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1 Introduction

I congratulate the authors on their state-space model for covariance matrices associated
with multivariate return vectors subject to stochastic volatility. Despite the apparent
restrictions imposed on the proposed model, its tractability offers exciting possibilities
for modelling and forecasting the covariance of high dimensional multivariate financial
asset price returns.

2 The proposed model requires strong assumptions

Conditionally normal price returns. To obtain the computational advantages delivered
by the proposed model, one is required to make strong distributional assumptions re-
garding both the measurement and transition equations in the state-space model. As
the authors detail in Section 5, the measurement equation imposed is equivalent to as-
suming that the m-vector of prices evolves over day t according to a geometric Brownian
motion process. This relates to a conditional Gaussian distribution for the daily (log)
price return. Yet, when modelling price returns in a univariate setting, the conditional
distribution of the return is often taken to have ‘fatter tails’ than a normal distribution
(see, for example, Chib et al. (2002)). That is, even when accounting for changes in the
latent volatility process, the conditional normal distribution is not usually sufficient to
generate the marginal skewness and leptokurtosis evident in observed daily returns.

A diffusive volatility process. In addition, the latent covariances in the proposed mul-
tivariate model (and indeed in the discussed competing multivariate models) are im-
plicitly assumed to be ‘locally smooth’, and thereby will change only slowly over time
in a manner akin to a random walk (see Prado and West (2010), p. 272). Arguably,
this assumption would be similar to assuming that the stochastic variances evolve from
day to day according to a (potentially nonlinear, multivariate) diffusive process. How-
ever, again in the univariate setting, diffusive volatility alone is generally viewed as
a restrictive assumption, with jumps in the price process (and indeed, in the latent
stochastic variance process) deemed important for the prediction of derivative asset
prices (e.g. Bates (2000), Duffie et al. (2000), Eraker et al. (2003) and Maneesoonthorn
et al. (2012)).

∗Monash University, Australia catherine.forbes@monash.edu

© 2014 International Society for Bayesian Analysis DOI:10.1214/14-BA920

mailto:email1@example.com


806 Comment

3 Relaxing the assumptions

Introducing ‘fat tails’. Despite these limitations, I think the proposed state-space model
offers exciting possibilities for modelling high dimensional multivariate returns. Not only
does the model now explicitly take advantage of the more informative and robust real-
ized kernel covariance measures, the tractability of the model suggests that computation
even with both ‘fat tails’ and price jumps included in the model may be feasible, via
Markov chain Monte Carlo (MCMC) methods. Already the ‘fat tails’ feature appears to
be accommodated by the authors’ suggestion, detailed in Section 6, that the conditional
measurement distribution of Yt be augmented by a gamma distributed auxiliary variable
φt. While the suggestion is not implemented, and would imply an additional computa-
tional cost, conditional on the set of auxiliary variables {φt, t = 1, 2, ..., T} the proposed
forward filtering, backwards sampling (FFBS) method is essentially preserved. Con-
sequently, it seems plausible that the computational demands of this extension, while
raised, would not be too onerous.

Introducing price jumps. Regarding the potential for multivariate price jumps, suppose
the vector of intraday stock prices evolves as a geometric Brownian motion with inde-
pendent compound Bernoulli jumps, such that on day t the log price vector at time s
on day t may be represented as

pt+s = pt + µs+ V
1/2
t (wt+s −wt) + Zt (Nt+s −Nt) , (1)

where pt, µ,V and wt are all defined as in Section 51, {Ns}s≥0 is an m−dimensional
Bernoulli process comprised of m stacked independent univariate Bernoulli processes
{Ni,s}s≥0 having corresponding intensity parameter δi, for i = 1, 2, ...,m, and with the

(m×m) random diagonal matrix Zt having ith diagonal element

Zi,t
independent∼ N

(
αi, τ

2
i

)
, for i = 1, 2, ...,m. (2)

Now, conditional on the jump process Zt∆Nt = Zt (Nt+1 −Nt), and assuming µ = 0,
we have

rt ∼ N
(
Zt∆Nt,X

−1
t

)
,

Xt = T′t−1ΨtTt−1/λ, Ψt ∼ βm
(
n

2
,
k

2

)
, (3)

Tt−1 = upper chol Xt−1.

Again the notation in (3) comforms to that of Section 5. The specification is such

that conditional on the set of price jumps {(Zt∆Nt)}Tt=1, the model for the adjusted

1To avoid inconsistencies, I have replaced pt,s with pt+s and pt,0 with pt.
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measurement covariance matrix Y∗t = Yt−(Zt∆Nt) (Zt∆Nt)
′
retains the original form

Y∗t ∼ Wm

(
k, (kXt)

−1
)
, (4)

Xt = T′t−1ΨtTt−1/λ, Ψt ∼ βm
(
n

2
,
k

2

)
, (5)

Tt−1 = upper chol Xt−1. (6)

Accordingly, the proposed FFBS algorithm may therefore be applied to this condition-
ally adjusted measurement covariance, enabling relatively efficient sampling of the latent
symmetric positive-definite matrices {Xt}Tt=1 from the relevant (joint) conditional pos-

terior distribution. Joint sampling of the latent price jump series {∆Nt}Tt=1 is also
easily achieved, as the individual ∆Nt components are independent Bernoulli random
variables, when conditioned upon the observed data {∆Yt}Tt=1, the jump sizes {Zt}Tt=1,

and the latent stochastic variances
{

∆X−1
t

}T
t=1

. In addition, the latent price jump

sizes {Zt}Tt=1 are conditionally independent given the data {∆Yt}Tt=1, the jump events

{∆Nt}Tt=1, and the latent stochastic variances
{

∆X−1
t

}T
t=1

.

Note that rather than necessarily impose independent jump processes, one could
explore the use of dependent jump processes, as in Aı̈t-Sahalia et al. (2014), and Ma-
neesoonthorn et al. (2013).

Of course, whether the tractability of the proposed model ultimately delivers on
its promise to enable feasible MCMC computation of an expanded multivariate model
incorporating both ‘fat tails’ and price jumps remains to be determined. If it does,
however, I would expect forecasts from such a model to outperform those based on
either a comparable model based on daily returns alone (e.g. Chib et al. (2006)) and to
outperform those that ignore ‘fat tails’ and price jumps altogether.
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