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Hypothesis Assessment and Inequalities for
Bayes Factors and Relative Belief Ratios

Zeynep Baskurt˚, and Michael Evans:

Abstract. We discuss the definition of a Bayes factor and develop some inequalities
relevant to Bayesian inferences. An approach to hypothesis assessment based on
the computation of a Bayes factor, a measure of the strength of the evidence given
by the Bayes factor via a posterior probability, and the point where the Bayes
factor is maximized is recommended. It is also recommended that the a priori
properties of a Bayes factor be considered to assess possible bias inherent in the
Bayes factor. This methodology can be seen to deal with many of the issues and
controversies associated with hypothesis assessment. We present an application to
a two-way analysis.
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1 Introduction

Bayes factors, as introduced by Jeffreys (1935, 1961), are commonly used in applications
of statistics. Kass and Raftery (1995) and Robert, Chopin, and Rousseau (2009) contain
detailed discussions of Bayes factors.

Suppose we have a sampling model tPθ : θ P Θu on X , and a prior Π on Θ. Let T denote
a minimal sufficient statistic for tPθ : θ P Θu and Πp¨ |T pxqq denote the posterior of θ
after observing data x P X . Then for a set C Ă Θ, with 0 ă ΠpCq ă 1, the Bayes factor
in favor of C is defined by

BF pCq “
ΠpC |T pxqq

1 ´ ΠpC |T pxqq
{

ΠpCq

1 ´ ΠpCq
.

Clearly BF pCq is a measure of how beliefs in the true value being in C have changed
from a priori to a posteriori. Alternatively, we can measure this change in belief by
the relative belief ratio of C, namely, RBpCq “ ΠpC |T pxqq{ΠpCq. A relative belief
ratio measures change in belief on the probability scale as opposed to the odds scale
for the Bayes factor. While a Bayes factor is the multiplicative factor transforming the
prior odds after observing the data, a relative belief ratio is the multiplicative factor
transforming the prior probability. These measures are related as we have that

BF pCq “
p1 ´ ΠpCqqRBpCq

1 ´ ΠpCqRBpCq
, RBpCq “

BF pCq

ΠpCqBF pCq ` 1 ´ ΠpCq
, (1)
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and BF pCq “ RBpCq{RBpCcq. If it is hypothesized that θ P H0 Ă Θ, then BF pH0q or
RBpH0q can be used as an assessment as to what extent the observed data has changed
our beliefs in the truth of H0.

Both the Bayes factor and the relative belief ratio are not defined when ΠpCq “ 0. In
Section 2 we will see that, when we have a characteristic of interest ψ “ Ψpθq where
Ψ : Θ Ñ Ψ (we don’t distinguish between the function and its range to save notation),
and H0 “ Ψ´1tψ0u with ΠpH0q “ 0, we can define the Bayes factor and relative belief
ratio of H0 as limits and the limiting values are identical. This permits the assessment
of a hypothesis H0 “ Ψ´1tψ0u via a Bayes factor without the need to modify the prior
Π by placing positive prior mass on ψ0. Furthermore, we will show that the common
definition of a Bayes factor, obtained by placing positive prior mass on ψ0, is equal to
our limiting definition in many circumstances.

The approach to defining Bayes factors and relative belief ratios as limits is motivated
by the use of continuous probability distributions which can imply that ΠpH0q “ 0
simply because H0 is a set of lower dimension and not because we have no belief that
H0 is true. We take the position that all continuous probability models are employed
to approximate something that is essentially finite and thus discrete. For example, all
observed variables are measured to finite accuracy and are bounded and we can never
know the values of parameters to infinite accuracy.

To avoid paradoxes it is important that the essential finiteness of statistical applications
be taken into account. For example, suppose that Π is absolutely continuous on Θ with
respect to Lebesgue (volume) measure with density π. Of course, π can be changed on
a set of Lebesgue measure 0 and still serve as a density, but note that this completely
destroys the meaning of the approximation ΠpApθ0qq « πpθ0qV olpApθ0qq when Apθ0q

is a neighborhood of θ0 with small volume. The correct interpretation of the relative
values of densities requires that such an approximation hold and it is easy to attain
this by requiring that πpθ0q “ limApθ0qÑtθ0u ΠpApθ0qq{V olpApθ0qq, where Apθ0q Ñ tθ0u

means that Apθ0q converges ‘nicely’ (see, for example, Rudin (1974), Chapter 8 for the
definition) to tθ0u. In fact, whenever a version of π exists that is continuous at θ0, then
πpθ0q is given by this limit. As an example of the kind of paradoxical behavior that can
arise by allowing for arbitrary definitions of densities, suppose we stipulated that all
densities for continuous distributions on Euclidean spaces are defined to be 0 whenever
a response x has all rational coordinates. Certainly this is mathematically acceptable,
but now all observed likelihoods are identically 0 and so useless for inference. As noted,
however, this problem is simple to avoid by requiring that densities be defined as limits.

In this paper the value of the Bayes factor BF pH0q or relative belief ratio RBpH0q is to
be taken as the statistical evidence that H0 is true. So, for example, if RBpH0q ą 1, we
have evidence that H0 is true and the bigger RBpH0q is, the more evidence we have in
favor of H0. Similarly, if RBpH0q ă 1, we have evidence that H0 is false and the smaller
RBpH0q is, the more evidence we have against H0. There are several concerns with
this. First, it is reasonable to ask how strong this evidence is and so we propose an a
posteriori measure of strength. In essence this corresponds to a calibration of RBpH0q.
Second, we need to be concerned with the impact of our a priori assignments. As is
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well-known, a diffuse prior can lead to large values of Bayes factors for hypotheses and
we need to protect against this and other biases. We discuss all these issues in Sections
3 and 4 and in Section 5 present an example.

There are some close parallels between the use of Bayes factors to assess statistical
evidence, and the approach to assessing statistical evidence via likelihood ratios as
discussed in Royall (1997, 2000). More general definitions have been offered for Bayes
factors when improper priors are employed. O’Hagan (1995) defines fractional Bayes
factors and Berger and Perrichi (1996) define intrinsic Bayes factors. In this paper
we restrict attention to proper priors although limiting results can often be obtained
when considering a sequence of increasingly diffuse priors. Lavine and Schervish (1999)
consider the coherency behavior of Bayes factors.

The problem of assessing a hypothesis H0 as considered here is based on the choice
of a single prior Π on Θ. We will argue in Section 2 that the appropriate prior on
H0 “ Ψ´1tψ0u is the conditional prior on θ given that θ P H0 “ Ψ´1tψ0u. While
there seem to be logical reasons for this choice, it has been noted that this can lead to
anomalous behavior for Bayes factors and so not all authors agree with this approach.
For example, Johnson and Rossell (2010) argue that priors should be separately chosen
for H0 and Hc

0 and show that these can be selected in such a way that the resultant
Bayes factors are better behaved with respect to their convergence properties as the
amount of data increases. At least part of the purpose of this paper, however, is to
show that the Bayes factor based on the single prior Π can be used effectively for
hypothesis assessment. In particular, for the case when H0 is nested within Θ, we feel
that this represents a very natural approach.

