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Dirichlet Process Hidden Markov Multiple
Change-point Model

Stanley I. M. Ko∗ , Terence T. L. Chong† , and Pulak Ghosh‡

Abstract. This paper proposes a new Bayesian multiple change-point model
which is based on the hidden Markov approach. The Dirichlet process hidden
Markov model does not require the specification of the number of change-points
a priori. Hence our model is robust to model specification in contrast to the fully
parametric Bayesian model. We propose a general Markov chain Monte Carlo al-
gorithm which only needs to sample the states around change-points. Simulations
for a normal mean-shift model with known and unknown variance demonstrate
advantages of our approach. Two applications, namely the coal-mining disaster
data and the real United States Gross Domestic Product growth, are provided.
We detect a single change-point for both the disaster data and US GDP growth.
All the change-point locations and posterior inferences of the two applications are
in line with existing methods.

Keywords: Change-point, Dirichlet process, Hidden Markov model, Markov
chain Monte Carlo, Nonparametric Bayesian.

1 Introduction

The earliest Bayesian change-point model is explored by Chernoff and Zacks (1964), who
assume a constant probability of change at each point in time. Smith (1975) investigates
the single change-point model under different assumptions of model parameters. Carlin
et al. (1992) assume that the structural parameters are independent of the change-points
and introduce the Markov chain Monte Carlo sampling method to derive the posterior
distributions. Stephens (1994) further applies the Markov chain Monte Carlo method to
the case of multiple changes. Chib (1998) allows the change-point probability to depend
on the regime between two adjacent change-points. Koop and Potter (2007) propose
the Poisson hierarchical prior for durations in the change-point model that allows the
number of change-points to be unknown. More recent works on the Bayesian change-
point model include Wang and Zivot (2000), Giordani and Kohn (2008), Pesaran et al.
(2006), Maheu and Gordon (2008) and Geweke and Yu (2011).

In this paper we follow the modeling strategy of Chib (1998) which is one of the
most popular Bayesian change-point models. He introduces a discrete random variable
indicating the regime from which a particular observation is drawn. Specifically, let
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Yn = (y1, y2, . . . , yn)
′ be the observed time series, such that the density of yt conditioned

on Yt−1 = (y1, y2, . . . , yt−1)
′ depends on the parameter θ whose value changes at an

unknown time period 1 < τ1 < · · · < τk < n and remains constant within each regime,
that is,

yt ∼

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p(yt | Yt−1, θ1) if t ≤ τ1,

p(yt | Yt−1, θ2) if τ1 < t ≤ τ2,
...

...

p(yt | Yt−1, θk) if τk−1 < t ≤ τk,

p(yt | Yt−1, θk+1) if τk < t ≤ n,

(1)

where θi ∈ R
l is an l dimension vector, i = 1, 2, . . . , k + 1. Note that we consider in

this paper the change-point problem when the data are assumed to be generated by a
parametric model where the unknown parameter θi changes with respect to different
regimes. Let st be the discrete indicator variable such that

yt | st ∼ p(yt | Yt−1, θst), (2)

where st takes values in {1, 2, . . . , k, k + 1}. The indicator variable st is modeled as a
discrete time, discrete-state Markov process with the constrained transition probability
matrix

P =

⎛
⎜⎜⎜⎜⎜⎜⎝

p11 p12 0 · · · 0
0 p22 p23 · · · 0
...

. . .
. . .

. . .
...

...
...

. . . pkk pk(k+1)

0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (3)

where pij = pr(st = j | st−1 = i) is the probability of moving to regime j at time t
given that the regime at time t−1 is i. With this parameterization, the ith change-point
occurs at τi if sτi = i and sτi+1 = i+ 1.

As pointed out in Chib (1998), the above is a hidden Markov model where the
transition matrix of the hidden state st is restricted as in (3). Hence, Chib’s multiple
change-point model inherits the limitation of the hidden Markov model in that the
number of states has to be specified in advance. In light of this, Chib (1998) suggests
to select from alternative models (e.g. one change-point vs. multiple change-points) ac-
cording to the Bayes factors. In this paper, we introduce the Dirichlet process hidden
Markov model (DPHMM) with left-to-right transition dynamic, without imposing re-
strictions on the number of hidden states. The use of the DPHMM has the following
appealing features:

1. We do not have to specify the number of states a priori. The information provided
by the observations determines the states endogenously. Hence, our method can
be regarded as semiparametric.

2. Our modeling approach facilitates the sampling of states since we only need to
sample the states around change-points.
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We note that Kozumi and Hasegawa (2000) propose a method similar to ours in that
they utilize a Dirichlet process prior for θ, but in a mixture model.

The rest of the paper is organized as follows. Section 2 provides a brief introduction
of the Dirichlet process. Section 3 incorporates the Dirichlet process into the change-
point model. The general Markov chain Monte Carlo sampler is discussed in Section 4.
A Monte Carlo study of the normal mean-shift model is conducted in Section 5. Section 6
discusses learning of DPHMM parameters. Section 7 provides applications of our model
and Section 8 concludes the paper.

2 The Dirichlet Process

Our new method employs the Dirichlet process technique which is widely used in non-
parametric Bayesian models. The Dirichlet process prior is first proposed by Ferguson
(1973). He derives the Dirichlet process prior as the prior on the unknown probability
measure space with respect to some measurable space (Ω,F). Hence the Dirichlet pro-
cess is a distribution over probability measures. Blackwell and MacQueen (1973) show
that the Dirichlet process can be represented by the Polya urn model. Sethuraman
(1994) develops the constructive sticking-breaking definition.

In the present study, we assume a Dirichlet process prior to each row of the transition
matrix. The Dirichlet process is best defined here as the infinite limit of finite mixture
models (Neal (1992), Neal (2000) and Beal et al. (2002)). To illustrate the idea, let us
first consider the case with a finite number of states. With the left-to-right restriction to
the transition dynamic, a particular state st−1 = i will either stay at the current state
i or transit to a state j > i. A left-to-right Markov chain with k states will typically
have the following upper triangular transition matrix

P =

⎛
⎜⎜⎜⎜⎜⎝

p11 p12 p13 · · · p1k
0 p22 p23 · · · p2k
0 0 p33 · · · p3k
...

