similarity function (2) coupled with cohesion function c(Sj) =
M × (|Sj | − 1)! produces the same marginal prior distribution on partitions as that
induced by using a Dirichlet process (DP). For more details see Müller et al. (2011).

Given ρ we may proceed to specify a hierarchical model that flexibly models individ-
ual curves. Before doing so, we very briefly introduce a few pieces of notation that will
be used. In what follows cluster-specific and subject-specific parameters will need to be
distinguished. If we let θi denote some generic subject-specific parameter vector, then
θ∗
j will be used to denote a cluster-specific parameter in the sense that i ∈ Sj implies

that θi = θ∗
j . Alternatively, cluster labels (s1, . . . , sm) can be used to connect subject

and cluster specific parameters through θi = θ∗
si . Lastly, vectors of subject-specific and

cluster-specific parameters are denoted by θ = (θ1, . . . ,θm) and θ∗ = (θ∗
1 , . . . ,θ

∗
k).

3.2 Likelihood

To distinguish between players that play beyond the 2009/2010 season we use the fol-
lowing indicator variable
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gi =

{
0 if player i retired before or at the conclusion of the 2009/2010 season
1 if player i played beyond the 2009/2010 season.

Let ni denote the total number of games played in player i’s career. If gi = 0 then
ni is observed otherwise a lower bound denoted by ñi is observed such that ni ≥ ñi.
Thus, we are dealing with right censored type observations and we will incorporate
ideas developed for modeling them. We denote the response vector for players whose
gi = 0 with yi = (yi1, . . . , yini) otherwise yi = (yi1 . . . , yiñi). The career production
curve for players whose gi = 1 needs to be “completed” which requires the prediction
or imputation of ni.

Predicting ni is not trivial (even given ñi) because it is highly variable and demon-
strates a strong association with very few covariates. One covariate we found that dis-
plays a strong association with ni is career length (denoted by Li and measured in
years). Unfortunately, this variable is also right censored and for gi = 1 we only observe
L̃i. However, we consider Li because it displayed a stronger association with the uncen-
sored variable draft order (denoted by di) than that found between ni and di. Therefore
we employ di to first impute Li and then use Li to predict ni. Thus, the likelihood for the
ith player is composed of the random variables (yi, gi, ni:gi=0, ñi:gi=1, Li:gi=0, L̃i:gi=1)
which we model jointly by way of

p(yi, gi, ni:gi=0, ñi:gi=1, Li:gi=0, L̃i:gi=1) = [p(yi|ni, Li)p(ni|Li)p(Li)]
1−gi

× [p(yi|ñi, L̃i)p(ñi|L̃i)p(L̃i)]
gi .

We now detail each of the three likelihood components.

When only considering retired players we found that the association between di and
Li was somewhat nonlinear. (This is reasonable considering that our pool of players
consists of only those who played at least one NBA game thus retaining only the “good”
2nd round picks.) Because of this, we assume Li ∼ N(νi, ψ

2) where νi = γ0+γ1di+γ2d
2
i .

However, the association between ni and Li was fairly linear so we assume ni|Li ∼
N(ηi, δ

2) where ηi = α0 + α1Li. Thus, (ni:gi=0, ñi:gi=1, Li:gi=0, L̃i:gi=1)’s contribution
to the likelihood is

[p(ni|Li)p(Li)]
1−gi [p(ñi|L̃i)p(L̃i)]

gi =
[
N(ni; ηi, δ

2)N(Li; νi, ψ
2)
]1−gi

×
[{

1− Φ

(
ñi − ηi

δ

)}{
1− Φ

(
L̃i − νi

ψ

)}]gi

where N(·;m, s2) denotes a Gaussian density function with mean m and variance s2

and Φ(·) denotes a standard normal cdf. As a result, imputing ni for active players is
carried out by first imputing Li using a quadratic model with di.

We briefly note that although a Poisson model for ni might seem natural, it is not
appropriate in the current context as the simultaneous increasing of the mean and vari-
ance of the Poisson distribution seems to contradict what is empirically observed. Thus,
for simplicity, we elected to employ a Gaussian to model ni and round the predictions
(something that is not uncommon, see page 458 of Gelman et al. 2013). Also, modeling



G. L. Page and F. A. Quintana 387

ni non-parametrically could potentially improve prediction but we elected to employ the
simpler parametric model as its predictions were satisfactory for our purposes. Nonethe-
less, predicting ni is of considerable interest in its own right to NBA decision makers
and could be an interesting future research project.

Finally, given ni and letting fi(zit) denote the ith player’s underlying production
curve value for the tth game played (denoted by zit), we model measurements yit as

yit = β0i + fi(zit) + εit for t = 1, . . . , ni (ñi for g1 = 1) (3)

where εit ∼ N(0, σ2
i ) independently across i. It is possible that incorporating a more

sophisticated error model (such as autoregressive errors) could prove to be beneficial, but
for simplicity we maintain independence. A fairly popular method of characterizing fi(·)
is to define a collection of basis functions (e.g., wavelet, polynomial) and assume that yit
lies in their span. We adopt this method and employ a B-spline basis as it has a number
of attractive computational properties and facilitates active player prediction as will be
detailed shortly. Therefore, fi(·) can be written as the following linear combination

fi(zit) =

Pi∑
�=1

βi�h�(zit; ξi) (4)

where h�(z; ξi) denotes the �th B-spline basis function evaluated at knots contained
in ξi. If pi denotes the number of inner knots and q the spline degree, then Pi =
pi + q + 1. Now define Hi as the ni × Pi matrix with rows {h1(zit), . . . , hPi(zit)} for
t = 1, . . . , ni (ñi for gi = 1), and βi = {βi1, . . . , βiPi}. Combining (3) and (4) produces

yi = β0i1i +Hiβi + εi for εi ∼ N(0, σ2
i Ini), (5)

where 1i denotes a vector of ones and Ini an identity matrix.