It should also be noted that the approach to hypothesis assessment that we are advo-
cating does not rule out the possibility of using a prior that places a discrete mass π0
on H0. So, for example, we might employ a prior such as π0Π0 ` p1 ´ π0qΠ where Π0

is a prior concentrated on H0. We acknowledge that there are situations where such a
prior seems natural. Part of our purpose here, however, is to show that employing such
a discrete mass to form a mixture prior is not necessary to obtain a logical approach to
hypothesis assessment. Where we might differ from a mixture prior approach, however,
is in the choice of the prior Π0. We argue in Section 2 that, rather than allowing Π0 to
be completely free, it is appropriate to require that Π0 be the conditional prior Πp¨ |ψ0q

on H0 induced by a Ψ satisfying H0 “ Ψ´1tψ0u. In fact, we show that, when we restrict
Π0 in this way, the usual definition of a Bayes factor agrees with our definition as a limit
based on Π alone. There are differences, however, between what we are advocating and
a common approach based solely on computing a Bayes factor to assess a hypothesis.
For instance we add an additional ingredient involving assessing the strength of the
evidence, given by the Bayes factor, via a posterior probability. As discussed in Section
3, this additional ingredient corresponds to a calibration of a Bayes factor and allows
us to avoid some problems that have arisen with their use.
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2 The Definitions of Bayes Factors and Relative Belief
Ratios

We now extend the definition of relative belief ratio and Bayes factor to the case where
ΠpH0q “ 0.We assume that Pθ has density fθ with respect to support measure µ,Π has
density π on Θ with respect to support measure ν and πp¨ |T pxqq denotes the posterior
density on Θ with respect to ν. Suppose we wish to assess H0 “ Ψ´1tψ0u for some
parameter of interest ψ “ Ψpθq.

We will assume that all our spaces possess sufficient structure, and the various mappings
we consider are sufficiently smooth, so that the support measures are volume measure
on the respective spaces and, as discussed in Section 1, that any densities used are de-
rived as limits of the ratios of measures of sets converging to points. The mathematical
details can be found in Tjur (1974), where it is seen that we effectively require Riemann
manifold structure for the various spaces considered, and we note that these restrictions
are typically satisfied in statistical problems. For example, these requirements are al-
ways satisfied in the discrete case, as well as in the case of the commonly considered
continuous statistical models. One appealing consequence of such restrictions is that
we get simple formulas for marginal and conditional densities. For example, putting

JΨpθq “ pdetpdΨpθqqpdΨpθqqtq
´1{2

where dΨ is the differential of Ψ, and supposing
JΨpθq is finite and positive for all θ, then the prior probability measure ΠΨ has density,
with respect to volume measure νΨ on Ψ, given by

πΨpψq “

ż

Ψ´1tψu

πpθqJΨpθq νΨ´1tψupdθq, (2)

where νΨ´1tψu is volume measure on Ψ´1tψu. Furthermore, the conditional prior density
of θ given Ψpθq “ ψ is

πpθ |ψq “ πpθqJΨpθq{πΨpψq (3)

with respect to νΨ´1tψu on Ψ´1tψu. A significant advantage with (2) and (3) is that
there is no need to introduce coordinates, as is commonly done, for so-called nuisance
parameters. In general, such coordinates do not exist.

If we let T : X Ñ T denote a minimal sufficient statistic for tfθ : θ P Θu, then
the density of T, with respect to volume measure µT on T , is given by fθT ptq “
ş

T´1ttu
fθpxqJT pxqµT´1ttupdxq, where µT´1ttu denotes volume on T´1ttu. The prior pre-

dictive density, with respect to µ, of the data is given by mpxq “
ş

Θ
πpθqfθpxq νpdθq and

the prior predictive density of T, with respect to µT , is mT ptq “
ş

Θ
πpθqfθT ptq νpdθq

“
ş

T´1ttu
mpxqJT pxqµT´1ttupdxq. This leads to a generalization of the Savage-Dickey ra-

tio result, see Dickey and Lientz (1970), Dickey (1971), as we don’t require coordinates
for nuisance parameters.

Theorem 1. (Savage-Dickey) πΨpψ |T pxqq{πΨpψq “ mT pT pxq |ψq{mT pT pxqq.

Proof: The posterior density of θ, with respect to support measure ν, is πpθ |T pxqq “

πpθqfθT pT pxqq{mT pT pxqq, and the posterior density of ψ “ Ψpθq, with respect to νΨ, is
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πΨpψ |T pxqq “
ş

Ψ´1tψu
pπpθqfθT pT pxqq{mT pT pxqqqJΨpθq νΨ´1tψupdθq “ πΨpψq

ş

Ψ´1tψu

πpθ |ψq pfθT pT pxqq{mT pT pxqqq νΨ´1tψuspdθq “ πΨpψqmT pT pxq |ψq{mT pT pxqq where
mT p¨ |ψq is the conditional prior predictive density of T, given Ψpθq “ ψ.

As T is minimal sufficient, mT pT pxq |ψq{mT pT pxqq “ mpx |ψq{mpxq.

Since πΨpψ |T pxqq{πΨpψq is the density of ΠΨp¨ |T pxqq with respect to ΠΨ,

πΨpψ |T pxqq{πΨpψq “ lim
ϵÑ0

ΠΨpCϵpψq |T pxqq{ΠΨpCϵpψqq (4)

whenever Cϵpψq converges nicely to tψu as ϵ Ñ 0 and all densities are continuous at ψ,
e.g., Cϵpψq could be a ball of radius ϵ centered at ψ. So πΨpψ |T pxqq{πΨpψq is the limit
of the relative belief ratios of sets converging nicely to ψ and, if ΠpΨ´1tψuq ą 0, then
πΨpψ |T pxqq{πΨpψq gives the previous definition of a relative belief ratio for Ψ´1tψu.
As such, we refer to RBpψq “ πΨpψ |T pxqq{πΨpψq as the relative belief ratio of ψ.

From (4) and (1) we have BF pCϵpψqq Ñ p1 ´ ΠpΨ´1tψuqqRBpψq{p1 ´ ΠpΨ´1tψuq

RBpψqq as ϵ Ñ 0 and this equals RBpψq if and only if ΠpΨ´1tψuq “ 0. So, in the
continuous case, RBpψq is a limit of Bayes factors with respect to Π and so can also
be called the Bayes factor in favor of ψ with respect to Π. If, however, ΠpΨ´1tψuq ą 0,
then RBpψq is not a Bayes factor with respect to Π but is related to the Bayes factor
through (1). The following example demonstrates another important context where the
relative belief ratio and Bayes factor are identical.

Example 1. Comparison with Jeffreys’ Bayes Factor.

Suppose now that H0 “ Ψ´1tψ0u and ΠpH0q “ 0. A common approach in this situation,
due to Jeffreys (1961), is to modify the prior Π to the mixture prior Πγ “ γΠ0`p1´γqΠ
where Π0 is a probability measure on H0 and 0 ă γ ă 1 so ΠγpH0q “ γ. Then, letting
m0T denote the prior predictive density of T under Π0, we have that the Bayes factor
and relative belief ratio under Πγ are given by BFΠγ pψ0q “ m0T pT pxqq{mT pT pxqq and
RBΠγ pψ0q “ tm0T pT pxqq{mT pT pxqqu{t1´γ`γm0T pT pxqq{mT pT pxqqu respectively, and
these are generally not equal. We now show, however, that in certain circumstances
BFΠγ pψ0q “ RBpψ0q where RBpψ0q is the relative belief ratio with respect to Π.

The following result generalizes Verdinelli and Wasserman (1995) as we don’t require
coordinates for nuisance parameters.

Theorem 2. (Verdinelli-Wasserman) When H0 “ Ψ´1tψ0u for some Ψ and ψ0 and
ΠpH0q “ 0, then the Bayes factor in favor of H0 with respect to Πγ is

m0T pT pxqq{mT pT pxqq “ RBpψ0qEΠ0
pπpθ |ψ0, T pxqq{πpθ |ψ0qq (5)

where EΠ0 refers to expectation with respect to Π0.

Proof: We havem0T pT pxqq{mT pT pxqq “ RBpψ0qm0T pT pxqq{mT pT pxq |ψ0q by Theorem
1 and

m0T pT pxqq

mT pT pxq |ψ0q
“

ş

Ψ´1tψ0u
π0pθqfθT pT pxqq νΨ´1tψ0updθq

ş

Ψ´1tψ0u
πpθ |ψ0qfθT pT pxqq νΨ´1tψ0updθq

,
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so the result follows from (3).

We then have the following consequence, where Πp¨ |ψ0q denotes the conditional prior
obtained from Π by conditioning on Ψpθq “ ψ0.

Corollary 3. If Π0 “ Πp¨ |ψ0q, then BFΠγ pψ0q “ RBpψ0q.