...
...

. . .
...

0 0 · · · · · · pkk

⎞
⎟⎟⎟⎟⎟⎠ , (4)

where the summation of each row equals 1. Note that the left-to-right Markov chain
here is different from Chib’s restricted band transition matrix (3). Here, the number of
states k is not necessarily the number of regimes as is the case in Chib’s model.

Let pi = (0, . . . , pii, pi(i+1), . . . , pik) be the transition probabilities of the ith row of
the transition matrix (4). Suppose we draw m samples {c1, . . . , cm} of st+1 given st = i
with probability profile pi. The joint distribution of the sample is thus

pr(c1, . . . , cm | pi) =

k∏
j=i

p
mj

ij , (5)

where mj denotes the number of samples that take state j, j = i, . . . , k. We assume a
symmetric Dirichlet prior π(pi | β) for pi with positive concentration parameter β:
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pi | β ∼ Dirichlet(β/(k − i+ 1), . . . , β/(k − i+ 1)) =
Γ(β)

Γ
(

β
k−i+1

)k−i+1

k∏
j=i

p
β/(k−i+1)−1
ij .

(6)
With the Dirichlet prior, we can analytically integrate out pi such that

pr(c1, . . . , cm | β) =
∫

pr(c1, . . . , cm | pi, β)dπ(pi | β)

=
Γ(β)

Γ(m+ β)

k∏
j=i

Γ
(
mj +

β
k−i+1

)
Γ
(

β
k−i+1

) .

(7)

The conditional probability of a sample cd ∈ {c1, . . . , cm} given all other samples is thus

pr(cd = j | c−d) =
m−d,j + β/(k + i− 1)

m− 1 + β
, (8)

where c−d denotes the sample set with cd deleted, and m−d,j is the number of samples
in c−d that take state j.

Taking the limit of equation (8) as k tends to infinity, we have

pr(cd = j | c−d) =

{
m−d,j

m−1+β j ∈ {i, i+ 1, . . . , k},
β

m−1+β for all potential states .
(9)

Note that the probability that cd takes an existing state, say j, is proportional to m−d,j ,
which implies that cd is more likely to choose an already popular state. In addition, the
probability that a new state (i.e. k + 1) takes place is proportional to β. Hence, there
are potentially many states available, with infinite dimension transition matrix

P =

⎛
⎜⎜⎜⎝
p11 p12 p13 · · ·
0 p22 p23 · · ·
0 0 p33 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠ . (10)

The actual state space can be regarded as consisting of an infinite number of states, only
a finite number of which are actually associated with the data. Therefore, the number
of states is endogenously determined.

3 The Dirichlet Process Hidden Markov Multiple
Change-point Model and the State Evolution

Let us now turn to the proposed multiple change-point model and discuss a particular
state evolution. Suppose we have already generated the hidden states up to st = i. We
impose the Dirichlet process as described in Section 2 to st+1. In the change-point model,
the transitions that have existed so far from state i are only self transitions. With the
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left-to-right restriction, we will neither see a backward transition, i.e., transition from
state i to some previous states, nor a forward transition, i.e., transition to some future
states. The counts of the existing transitions from state i will be used as the counts
defined in equation (9). Hence, we will have

pr(st+1 = j | st = i, s1, . . . , st−1) =

{
nii

nii+β j = i,
β

nii+β st+1 takes a new state,
(11)

where nii =
∑t−1

t′=1 δ(st′ , i)δ(st′+1, i) denotes the counts of transitions that have occurred
so far from state i to itself.1 Note that in equation (11), st+1 depends only on the state
that st takes according to the Markovian property. All other previous states merely
provide the transition counts.

We introduce a self-transition prior mass α for each state. The idea here is that if
st transits to a new state, say st+1 = i + 1, then without previous transition records,
the next state st+2 conditioned on st+1 = i+1 will further take another new state with
probability 1. Hence, with α, the trivial case is avoided and we have

pr(st+1 = j | st = i, s1, . . . , st−1) =

{
nii+α

nii+β+α j = i,
β

nii+β+α st+1 takes a new state.
(12)

Therefore, the whole Markov chain is characterized by two parameters, α and β,
instead of a transition probability matrix. We can see that α controls the prior tendency
to linger in a state, and β controls the tendency to explore new states. Figure 1 illustrates
three left-to-right Markov chains of length n = 150 with different α and β. Figure 1a
depicts the chain that explores many new states with very short linger time. Figure 1b
shows the chain with long linger time and less states. Figure 1c lies in between.

Equation (12) coincides with Chib (1998)’s model when the probability pii is inte-
grated out. Specifically, in Chib (1998),

pr(st+1 = j | st = i, s1, . . . , st−1)

=

∫
p(st+1 = j | st = i, s1, . . . , st−1, pii)f(pii)dpii

=

{
nii+a

nii+a+b j = i,
b

nii+a+b j = i+ 1

(13)

where pii ∼ Beta(a, b) and f(pii) is the corresponding density. However, our model stems
from a different perspective. The derivations in the previous section and equation (12)
follow the nonparametric Bayesian literature (Neal (2000)) and the infinite HMM of Beal
et al. (2002). Indeed, it is known that when the Dirichlet process is truncated at a finite
number of states, the process reduces to the generalized Dirichlet distribution (GDD),
see Connor and Mosimann (1969) and Wong (1998). For the same reason we have (12)
coincides with (13). We would like to point out that our modeling strategy facilitates
the Gibbs sampler of st which is different from Chib (1998). We will elaborate further
on the Gibbs sampler in the next section. Also, learning of α and β will be discussed in
Section 6.

1The Kronecker-delta function δ(a, b) = 1 if and only if a = b and 0 otherwise.
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Figure 1: Left-to-right Markov chain with different α and β.