The dimension of Hi depends on ni (and ñi for active players). This coupled with
the fact that B-splines form a local basis in that each basis function is non-negative
only on an interval formed by q+2 adjacent knots can be exploited to carry out active
player prediction. Since for any fixed zit at most q + 1 basis functions are positive, the
predicted value of ni for active players will determine the number of zero columns in
Hi. Thus, the section of an active players curve corresponding to the zit values between
ni and ñi are completely informed by the cluster specific curve or in the case that the
player belongs to a singleton, the grand mean curve (more details are in Section 3.3).
Using H̃i to denote the design matrix that incorporates the predicted value of ni based
on ñi, the full likelihood for Θ = (β,β0,σ

2,η,ν, ψ2, δ2) is

�(y1, . . . ,ym,n,L, ñ, L̃, g|Θ)

=

n∏
i=1

[
Nni(yi;β0i1i +Hiβi, σ

2
i Ini)N(ni; ηi, δ

2)N(Li; νi, δ
2)
]1−gi ×

×
[
Nñi(yi;β0i1i + H̃iβi, σ

2
i Iñi)

{
1− Φ

(
ñi − ηi

δ

)}{
1− Φ

(
L̃i − νi

ψ

)}]gi

. (6)
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3.3 Hierarchical Model

The number and location of the inner-knots that make up ξi are rarely known. Their
selection is crucial to producing an attractive curve without over-fitting. So called free-
knot splines is a very flexible method that treats ξi as an unknown and has proved
to be quite parsimonious in knot selection. (DiMatteo et al. 2001 and Denison et al.
2002 provide a nice overview.) Therefore, a possible direction to incorporating shape
variability in prediction as desired would be to base clustering on the number and
location of knots. However, to fit a free-knot spline some type of transdimensional
Markov Chain Monte Carlo (MCMC) algorithm is often employed and this coupled
with the PPMx prior for ρ would result in a doubly transdimensional MCMC algorithm
that would become prohibitively expensive. To avoid these computational issues and
to make the methodology more readily accessible, for each subject we instead select
a moderate number of equally spaced knots within the knot domain and employ the
Bayesian P-spline technology of Lang and Brezger (2004). Now shape variability can
influence clustering through the penalty parameter of the P-splines. However, to retain
flexible subject-specific fits, we use P-splines as a prior distribution of process level
parameters and allow subject-specific coefficients to vary around a cluster-specific mean.
That is, we assume the following process level structure for the β’s:

βi|θ∗
si , λ

2∗
si ∼ N(θ∗

si , λ
2∗
si I) with

√
λ2∗
j ∼ UN(0, A), (7)

and use a Bayesian P-spline prior for the θ∗
j ’s (with UN(·, ·) denoting a Uniform dis-

tribution). A particularly nice feature of the methodology is the explicit ability to con-
trol the similarity between individual curves and their group counterparts through the
hyper-parameter A.

In order to highlight two departures from the Bayesian P-splines of Lang and Brezger
(2004) required by the present modeling we very briefly introduce them here. For more
details see Lang and Brezger (2004) and Fahrmeir and Kneib (2005). Bayesian P-splines
are the Bayesian analogue to splines penalized by d-order differences and are constructed
around d-order Gaussian random walks. For example, for d = 1

θ∗j� = θ∗j,�−1 + uj� � = 2, . . . , n (8)

with uj� ∼ N(0, τ2∗j ). Typically p(θ∗j1) ∝ v, but an improper prior is not an appropriate
probability model for the Polya urn representation used in the PPMx. Thus, similar
to what was done in Telesca and Inoue (2008) we assume θ∗j1 ∼ N(0, τ2∗j /v2) (with
analogous extensions for d > 1). The value v can be assigned a prior distribution or
be set to a fixed value. Equation (8) together with the θ∗j1 ∼ N(0, τ2∗j /v2) produce

θ∗
j ∼ N(0, τ2∗j K−1) where K is a banded penalty matrix with v incorporated. τ2∗j is

the smoothing parameter associated with Bayesian P-splines and is crucial in being able
to distinguish between individuals based on the smoothness of their respective curves.
As suggested by Lang and Brezger (2004) we adopt τ2∗j ∼ IG(aτ , bτ ) where IG(·, ·)
denotes an inverse Gamma distribution and aτ and bτ are user supplied.

Recall that active player prediction is carried out by borrowing strength among
players in a cluster. If player i belongs to a singleton or all members of his cluster
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are active players, then at least part of his prediction is completely guided by the

prior on θ∗
j . Since the prior is centered at 0 this would produce poor active player

predictions. To improve prediction in these situations, we introduce μ as a vector of

global curve coefficients such that θ∗
j ∼ N(μ, τ2∗j K−1) with μ ∼ N(0, s2μI). Includ-

ing μ potentially influences the values of θ∗
j in that smaller magnitudes achieve the

same amount of smoothing as when μ = 0. This should be taken into account when

selecting values for aτ and bτ . Also, apart from improving prediction, μ is of interest

in its own right as it provides information regarding an average career curve among all

players.

We end the description of our Bayesian P-spline approach with details regarding

knot selection. A complicating factor of knot selection in modeling these data is the

massive misalignment associated with the number of games played for each of the play-

ers. Making things worse is the inherent discontinuities in games played through out

the course of one’s career (e.g., the offseason, injuries, etc.) that we are not consider-

ing. There is a “curve registration” literature dedicated to better aligning functional

domains in multi-subject studies (Telesca and Inoue 2008). However, we align career

paths by matching the percentile number of career games played. This is carried out

by transforming “time” to the unit interval which greatly simplifies the process of se-

lecting ξi. Therefore z∗it = zit/ni is used instead of zit. (For retired players ni is the

observed number of games played and the predicted for active players.) Thus for re-

tired players z∗ini
= 1 while for active players z∗ini

< 1. Now ξi can be a knot set that

partitions the unit interval into equal subintervals and since it does not depend on ni

it can be the same for all players. We do note that aligning career paths in this way

is imperfect as the 95th percentile of games played for one player might be during his

third season while for another player during his fifteenth season. Even so, we believe

that matching curves by way of percentile of games played produces coherent compar-

isons and valid borrowing of strength. With an enriched data set we could attempt to

take into account possible discontinuities in career paths. (This would actually be very

interesting as many players improve during the off season.) It would be fairly straight-

forward to expand the model in a variety of ways, but the base model proposed would

continue being the work horse even as other more idiosyncratic aspects of the data are

considered.