Proof: Since π0pθq “ πpθ |ψ0q we have EΠ0 pπpθ |ψ0, T pxqq{πpθ |ψ0qq “ 1 which estab-
lishes the result.

In general, (5) establishes the relationship between the Bayes factor when using the
conditional prior Πp¨ |ψ0q on H0 and the Bayes factor when using the prior Π0 on H0.
The adjustment is the expected value, with respect to Π0, of the conditional relative
belief ratio πpθ |ψ0, T pxqq{πpθ |ψ0q for θ P H0, given H0. This can also be written as
EΠp¨ |ψ0,T pxqq pπ0pθq{πpθ |ψ0qq and so measures the discrepancy between the conditional
priors given H0 under Π and Πγ . So when π0 is substantially different than πp¨ |ψ0q, we
can expect a significant difference in the Bayes factors. To maintain consistency in the
prior assignments, we require here that Π0 equal Πp¨ |ψ0q for some smooth Ψ and ψ0. In
the discrete case it seems clear that choosing Π0 not equal to Πp¨ |ψ0q is incorrect. Also,
in the continuous case, Jeffreys’ approach requires completely different modifications of
Π to obtain Bayes factors for different values of ψ0. By contrast RBpψ0q is defined
for every value ψ0 without any modification of Π. As discussed in Section 1, however,
restricting the prior on H0 in this way is not something that all statisticians agree with.

Marin and Robert (2010) question the validity of the Savage-Dickey result due to the
arbitrariness with which densities can be defined on sets of measure 0. We note, however,
that densities for us are not arbitrary and must be defined as limits as described in
Section 1. With this restriction, Theorems 1 and 2 are valid results with interpretational
value for inference and play a role in the results of Section 4.

3 Evidential Interpretation of Bayes Factors and Relative
Belief Ratios

A Bayes factor or relative belief ratio for H0 “ Ψ´1tψ0u measures how our beliefs in
H0 have changed after seeing the data. The degree to which our beliefs have changed
can be taken as the statistical evidence that H0 is true. For if RBpψ0q ą 1, then the
probability of ψ0 has increased by the factor RBpψ0q from a priori to a posteriori and
we have evidence in favor of H0. Furthermore, the larger RBpψ0q is, the more evidence
we have in favor of H0. Conversely, if RBpψ0q ă 1, then the probability of ψ0 has
decreased by the factor RBpψ0q from a priori to a posteriori, we have evidence against
H0 and the smaller RBpψ0q is, the more evidence we have against H0.

This definition of evidence leads to a natural total preference ordering on Ψ, namely,
ψ1 is preferred to ψ2 whenever RBpψ1q ě RBpψ2q as the observed data have led to an
increase in belief for ψ1 at least as large as that for ψ2. This total ordering in turn leads
to the estimate of the true value of ψ given by ψLRSEpxq “ arg supRBpψq (least relative
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surprise estimate) and to assessing the accuracy of this estimate by choosing γ P p0, 1q,
and looking at the ‘size’ of the γ-credible region Cγpxq “ tψ0 : RBpψ0q ě cγpxqu

where cγpxq “ inftk : ΠΨ pRBpψq ą k | T pxqq ď γu. The form of the credible region is
determined by the ordering for, if RBpψ1q ě RBpψ2q and ψ2 P Cγpxq, then we must
have ψ1 P Cγpxq. Note that Cγ1pxq Ă Cγ2pxq when γ1 ď γ2 and ψLRSEpxq P Cγpxq for
each γ that leads to a nonempty set. Of course ‘accuracy’ is application dependent and
so a large Cγpxq for one application may in fact be small for another.

We cannot categorically state that RBpψ0q is the measure of statistical evidence for
the truth of H0, but we can look at the properties of this measure, and the associated
inferences, to see if these are suitable and attractive. Perhaps the most attractive
property is that the inferences are invariant under smooth reparameterizations. This
follows from the fact that, if ω “ Ωpψq for some 1-1, smooth function Ω, then RBpωq “

RBpψq as Jacobians cancel in the numerator and denominator. Furthermore, various
optimality properties, in the class of all Bayesian inferences, have been established for
ψLRSEpxq and Cγpxq in Evans (1997), Evans, Guttman and Swartz (2006), Evans and
Shakhatreh (2008) and Evans and Jang (2011c). For example, it is proved that among
all subsets B Ă Ψ satisfying ΠΨpB |xq ě γ, both BF pBq and RBpBq are maximized
by B “ Cγpxq and these maximized values are always bounded below by 1 (a property
not possessed by other rules for forming credible regions). So Cγpxq maximizes the
increase in belief from a priori to a posteriori among all γ-credible regions and, as
such, Cγpxq is letting the data speak the loudest among all such credible regions. Also,
Cγpxq minimizes the a priori probability of covering a false value and this probability
is always bounded above by γ when ΠΨpCγpxq |xq “ γ. In this case, γ is also the prior
probability that Cγpxq contains the true value, implying that Cγpxq is unbiased. The
estimate ψLRSEpxq is unbiased with respect to a general family of loss functions and, is
either a Bayes rule or a limit of Bayes rules with respect to a simple loss function based
on the prior.

While these results support the use of these inferences, we now consider additional
properties of RBpψ0q as a measure of the evidence in favor of H0. The invariance of
RBpψ0q is certainly a necessary property of any measure of statistical evidence. Also,
we have the following simple result.

Theorem 4. RBpψ0q “ EΠp¨ |ψ0qpRBpθqq.

Proof: First we note that RBpθq “ fθT pT pxqq{mT pT pxqq and using (2) and (3), we
have that

RBpψ0q “

ş

Ψ´1tψ0u
πpθqJΨpθqpfθT pT pxqq{mT pT pxqqq νΨ´1tψupdθq

ş

Ψ´1tψ0u
πpθqJΨpθq νΨ´1tψupdθq

“

ż

Ψ´1tψ0u

RBpθqπpθ |ψq νΨ´1tψupdθq “ EΠp¨ |ψ0qpRBpθqq.

This says that evidence in favor of H0 is obtained by averaging, using the conditional
prior given that H0 is true, the evidence in favor of each value of the full parameter
that makes H0 true. Furthermore, based on the asymptotics of the posterior density,
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under quite general conditions, we will have that RBpψ0q Ñ 0 when H0 is false and, in
the continuous case, RBpψ0q Ñ 8 when H0 is true, as we increase the amount of data.

It is also reasonable to ask how strong the evidence given by RBpψ0q is in a particular
context. For example, how strong is the evidence in favor of H0 when RBpψ0q “ 20?
So far we only know that this is more evidence in favor than when RBpψ0q “ 17.
Using a measure of evidence, without some assessment of the strength, does not seem
appropriate as indeed different data sets can provide different amounts of evidence and
with different strengths.

One way to answer this is to propose a scale on which evidence can be assessed. For
example, Kass and Raftery (1995) discuss using a scale due to Jeffreys (1961). It is
difficult, however, to see how such a universal scale is to be determined and, in any
case, this does not tell us how well the data support alternatives to H0. For example,
when H0 “ Ψ´1tψ0u we can consider the relative belief ratios for other values of ψ. If a
relative belief ratio for a ψ ‰ ψ0 is much larger than that for ψ0, then it seems reasonable
to at least express some doubt as to the strength of the evidence in favour of H0. Note
that we are proposing to compare RBpψ0q to each of the possible values of RBpψq as
part of assessing H0, as opposed to just considering the hypothesis testing problem H0

versus Hc
0 (see, however, Example 2). This is in agreement with a commonly held view

as expressed, for example, in Gelman, Carlin, Stern and Rubin (2004), that hypothesis
assessment is different than hypothesis testing as discussed, for example, in Berger and
Delampady (1987).