4 Markov Chain Monte Carlo Algorithm

4.1 General

Suppose we have observations Yn = (y1, y2, . . . , yn)
′. Given the state Sn = (s1, . . . , sn)

′

we have
yt | st ∼ p(yt | Yt−1, θst), (14)

where θst ∈ R
l, Yt−1 = (y1, . . . , yt−1)

′. Let θ = (θ1, . . . , θk)
′ and γ denotes a hyperpa-

rameter. Recall that we impose the DPHMM to the states and a hierarchical model to
the parameter, we are thus interested in sampling from the posterior p(θ, Sn, γ | Yn)
given the priors p(θ|γ), p(γ) and p(Sn). The general Gibbs sampler procedure is to
sample the following in turn:

Step 1. Sn | θ, γ, Yn,

Step 2. θ | γ, Sn, Yn,

Step 3. γ | θ, Sn, Yn.

We will discuss the three steps below.

4.2 Simulation of Sn

The state prior p(Sn) can be easily derived from (12). Moreover, the full conditional is

p(Sn | θ, γ, Yn) ∝ p(Sn)p(Yn | Sn, θ, γ). (15)

Simulation of Sn from the full conditional (15) is done by the Gibbs sampler. Specifically,
we draw st in turn for t = 1, 2, . . . , n from

p(st | St−1, S
t+1, θ, γ, Yn) ∝ p(st | st−1, St−2)p(st+1 | st, St+2)p(yt | st, Yt−1, θ, γ),

(16)
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where St−1 = (s1, . . . , st−1)
′ and St+1 = (st+1, . . . , sn)

′. The most recent updated
values of the conditioning variables are used in each iteration. Note that we write
p(st | st−1, St−2) and p(st+1 | st, St+2) to emphasize the Markov dynamic; the other
conditioning states merely provide the counts.

With the left-to-right characteristic of the chain, we do not have to sample all st
from t = 1 to T . Instead, we only need to sample the state in which a change-point takes
place. To see this, let us consider a concrete example. Suppose from the last sampler,
we have

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 · · ·
1 1 1 2 2 3 3 3 4 5 5 · · ·

With left-to-right transition restriction, st requires a sampling from (16) if and only if
st−1 and st+1 differ. For other cases, st is unchanged with probability one. Suppose we
are at t = 2. Since s1 and s3 are both equal to 1, s2 is forced to take 1. In the above
chain, the first state that needs to sample from (16) is s3, which will either take the
values 1 or 2 (s2 or s4). If s3 takes 2 in the sampling (i.e., joining the following regime),
then the next state to sample would be s5; otherwise (i.e., joining the preceding regime),
the next state to sample is s4 because s5 − s3 �= 0 for s3 = 1. Now suppose we are at
t = 9. We will draw a new s9 and s9 will either join the regime of s8 or the regime
of s10. This will look strange because a gap exists in the chain. However, our concern
here is the consecutive grouping or clustering in the series. We can alternatively think
that the state represented by s9 is simply pruned away in the current sweep. Note the
numbers assigned to the st’s are nothing but indicators of regimes.2 Therefore, we will
relabel the st’s after each sweep.

In general, suppose st−1 = i and st+1 = i+1. st takes either i or i+1. Table 1 shows
the corresponding probability values specified in (16). To see this, if st takes i, then the
transition from st−1 to st is a self-transition and that from st to st+1 is an innovation.
The corresponding probability values are in the first row of Table 1. The reasoning for
st = i+ 1 is similar. Note the changes of counts in different situations.

Table 1: Sampling probabilities of st. nii =
∑t−2

t′=1 δ(st′ , i)δ(st′+1, i) and ni+1,i+1 =∑n−1
t′=t+1 δ(st′ , i+ 1)δ(st′+1, i+ 1).

p(st | st−1 = i, St−2) p(st+1 = i+ 1 | st, St+2) p(yt | st, Yt−1, θ)

st = i
nii + α

nii + β + α

β

nii + 1 + β + α
p(yt | Yt−1, θi)

st = i+ 1
β

nii + β + α

ni+1,i+1 + α

ni+1,i+1 + β + α
p(yt | Yt−1, θi+1)

For the initial point s1, if currently s2 − s1 �= 0, then we can sample s1 from

pr(s1 | s2, s3, . . . , sn) =
{
c · α

β+α · β
β+α · p(y1 | Y0, θs1) if s1 unchanged,

c · β
β+α · ns2s2+α

ns2s2+β+α · p(y1 | Y0, θs2) if s1 = s2,
(17)

2This will exclude the case of the regime with only one data point. We do not consider this situation
here.
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where ns2s2 =
∑n−1

t′=2 δ(st′ , s2)δ(st′+1, s2) and c is the normalizing constant. For the end
point sn, if sn − sn−1 �= 1, we sample sn from

pr(sn | sn−1, sn−2, . . . , s1) =

⎧⎨
⎩
c · nsn−1sn−1

+α

nsn−1sn−1
+β+α · p(yn | Yn−1, θsn−1) if sn = sn−1,

c · β
nsn−1sn−1

+β+α · p(yn | Yn−1, θsn) if sn unchanged,

(18)

where nsn−1sn−1 =
∑n−2

t′=1 δ(st′ , sn−1)δ(st′+1, sn−1) and c is the normalizing constant.

As mentioned in Section 3, the DPHMM facilitates the Gibbs sampler of states.
In sampling st from (16), we simultaneously use up all information of the transitions
prior to t (i.e. s1, . . . , st−1) and after t (i.e. st+1, . . . , sT ) which are captured in p(st |
st−1, St−2) and p(st+1 | st, S

t+2). Thus far, our algorithm only requires a record of
transitions and draws at the point where the structural change takes place, whereas we
have to sample all st in Chib (1998).