With regards to modeling β0i and σ2
i there are any number of ways one might

proceed. It seems plausible that σ2
i might depend on zit. That said, for sake of simplicity

we utilize the common prior structure for variance components σ2
i ∼ IG(aσ, bσ) with

aσ and bσ being user supplied. For the subject-specific random intercepts, we use a

Gaussian-inverse-Gamma hierarchy such that β0i ∼ N(μb0 , σ
2
b0
) with μb0 ∼ N(0, s2b0)

and σ2
b0

∼ IG(ab0 , bb0). Finally, typical conjugate priors are used for α = (α0, α1) ∼
N(ma, s

2
aI), γ = (γ0, γ1, γ2) ∼ N(mγ , s

2
γI), δ

2 ∼ IG(aδ, bδ), and ψ2 ∼ IG(aψ, bψ).

Equation (9) is provided to aid in visualizing how all the moving parts of the hier-

archical model are connected. Through out the remainder of the paper we will refer to

the entire hierarchical model as HPPMx.
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yi, ni, Li, ñi, L̃i|gi,βi, ρ, σ
2
i , β0i,α,γ, δ2, ψ2

∼ [Nni(yi;β0i1i +Hiβi, σ
2
i Ini)N(ni; ηi, δ

2)N(Li; νi, ψ
2)]1−gi

×
[
Nñi(yi;β0i1i + H̃iβi, σ

2
i Iñi)

×
{
1− Φ

(
ñi − ηi

δ

)}{
1− Φ

(
L̃i − νi

ψ

)}]gi

σ2
i |aσ, bσ ∼ IG(aσ, bσ)

β0i|μb0 , σ
2
b0 ∼ N(μb0 , σ

2
b0) with μb0 ∼ N(0, s2b0) and σ2

b0 ∼ IG(ab0 , bb0)

α ∼ N(ma, s
2
aI) and δ2 ∼ IG(aδ, bδ)

γ ∼ N(mγ , s
2
γI) and ψ2 ∼ IG(aψ, bψ) (9)

βi|ρ, θ∗si , λ
∗
si ∼ N(βi;θ

∗
si , λ

2∗
si ) with

√
λ2∗
h ∼ UN(0, A)

θ∗
h|ρ,μ, τ2∗h ,K ∼ N(μ, τ2∗h K−1) with τ2∗h ∼ IG(aτ , bτ )

μ ∼ N(0, s2μI)

Pr(ρ) ∝
km∏
h=1

c(Sj)g(x
�
j ),

for i = 1, . . . ,m and h = 1, . . . , km.

Before proceeding we make a brief comment regarding some specific model com-
ponents. Since the Bayesian P-splines are used at the prior level rather than the pro-
cess level of the hierarchical model, individual curves are not directly influenced by its
smoothing penalization. The wiggliness of individual curves is a function of both τ2∗j
and A. As A increases the influence that τ2∗j has on individual curves decreases. This is
investigated further in the simulation study of Section 5. Therefore, if smooth individual
curves are desired together with large within group variability it may be necessary to
use 10-15 knots instead of the 20-30 knots recommended by Lang and Brezger (2004).

4 Posterior Computation

4.1 MCMC Implementation

We fit the proposed model to data by simulating a Markov chain whose equilibrium
distribution is the desired posterior distribution. The algorithm employed is similar to
Neal (2000)’s algorithm number 8 in that it can be divided into two basic pieces. The
first updates the partition ρ via the Polya urn scheme of Blackwell and MacQueen (1973)
(and further developed by Quintana 2006) and the other updates the hierarchical model
parameters using a Gibbs sampler (Geman and Geman 1984 and Gelfand and Smith
1990) and Metropolis steps (Metropolis et al. 1953).

To update the cluster membership for subject i, cluster weights are created by com-
paring the unnormalized posterior for the hth cluster when subject i is excluded to that
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when subject i is included. In addition to weights for existing clusters, algorithm 8 of
Neal (2000) requires calculating weights for p empty clusters whose cluster specific pa-
rameters are auxiliary variables generated from the prior. To make this more concrete,
let S−i

h denote the hth cluster and k−i
m the number of clusters when subject i is not

considered. Similarly x�−i
h will denote the vector of covariates corresponding to cluster

h when subject i has been removed. Then the multinomial weights associated with the
k−i
m existing clusters and the p empty clusters are

Pr(si = h|−) ∝

⎧⎨
⎩N(βi; θ

∗
h, λ

2∗
h I)

c(S−i
h ∪{i})g(x�−i

h ∪{xi})
c(S−i

h )g(x�−i
h )

for h = 1, . . . , k−i
m

N(βi;θnew,h, λ
2
new,hI)c({i})g({xi})p−1 for h = k−i

m + 1, . . . , k−i
m + p.

Values for θnew,h, λ
2
new,h are auxiliary variables drawn from their respective priors as

required by algorithm 8. Care must be taken when subject i belongs to a singleton
cluster as removing the ith subject produces an empty cluster. This in turn requires
relabeling the existing cluster specific components to avoid gaps in the cluster labeling.

The full conditional distributions of (βi,β0, σ
2
i , θ

∗
j , τ

2∗
j ) are fairly common deriva-

tions and are provided in the Appendix. To update (λ∗
j ,γ,α, δ2, ψ2) we employed a

random walk Metropolis step with a Gaussian proposal distribution. A Markov chain
can be constructed by employing a Gibbs sampler that first updates ρ and then on an
individual basis updates model parameters by cycling through each full conditional and
using a Metropolis step for the non conjugate parameters.

4.2 Posterior Prediction Distributions

A particularly nice feature of using PPMx is the availability of career prediction through
covariate dependent predictive distributions. Using PPMx, posterior predictive distri-
butions are readily available and can be obtained online in the sense that draws from
this distribution can be collected within the MCMC algorithm. The posterior predic-
tive distributions depend on covariate values through the allocation of a new individual
to one of the km existing clusters or to a new cluster using the following multinomial
weights

Pr(sn+1 = h|−) ∝
{

c(Sh∪{n+1})g(x�
h∪{xn+1})

c(Sh)g(x�
h)

for h = 1, . . . , km

c({n+ 1})g({xn+1}) for h = km + 1.
(10)

Once the future player has been allocated to a cluster, one carries out the typical Monte
Carlo integration to sample from the posterior predictive.