Perhaps the most obvious way to measure the strength of the evidence expressed by
RBpψ0q is via the posterior tail probability

ΠΨ pRBpψq ď RBpψ0q | T pxqq . (6)

This is the posterior probability that the true value of ψ has a relative belief ratio
no greater than RBpψ0q. It is worth remarking that Cγpxq “ tψ0 : ΠΨpRBpψq ď

RBpψ0q |T pxqq ě 1 ´ γu and ΠΨ pRBpψq ď RBpψ0q | T pxqq “ 1 ´ inftγ : ψ0 P Cγpxqu

so our measure of accuracy for estimation and our measure of strength for hypothesis
assessment are intimately related. We now note that the interpretation of (6) depends
on whether we have evidence against H0 or evidence for H0 and derive some relevant
inequalities.

If RBpψ0q ă 1, so that we have evidence against H0, then a small value of (6) says there
is a large posterior probability that the true value has a relative belief ratio greater than
RBpψ0q. As such, this suggests that the evidence against H0 is strong. We also have
the following inequalities relevant to this case.

Theorem 5. When RBpψ0q ă 1, then

ΠΨ pRBpψq ď RBpψ0q | T pxqq ď RBpψ0q (7)

and RBpRBpψq ą RBpψ0qq ą RBpψ0q.
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Proof: We have that

ΠΨ pRBpψq ď RBpψ0q | T pxqq “

ż

tRBpψqďRBpψ0qu

RBpψqπΨpψq νΨpdψq

ď

ż

tRBpψqďRBpψ0qu

RBpψ0qπΨpψq νΨpdψq “ RBpψ0qΠΨ pRBpψq ď RBpψ0qq

which establishes (7). Furthermore, we have that

RBpψ0qΠΨ pRBpψq ą RBpψ0qq “

ż

tRBpψqąRBpψ0qu

RBpψ0qπΨpψq νΨpdψq

ď

ż

tRBpψqąRBpψ0qu

RBpψqπΨpψq νΨpdψq “ ΠΨ pRBpψq ą RBpψ0q | T pxqq

with equality if and only if ΠΨ pRBpψq ą RBpψ0qq “ 0. So equality will occur if

and only if ψ0 “ ψ̂LRSEpxq. It is established in Evans and Shakhatreh (2008) that

RBpψ̂LRSEpxqq ě 1 and since RBpψ0q ă 1 by hypothesis, the inequality is strict. Di-
viding both sides of the inequality by ΠΨ pRBpψq ą RBpψ0qq proves RBpRBpψq ą

RBpψ0qq ą RBpψ0q.

We see that (7) says that, whenever we have a small value of RBpψ0q, then we have
strong evidence against H0 and, in fact, there is no need to compute (6). The inequality
RBpRBpψq ą RBpψ0qq ą RBpψ0q says that when we iterate relative belief, the evidence
that the true value is in tψ : RBpψq ą RBpψ0qu is strictly greater than the evidence
that ψ0 is the true value, when we have evidence against ψ0 being true.

As previously discussed, when ΠpΨ´1tψuq “ 0, we can also interpret RBpψ0q as the
Bayes factor with respect to Π in favour of H0 and so (6) is also an a posteriori measure
of the strength of the Bayes factor. When ψ has a discrete distribution, we have the
following result where we interpret BF pψq in the obvious way.

Corollary 6. If ΠΨ is discrete, then ΠΨ pBF pψq ď BF pψ0q | T pxqq ď BF pψ0q ˆ

EΠpt1 ` πΨpΨpθqqpBF pψ0q ´ 1qu´1q, the upper bound is finite and converges to 0 as
BF pψ0q Ñ 0.

Proof: Using (1) we have that BF pψq ď BF pψ0q if and only if RBpψq ď BF pψ0q{t1 `

πΨpψqpBF pψ0q ´ 1qu and, as in the proof of Theorem 5, this implies the inequality.
Also 1 ` πΨpψqpBF pψ0q ´ 1q ě 1 ` maxψ πΨpψqpBF pψ0q ´ 1q when BF pψ0q ď 1 and
1 ` πΨpψqpBF pψ0q ´ 1q ě 1 ` minψ πΨpψqpBF pψ0q ´ 1q when BF pψ0q ą 1 which
completes the proof.

So we see that a small value of BF pψ0q is, in both the discrete and continuous case,
strong evidence against H0.

If RBpψ0q ą 1, so that we have evidence in favor of H0, and (6) is small, then there is
a large posterior probability that the true value of ψ has an even larger relative belief
ratio and so this evidence in favor of H0 does not seem strong. Alternatively, large
values of (6), when RBpψ0q ą 1, indicate that we have strong evidence in favor of H0



578 Bayes Factors and Relative Belief Ratios

as tψ : RBpψq ď RBpψ0qu contains the true value with high posterior probability and,
based on the preference ordering, ψ0 is the best estimate in this set.

While (7) always holds it is irrelevant when RBpψ0q ą 1. Markov’s inequality implies
ΠΨpRBpψq ą RBpψ0q |T pxqq ď EΠΨp¨ |T pxqqpRBpψqq{RBpψ0q but this does not imply
that large values of RBpψ0q are strong evidence in favor of H0. In particular, in many
situations the upper bound never gets small because of the relationship between RBpψ0q

and ΠΨp¨ |T pxqq. We do, however, have the following result.

Theorem 7. When RBpψ0q ą 1, then RBpRBpψq ă RBpψ0qq ă RBpψ0q.

Proof: As in the proof of Theorem 6 we have that ΠΨpRBpψq ă RBpψ0q |T pxqq ď

RBpψ0qΠΨpRBpψq ă RBpψ0qq and equality occurs if and only if ΠΨpRBpψq ă RBpψ0qq

“ 0 which implies ΠΨpRBpψq ă RBpψ0q |T pxqq “ 0 which implies 1 “ ΠΨpRBpψq ě

RBpψ0q |T pxqq “
ş

tRBpψqěRBpψ0qu
RBpψqπΨpψq νΨpdψq ě RBpψ0q ą 1 which is a con-

tradiction.

So the evidence that the true value is in tψ : RBpψq ă RBpψ0qu is strictly less than the
evidence that ψ0 is the true value, when we have evidence in favor of ψ0 being true.

Consider the following example concerned with comparing H0 to Hc
0 .

Example 2. Binary Ψ.

Suppose Ψpθq “ IH0 and 0 ă ΠpH0q ă 1. We have ΠΨ pBF pψq ď BF pH0q | T pxqq “

ΠpH0 |T pxqq whenBF pH0q ď 1, and ΠΨpBF pψq ď BF pH0q |T pxqq “ 1 otherwise, while
ΠΨpRBpψq ď RBpH0q |T pxqq “ ΠpH0 |T pxqq when BF pH0q ď 1, and ΠΨpRBpψq ď

RBpH0q |T pxqq “ 1 otherwise. So these give the same assessment of strength. This
says that in the binary case BF pH0q ă 1 or RBpH0q ă 1 is strong evidence against H0

only when ΠpH0 |T pxqq is small. By Corollary 6 and Theorem 5 this will be the case
whenever BF pH0q or RBpH0q are suitably small. Furthermore, large values of BF pH0q

or RBpH0q are always deemed to be strong evidence in favour of H0 in this case. So
if one has determined in an application that comparing H0 to Hc

0 is the appropriate
approach, as opposed to comparing the hypothesized value of the parameter of interest
to each of its alternative values, then (6) leads to the usual answers.

The interpretation of evidence in favor of H0 is somewhat more involved than evidence
against H0 and the following example illustrates this.

Example 3. Location normal.