4.3 Updating θ and γ

Given Sn and Yn, the full conditionals of θ and γ are simply

p(θi | γ, Sn, Yn) ∝ p(θi | γ)
∏

{t:st=i}
p(yt | Yt−1, θi),

p(γ | θ, Sn, Yn) ∝ p(γ) p(θ | γ, Sn, Yn),

(19)

which are model specific. In the following sections, we will study a simulated normal
mean-shift model, a discrete type Poisson model, and an ar(2) model.

4.4 Initialization of States

In Section 4.2, we have discussed the simulation of the states Sn. The number of change-
points is inherently estimated through the sampling of states in equation (16). Within
the burn-in period, the state number will be changing around after each MCMC pass.
After the burn-in period, the Markov chain converges and hence the number of states
becomes stable. Theoretically, it is legitimate to set any number of change-points in the
beginning and let the algorithm find out the convergent number of states. In practice,
we find it is more efficient to initialize with a large number of states and let the algo-
rithm prune away redundant states, rather than allow for the change-point number to
grow from a small number. Specifically, suppose a reasonably large state number k is
proposed. We initialize equidistant states, that is

st = i, if
(i− 1) · n

k
< t ≤ i · n

k
, (20)

where i = 1, . . . , k. Then the algorithm described above will work out the change-point
locations and the number of states after convergence of the Markov chain.
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5 A Monte Carlo Study: the Normal Mean-Shift Model

5.1 The Model

In this section, we first study the normal mean-shift model with known variance σ2.

Suppose the normal data Yn = (y1, . . . , yn)
′ is subject to unknown k changes in mean.

We use the following hierarchical model

yt | θi ∼ N(θi, σ
2) if τi−1 < t ≤ τi,

θi | μ, υ2 ∼ N(μ, υ2),

(μ, υ2) ∼ Inv-Gamma(υ2 | a, b),
(21)

where σ2 is known and τi (i = 1, . . . , k) is the change-point. We set τ0 = 0 and τk+1 = n.

Next, we apply our algorithm to the case of unknown variance. In addition to (21), we

assume the Inverse-Gamma prior for σ2

σ2 ∼ Inv-Gamma(σ2 | c, d). (22)

All derivations of the full conditionals and the Gibbs samplers are given in the Appendix.

We simulate two normal sequences with the parameters specified in Table 2. Specif-

ically, Model 1 is subject to one change-point occurring at t = 50. Model 2 is a two

change-points model with breaks at t = 50 and t = 100. Both models assume variance

σ2 = 3. Two realizations with respect to Model 1 and Model 2 are shown in Figure 2.

We can see the overlapping of the data ranges of different regimes and it is hard to

visually identify the change-points.

Figure 2: Random realizations of Model 1 and Model 2.



284 Dirichlet Process Hidden Markov Multiple Change-point Model

Table 2: Normal Mean-Shift Models 1 and 2.
θ1 θ2 θ3 σ2 τ1 τ2 k n

Model 1
1 3 - 3 50 - 1 150

(One change-point)
Model 2

1 3 5 3 50 100 2 150
(Two change-points)

5.2 Simulation Results

To implement our algorithm, we set the inverse-Gamma hyperparameters a = b = c =
d = 1, and the DPHMM parameters α = 3 and β = 2. The two Gibbs samplers for
the cases of known and unknown variance are conducted for 5000 sweeps with 5000
burn-in samples, respectively. The 5000 sweeps after the burn-in period are thinned
with 50 draws to reduce dependence of iterations. The first column of Figure 3 shows
the probabilities of regime indicator st = i of the two models. Intersections of the lines
st = i clearly demonstrate the break locations.

To compare our proposed DPHMM to Chib’s method, we also report the posterior
inference of Chib’s model under the true change-point number and the same model
specification as in (A-3) and (A-4).3 The posterior means and standard deviations of
parameters are summarized in Table 3. First, our method performs well in all cases
where the posterior distributions concentrate on the true values. The sample first-order
serial correlations demonstrate good mixing of the samplers. Second, our results are
comparable to those estimated from Chib’s model. The Bayes factors show that in most
of the cases the models with the true number of change-points are preferred to others.
For example, in Model 2 where two change-points exist, the Bayes factors comparing
models with k = 1 versus k = 2 are close to zero favoring the two change-point model.
Likewise, the Bayes factors comparing k = 2 versus k = 3 favor the two change-point
model. Hence we conclude that the model with two change-points is correctly specified
with high probability. However, the Bayes factor fails to detect the correct number of
changes in Model 1 with unknown variance. The values suggest a model with two change
points. The posterior probabilities of states estimated by Chib’s model are shown in the
second column of Figure 3. In summary, the simulation results demonstrate that our
algorithm works well in the normal mean-shift models and is robust to the change-point
number compared to Chib’s model.

5.3 Robustness Check of Change-Point Number

In this section, we study the robustness of our algorithm in detecting the true number
of change-points. Although our method does not require prespecification of the change-
point number, it is still possible that our algorithm fails to estimate the correct number
of change-points. Thus, we replicate the entire estimation process as in the previous
section for 1000 times and record the estimated change-point number in each replication.

3The prior of the transition probabilities in Chib (1998)’s model is assumed to be Beta(a, b). The
parameters a and b are chosen to reflect equidistant duration of each state. For example, in the case of
one change-point with n = 150 sample size, we take b = 0.1 and a = n/2× b = 7.5, i.e. Beta(7.5, 0.1).
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Figure 3: Posterior probability of st = i: DPHMM vs. Chib’s model.
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Table 3: Posterior estimates of Normal Mean-Shift Models 1 and 2. Mean and SD denote,
respectively, posterior mean and posterior standard deviation.

