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Rejoinder

Francisco J. Rubio ∗ and Mark F. J. Steel †

We are very grateful to all discussants of this paper for their thought–provoking and
constructive comments and the interesting research directions they indicate. We present
our reply to the comments of the discussants in alphabetical order.

[J. M. Bernardo] We agree on the importance of checking the asymptotic normality of
the joint posterior distribution induced by the Jeffreys prior, provided it exists. However,
we have shown that, in the context of two–piece location–scale models, the Jeffreys–
rule prior does not even lead to a proper posterior distribution when the underlying
symmetric density f belongs to the family of scale mixture of normals. This result
precludes the use of the Jeffreys–rule prior for conducting Bayesian inference altogether.

Although we do not claim optimality of the Jeffreys–rule nor the independence Jeffreys
priors in any sense, the optimality of a prior depends, of course, on the optimality
criterion. While the Jeffreys–rule prior is not optimal for inferences in certain cases,
it represents the optimal choice in some others (see e.g. Hedayati and Barlett 2012).
Therefore, we think the study of these priors is of interest, especially if this study reveals
important pitfalls that occur when such priors are used in apparently simple models.
The reality is that Jeffreys priors offer a relatively easily obtained prior candidate in
the absence of strong prior information, which has some interesting properties, such as
invariance with respect to reparameterizations, and is used quite a lot in practice. In
fact, a quick search on Google Scholar (on January 20, 2014) reveals 423 papers since
2013 with the term “Jeffreys prior” (about the same number as containing the phrase
“reference prior”).

Given the impropriety of the posterior induced by the Jeffreys–rule prior, we present
some alternative priors that lead to proper posteriors under certain conditions. The
first (standard) alternative studied is the independence Jeffreys prior, which often per-
forms better in practical situations. The Jeffreys–rule and the independence Jeffreys
prior coincide for orthogonal parameterizations, which in this case do not seem to be
achievable, as discussed by Jones and Anaya-Izquierdo (2011). The second class of
alternative priors consists of modifications of the Jeffreys–rule and the independence
Jeffreys priors on a more heuristic basis. These priors lead to proper posteriors and,
as shown in the Supplementary material (Appendix 2), in a simulation study they also
result in posteriors with good frequentist properties.

The study of other types of noninformative priors represents an interesting extension
of our work, and the reference prior would indeed be the first alternative we would try.
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For the general location–scale model with any choice of sampling density (skewed or
not), Fernández and Steel (1999b) derived that the reference prior is π(µ, σ) ∝ σ−1. We
conjecture that once we introduce a parameter to capture skewness in the model as in
Subsection 2.2, the reference prior will exhibit the structure π(µ, σ, γ) ∝ σ−1π(γ), for
some function π(γ), just like for the skew-normal distribution in Liseo and Loperfido
(2006) (note that the structure of the information matrix in their Appendix D is the
same as that in the proof of our Theorem 3). This would mean that the reference prior
has the same structure as in (23) in Subsection 3.4 with a particular choice of π(γ) and
would thus be covered by Theorem 6. The exact expression for the reference prior and
its properties (and especially how these compare with the priors proposed in Subsection
3.4) remain an exciting topic for further research.

[J. G. Scott] The link between two–piece models and finite mixtures models together
with the fact that some improper priors lead to proper posteriors for two–piece models
may indeed look intriguing at first glance. An intuitive explanation for this seemingly
paradoxical situation is that, although two–piece models can be seen as mixture models,
the elements of this mixture are restricted in the sense that the weight ε = σ1/(σ1+σ2)
is tied to the scale parameters (σ1, σ2), and the location parameter µ is the same for
both components of the mixture. These restrictions produce a mixture model that
allows for proper posteriors with certain improper priors. In other words, we have no
component–specific parameters in our model, so the “usual” problem with improper
priors (due to allocating no observations to one of the components) is avoided.

Analogous results for the existence of the posterior distribution in skew–symmetric scale
mixtures of normals using the independence Jeffreys prior (which has a similar product
structure) are provided in Rubio and Liseo (2014).

The comparison with variance-mean mixture models provides an interesting parallel:
indeed, if s = 0 then skewness is maximized in these models (just as when one of
the scales tends to zero in our two–piece model). Of course, the amount of skewness
generated by the variance-mean mixture model will depend not only on s but also
on the mixing distribution. Barndorff-Nielsen (1977) pointed out that the hyperbolic
distribution can be represented as a normal-mean mixture with a generalized inverse
Gaussian mixing distribution. This is one of the two choices for the mixing distribution
that Polson and Scott (2013) focus on. The fact that it is not trivial to conduct formal
“objective” Bayesian analyses in this context is illustrated by Fonseca et al. (2012) who
derive the Jeffreys prior for the hyperbolic model and conclude that it does not exist in
closed form and use numerical integration. They also report some numerical experiments
using this prior but do not present a proof of the propriety of the corresponding posterior.

