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Comment on Article by Rubio and Steel

Xinyi Xu ∗

Prior elicitation is an important and challenging problem in Bayesian analysis. When
little prior knowledge is available for the model parameters (which is commonly the case
when the model is high dimensional), a standard approach is to use “noninformative” or
“weakly-informative” prior distributions. When the posterior distribution is proper and
the sample size is reasonably large, the Bayesian estimates under these priors are usually
close to those obtained by frequentist methods, and thus are viewed as “objective”
estimates. However, this approach falls apart in some situations.

The authors of this paper show an interesting case where even for quite simple models
such as the two-piece location-scale models, the widely used “noninformative” Jeffreys
prior leads to improper posteriors and thus prevents valid Bayesian inference for the
models. They cleverly propose two alternative classes of priors for the two-piece location-
scale models and particularly recommend one of them, which focuses on the Arnold-
Groeneveld (AG) measure of skewness. These AG priors have nice interpretations, lead
to proper posteriors for all practically interesting subclasses of these models, and can be
easily implemented by practitioners in many scientific and industrial fields. This work
provides significant methodological and practical contributions to the literature. I’d like
to discuss two aspects of prior elicitation that are reflected in this work.

1 The impact of model parametrization on prior elicita-
tion

Although some priors such as the Jeffreys priors are invariant to model parametriza-
tion, many common priors are not, so different model parameterizations can lead to
different prior choices. In this paper, the authors consider two different parameteri-
zations of the two-piece location-scale models in Sections 2.1 and 2.2. In both model
specifications, the model parameters are not directly interpretable, nor can people easily
collect information on them. Therefore, improper “noninformative” priors are placed
on the model parameters in pursuit of “objective” analysis. This is an all too com-
mon practice in Bayesian inference. However, when the models are parameterized with
non-interpretable parameters, the “noninformative” priors on convenient model specifi-
cations are not necessarily noninformative; instead, they could implicitly contain strong
undesirable information on important model features.

In the work of Rubio and Steel, for the Inverse Scale Factors (ISF) model, the Jeffreys
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prior and the independent Jeffreys prior are provided in (13) and (14) as
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where α2 is a constant determined by the symmetric density f . The AG measure
of skewness is a function of γ and can be represented for the ISF model as AG =
(γ2 − 1)(γ2 + 1). Therefore, it is easy to derive the implied priors on AG under the
Jeffreys and the independent Jeffreys priors as

πJ(AG) ∝ 1

2

√
1

1−AG2

πI(AG) ∝

√
α2

(1−AG2)2
+

1

1−AG2
,

respectively. As shown in Figure 1, these priors have infinite peaks at AG = 1 or −1,
which correspond to models that are either extremely left-skewed or extremely right-
skewed; and reach their minima when AG = 0, which corresponds to the models that
are symmetric. This mass assignment is counter-intuitive in most practical situations.
Similarly, for the ε-skew model, the implied priors on AG under the Jeffreys and the
independent Jeffreys prior in (16) and (17) are
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which also strongly favor extremely skewed models and place little mass around sym-
metric models. This undesirable assignment of mass across the model space is hidden
when the models are parameterized with (µ, σ, γ), and could be dangerous in practice if
not examined carefully. On the other hand, the AG beta prior in (25) recommended by
the authors is constructed directly on the rescaled AG measure, and thus allows us to
incorporate information on this meaningful parameter when we have prior knowledge
and to avoid unintentionally incorporating strong prior information when we do not.

The danger of unintentionally including strong prior information by using “noninforma-
tive” priors on conventional model parameters is not restricted to inference in two-piece
location-scale models. In fact, it exists in a wide range of problems. For example, Hans
et al. (2012) points out that in normal linear models, the standard normal priors on
regression coefficients might contain strong information on the regression relationship
(measured by R2), which depends critically on the model dimensions. As a remedy, they
construct a class of priors that focuses directly on the regression relationship, such that
the same prior on R2 is maintained over models of difference sizes. Another example
in the literature is associated with the portfolio choice problem, in which the excess
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Figure 1: The solid line represents the density πJ(AG) implied by the Jeffreys prior on
(µ, σ, γ), and the dashed line represents the density πI(AG) implied by the independent
Jeffreys prior on (µ, σ, γ). The constant α2 in πI is computed under the standard normal
distribution.

returns of risky assets are usually assumed to follow multivariate normal distributions
with unknown mean and unknown covariance matrix. The seemingly innocuous dif-
fuse priors on these parameters can actually imply rather strong prior information in
various applications. For testing portfolio efficiency, Kandel et al. (1995) shows that
a diffuse prior on the model parameters implies strong information on inefficiency of a
given portfolio; and for predicting portfolio returns, Lamoureux and Zhou (1996) shows
that the diffuse prior implicitly assigns most prior mass on either high or low degrees of
return predictability. To fix these issues, several approaches (e.g. Chevrier and McCul-
loch 2008; Tu and Zhou 2010) have been recently proposed to construct priors on the
tangency portfolio weights, which is a function of the unknown mean and covariance
matrix, or to construct priors based on economic theories.