Model 1
Known variance Unknown variance

Mean SD True value Mean SD True value
DPHMM

θ1 0.9123 0.2519 1.0000 0.9154 0.2432 1.0000
θ2 2.9375 0.1812 3.0000 2.9354 0.1723 3.0000
σ2 2.8244 0.3343 3.0000

Chib’s Model with k = 1
θ1 0.8980 0.1889 1.0000 0.9521 0.2441 1.0000
θ2 2.9520 0.1324 3.0000 2.9331 0.1619 3.0000
σ2 2.7933 0.4121 3.0000

Bayes Factor Analysis
k = 1 vs. k = 2 1.730 0.548
k = 1 vs. k = 3 1.374 1.010
k = 2 vs. k = 3 0.794 1.850

Model 2
Known variance Unknown variance

Mean SD True value Mean SD True value
DPHMM

θ1 1.1746 0.2777 1.0000 1.2770 0.2584 1.0000
θ2 2.9758 0.2874 3.0000 3.2176 0.2672 3.0000
θ3 5.3344 0.2459 5.0000 5.1108 0.2682 5.0000
σ2 3.1102 0.3726 3.0000

Chib’s Model with k = 2
θ1 1.1770 0.2052 1.0000 1.3680 0.2643 1.0000
θ2 2.9480 0.1916 3.0000 3.1920 0.2730 3.0000
θ3 5.3320 0.1823 5.0000 5.0310 0.2461 5.0000
σ2 3.0780 0.6794 3.0000

Bayes Factor Analysis
k = 1 vs. k = 2 0.000 0.0193
k = 1 vs. k = 3 0.000 0.0583
k = 2 vs. k = 3 3.090 3.0332

Specifically, in each of the 1000 replications, we iterate the Gibbs sampler for 5000 times

and the change-point number of the last sample is recorded. Therefore, we obtain 1000

collections of change-point numbers. Table 4 reports the frequencies of the detected

change-point numbers. We see that with high frequency (over 99%) our method detects

one change-point (k = 1) in Model 1 in both cases of known and unknown variance.

In Model 2, our results show that over 90% of the 1000 replications detect two change-

points (k = 2), and over 99% detect at least one change-point. The figures demonstrate



S. I. M. Ko, T. T. L. Chong, and P. Ghosh 287

that our algorithm correctly detects the change-point number with high probability in
different cases.

Table 4: Frequencies of estimated change-point numbers.
Known variance Unknown variance

k = 0 k = 1 k = 2 k = 0 k = 1 k = 2
Model 1

0.3% 99.7% 0.0% 0.5% 99.5% 0.0%
(One change-point)
Model 2

0.0% 6.5% 93.5% 0.2% 8.7% 91.1%
(Two change-points)

6 Learning α and β

In the previous section, we set the DPHMM parameters α = 3 and β = 2 in estimating
the simulated models. In order to learn about α and β, we propose to use vague Gamma
priors, see Beal et al. (2002). Note that with the number of states specified in each
MCMC sweep, the DPHMM reduces to the generalized Dirichlet distribution (GDD),
see Connor and Mosimann (1969) and Wong (1998). Hence the posterior is

p(α, β | Sn) ∝ Gamma(aα, bα)Gamma(aβ , bβ)
k+1∏
i=1

βΓ(α+ β)

Γ(α)

Γ(nii + α)

Γ(nii + 1 + α+ β)
, (23)

where nii =
∑T−1

t=1 δ(st, i)δ(st+1, i) denotes the counts of self transitions. We set aα =
bα = aβ = bβ = 1 here and in the subsequent sections. Below we consider two alternative
approaches for sampling: the first based on maximum-a-posteriori (MAP) estimation
and a second approach using a random walk sampler.

6.1 The Maximum-a-Posteriori

We first solve for the maximum-a-posteriori (MAP) estimates for α and β which are
obtained as the solutions to the following gradients using the Newton-Raphson method,

∂ ln p(α, β | Sn)

∂α
=

aα − 1

α
− bα

+

k+1∑
i=1

[ψ(α+ β) + ψ(nii + α)− ψ(α)− ψ(nii + 1 + α+ β)] = 0

∂ ln p(α, β | Sn)

∂β
=

aβ − 1

β
− bβ +

k+1∑
i=1

[
1

β
+ ψ(α+ β)− ψ(nii + 1 + α+ β)

]
= 0,

(24)

where ψ(·) is the digamma function defined as ψ(x) = d ln Γ(x)/dx.

We implement our algorithm in the previous section together with the MAP update
of α and β in each sweep. The DPHMM with MAP update correctly detects the true
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Table 5: MAP of α and β in Normal Mean-Shift Models 1 and 2. Average MAP values of
α and β are reported with standard deviations within parentheses. For other parameters,
the values are posterior means and posterior standard deviations.

Model 1 Model 2
known variance unknown variance known variance unknown variance

α 0.6353 (0.0007) 0.6353 (0.0007) 0.9453 (0.0008) 0.9451 (0.0005)
β 0.1937 (0.0005) 0.1937 (0.0005) 0.2364 (0.0001) 0.2361 (0.0005)

θ1 0.9145 (0.2560) 0.9049 (0.2430) 1.1843 (0.2847) 1.2675 (0.2585)
θ2 2.9326 (0.1745) 2.9385 (0.1731) 2.9859 (0.2892) 3.2222 (0.2716)
θ3 5.3349 (0.2468) 5.1026 (0.2661)
σ2 2.8207 (0.3340) 3.0908 (0.3752)

number of change-points in all cases. Table 5 shows the MAP solutions for α and β, and
the posterior estimates of all parameters in each model. We can see that the average
MAP values of α and β are 0.6353 and 0.1937 respectively in Model 1 with known and
unknown variance. The results are slightly different in Model 2 such that average MAP
values are 0.9451 and 0.2360 respectively. We also report the sample standard errors
which show evidence of stability of the MAP values after the burn-in period. In all
cases, α is greater than β indicating that the algorithm tends to linger in existing states
rather than exploring a new one. Besides, all parameter estimates are in line with the
results in the previous section when α and β are prespecified.