The use of the half–Cauchy prior (or half–Student–t prior, more generally) indeed rep-
resents another appealing choice for priors on scale parameters. In Rubio and Steel
(2013a) we construct a “vague proper prior” for skew–symmetric and two–piece sam-
pling distributions, in the context of stress–strength models, using this sort of prior for
the scale parameters. Recently, other types of vague proper priors for scale parameters
have been proposed. A common feature of these priors is that they are heavy–tailed,
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which can be interpreted as a translation of “vague prior beliefs”. The impact on the
inference of this kind of “vague” priors depends, however, on the units of measurement
of the data.

Inspired by this comment, we investigated the use of half–Cauchy priors on the scales
in the context of our two–piece model in (2). Given the intuition in Subsection 3.3 and
the fact that these priors integrate close to zero (or anywhere else, for that matter), we
would expect the posterior to exist. Indeed, we can show the following:
Theorem R.10. Let y = (y1, . . . , yn) be an independent sample from the model in (2),
where f is a scale mixture of normals. Define the prior

π(µ, σ1, σ2) ∝
1

1 + σ2
1

1

1 + σ2
2

. (R.1)

Then, the posterior distribution of (µ, σ1, σ2) is proper under the following conditions:

(i) If n ≥ 2 and all the observations are different.

(ii) Suppose that the sample y contains repeated observations and k is the largest num-
ber of observations with the same value in y. If 1 < k < n, then the posterior is
proper if the mixing distribution of f satisfies (18). In the case of the two-piece
normal sampling model (i.e. normal f), it suffices to have two different observa-
tions.

Proof. See Appendix

We have investigated the empirical coverage of the two-piece model in (2) with the
prior in (R.1) using the same simulation setup as in Appendix 2 of the Supplementary
material. Results for the coverage of the 95% posterior credible intervals with sample
size n = 100 are summarized in Table R.1, which indicates that the coverage with this
prior based on half–Cauchy distributions for the scales is quite good (about the same as
with the independence Jeffreys prior in one case, and even slightly better in the other),
in line with the conjecture of the discussant.

Sample size n = 100

Parameters
σ1 = 2.0 σ1 = 0.66
σ2 = 0.5 σ2 = 1.50

µ 0.957 0.952
σ1 0.961 0.959
σ2 0.952 0.954

Table R.1: Coverage proportions. Two–piece model in (2) with half–Cauchy priors on the
scales.

We agree that the reference prior would be another interesting candidate to examine
in this context. On this issue, please see our replies to the comments of the previous
discussant.
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[R. E. Weiss and M. A. Suchard] In line with most of the literature, we merely used
“valid” as a shorthand for inference that can be conducted in a fundamental probabilistic
sense, leaving aside properties of possible estimators and similarity to hypothetical
perfect analyses. Of course, we agree that sensible Bayesian inference has to go beyond
propriety of the posterior distribution; propriety is just the least we should check when
using improper priors. In our case, this motivated the simulation study presented in
Appendix 2 of the Supplementary material where we checked the coverage of some
posterior credible intervals in order to assess the frequentist properties of the proposed
priors. A good posterior coverage is typically considered to be a desirable property
of a posterior induced by an improper/benchmark prior. However, it is impossible to
propose a criterion without hurting someone’s feelings.

An equally loaded term is, of course, “benchmark”, and the discussants astutely point
out that this is by no means a clear-cut concept. We have in mind (again, like most of
the literature) a prior that can be used (perhaps only once for a particular practitioner)
relatively safely (without having any unexpected impact on the results) in a situation
where genuine prior information is either lacking or not used (in an attempt to make the
analyses as palatable as possible to a wide set of readers), and that can be formulated
without taking “time and data”. This is something we feel would be a useful addition
to the toolbox of applied users of relatively standard models.