4.3 Predicting ni

Predicted values of (ni, Li) for retired players are produced at each MCMC iteration. We
essentially employ the multiple imputation ideas of Little and Rubin (1987) but with the
exception that we are very much interested in the values being imputed. Predictions
are fairly straight forward as they only depend on the full conditionals of ni and Li

which turn out to be truncated normal with ñi and L̃i acting as lower bounds (the full
conditionals are provided in the Appendix).
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5 Simulation Studies

We conduct two small simulation studies to investigate the behavior of the HPPMx
model (9). Recall that the principal motivation in incorporating a hierarchy is to bal-
ance goodness of individual curve fits with the production of meaningful clusters which
facilitate prediction. Therefore apart from showing improved prediction performance,
the simulation study explores just how much goodness of individual fit is sacrificed in
the name of prediction (which is very little as will be seen). The first simulation study
demonstrates the method’s superior predictive performance by comparing out of sam-
ple mean integrated prediction rates to that of two competitors (which are detailed
shortly). The second explores how certain model components influence subject-specific
fits, curve smoothness, and clustering. The two competitors selected represent the ex-
tremes HPPMx attempts to balance, namely fitting each player independently versus
assigning players cluster-specific curves. The first competitor is a semi-parametric re-
gression model (henceforth SP) that fits individual curves independently and flexibly.
The second is a semi-parametric regression model with a Dirichlet process prior (hence-
forth SPDP) which produces individual curves that are cluster specific. More precisely
we consider

yit = x′
iβ + fi(zit) + εit with εit ∼ N(0, σ2

i ) for i = 1, . . . ,m and t = 1, . . . , n (11)

where (fi(zi1), . . . , fi(zin))
′ = Hθi is modeled using subject-specific linear combinations

of B-spline basis functions, zit ∈ [0, 1], xi is a vector of covariates that will be described
shortly and

SP SPDP

θi ∼ N(0, τ2K−1) θi|G ∼ G

G ∼ DP (M,G0) with G0 = N(0, τ2K−1).

Notice that under SP a P-spline prior is used for θi while under SPDP the base mea-
sure of the DP is a P-spline prior. As with HPPMx, τ2 ∼ IG(aτ , bτ ). The competi-
tors selected, though reasonable, aren’t capable of providing active player predictions.
Therefore, prediction assessment in the simulation study is only carried out for career
prediction. Finally, we investigate the influence that covariates have on clustering by
considering the HPPMx model with a PPM prior rather than a PPMx prior (which will
be hence forth referred to as HPPM).

Since both simulation studies employ the same general data generating mechanism
we provide details here. A response vector is generated using

yit = b0i + fgroupi(zit) + εit with εit ∼ N(0, w2) (12)

where fgroupi(·) corresponds to groupi = 1, . . . , 6 possible mean curves which were cre-
ated using the NBA data as a guide (see Figure 2). The six mean curves are made
to depend on covariates by creating two categorical covariates that when crossed pro-
duce six categories, one for each mean curve. A continuous covariate was generated by
x∗
i ∼ N(groupi, 0.1). Since x∗

i depends on the two categorical covariates, an interaction
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Figure 2: The six mean curves used in the simulation study.

between them is created. The three covariates were included in all model fits. Lastly,
the random intercept is generated using b0i ∼ N(10, 2).

The factors we explore in the simulation study with their respective levels are

• value for hyper parameter A (0.1, 1, 10)

• number of knots (5,15,30)

• variance of (12) (w2 = 0.1, w2 = 1)

• number of observations per subject (n = 50, n = 100).

A and the number of knots were selected to investigate how P-splines function as a prior
at the process level instead of at the observation level of a hierarchical model. With n
and w2 we see how the methodology performs as more information becomes available
relative to noise. For each combination of the factor levels 100 data sets with m = 60 (10
players per group) are generated and for each data set SP, SPDP, HPPM, and HPPMx
are fit.

For all four procedures we set aτ = 1, bτ = 0.05, aσ = bσ = 1.0 and v = 1. For PPMx
and PPM s2b0 = s2μ = 1002, and for SP and SPDP β ∼ N(0, 1002I). Finally for HPPMx,
the cohesion and similarity functions employed are those that match the marginal prior
on partitions implied by a DP prior (see Section 6.1 for more details). Each of the
four procedures were fit to each synthetic data set using 1000 MCMC iterates after
discarding the first 5000 as burn-in. Empirically based starting values were employed
which accelerated convergence making the 5000 iterate burn-in sufficient.
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5.1 Out of Sample (Career) Prediction

To assess out of sample (career) prediction, for each of the 100 generated data sets
100 additional out of sample subjects were generated. The fgroup(·) associated with
each new subject is known and therefore out of sample prediction can be assessed by
comparing f̂(·) from the four procedures to fgroup(·). After centering both fgroupj (·)
and f̂j(·) (i.e. subtract off the empirical mean) for the jth out of sample subject, we
measure prediction accuracy using the mean integrated squared prediction error

MISPEj = E

∫
[f̂j(z)− fgroupj (z)]

2dz ≈
∑
t

ΔtE[f̂(zjt)− fgroup(zjt)]
2 (13)

where Δt = (zjt+1 − zjt). Equation (13) essentially measures the average squared area

between fgroupj (·) and f̂j(·) for the jth out of sample player over z’s domain. The values
in Table 2 correspond to

1

D

D∑
d=1

1

100

100∑
j=1

MISPEdj (14)

where d indexes the D = 100 generated data sets.

From Table 2 we see that HPPM and SPDP provide similar predictions which is to
be expected as both employ a DP prior (although not at the same level of a hierarchy).
What should be very obvious is that HPPMx does a much better job in out of sample
prediction relative to the other three procedures for all data generating scenarios.

5.2 Goodness of Individual Fits, Curve Smoothness, and Clustering

To assess goodness of individual fits we employ the following R2 type goodness-of-fit
statistic from Ramsay and Silverman (2005):

R2
i = 1−

∑
t(f̂i(zit)− yit)

2∑
t(yit − ȳi)2

. (15)

R2
i can be loosely interpreted as a coefficient of determination in that as R2

i approaches
1, individual fits improve. Negative values of R2

i indicate that ȳi predicts better than

f̂i(·). The values in Table 3 correspond to

1

D

D∑
d=1

1

m

m∑
i=1

R2
di. (16)

From Table 3 we see that SP tends to produce the best individual fits and SPDP
the worst. This is of course expected as all individuals are fit independently by SP
while SPDP provides cluster specific curves. However, HPPMx does remarkably well
in producing good individual fits as HPPMx is very close to SP particularly as n in-
creases. Thus, HPPMx’s meaningful cluster production doesn’t require sacrificing much
goodness of individual fit.
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Table 2: Results from the simulation study investigating out of sample prediction. Table
entries are calculated using (14) with m = 60 players.