6.2 The Metropolis-Hastings Sampler

We also consider a Metropolis-Hastings (M-H) sampler for the posterior (23). The
candidate-generating density is assumed to be the random walk process with positive
support

f(α′|α) ∝ φ(α′ − α), α′ > 0, (25)

where α is the value of the previous draw, φ(·) is the standard normal density function.
The acceptance ratio given β is thus

A(α, α′) =
p(α′, β | Sn) Φ(α)

p(α, β | Sn) Φ(α′)
, (26)

where Φ(·) is the standard normal distribution function. The same M-H sampler is also
applied to β given the updated α. We incorporate the M-H sampler of α and β in the
Gibbs sampler in Section 5. The posterior estimators are shown in Table 6. The posterior
means and standard deviations of parameter θi and σ2 are similar to those obtained in
the previous analyses. The posterior mean of α is greater than the posterior mean of β
in all models. This affirms the conclusion in the MAP results that the algorithm tends
to linger in existing states rather than exploring a new one. Both the MAP and M-H
methods correctly estimate the number of change-points in each simulation.
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Table 6: M-H sampler of α and β in Normal Mean-Shift Models 1 and 2. Posterior
means and posterior standard deviations within parentheses.

Model 1 Model 2
known variance unknown variance known variance unknown variance

α 1.8073 (1.3345) 1.8145 (1.3646) 2.2007 (1.5179) 2.1482 (1.4731)
β 0.3446 (0.2168) 0.3455 (0.2176) 0.3667 (0.2087) 0.3622 (0.2086)

θ1 1.1182 (0.2521) 1.0839 (0.2399) 1.1256 (0.2558) 1.0892 (0.2457)
θ2 2.9447 (0.1724) 3.0939 (0.1701) 2.8277 (0.2644) 3.0341 (0.2449)
θ3 5.0138 (0.2461) 5.1172 (0.2454)
σ2 2.8190 (0.3298) 2.8793 (0.3455)

6.3 Comparison between MAP and M-H

We can see that the estimates of α and β from the two approaches are quite different as
shown in Tables 5 and 6. The MAP as a point estimator may not reflect the variations of
α and β, whereas the M-H is a typical Bayesian method which can be incorporated into
the MCMC sampler of other parameters in question. Moreover, the MAP approach may
be limited when the posterior happens to be multi-modal. Therefore, the M-H method
is preferred in practice and the following empirical studies are conducted with the M-H
sampler.

7 Empirical Applications

7.1 Poisson Data with Change-Point

We first apply our Dirichlet process multiple change-point model to the much analyzed
data set on the number of coal-mining disasters by year in Britain over the period
1951–1962 (Jarrett (1979), Carlin et al. (1992) and Chib (1998)).

Let the disaster count y be modeled by a Poisson distribution

f(y | λ) = λye−λ/y!. (27)

The observation sequence Yn = (y1, y2, . . . , y112)
′ is subject to some unknown change-

points. We plot the data yt in Figure 4. Chib (1998) estimates the models with one
change-point (k = 1) and with two change-points (k = 2), respectively. He assumes the
parameter λ following the prior Gamma(2, 1) in the one-change-point case and the prior
Gamma(3, 1) in the other. Hence, given the regime indicators Sn, the corresponding
parameter λi in regime i has the following posteriors with respect to the two priors:

Posterior 1: λi | Sn, Yn ∼ Gamma(λi | 2 + Ui, 1 +Ni), (28)

and

Posterior 2: λi | Sn, Yn ∼ Gamma(λi | 3 + Ui, 1 +Ni), (29)
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Figure 4: Data on coal mining disaster count yt.

Figure 5: Posterior probability of st = i.

where Ui =
∑112

t=1 δ(st, i)yt and Ni =
∑112

t=1 δ(st, i). We perform our algorithm with the
following Gibbs steps:

Step 1. Sample Sn | λ, Yn as in (16) and obtain k,

Step 2. Sample λi | Sn, Yn as in (28) or (29),

Step 3. Update α and β with the Metropolis-Hastings Sampler as in Section 6.2.

The above Gibbs sampler is conducted for 5000 sweeps with 1000 burn-in samples. To
reduce the sampler dependency, the 5000 sweeps are thinned by 50 draws. The sampler
estimates one change-point in the data. Figure 5 shows the posterior probabilities of the
regime indicator st = i at each time point t. The intersections of the two lines st = 1
and st = 2 show that the break location exits at around t = 40. Figure 6 provides the
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Figure 6: Posterior probability mass function of change-point location τi.

distribution of the transition points τi. Interestingly, our model produces exactly the
same figure as the one in Chib (1998). The change-point is identified as occurring at
around t = 41.

The corresponding posterior means of the parameters λ1 and λ2 are 3.1006 and
0.9387 with posterior standard deviations, 0.2833 and 0.1168, respectively, under the
prior Gamma(2, 1). The posterior means of α and β are 1.8101 and 0.3697 with standard
deviations 1.3577 and 0.2464. When using the prior Gamma(3, 1), we have the posterior
means of λ1 and λ2 equal to3.1308 and 0.9567 with posterior standard deviations 0.2877
and 0.1218, respectively. The posterior means of α and β are 1.8375 and 0.3715 with
standard deviations 1.3456 and 0.2360, respectively under prior 2. All our results closely
match those of the literature and we show a certain robustness of our model under
different prior assumptions.

In order to check the robustness of the estimation of the number of change-points, k,
we conduct 1000 replications of the above estimation process and collect 1000 change-
point numbers. When the first prior is assumed, 77.23% of the 1000 replications detect
one change-point. We find a similar result for prior 2. Hence, we conclude that without
assuming the number of change-points a priori, our algorithm detects the same change-
point number as in the model developed by Chib (1998) with high probability.

7.2 Real Output

We also apply our algorithm to estimate structural changes in real Gross Domestic
Product growth. The data and model are drawn from Maheu and Gordon (2008) (see
also Geweke and Yu (2011)). Let yt = 100[log(qt/qt−1)− log(pt/pt−1)], where qt is quar-
terly US GDP seasonally adjusted and pt is the GDP price index. The data range from
the second quarter of 1947 to the third quarter of 2003, for a total of 226 observations
(see Figure 7). We model the data with a Bayesian ar(2) model with structural change.
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Figure 7: US real GDP growth from the second quarter of 1947 to the third quarter of
2003.