Suppose we have a sample x “ px1, . . . , xnq from a Npµ, 1q distribution, where µ P R1

is unknown, so T pxq “ x̄, we take µ „ Np0, τ2q,Ψpµq “ µ, and we want to assess
H0 : µ “ 0. We have that

RBp0q “ p1 ` nτ2q1{2 expt´np1 ` 1{nτ2q´1x̄2{2u (8)
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and

ΠΨ pRBpµq ď RBp0q | T pxqq

“ 1 ´ Φpp1 ` 1{nτ2q1{2p|
?
nx̄| ` pnτ2 ` 1q´1

?
nx̄qq

` Φpp1 ` 1{nτ2q1{2p´|
?
nx̄| ` pnτ2 ` 1q´1

?
nx̄qq. (9)

From (8) and (9) we have, for a fixed value of
?
nx̄, that RBp0q Ñ 8 and ΠΨpRBpψq ď

RBpψ0q |T pxqq Ñ 2p1 ´ Φp|
?
nx̄|q as τ2 Ñ 8. This encapsulates the essence of the

problem with the interpretation of large values of a relative belief ratio or Bayes factor
as evidence in favor of H0. For, as we make the prior more diffuse via τ2 Ñ 8, the
evidence in favor of H0 becomes arbitrarily large. So we can bias the evidence a priori
in favor of H0 by choosing τ2 very large. It is interesting to note, however, that RBp0q is
behaving correctly in this situation because, as τ2 gets larger and larger, we are placing
the bulk of the prior mass further and further away from x̄. As such, µ “ 0 looks more
and more like a plausible value when compared to the values where the prior mass is
being allocated. On the other hand the strength of this evidence may prove to be very
small depending on the value of 2p1 ´ Φp|

?
nx̄|q. Given that this bias is induced by the

value of τ2, we need to address this issue a priori and we will present an approach to
doing this in Section 4.

We note that 2p1 ´ Φp|
?
nx̄|q is the frequentist P-value for this problem. It is often

remarked that a small value of 2p1 ´ Φp|
?
nx̄|q and a large value of RBp0q, when τ2

is large, present a paradox (Lindley’s paradox ) because large values of τ2 are associ-
ated with noninformativity and we might expect classical frequentist methods and the
Bayesian approach to then agree. But if we accept (6) as an appropriate measure of
the strength of the evidence in favor of H0, then the paradox disappears as we can have
evidence in favor of H0 while, at the same time, this evidence is not strong.

It also follows from (8) and (9) that, for a fixed value of RBp0q, (6) decreases to 0 as n
or τ2 grows. Basically this is saying that a higher standard is set for establishing that
a fixed value of RBp0q is strong evidence in favour of H0, as we increase the amount of
data or make the prior more diffuse.

It is instructive to consider the behavior of RBp0q as n Ñ 8. For this we have that

RBp0q Ñ

"

8 H0 true
0 H0 false,

ΠΨ pRBpµq ď RBp0q | T pxqq Ñ

"

Up0, 1q H0 true
0 H0 false

where Up0, 1q denotes a uniform random variable on p0, 1q. So as the amount of data
increases, RBp0q correctly identifies whether H0 is true or false and we are inevitably
lead to strong evidence against H0 when it is false. When H0 is true, however, it is
always the case that, while we will inevitably obtain evidence in favor of H0, for some
data sets this evidence will not be deemed strong, as other values of µ have larger
relative belief ratios. We have, however, that µLRSEpxq converges to the true value of
µ and so, in cases where we have evidence in favor of H0 that is not deemed strong, we
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can simply look at µLRSEpxq to see if it differs from H0 in any practical sense. Similarly,
if we have evidence against H0 we can look at µLRSEpxq to see if we have detected a
deviation from H0 that is of practical importance. This requires that we have a clear
idea of the size of an important difference. It seems inevitable that this will have to be
taken into account in any practical approach to hypothesis assessment. While we must
always take into account practical significance when we have evidence against H0, the
value of (9) is telling us when it is necessary to do this when we have evidence in favor
of H0.

As a specific numerical example suppose that n “ 50, τ2 “ 400 and we observe
?
nx̄ “

1.96. Figure 1 is a plot of RBpµq. This gives RBp0q “ 20.72 and Jeffreys scale says
that this is strong evidence in favour of H0. But (6) equals 0.05 and, as such, 20.72
is clearly not strong evidence in favour of H0 as there is a large posterior probability
that the true value has a larger relative belief ratio. In this case µLRSEpxq “ 0.28 and
RBpµLRSEpxqq “ 141.40. Note that µLRSEpxq “ 0.28 cannot be interpreted as being
close to 0 independent of the application context. If, however, the application dictates
that a value of 0.28 is practically speaking close enough to 0 to be treated as 0, then it
certainly seems reasonable to proceed as if H0 is correct and this is supported by the
value of the Bayes factor.

Figure 1: Plot of RBpµq against µ when n “ 50, τ2 “ 400 and
?
nx̄ “ 1.96 in Example

4.

Notice that, whenever ψ0 is not true, then RBpψ0q Ñ 0 as the amount of data increases,
and so (7) implies that ΠΨ pRBpψq ď RBpψ0q | T pxqq Ñ 0 as well. As seen in Example
3, however, it is not always the case that ΠΨpRBpψq ď RBpψ0q |T pxqq Ñ 1 when ψ0 is
true and this could be seen as anomalous. The following result, proved in the Appendix,
shows that this is simply an artifact of continuity.

Theorem 8. Suppose that Θ “ tθ0, . . . , θku, πpθq ą 0 for each θ,H0 “ Ψ´1tψ0u and
x “ px1, . . . , xnq is a sample from fθ. Then we have that ΠΨpRBpψq ď RBpψ0q |T pxqq Ñ

1 as n Ñ 8 whenever H0 is true.
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So if we think of continuous models as approximations to situations that are in reality
finite, then we see that (6) may not be providing a good approximation. One possible
solution is to use a metric d on Ψ and a distance δ such that dpψ,ψ1q ď δ means that
ψ and ψ1 are practically indistinguishable. We can then use this to discretize Ψ and
compute both the relative belief ratio for H0 “ tψ : dpψ,ψ0q ď δu and its strength in
this discretized version of the problem. Actually this can be easily implemented compu-
tationally and is implicit in our computations when we don’t have an exact expression
available for RBpψq. From a practical point-of-view, computing (6), and when this is
small looking at dpψLRSEpxq, ψ0q to see if a deviation of any practical importance has
been detected, seems like a simple and effective solution to this problem.

To summarize, we are advocating that the evidence concerning the truth of a hypothesis
H0 “ Ψ´1tψ0u be assessed by computing the relative belief ratio RBpψ0q to determine if
we have evidence for or against H0. In conjunction with reporting RBpψ0q, we advocate
reporting (6) as a measure of the strength of this evidence. It is important to note that
(6) is not to be interpreted as any part of the evidence and, in particular, it is not a
P-value. For if RBpψ0q ą 1 and (6) is small, then we have weak evidence in favor of
H0, while if RBpψ0q ă 1 and (6) is small, then we have strong evidence against H0. It
seems necessary to calibrate a Bayes factor in this way. We also advocate looking at
pψLRSEpxq, RBpψLRSEpxqqq as part of hypothesis assessment. The value RBpψLRSEpxqq

tells us the maximum increase in belief for any value of ψ. If RBpψ0q ă 1, and (6) is
small, then the value of ψLRSEpxq gives an indication of whether or not we have detected
a deviation from H0 of practical significance. Similarly, if RBpψ0q ą 1 and (6) is not
high, then the value ψLRSEpxq gives us an indication of whether or not we truly do not
have strong evidence or this is just a continuous scale effect. In general, it seems that
the assessment of a hypothesis requires more than the computation of a single number.

It is clear that RBpψ0q could be considered as a standardized integrated likelihood. But
multiplying RBpψ0q by a positive constant, as we can do with a likelihood, destroys its
interpretation as a relative belief ratio, and thus its role as a measure of the evidence
that H0 is true, and we lose the various inequalities we have derived. Also, we have
that RBpψ0q ď supθPΨ´1tψ0u fθT ptq{mT pT pxqq which is a standardized profile likelihood
at ψ0. So the standardized profile likelihood also has an evidential interpretation as
part of an upper bound on (6) although the standardized integrated likelihood gives a
sharper bound. This can be interpreted as saying the integrated likelihood contains more
relevant information concerning H0 than the profile likelihood. This provides support
for the use of integrated likelihoods over profile likelihoods as discussed in Berger, Liseo,
and Wolpert (1999). Aitkin (2010) proposes to use something like (6) as a Bayesian
P-value but based on the likelihood. We emphasize that (6) is not to be interpreted as
a P-value.