n = 50 n = 100
Number of knots Number of knots

Model 5 15 30 5 15 30

w2 = 0.1

A = 0.1

HPPMx 0.131 0.119 0.123 0.149 0.144 0.122
HPPM 0.891 0.868 0.847 0.873 0.855 0.848
SP 1.310 1.301 1.319 1.297 1.288 1.277
SPDP 0.782 0.784 0.789 0.780 0.779 0.775

A = 1

HPPMx 0.034 0.026 0.095 0.026 0.025 0.029
HPPM 0.791 0.795 0.799 0.779 0.784 0.777
SP 1.324 1.319 1.306 1.285 1.300 1.279
SPDP 0.785 0.789 0.782 0.779 0.782 0.776

A = 10

HPPMx 0.022 0.025 0.108 0.023 0.041 0.037
HPPM 0.786 0.791 0.800 0.774 0.776 0.784
SP 1.321 1.307 1.292 1.282 1.278 1.289
SPDP 0.785 0.783 0.779 0.775 0.777 0.780

w2 = 1

A = 0.1

HPMMx 0.155 0.203 0.254 0.142 0.151 0.242
HPMM 0.882 0.848 0.852 0.854 0.828 0.837
SP 1.315 1.312 1.326 1.277 1.287 1.283
SPDP 0.783 0.786 0.787 0.771 0.776 0.777

A = 1

HPPMx 0.100 0.102 0.170 0.045 0.069 0.102
HPPM 0.796 0.807 0.829 0.778 0.789 0.795
SP 1.312 1.316 1.306 1.257 1.279 1.288
SPDP 0.783 0.785 0.785 0.766 0.776 0.776

A = 10

HPPMx 0.080 0.095 0.157 0.047 0.066 0.113
HPPM 0.823 0.817 0.836 0.798 0.794 0.809
SP 1.331 1.305 1.327 1.291 1.269 1.284
SPDP 0.789 0.780 0.787 0.778 0.772 0.776

To assess curve smoothness we calculate the standard deviation of the lag one dif-
ferences from the estimated curve

�SDi =

√√√√ 1

n− 3

n−1∑
t=1

(lagit − lagi)
2, (17)

where lagit = f̂i(zit+1) − f̂i(zit) for t = 1, . . . , n − 1 and lagi = 1/(n − 1)
∑n−1

t=1 lagit.
Large values of �SDi generally indicate more wiggliness relative to small values. Values
provided in Table 4 correspond to

1

D

D∑
d=1

1

m

m∑
i=1

�SDdi. (18)

From Table 4 it appears that curves become less wiggly as n increases relative to
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Table 3: Results from the simulation study investigating goodness-of-fit. Table entries
are calculated using (16) with m = 60 players.

n = 50 n = 100
Number of knots Number of knots

Model 5 15 30 5 15 30

w2 = 0.1

A = 0.1

HPPMx 0.979 0.990 0.950 0.981 0.989 0.984
HPPM 0.813 0.908 0.919 0.812 0.939 0.952
SP 0.985 0.993 0.994 0.984 0.992 0.992
SPDP 0.802 0.794 0.774 0.764 0.759 0.743

A = 1

HPPMx 0.981 0.965 0.864 0.984 0.991 0.979
HPPM 0.983 0.987 0.950 0.984 0.991 0.989
SP 0.985 0.993 0.994 0.984 0.992 0.992
SPDP 0.808 0.811 0.798 0.771 0.743 0.746

A = 10

HPPMx 0.984 0.975 0.853 0.984 0.990 0.979
HPPM 0.985 0.987 0.937 0.984 0.991 0.992
SP 0.985 0.993 0.994 0.984 0.992 0.992
SPDP 0.802 0.793 0.787 0.765 0.747 0.750

w2 = 1

A = 0.1

HPPMx 0.583 0.593 0.572 0.574 0.593 0.575
HPPM 0.485 0.537 0.497 0.476 0.552 0.541
SP 0.613 0.663 0.713 0.570 0.575 0.533
SPDP 0.538 0.554 0.565 0.515 0.521 0.520

A = 1

HPPMx 0.585 0.608 0.630 0.572 0.589 0.605
HPPM 0.589 0.618 0.663 0.574 0.596 0.616
SP 0.613 0.662 0.711 0.566 0.575 0.531
SPDP 0.541 0.555 0.562 0.511 0.522 0.523

A = 10

HPPMx 0.587 0.610 0.626 0.574 0.589 0.607
HPPM 0.593 0.624 0.667 0.577 0.597 0.617
SP 0.613 0.662 0.712 0.568 0.574 0.535
SPDP 0.539 0.554 0.561 0.514 0.519 0.522

the number of knots. This is expected. Also unsurprising is that HPPMx and HPPM

produce similar values of (18) with the biggest differences occurring when w2 (within

player variability) and A (within cluster variability) are small. What is a bit surprising

is that the value of A doesn’t much alter curve smoothness for HPPMx. It appears that

w2 is more influential. Overall, since the values of (18) for HPPMx are fairly similar to

those for SP and SPDP (recall that SP and SPDP are not influenced by A), penalizing

curves directly with a P-spline prior produces curves with similar smoothness as those

produced through the hierarchical model.

To see how the PPMx prior improves clustering relative to the PPM prior, Table 5

provides the number of estimated clusters (km) averaged over all D = 100 data sets.