The frequentist autoregressive structural change-model can be found in Chong (2001).
Suppose the data are subject to k change-points and follow

yt = β0,st + β1,styt−1 + β2,styt−2 + εt, εt ∼ N(0, σ2
st), st = 1, 2, . . . , k + 1. (30)

We assume the following hierarchical priors to β0,i, β1,i and β2,i:

βi = (β0,i, β1,i, β2,i)
′ ∼ N(μ, V ), i = 1, . . . , k + 1, (31)

where μ = (μ0, μ1, μ2)
′ and V = Diag(v20 , v

2
1 , v

2
2), such that

p(μj , v
2
j ) ∝ Inv-Gamma(v2j | a, b), j = 0, 1, 2. (32)

We assume the noninformative prior for σ2
i such that

p(σ2
i ) ∝ 1/σ2

i , i = 1, . . . , k + 1. (33)

Conditional on σ2
i , the sampling of βi, μ and V is similar to Section 5. For σ2

i , we
can draw from the following full conditional:

σ2
i | βi, Sn, Yn ∼ Inv-χ2

(
σ2
i | τi − τi−1,

ω2
i

τi − τi−1

)
, i = 1, . . . , k + 1, (34)

where ω2
i =

∑
τi−1<t≤τi

(yt − β0,st − β1,styt−1 − β2,styt−2)
2.

As in the previous applications, we set the inverse-Gamma hyperparameters
a = b = 1. The M-H update of α and β follows the discussion in Section 6.2. The Gibbs
sampler is conducted for 5000 sweeps with 1000 burn-in samples. The 5000 sweeps are
thinned by 50 draws. The posterior probabilities of the regime indicator st in Figure 8a
suggest that the structural break exists between the years 1980 and 1990. Figure 8b
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Figure 8: US real GDP growth structural change model.

Table 7: US real GDP growth structural change model with one change-point. Posterior
means and posterior standard deviations within parentheses. The results applying Chib’s
model are drawn from Maheu and Gordon (2008).

Chib’s Model DPHMM
st = 1 st = 2 st = 1 st = 2

β0,st 0.5642 (0.1228) 0.4434 (0.1162) 0.5499 (0.1303) 0.3894 (0.1169)
β1,st 0.2716 (0.0734) 0.2792 (0.1052) 0.2812 (0.0837) 0.2796 (0.1173)
β2,st 0.0800 (0.0739) 0.1588 (0.1010) 0.0913 (0.0855) 0.2253 (0.1124)
σ2
st 1.3331 (0.1542) 0.3362 (0.0516) 1.4089 (0.1722) 0.2672 (0.0460)

further shows the change-point at the second quarter of 1983, which is close to the re-
sults in Maheu and Gordon (2008).4 The posterior estimates are summarized in Table 7.
Finally, the posterior means of α and β are 1.7749 and 0.3045 with standard deviations
1.3422 and 0.1939 respectively. All of our results are consistent with Chib’s estimates.

Finally, we replicate 1000 times the whole estimation process and check the robust-
ness of the detected change-point number. The result suggests that nearly 100% of the
replications detect one break point.

8 Concluding Remarks

In this paper, we have proposed a new Bayesian multiple change-point model, that is
the Dirichlet process hidden Markov model. Our model is semiparametric in the sense
that the number of states is not built-in to the model but endogenously determined.
As a result, our model avoids the model misspecification problem. We have proposed
an MCMC sampler which only needs to sample the states around change-points. We

4See Figure 4 in Maheu and Gordon (2008).
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have also proposed the MAP and M-H updates of hyperparameters in the DPHMM
process. We have presented three specific models, namely, the discrete Poisson model,
the continuous normal model, and the ar(2) model with structural changes. Results
from the simulations and empirical applications showed that our Dirichlet process hid-
den Markov multiple change-point model detected the true change-point numbers and
locations with high accuracy.

Appendix
In the appendix, we give the derivations of the full conditionals and the Gibbs samplers
in Section 5. For the case of known variance, we first rewrite the hierarchical model (21)
as the joint distribution

p(Yn, θ, μ, υ
2 | Sn, σ

2) ∝
k+1∏
i=1

N(ỹi | θi, σ2
i )

k+1∏
i=1

N(θi | μ, υ2)p(μ, υ2), (A-1)

where p(μ, υ2) corresponds to Inv-Gamma(υ2 | a, b), θ = (θ1, . . . , θk+1)
′ and

ỹi =

∑
τi−1<t≤τi

yt

τi − τi−1
, and σ2

i =
σ2

τi − τi−1
. (A-2)

From (A-1) and (A-2), we have the following full conditionals:

p(θi | μ, υ2, σ2, Sn, Yn) ∝
k+1∏
i=1

N(ỹi | θi, σ2
i )N(θi | μ, υ2)

∝ N

(
θi |

ỹi/σ
2
i + μ/υ2

1/σ2
i + 1/υ2

,
1

1/σ2
i + 1/υ2

)
,

p(μ | θ, υ2, Sn, Yn) ∝
k+1∏
i=1

N(θi | μ, υ2)p(μ, υ2)

∝ N(μ | θ̄, υ2/(k + 1)),

p(υ2 | θ, μ, Sn, Yn) ∝ (υ2)−(k+1)/2 exp

{
−1

2

k+1∑
i=1

(θi − μ)2/υ2

}
p(μ, υ2)

∝ Inv-Gamma

(
υ2 | a+ k + 1

2
, b+

1

2

k+1∑
i=1

(θi − μ)2

)
,

(A-3)

where θ̄ =
∑k+1

i=1 θi/(k + 1). Therefore, we can perform the following Gibbs sampler:

Step 1. Sample Sn | θ, μ, υ, Yn as in (16) and obtain k,

Step 2. Sample θ, μ, υ | Sn, Yn as in (A-3).