4 Relative Belief Ratios A Priori

We now consider the a priori behavior of the relative belief ratio. First we follow Royall
(2000) and consider the prior probability of getting a small value of RBpψ0q when H0 is
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true, as we know that this would be misleading evidence. We have the following result,
where MT denotes the prior predictive measure of the minimal sufficient statistic T.

Theorem 9. The prior probability that RBpψ0q ď q, given that H0 is true, is bounded
above by q, namely,

MT pmT pt |ψ0q{mT ptq ď q | ψ0q ď q. (10)

Proof: Using Theorem 1 the prior probability that RBpψ0q ď q is given by

Π ˆ Pθ

ˆ

πΨpψ0 |T pXqq

πΨpψ0q
ď q

ˇ

ˇ

ˇ

ˇ

ψ0

˙

“ Π ˆ Pθ

ˆ

mT pT pXq |ψ0q

mT pT pXqq
ď q

ˇ

ˇ

ˇ

ˇ

ψ0

˙

“

ż

!

mT pt |ψ0q
mT ptq ďq

)

mT pt |ψ0qµT pdtq ď

ż

!

mT pt |ψ0q
mT ptq ďq

)

qmT ptqµT pdtq ď q.

So Theorem 9 tells us that, a priori, the relative belief ratio for H0 is unlikely to be
small when H0 is true.

Theorem 9 is concerned with RBpψ0q providing misleading evidence when H0 is true.
Again following Royall (2000), we also need to be concerned with the prior probability
that RBpψ0q is large when H0 is false, namely, when ψ0 ‰ ψtrue. For this we consider
the behavior of the ratio RBpψ0q when ψ0 is a false value, as discussed in Evans and
Shakhatreh (2008), namely, we calculate the prior probability that RBpψ0q ě q when
θ „ Πp¨ |ψtrueq, x „ Pθ and ψ0 „ ΠΨ independently of pψtrue, xq. So here ψ0 is a false
value in the generalized sense that it has no connection with the true value of the
parameter and the data. We have the following result.

Theorem 10. The prior probability that RBpψ0q ě q, when θ „ Πp¨ |ψ0q, x „ Pθ and
ψ0 „ ΠΨ independently of pθ, xq, is bounded above by 1{q.

Proof: We have that this prior probability equals

Πp¨ |ψtrueq ˆ Pθ ˆ ΠΨ

ˆ

πΨpψ0 |T pxqq

πΨpψ0q
ě q

˙

“ MT p¨ |ψtrueq ˆ ΠΨ

ˆ

πΨpψ0 | tq

πΨpψ0q
ě q

˙

“

ż

T

ż

tπΨpψ0 | tq{πΨpψ0qěqu

πΨpψ0qmT pt |ψtrueq νΨpdψ0qµT pdtq

ď
1

q

ż

T

ż

tπΨpψ0 | tq{πΨpψ0qěqu

πΨpψ0 | tqmT pt |ψtrueq νΨpdψ0qµT pdtq ď
1

q
.

Theorem 10 says that it is a priori very unlikely that RBpψ0q will be large when ψ0 is a
false value. This reinforces the interpretation that large values of RBpψ0q are evidence
in favor of H0.

In Example 3, if we fix
?
nx̄, then RBpµq Ñ 8 for every µ as τ2 Ñ 8. This suggests

that in general it is possible that a prior induces bias into an analysis by making it more
likely to find evidence in favor of H0 or possibly even against H0. The calibration of
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RBpψ0q given by (6) is seen to take account of the actual size of RBpψ0q when we have
either evidence for or against H0. This doesn’t tell us, however, if the prior induces an
a priori bias either for or against H0. It seems natural to assess the bias against H0 in
the prior by

MT pmT pt |ψ0q{mT ptq ď 1 | ψ0q. (11)

If (11) is large, then this tells us that we have a priori little chance of detecting evidence
in favor of H0 when H0 is true. We can also use (11) as a design tool by choosing the
sample size to make (11) small. Similarly, we can assess the bias in favor of H0 in the
prior by the probabilities

MT pmT pt |ψ0q{mT ptq ď 1 | ψ˚q (12)

for various values of ψ˚ ‰ ψ0 that represent practically significant deviations from ψ0.
If these probabilities are small, then this indicates that the prior is biasing the evidence
in favor of ψ0. Again we can use this as a design tool by choosing the sample size so
that (12) is large.

We illustrate this via an example.

Example 4 Continuation of Example 3.

From (8) we see that RBp0q Ñ 1 as τ2 Ñ 0. So attempting to bias the evidence in favor
of H0 by choosing a τ2 that concentrates the prior too much about 0, simply leads to
inconclusive evidence about H0. Furthermore, choosing τ2 small is not a good strategy
as we have to be concerned with the possibility of prior-data conflict, namely, there is
evidence that the true value is in the tails of the prior, as this leads to doubts as to
whether or not the prior is a sensible choice. How to check for prior-data conflict, and
what to do about it when it is encountered, is discussed in Evans and Moshonov (2006)
and Evans and Jang (2011a, 2011b). Checking for prior-data conflict, along with model
checking, can be seen as a necessary part of a statistical analysis, at least if we want
subsequent inferences to be credible with a broad audience.

The more serious issue with bias arises when, in an attempt to be conservative, we
choose τ2 to be large, as this will produce large values for Bayes factors. Of course, this
assigns prior mass to values that we know are not plausible and we could simply dismiss
this as bad modelling. But even when we have chosen τ2 to reflect what is known about
µ, we have to worry about the biasing effect.

We have that the conditional prior predictive MT p ¨ | µq is given by x̄ |µ „ Npµ, 1{nq.
Putting an “ tmaxp0, p1 ` 1{nτ2q logpp1 ` nτ2qqu1{2, then

MT pRBp0q ď 1 | µq “ 1 ´ Φpan ´
?
nµq ` Φp´an ´

?
nµq (13)

and, as τ2 Ñ 8, (13) converges to 0 for any µ, reflecting bias in favor of H0 when τ2

is large and µ ‰ 0. In this case (11) equals MT pRBp0q ď 1 | 0q “ 2p1 ´ Φpanqq and we
have recorded several values in the first row of Table 1 when n “ 50. We see that only
when τ2 is small is there any bias against H0. In the subsequent rows of Table 1 we have
recorded the values of (13) when H0 is false and, of course, we want these to be large.
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τ2 0.04 0.10 0.20 0.40 1.00 2.00 400.00
µ “ 0.0 0.20 0.14 0.10 0.07 0.05 0.03 0.00
µ “ 0.1 0.31 0.24 0.19 0.15 0.10 0.08 0.01
µ “ 0.2 0.56 0.48 0.42 0.35 0.28 0.23 0.04
µ “ 0.3 0.79 0.74 0.69 0.63 0.55 0.48 0.15

Table 1: Values of MT pRBp0q ď 1 |µq for various τ2 and µ in Example 3 when n “ 50.

We see that there is bias in favor of H0 when τ2 is large. Note that (13) converges to 1
as µ Ñ ˘8.

For the specific numerical example in Example 3 we have n “ 50 and τ2 “ 400. So there
is no a priori bias against H0 but some bias for H0. Recall that RBp0q “ 20.72 is only
weak evidence in favor of H0 since (6) equals 0.05. Also we have that µLRSEpxq “ 0.28
and MT pmT pt | 0q{mT ptq ď 1 | 0.28q “ 0.12 which suggests that there is a priori bias in
favor of H0 at values like µ “ 0.28. So it is plausible to suspect that we have obtained
weak evidence in favor of H0 because of the bias entailed in the prior, at least if we
consider a value like µ “ 0.28 as being practically different from 0.