For each data set ρ was estimated using Dahl (2006)’s method which is based on least-

squares distance from the matrix of posterior pairwise co-clustering probabilities (note

that an estimate of ρ also provides an estimate of km).
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Table 4: Results from the simulation study investigating smoothness. Table entries are
calculated using (18) with m = 60 players.

n = 50 n = 100
Number of knots Number of knots

Model 5 15 30 5 15 30

w2 = 0.1

A = 0.1

HPPMx 0.162 0.165 0.171 0.082 0.082 0.087
HPPM 0.143 0.154 0.165 0.073 0.078 0.084
SP 0.162 0.162 0.166 0.081 0.080 0.083
SPDP 0.154 0.153 0.157 0.077 0.076 0.079

A = 1

HPPMx 0.163 0.165 0.170 0.081 0.081 0.084
HPPM 0.163 0.164 0.168 0.081 0.081 0.085
SP 0.162 0.162 0.166 0.081 0.080 0.083
SPDP 0.154 0.154 0.158 0.077 0.076 0.079

A = 10

HPPMx 0.163 0.165 0.169 0.082 0.081 0.085
HPPM 0.162 0.164 0.168 0.082 0.081 0.086
SP 0.161 0.162 0.166 0.081 0.080 0.083
SPDP 0.153 0.154 0.158 0.077 0.076 0.079

w2 = 1

A = 0.1

HPPMx 0.179 0.208 0.274 0.096 0.107 0.132
HPPM 0.155 0.182 0.250 0.082 0.096 0.120
SP 0.195 0.206 0.258 0.088 0.071 0.062
SPDP 0.172 0.174 0.191 0.095 0.090 0.095

A = 1

HPPMx 0.184 0.210 0.288 0.097 0.109 0.136
HPPM 0.183 0.209 0.298 0.097 0.108 0.140
SP 0.198 0.205 0.258 0.088 0.071 0.061
SPDP 0.174 0.175 0.190 0.094 0.090 0.095

A = 10

HPPMx 0.184 0.212 0.286 0.097 0.110 0.137
HPPM 0.185 0.210 0.296 0.100 0.108 0.141
SP 0.197 0.206 0.258 0.088 0.071 0.062
SPDP 0.173 0.175 0.189 0.094 0.090 0.095

The true value of km in Table 5 is six for all scenarios. It appears that as n increases,
the PPMx prior tends to converge to the six clusters faster than the PPM prior. It also
appears that the clustering mechanisms of the HPPMx and HPPM depend on A. This
is to be expected however, because as A increases curves are allowed to deviate further
from cluster specific means, thus creating more clusters.

6 Analysis and Results

In this we section provide results of fitting HPPMx to the NBA data set.

6.1 Model Details and Prior Selection

We first provide a bit of detail regarding cohesion and similarity functions used and then
on prior values. The cohesion and similarity functions employed match the PPMx prior
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Table 5: Results from the simulation study investigating cluster estimation. Table entries
correspond to the number of estimated clusters averaged over 100 simulated data sets.

n = 50 n = 100
Number of knots Number of knots

Model 5 15 30 5 15 30

w2 = 0.1

A = 0.1
HPPMx 5.98 5.98 5.99 5.97 5.98 5.96
HPPM 3.93 4.26 4.49 4.32 4.37 4.40

A = 1
HPPMx 9.24 8.53 6.52 10.93 10.26 9.02
HPPM 9.49 9.18 7.89 10.85 10.77 10.02

A = 10
HPPMx 10.32 8.55 6.42 13.39 10.34 8.86
HPPM 10.45 8.31 7.14 11.84 9.67 8.94

w2 = 1

A = 0.1
HPPMx 5.97 5.96 5.99 5.98 5.97 5.99
HPPM 4.09 4.36 4.72 4.02 4.54 4.66

A = 1
HPPMx 7.25 6.87 6.11 8.20 7.94 6.82
HPPM 7.08 6.74 6.15 7.94 7.77 7.40

A = 10
HPPMx 7.24 6.89 6.28 8.90 8.06 7.08
HPPM 5.84 6.03 5.36 7.14 6.88 6.94

to the marginal prior on partitions implied by the DP prior. This results in an a priori
clustering of a few large clusters that represent typical player production and a few
smaller clusters of “abnormal” players. Thus, we set c(Sj) = M(|Sj | − 1)! with M = 1
favoring a small number of clusters. The similarity functions used are typical conjugate
models for continuous and categorical variables with parameter values suggested by
Müller et al. (2011) resulting in

g(x�
j ) = g1(x

�
j1)g2(x

�
j2)g3(x

�
j3)

=

∫ ∏
i∈Sj

N(xi1;mj , 1)N(mj ; 0, 10)πi,xi2

×Dir(πi,xi2 ; 0.1, 0.1, 0.1)πi,xi3Dir(πi,xi3 ; 0.1, 0.1, 0.1)dmjdπ1jdπ2j

=
Nnj (x

�
j ;0, I)N(0; 0, 10)

N(m̂; 0, ŝ2)

Γ(
∑3

c=1 n1jc + 0.1)∏3
c=1 Γ(n1jc + 0.1)

Γ(
∑3

c=1 n2jc + 0.1)∏3
c=1 Γ(n2jc + 0.1)

.

πi,xi2 and πi,xi3 denote xi2 and xi3’s probability vector, n1jc are the number of players
in cluster j that have covariate value c for xi2 and n2jc the number of players for xi3

(as a reminder, xi1 corresponds to age, xi2 experience and xi3 draft order). In addition,
ŝ2 = (nj + 1/10)−1 and m̂ = ŝ21′x�

1j .

A first-order Bayesian P-spline prior was used and following suggestions in Lang and
Brezger (2004), we set a = 1 and b = 0.05. We found that results were fairly robust to
reasonable prior specifications of τ2h . From the simulation study setting A = 1 seemed
reasonable so that individual curves are fairly similar to their cluster-specific counter-
parts. Preliminary investigations indicated that methodology is robust to variance prior
specifications so with hopes of being diffuse we set aσ = bσ = aδ = bδ = aψ = bψ = 1
and s2b0 = 1002. To produce a flat prior for γ we use mγ = 0 and s2γ = 1002. Since there
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are 82 games in an NBA season we set ma1 = 76 (taking into account missed games
due to injury) with s2a = 102.

The MCMC algorithm was run until 1000 iterates from a Markov chain were col-
lected after discarding the first 25,000 as burn in and thinning by 25. Convergence was
monitored using MCMC iterate trace plots.

6.2 Fits of Individual Player Production Curves

Figure 3 displays the posterior mean curves with 95% credible and prediction bands
for the three players introduced in Figure 1. Notice that even though the fits are fairly
flexible they are smoothed relative to the loess fits provided in Figure 1.

Figure 3: Posterior fits for three NBA players. The solid red lines are point-wise posterior
mean curves, the dashed red lines are 95% mean point-wise credible intervals, and the
dashed orange lines are 95% point-wise prediction intervals.