The example using the AIS data set raises an important question in the context of
modelling data using flexible distributions: are location, scale, and skewness param-
eters enough to model asymmetric, seemingly unimodal, data? The answer to this
question in general is “no”. Departures from normality are usually studied in terms of
skewness and tail behaviour, and the latter cannot always be controlled by only one
shape parameter. In order to properly model these two aspects, several four or five–
parameter distributions have been studied (see Rubio and Steel 2013b and the references
therein). So, although three–parameter two–piece models provide extra flexibility (with
respect to the original symmetric model), this may not be sufficient for modelling all
sorts of data, and additional shape parameters may be necessary. We believe the study
of benchmark priors obtained by formal rules for other types of flexible distributions is
an interesting research line. We entirely agree on the possible influence of outliers on
the inference on the skewness parameter (γ).

Bayesian nonparametric methods might indeed be able to produce a better fit, provided
that the sample size is large enough, given their intrinsic higher flexibility. However,
it is more difficult to learn about the asymmetry and the tails of the data using this
approach, in contrast to the use of parametric distributions containing skewness and
kurtosis parameters, such as the two–piece Student–t, which has parameters that are
readily interpretable. It is also more complicated to conduct for the applied practitioner
than the parametric analysis outlined in our paper. In addition, it does not free the
analyst from having to elicit a prior, which is actually a harder task in the nonparametric
case. Thus, although the DPM model could certainly be better at fitting (large amounts
of) data, we actually do not feel the use of such a model would be “easier”. The issues
mentioned in the discussion for the implementation of DPM models illustrate the level
of complexity and we agree they deserve serious consideration. The use of skewed
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components in DPM models has been studied, e.g. in Kottas and Gelfand (2001), who
use median zero components obtained as in (1) but with ϵ = 1/2 so they are generally
discontinuous at the origin, and in Kalli et al. (2013), who use uniforms with skewness
induced through inverse scale factors. Rodŕıguez and Walker (2014) adopt infinite
mixtures of such uniforms, which amounts to using flexible unimodal components, in
the context of modelling the number of clusters in the data.

[X. Xu] We fully agree that looking at implications of a prior in terms of an inter-
pretable quantity can help us understand much better the (often hidden) implications
of prior choices. The discussion of these Jeffreys–type priors in terms of the interpretable
skewness measure AG is quite illuminating and clearly shows that these “objective” pri-
ors (especially the Jeffreys prior) have quite extreme implications. However, the reason
we can do this so easily in the context of our models is that skewness (as measured by
AG) is a function of one single parameter (γ), which is not the case in most compet-
ing models for dealing with skewness (for example, the skew–normal model of Azzalini
1985 and its extensions, and the variance–mean mixture models mentioned by the sec-
ond discussant). This emphasises the importance of using models with interpretable
parameters, especially for prior elicitation.

This discussion also focuses on Bayesian model selection with improper priors and in
high-dimensional problems. The problems arising with the use of Bayes factors (BF)
as a model selection tool, in particular their dependence on the prior, have been widely
discussed. The solution proposed in Xu et al. (2011) through the use of the information
level is quite interesting and seems to be widely applicable. One other model selection
criterion that is not overly sensitive to the impropriety of the prior or the dimension
of the problem consists of comparing the predictive performance of the various models
considered, measured, for example, through the log predictive scores. A related general
question is how to select a model from the growing catalogue of flexible/skew distri-
butions. Given that several proposed families of skewed distributions produce similar
degrees of flexibility, the answer to this question is not straightforward. However, we
believe that for a sensible model selection we need to consider both formal model selec-
tion tools as well as an ad hoc evaluation of other intrinsic properties of the competing
models, such as interpretability of the parameters, ease of use and inferential properties.
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Appendix: Proof of Theorem R.1

Consider the change of variable given by σ1 = σ(1 + γ) and σ2 = σ(1 − γ), with
γ ∈ (−1, 1). The determinant of the Jacobian of this transformation is given by |J |= 2σ.
Then, the prior (R.1) becomes

π(µ, σ, γ) ∝ σ
1

1 + σ2(1 + γ)2
1

1 + σ2(1− γ)2
.
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For −1 < γ ≤ 0 we have that there exists a constant k1 such that

π(µ, σ, γ) ≤ k1σ

1 + σ2(1− γ)2
≤ k1σ

1 + σ2
<
k1
σ
.

Analogously, for 0 < γ < 1 we have that there exists a constant k2 such that

π(µ, σ, γ) ≤ k2σ

1 + σ2(1 + γ)2
≤ k2σ

1 + σ2
<
k2
σ
.

Therefore, we have that π(µ, σ, γ) ≤ 1

σ
, up to a proportionality constant. This upper

bound corresponds to the AG–Beta prior with hyperparameters α0 = β0 = 1, and,
consequently, the result follows from Theorem 6. �
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