It should also be noted that, as n Ñ 8, then (13) converges to 1 when µ ‰ 0 and
converges to 0 when µ “ 0. So in a situation where we can choose the sample size, after
selecting the prior, we can select n to make (13) suitably large at selected values of
µ ‰ 0 and also make (13) suitably small when µ “ 0.

Overall we believe that priors should be based on beliefs and elicited, but assessments
for prior-data conflict are necessary and similarly, when hypothesis assessment is part
of the analysis, we need to check for a priori bias. Of course, this should be done at
the design stage but, even if it is done post hoc, this seems preferable to just ignoring
the possibility that such biasing can occur. Happily the reporting of (6) as a posterior
measure of the strength of the evidence, can help to warn us when problems exist.

Vlachos and Gelfand (2003) and Garcia-Donato and Chen (2005) propose a method for
calibrating Bayes factors in the binary case, as discussed in Example 2. This involves
computing tail probabilities based on the prior predictive distributions given by mH0

and mHc0
.

5 Two-way Analysis of Variance

To illustrate the results of this paper we consider testing for no interaction in a two
way ANOVA. Suppose we have two categorical factors A and B, and observe xijk „

Npµij , ν
´1q for 1 ď i ď a, 1 ď j ď b, 1 ď k ď nij . A minimal sufficient statistic is given

by T pxq “ px̄, s2q where x̄ „ Nabpµ, ν
´1D´1pnqq, with Dpnq “ diagpn11, n12, . . . , nabq,

independent of pn.. ´ abqs2 “
řa
i“1

řb
j“1

řnij
k“1pxijk ´ x̄ijq

2 „ Gammarateppn.. ´ abq{2,

p2νq´1q. Suppose we use the conjugate prior µ | ν „ Nabpµ0, ν
´1Σ0q, with Σ0 “ τ20 I,

and ν „ Gammaratepα0, β0q. Then we have that the posterior is given by µ | ν, x „
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Nabpµ0pxq, ν´1Σ0pxqq, ν |x „ Gammaratepα0pxq, β0pxqq where

µ0pxq “ Σ0pxqpDpnqx̄` τ´2
0 µ0q,

Σ0pxq “ pDpnq ` τ´2
0 Iq´1,

α0pxq “ α0 ` pn.. ´ abq{2,

β0pxq “ β0 ` px̄´ µ0q1pD´1pnq ` τ20 Iq´1px̄´ µ0q{2 ` pn.. ´ abqs2{2.

As is common in this situation, we test first for interactions between A and B and,
if no interactions are found we proceed next to test for any main effects. For this
we let CA “ pcA1 cA2 . . . cAaq P Raˆa, CB “ pcB1 cB2 . . . cBbq P Rbˆb denote con-
trast matrices (orthogonal and first column constant) for A and B, respectively, and
put C “ CA b CB “ pc11 c12 . . . cabq where cij “ cAi b cBj and b denotes direct
product. The contrasts α “ C 1µ, where αij “ c1

ijµ, have joint prior distribution

α | ν „ NabpC
1µ0, ν

´1C 1Σ0Cq “ NabpC
1µ0, ν

´1Σ0q, since C is orthogonal, and pos-
terior distribution α | ν, y „ NabpC

1µ0pyq, ν´1C 1Σ0pxqCq. From this we deduce that the
marginal prior and posterior distributions of the contrasts are given by

α „ Studentabp2α0, C
1µ0, pβ0{α0qC 1Σ0Cq,

α |x „ Studentabp2α0pxq, C 1µ0pxq, pβ0pxq{α0pxqqC 1Σ0pxqCq, (14)

where we say w „ Studentkpλ,m,Mq with m P Rk and M P Rkˆk positive definite,
when w has density

Γppλ` kq{2q

Γpλ{2qΓkp1{2q
pdetpMqq´1{2p1 ` pw ´mq1M´1pw ´mq{λq´pλ`kq{2λ´k{2

on Rk. Recall that, if w „ Studentkpλ,m,Mq then, for distinct ij with 1 ď j ď l ď k,
we have that pwi1 , . . . , wilq „ Studentlpλ,mpi1, . . . , ilq,Mpi1, . . . , ilqq wherempi1, . . . , ilq
and Mpi1, . . . , ilq are formed by taking the elements of m and M as specified by
pi1, . . . , ilq.

We have that no interactions exist between A and B if and only if αij “ 0 for all
i ą 1, j ą 1. So to assess the hypothesisH0, we set ψ “ Ψpµ, ν´1q “ pα22, α23, . . . , αabq P

Rpa´1qpb´1q and then H0 “ Ψ´1t0u. From (14), and the marginalization property
of Student distributions, we get an exact expression for RBp0q and we can compute
ΠΨ pRBpψq ď RBp0q | T pxqq by simulation.

To assess the a priori bias against H0 based on a given prior, we need to compute
MT pRBp0q ď 1 | αij for all i ą 1, j ą 1q. For this we need to be able to generate
T pxq “ px̄, s2q from the conditional prior predictiveMT p ¨ | αij for all i ą 1, j ą 1q. This
is easily accomplished by generating pµ, νq from the conditional prior given αij for all
i ą 1, j ą 1, and then generating x̄ „ Nabpµ, ν

´1D´1pnqq independent of pn.. ´ abqs2 „

Gammarateppn.. ´ abq{2, p2νq´1q. For this we need the conditional prior distribution
of µ given ν and αij for all i ą 1, j ą 1. We have that α “ C 1µ and µ “ Cα.
As noted above, α | ν „ NabpC

1µ0, ν
´1C 1Σ0Cq and so we can generate µ from this

conditional distribution by generating α from the conditional distribution obtained from
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τ20 0.01 0.05 0.08 0.10 0.50 5.00 10.00 100.00
α2
22 ` α2

32 “ 0.00 0.53 0.28 0.26 0.24 0.16 0.10 0.09 0.06
α2
22 ` α2

32 “ 0.05 0.74 0.58 0.51 0.47 0.30 0.19 0.15 0.11
α2
22 ` α2

32 “ 0.10 0.85 0.77 0.71 0.67 0.46 0.27 0.24 0.17
α2
22 ` α2

32 “ 0.20 0.95 0.93 0.91 0.90 0.74 0.50 0.43 0.31
α2
22 ` α2

32 “ 0.30 0.98 0.98 0.98 0.97 0.90 0.69 0.62 0.45
α2
22 ` α2

32 “ 0.40 0.99 0.99 0.99 0.99 0.97 0.84 0.78 0.61
α2
22 ` α2

32 “ 0.50 1.00 1.00 1.00 1.00 0.99 0.93 0.89 0.73
α2
22 ` α2

32 “ 0.60 1.00 1.00 1.00 1.00 1.00 0.97 0.95 0.84
α2
22 ` α2

32 “ 0.80 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.95
α2
22 ` α2

32 “ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99

Table 2: Values of MT pRBp0q ď 1 | α2
22 ` α2

32 “ δq for various δ and τ20 in two-way
analysis.

the NabpC
1µ0, ν

´1Σ0q distribution by conditioning on αij for all i ą 1, j ą 1 and
putting µ “ Cα. Note that the contrasts are a priori independent given ν so we just
generate αi1 | ν „ Npc1

i1µ0, ν
´1τ20 q for i “ 1, . . . , a, generate α1j | ν „ Npc1

1jµ0, ν
´1τ20 q

for j “ 2, . . . , b, fix αij for all i ą 1, j ą 1 and set µ “ Cα.

As a specific numerical example suppose a “ 3, b “ 2, pn11, n12, n21, n22, n31, n32q “

p55, 50, 45, 43, 56, 48q, µ0 “ 0, α0 “ 3, β0 “ 3 and the contrasts are

CA “

¨

˝

1{
?
3 ´1{

?
2 ´1{

?
6

1{
?
3 1{

?
2 ´1{

?
6

1{
?
3 0 2{

?
6

˛

‚, CB “

ˆ

1{
?
2 ´1{

?
2

1{
?
2 1{

?
2

˙

.