6.3 Active Player Prediction

Displaying the results of active player prediction in and of itself is not trivial as curves
depend completely on the predicted values of ni. To simplify the process we display
the active player prediction curves conditioned on E(ni|yi). This requires producing
a curve conditioned on E(ni|yi) for each MCMC iterate of β. From these MCMC
iterates, we estimate an average prediction curve with point-wise 95% credible bands
and prediction bands. Figure 4 contains the estimated mean curve with credible bands
and prediction bands corresponding to four players in varying stages of their career.
Shaquille O’Neal played beyond the 2009/2010 season but has since retired. His average
number of predicted games played turned out to be 1545 and the actual number of
games played is 1423 (including playoffs). Ray Allen continues to play but is nearing
the end of his career and the predicted sharp decrease in production mirrors reality.
Dwight Howard and Luke Ridnour are two completely different types of players and
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Figure 4: Active player predictions for four NBA players. Lines associated with active
player prediction are blue. The dashed lines represent point-wise 95% mean credible
bands, and the dotted lines 95% point-wise prediction bands.

are provided as a means to demonstrate the flexibility in the predictions. E(ni|yi)
for Dwight Howard is quite conservative and barring injury should under estimate his
career game total, while E(ni|yi) for Beno Udrih is quite reasonable. Regardless, the
four predictions display completely plausible decreases in production as the players
approach retirement.

6.4 Career Prediction Analysis

For career prediction we employ the predictive distributions as described in Section 4.2
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Figure 5: Career prediction curves for different levels of draft order, playing experience
and age during first game played.

resulting in the curves found in Figure 5. We include the High School level of experience

even though the latest CBA requires at least one year post high school experience

before being drafted. For age during first game played, we considered 19, 21, and 23

years old. (We do not consider ages 21 and 23 for High School level of experience as

those scenarios are practically impossible.) The curves are presented conditioned on the

predicted number of games played averaged over all active players that belong to each

respective group.

Before describing results it is important to keep in mind that only players who

played at least three years were included in the analysis. This explains the seemingly

high predictions for second round picks. Also, from Table 1 it can be seen that only

one player (considered in the analysis) was drafted in the second round straight from

high school (Rashard Lewis). So you will notice that the predicted curve for this group

follows a trajectory similar to that of Rashard Lewis’s career. Even with that being the

case, a few interesting trends emerge. It appears that there is much more variability in

curve location for Top Five Picks. Also the players that are Top Five Picks tend to reach

their max production earlier in their career. Age clearly influences a player’s production

as players that start their career at a younger age tend to have higher production

rates. It appears that the shapes of curves vary by experience with international players

decreasing slightly earlier relative to college or high school players.

Table 6 provides estimates of the number of games need to reach peak performance.

Generally speaking players drafted straight out of high school take longer to reach

maximum performance while those with college experience are the quickest. That said,

any conclusions drawn from Table 6 or Figure 5 should be made with care as some of

the curves are accompanied with a moderate to substantial amount of variability.
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Table 6: Predicted game at which max performance is attained (prediction errors are
in parenthesis).

Age During First Game Played
Draft Experience 19 21 23

Top 5
High School 477(169.8) - -
College 385(162.2) 437(184.9) 386(178.9)
International 399(155.6) 448(160.7) 423(147.1)

1st Round
High School 472(147.4) - -
College 436(185.5) 417(193.5) 403(200.2)
International 446(151.3) 473(172.4) 413(167.3)

2nd Round
High School 568(184.7) - -
College 344(152.6) 386(179.1) 369(179.7)
International 409(144.6) 416(151.1) 419(169.6)

Cluster Analysis

A nice property of the model is the ability to postulate what characteristics guide
clustering. To do this it is necessary to obtain a point estimate using cluster MCMC
iterates. Since posterior summaries of cluster specific parameters are arbitrary, using
typical posterior summaries (mean and median) makes little sense. We employ Dahl
(2006)’s method which is based on least-squares distance from the matrix of posterior
pairwise co-clustering probabilities. Using this method produces a partitioning of the
408 players into 18 clusters with cluster membership ranging from 3 to 63 players.
Figure 6 provides player-specific posterior mean curves for nine clusters. Except for
cluster 6, these clusters represent those that contain the highest number of players
(approximately 80% of players). Cluster 6 was selected as it contains curves that are in
our opinion more interesting than clusters not shown. The remaining nine clusters for
the most part are comprised of role players. Although each cluster contains curves that
are slightly unique, they are relatively flat. The dashed segments at the end of some
curves are active player predictions. To facilitate comparisons we maintain the x-axis
on the percentile number of games played scale. We highlight a few of the clusters by
pointing out some of the well known players. Cluster 1 is comprised of role players (e.g.,
Tony Allen and Matt Bonner) whose production is constant. Cluster 2’s key member is
LeBron James. Players in this cluster begin careers close to peak level and appear to
maintain production. Cluster 3 contains Carlos Boozer and Ron Artest who had sharp
increase in production but maintained peak performance for a short time with a gradual
decrease in performance. Cluster 4 is comprised of role players who showed an increase
in production right before retiring (e.g. James Posey). Kobe Bryant is the key player
of Cluster 5 (along with Chauncey Billups, Steve Nash). In this cluster, players started
slow but experienced large sharp increases of production and maintained it for much of
their career. Clusters 6 and 7 are comprised of players who start at peak performance
and gradually decline through out their career with players in Cluster 6 showing a
brief increase towards the end of their career. Grant Hill is a member of Cluster 6 and
Shaquille O’Neal is a member of Cluster 7. Clusters 8 and 9 are primarily comprised of
role players with Cluster 8 showing gradual increase until the later stages of a career.



G. L. Page and F. A. Quintana 403

Figure 6: Player specific posterior mean production curves divided into the 9 clusters
corresponding to the partition estimated using Dahl (2006)’s cluster estimate method.
Active player prediction for active players is displayed by a dashed line.

An example is Matt Barnes. Marcus Camby is member of Cluster 9 and the decrease in

production towards the end of the career is more sharp relative to Cluster 8. Overall,

the clusters contain curves that have distinct shapes. Information provided in Figure 6

could potentially be used to guide NBA personnel decisions regarding contract length

and amount. For example, production for players in 3 begins to decrease earlier than

Cluster 2.
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Finally, Figure 7 displays the average age during first game played vs. the percent of
players in each of the six categories for each of the 18 clusters. Apart from demonstrating
the presence of an interaction between the three covariates, these plots confirm what is
already widely known. That is, on average, the age of players increases as draft order
increases and players that play college tend to begin NBA careers at an older age relative
to high school and international players.