As shown by the above results, careful examinations of the implications of “objective”
priors on model features can help us to understand the behaviors of the corresponding
Bayes estimates and should be an important step in Bayesian inference. Focusing di-
rectly on important model features can often help us to construct better priors and to
avoid pitfalls of implicitly placing mass at undesirable regions of the model space.
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2 The impact of information content in priors on Bayesian
inference

In the work of Rubio and Steel, the major criticism of using Jeffreys or independent
Jeffreys priors is that they lead to improper posteriors for some interesting two-piece
location-scale models. What if the posterior is proper? Then even if a prior distribution
does not reflect our prior belief, won’t the prior information be washed out by the data
information? And if so, why do we need to carefully examine the information contained
in the prior? It is true that in many estimation problems, when the model is low to
medium dimensional and the sample size is relatively large, the prior information is
dominated by the likelihood. However, this is not always the case under increasingly
prevalent high-dimensional or even infinite-dimensional models and hierarchical models
with complex structures. Moreover, in Bayesian hypothesis testing and model compar-
ison, the prior distributions on the model parameters can have huge impacts even with
a large amount of data (see Kass and Wasserman (1995) and the references therein).

Xu et al. (2011) show that for Bayesian model selection between two models with dif-
ferent dimensions, the use of arbitrarily vague proper priors can yield misleading Bayes
factors. They illustrate an example where the data is generated from a skew-normal
distribution and a Gaussian parametric model is compared with a Mixture of Dirich-
let Process (MDP) model. Improper noninformative priors are not amenable to Bayes
factor calculations when the models differ in dimension, because they are determined
only up to an arbitrary constant. Additionally, for infinite-dimensional models (such as
the MDP model), a proper prior distribution is required to produce a proper posterior.
Therefore, standard diffuse but proper priors are placed on the model parameters, and
thus the Bayes factor is computable. However, at a fixed sample size, the value of the
Bayes factor can be vastly different under priors with different levels of diffuseness, which
is arbitrarily selected by the analyst. This poses serious questions to the robustness of
the model preference. A key observation in Xu et al. (2011) is that to obtain robust
and reliable results in Bayesian hypothesis tests, priors on model parameters must be
proper and not have too big a spread (a similar comment was made by Jeffreys about
Lindley’s paradox). This leads to the issue of how to measure the “information level”
in a prior distribution.

Suppose that Y1, Y2, . . . , Yn | θ iid∼ fθ and θ ∼ π, where π is a prior distribution. The
Fisher information is often used to measure the amount of information for a parametric
model, however, it is not applicable when π is nonparametric. Therefore, for a general π,
Xu et al. (2011) propose to measure the information by the proximity of the distributions
fθ(1) and fθ(2) , where θ(1) and θ(2) are two random draws from π. The intuition is that
when π is highly concentrated (high information), θ(1) and θ(2) tend to be close to each
other, so fθ(1) and fθ(2) are also close; when π is diffuse (low information), θ(1) and θ(2)

tend to be far away, so fθ(1) and fθ(2) are also very different. The proximity of fθ(1) and
fθ(2) is measured by the symmetrized Kullback-Leibler (SKL) divergence
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The randomness of (θ(1), θ(2)) induces a distribution on SKL. Then the information
contained in π is evaluated by the percentiles of this distribution of SKL. The advantages
of the above information measurement are that it is well defined for both parametric
and nonparametric priors and for both proper and improper diffuse priors. Under
this information metric, Xu et al. (2011) show that we can mimic the performance
of the Bayes factor under a reasonable default prior by calibrating overdispersed prior
distributions using part of the data as training samples, such that they achieve a sensible
level of “information”, and then compute the Bayes factor based on the calibrated priors
and the remaining data.

Recently, another approach for evaluating prior informativeness has been proposed in
Meng et al. (2013) using the posterior matching method, but they focus on measuring
the prior-likelihood conflict instead of the prior concentration.

In summary, during the process of prior elicitation in Bayesian inference, statisticians
should pay close attention to: 1) the model parametrization and the hidden messages
implied by the priors; and 2) the information level contained in the priors and its impact
on the analysis results. When the model dimension is high or the model structure is
complex, this could be challenging because it is not always obvious which model features
we should focus on, and it is not always clear how to represent the model features using
(potentially a large number of) model parameters. Additionally, it could be difficult to
calibrate the amount of prior information when the data has special features such as
being censored and being spatial/temporal dependent. Careful examinations of prior
information in these situations pose important tasks for future development of prior
elicitation.
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