Then the hypothesis H0 of no interaction is equivalent to assessing whether or not
ψ “ Ψpµ, ν´1q “ pα22, α32q “ p0, 0q.

The prior for ν´1 has mean 1.5 and variance 2.25 and we now consider the choice
of τ20 as this has the primary effect on the a priori bias for H0. In the first row of
Table 2 we present the values of the a priori bias against H0 for several values of τ20
and see that the bias against H0 is large when τ20 is small. In the subsequent rows
of Table 2 we present the bias in favor of H0 when H0 is false. For this we record
MT pRBp0q ď 1 | α2

22 `α2
32 “ δq for various δ so we are averaging over all pα22, α32q that

are the same distance from H0. To generate T pxq “ px̄, s2q fromMT p ¨ | α2
22`α2

32 “ δq “
ş

tα2
22`α2

32“δu
MT p ¨ | α22, α32qπpα22, α32 |α2

22 `α2
32 “ δq dα22dα32, we generate pα22, α32q

from the conditional prior given α2
22 ` α2

32 “ δ, and this is a uniform on the circle
of radius δ1{2, and then generate from MT p ¨ | α22, α32q as previously described. As
expected, we see that there is bias in favor of H0 only when τ20 is large and we are
concerned with detecting values of pα22, α32q that are close to H0.

Suppose now that our prior beliefs lead us to choose τ20 “ 0.10. In Table 3 we present
some selected cases of assessing H0 based on simulated data sets where the data is
generated in such a way that we know there is no prior-data conflict. Recall that
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Case ψtrue RBp0q (6) ψLRSEpxq RBpψLRSEpxqq

1 p0.00, 0.00q 3.50 0.62 p0.10, 0.11q 5.10
2 p0.00, 0.00q 3.16 0.22 p´0.10,´0.13q 12.76
3 p0.00, 0.00q 5.11 0.55 p´0.02,´0.12q 8.62
4 p0.00, 0.00q 1.22 0.17 p´0.14,´0.32q 5.59
5 p0.01, 0.01q 3.07 0.55 p´0.09,´0.16q 4.94
6 p0.01, 0.01q 0.09 0.00 p´0.22, 0.18q 25.60
7 p0.10, 0.10q 0.02 0.00 p0.36, 0.05q 24.75
8 p0.10, 0.10q 1.96 0.35 p0.24,´0.17q 4.42
9 p0.20, 0.20q 0.04 0.00 p0.19, 0.35q 19.28
10 p0.20, 0.20q 1.84 0.11 p0.13, 0.15q 14.74
11 p0.30, 0.30q 0.27 0.02 p0.22, 0.23q 14.55
12 p0.30, 0.30q 0.00 0.00 p0.23, 0.31q 32.12

Table 3: Values of RBp0q,ΠΨpRBpψq ď RBpψ0q |T pxqq, ψLRSEpxq and RBpψLRSEpxqq

in various two-way analyses.

ψ “ pα22, α32q and (6) is measuring the strength of the evidence that ψ “ 0. For the
first 4 cases H0 is true and we always get evidence in favor of H0. Notice that in case
4, where we only have marginal evidence in favor, the strength of this evidence is also
quite low (recall that strong means (6) is small when we have evidence against and (6)
is big when we have evidence in favor). In cases 5 and 6 the hypothesis H0 is marginally
false and in only one of these cases do we get evidence against and this evidence is
deemed to be strong. The other cases indicate that we can still get misleading evidence
(evidence in favor when H0 is false) but the strength of the evidence is not large in
these cases. Also, as we increase the effect size, the evidence becomes more definitive
against H0 and also stronger. Overall we see that, based on the sample sizes and the
prior, we never get evidence in favor of H0 that can be considered extremely strong
when H0 is false. In case 3 we get the most evidence in favor of H0 but (6) says
that the posterior probability of the true value having a larger relative belief value is
0.45. The best estimate of the true value in this case is ψLRSEpxq “ p´0.02,´0.12q

with RBpψLRSEpxqq “ 8.62. Depending on the application, these values can add further
support to accepting H0 as being effectively true.

6 Conclusions

We have shown that, when a hypothesisH0 has 0 prior probability with respect to a prior
on Θ, a Bayes factor and a relative belief ratio of H0 can be sensibly defined via limits,
without the need to introduce a discrete mass on H0. In general, we have argued that
computing a Bayes factor, a measure of the strength of the evidence given by a Bayes
factor via a posterior tail probability, and the point where the Bayes factor is maximized
together with its Bayes factor, provides a logical, consistent approach to hypothesis
assessment. Various inequalities were derived that support the use of the Bayes factor
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in assessing either evidence in favour of or against a hypothesis. Furthermore, we have
presented an approach to assessing the a priori bias induced by a particular prior,
either in favor of, or against a hypothesis, and have shown how this can be controlled
via experimental design.
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Appendix

Proof of Theorem 8 We have that

RBpψq

RBpψ0q
“

πΨpψq

πΨpψ0q

ř

θ:Ψpθq“ψ πpθ |ψqfθ,npxq
ř

θ:Ψpθq“ψ0
πpθ |ψ0qfθ,npxq

and, for θ0 such that Ψpθ0q “ ψ0, let Anpθ0q “ tθ : n´1 logpRBpΨpθqq{RBpψ0qq ď 0u.
Note that θ0 P Anpθ0q. Now

1

n
log

ˆ

RBpψq

RBpψ0q

˙

“
1

n
log

ˆ

πΨpψq

πΨpψ0q

˙

`
1

n
log

ˆ

fθpψq,npxq

fθpψ9q,npxq

˙

`
1

n
log

˜

ř

θ:Ψpθq“ψ πpθ |ψqfθ,npxq{fθpψq,npxq
ř

θ:Ψpθq“ψ0
πpθ |ψqfθ,npxq{fθpψ0q,npxq

¸

(15)

where fθpψq,npxq “
ř

θ:Ψpθq“ψ fθ,npxq. Observe that, as n Ñ 8, the first term on the

right-hand side of (15) converges to 0 as does the third term since 0 ă mintπpθ |ψq :
Ψpθq “ ψu ď

ř

θ:Ψpθq“ψ πpθ |ψqfθ,npxq{fθpψq,npxq ď maxtπpθ |ψq : Ψpθq “ ψu ă 1. Now

putting fθ̂npψq,npxq “ maxtfθ,npxq : Ψpθq “ ψu, the second term on the right-hand side

of (15) equals

1

n
log

˜

fθ̂npψq,npxq

fθ0,npxq

¸

´
1

n
log

˜

fθ̂npψ0q,npxq

fθ0,npxq

¸

`
1

n
log

˜

fθpψq,npxq

fθ̂npψq,npxq

fθ̂npψ0q,npxq

fθpψ0q,npxq

¸

. (16)

Note that the third term in (16) is bounded above by n´1 logp#tθ : Ψpθq “ ψuq which
converges to 0. Now by the strong law, when θ0 is true, then n

´1 logpfθ,npxq{fθ0,npxqq Ñ

Eθ0plogpfθpXq{fθ0pXqqq as n Ñ 8. By Jensen’s inequality Eθ0plogpfθpXq{fθ0pXqqq ď

logEθ0pfθpXq{fθ0pXqq “ 0 and the inequality is strict when θ ‰ θ0 while Eθ0plogpfθ0pXq

{fθ0pXqqq “ 0. Therefore, using #tθ : Ψpθq “ ψu ă 8, the first term in (16) con-
verges to maxtEθ0plogpfθpXq{fθ0pXqqq : Ψpθq “ ψu while the second term converges
to maxtEθ0plogpfθpXq{fθ0pXqqq : Ψpθq “ ψ0u “ 0. Therefore, we have that there ex-
ists n0 such that Anpθ0q “ Θ for all n ě n0 and so ΠΨ pRBpψq ď RBpψ0q | T pxqq “

ΠΨpAnpθ0q |T pxqq “ 1.