6.5 Assessing Trade-off between Individual Player Fits and
Prediction

As mentioned previously, incorporating the PPMx in the hierarchical model improves
predictions at the cost of a small loss in individual fits. To show that the cost is minimal
relative to gains in prediction, we randomly selected 50 retired players and removed the
final 25% of games played (essentially treating them as active players). We then pro-
ceeded to fit four models (details follow) to these partitioned data and assess model fit
through Mean Square Error (MSE). To assess prediction accuracy, active player pre-
diction was carried out for each of the 50 randomly selected players and Mean Squared
Prediction Error (MSPE) was computed. The four models considered were the SP model
(12), an extension of the SP model that improves prediction, the HPPMx, and the fol-
lowing 5th degree polynomial regression model:

yit = x′
iβ +

5∑
j=0

γjit
j + εit with εit

iid∼ N(0, σ2
i ) and β ∼ N(0, s2I)

γi ∼ N(μ,T ) where T = diag(τ20 , . . . , τ
2
5 )

μ ∼ N(0, s2I).

The SP model (12) was extended in the following way

θi ∼ N(μ, τ2K−1)

μ ∼ N(0, s2I).

We refer to this model as hSP (hierarchical semi-parametric). Predicting (or extrapo-
lating) the last 25% of games played using the SP model requires drawing θ’s associated
with knots for removed games from its prior distribution. Therefore, centering the prior
on a vector of global spline coefficients should improve prediction relative to a prior
centered at 0.

The MSE averaged over the 408 players was calculated for each of the four models
resulting in Polynomial (30.72), SP (29.66), hSP (29.71), HPPMx (31.71). As expected
the flexible penalized splines produce the smallest MSE and HPPMx has the highest
MSE illustrating the surrender of a bit of individual player fit. The MSPE averaged
over the 50 randomly selected players turned out to be Polynomial (476.32), SP (34.00),
hSP (31.10), and HPPMx (26.90). As expected HPPMx gained quite a bit in terms of
prediction (extrapolation) accuracy at a fairly minimal individual fit cost.
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Figure 7: Average baseline age and percent of players for each of the 18 clusters for
the six categories corresponding to experience and draft order. The size of the dot is
proportional to the number of players allocated to the cluster.
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7 Conclusions

We have proposed a completely novel methodology that incorporates information re-
garding the shape of longitudinal curves in predicting future NBA player production
based on age, experience, and draft order of player. Clearly, curve shape provides in-
formation beyond available covariates and the inclusion of this information in modeling
efforts should improve inferences. In addition, the methodology does well in balanc-
ing individual fits and producing clusters that provide adequate borrowing of strength
among players. The PPMx prior employed does a nice job of being able to incorporate
both covariate and curve shape information when forming clusters and ultimately bor-
rowing strength among subjects to improve active player and career predictions. From
a basketball perspective, individual player production clearly depends on many omitted
variables (such as team strength, injury history and coaching philosophy) and these vari-
ables can be easily incorporated in the model using the PPMx prior when they become
available. Finally, though the methodology was demonstrated using production curves
of NBA basketball players, the idea of incorporating curve shape in inferences should
be applicable in a wide variety of settings (e.g., biomedical, finance, and environmental
studies).
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Appendix

1 John Hollinger’s Game Score

The Hollinger game score is the following linear combination of statistics appearing in
a typical box-score summary of each players game statistics:

http://arxiv.org/abs/1212.0181v1
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• PTS = total points scored by player in game

• FGM = number of shots that player made in game

• FGA = number of shots that player attempted in game

• FTM = number of free throws made in game

• FTA = number of free throw attempts in game

• OREB = number of offensive rebounds

• DREB = number of defensive rebounds

• STL = number of steals

• AST = number of assists recorded

• BLK = number of blocked shots recorded

• TO = number of turn overs

• PF = personal fouls.

Game Score = PTS + FGM × 0.4− FGA× 0.7− (FTA− FTM)× 0.4 +OREB

× 0.7 +DREB × 0.3 + STL+AST × 0.7 +BLK × 0.7− PF × 0.4

− TO.

2 Full Conditionals

We list the full conditionals used in the Gibbs sampler. In what follows we use [θ|−]
to denote the distribution of θ conditioned on all other parameters and data and nh

denotes the number of subjects belonging to cluster h. Also for notational convience,
Hi denotes the B-spline basis design matrix for both gi = 1 and g1 = 0.

[βi|−] ∼ Nm (μβ ,Σβ) ,

μβ =
[
σ−2
i H ′

iHi + λ−2∗
si I

]−1 [
σ−2
i H ′

i(yi − 1iβ0i) + λ−2∗
si θ∗

si

]
Σβ =

[
σ−2
i H ′

iHi + λ−2∗
si I

]−1

[β0i|−] ∼ N

(
σ2
b0

∑ni

t=1[yit − gih
′
itβi − (1− gi)h̃

′
itβi] + σ2

i μb0

niσ2
b0

+ σ2
i

,
σ2
b0
σ2
i

niσ2
b0

+ σ2
i

)
,

[σ2
i |−] ∼ IG

(
0.5ni + a0, 0.5

i∑
t=1

[yit − β0i − gih
′
itβi − (1− gi)h̃

′
itβi]

2 + 1/b0

)
,

[θ∗
h|−] ∼ Nm

([
nhλ

−2∗
h I + τ−2∗

h K
]−1

[∑
i∈Sh

λ−2∗
h βi + τ−2∗

h μ′K

]
,
[
nkλ

−2∗
h I

+ τ−2∗
h K

]−1

)
,
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[τ2∗h |−] ∼ IG (0.5m+ aτ , 0.5(θ
∗
h − μ)′K(θ∗

h − μ) + 1/bτ )

[μ|−] ∼ N([K
∑

τ−2∗
h + s−2

μ ]−1[
∑

τ−2∗
h θ∗

hK], [K
∑

τ−2∗
h + s−2

μ ]−1)

[μb0 |−] ∼ N

([
mσ−2

b0
+ s−2

b0

]−1
[σ−2

b0

∑
i

β0i],
[
mσ−2

b0
+ s−2

b0

]−1

)

[σ2
b0 |−] ∼ IG(0.5m+ ab0 , 0.5

∑
(β0i − μb0)

2 + 1/bb0)

[ni|−] ∼ TN(ηi, δ
2, ñi,∞)

[Li|−] ∼ TN(νi, ψ
2, L̃i,∞).
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