For the case of unknown variance, the full conditional with respect to (22) is

σ2 | θ, Sn, Yn ∼ Inv-Gamma

(
σ2

∣∣∣∣c+ n

2
, d+

1

2

n∑
t=1

(yt − θst)
2

)
. (A-4)
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Conditional on σ2, we apply the same estimation strategy discussed above. The Gibbs
sampler is thus

Step 1. Sample Sn | θ, μ, υ, σ2, Yn as in (16) and obtain k,

Step 2. Sample θ, μ, υ, σ2 | Sn, Yn as in (A-3) and (A-4).

References
Beal, M. J., Ghahramani, Z., and Rasmussen, C. E. (2002). “The Infinite Hidden Markov
Model.” In Dietterich, T. G., Becker, S., and Ghahramani, Z. (eds.), Advances in
Neural Information Processing Systems, 577–584. MIT Press. 277, 279, 287

Blackwell, D. and MacQueen, J. B. (1973). “Ferguson Distributions Via Polya Urn
Schemes.” The Annals of Statistics, 1(2): 353–355. 277

Carlin, P. B., Gelfand, A. E., and Smith, A. F. M. (1992). “Hierarchical Bayesian
Analysis of Changepoint Problems.” Journal of the Royal Statistical Society. Series
C (Applied Statistics), 41(2): 389–405. 275, 289

Chernoff, H. and Zacks, S. (1964). “Estimating the Current Mean of a Normal Distribu-
tion which is Subjected to Changes in Time.” The Annals of Mathematical Statistics,
35(3): pp. 999–1018. 275

Chib, S. (1998). “Estimation and comparison of multiple change-point models.” Journal
of Econometrics , 86(2): 221 – 241. 275, 276, 279, 282, 284, 289, 291

Chong, T. T.-L. (2001). “Structural Change in AR(1) Models.” Econometric Theory ,
17(1): 87–155. 292

Connor, R. J. and Mosimann, J. E. (1969). “Concepts of Independence for Propor-
tions with a Generalization of the Dirichlet Distribution.” Journal of the American
Statistical Association, 64(325): pp. 194–206. 279, 287

Ferguson, T. S. (1973). “A Bayesian analysis of some nonparametric problems.” Annals
of Statistics, 1: 209–230. 277

Geweke, J. and Yu, J. (2011). “Inference and prediction in a multiple-structural-break
model.” Journal of Econometrics, 163(2): 172–185. 275, 291

Giordani, P. and Kohn, R. (2008). “Efficient Bayesian Inference for Multiple Change-
Point and Mixture Innovation Models.” Journal of Business and Economic Statistics,
26(1): 66–77. 275

Jarrett, R. G. (1979). “A Note on the Intervals Between Coal-Mining Disasters.”
Biometrika, 66(1): 191–193. 289

Koop, G. and Potter, S. M. (2007). “Estimation and Forecasting in Models with Multiple
Breaks.” The Review of Economic Studies, 74(3): pp. 763–789. 275

Kozumi, H. and Hasegawa, H. (2000). “A Bayesian analysis of structural changes with
an application to the displacement effect.” The Manchester School , 68(4): 476–490.
277



296 Dirichlet Process Hidden Markov Multiple Change-point Model

Maheu, J. M. and Gordon, S. (2008). “Learning, forecasting and structural breaks.”
Journal of Applied Econometrics, 23(5): 553–583. 275, 291, 293

Neal, R. M. (1992). “The Infinite Hidden Markov Model.” In Smith, C. R., Erickson,
G. J., and Neudorfer, P. O. (eds.), Proceedings of the Workshop on Maximum Entropy
and Bayesian Methods of Statistical Analysis, 197–211. Kluwer Academic Publishers.
277

— (2000). “Markov Sampling Methods for Dirichlet Process Mixture Models.” Journal
of Computational and Graphical Statistics, 9(2): 249–265. 277, 279

Pesaran, M. H., Pettenuzzo, D., and Timmermann, A. (2006). “Forecasting Time Series
Subject to Multiple Structural Breaks.” Review of Economic Studies, 73(4): 1057–
1084. 275

Sethuraman, J. (1994). “A Constructive Definition of Dirichlet Priors.” Statistica Sinica,
4(2): 639–650. 277

Smith, A. F. M. (1975). “A Bayesian approach to inference about a change-point in a
sequence of random variables.” Biometrika, 62: 407–416. 275

Stephens, D. A. (1994). “Bayesian Retrospective Multiple-Changepoint Identification.”
Journal of the Royal Statistical Society. Series C (Applied Statistics), 43(1): 159–178.
275

Wang, J. and Zivot, E. (2000). “A Bayesian Time Series Model of Multiple Structural
Changes in Level, Trend, and Variance.” Journal of Business & Economic Statistics,
18(3): 374–386. 275

Wong, T. (1998). “Generalized Dirichlet distribution in Bayesian analysis.” Applied
Mathematics and Computation, 97(2-3): 165–181. 279, 287

Acknowledgments

The authors would like to thank all the participants in the Econometric Society Australasian
Meeting 2011, Adelaide, Australia, July 2011, for helpful comments and discussions.

The third author (P.G.) acknowledges the support of DST grant (SR/S4/MS:648/10) from the
Government of India.


	Introduction
	The Dirichlet Process
	The Dirichlet Process Hidden Markov Multiple Change-point Model and the State Evolution
	Markov Chain Monte Carlo Algorithm
	General
	Simulation of  Sn 
	Updating   and 
	Initialization of States

	A Monte Carlo Study: the Normal Mean-Shift Model
	The Model
	Simulation Results
	Robustness Check of Change-Point Number

	Learning  and 
	The Maximum-a-Posteriori
	The Metropolis-Hastings Sampler
	Comparison between MAP and M-H

	Empirical Applications
	Poisson Data with Change-Point
	Real Output

	Concluding Remarks
	Appendix
	References

