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On Asymptotic Properties and Almost Sure
Approximation of the Normalized
Inverse-Gaussian Process

Luai Al Labadi * and Mahmoud Zarepour

Abstract. In this paper, similar to the frequentist asymptotic theory, we present
large sample theory for the normalized inverse-Gaussian process and its corre-
sponding quantile process. In particular, when the concentration parameter is
large, we establish the functional central limit theorem, the strong law of large
numbers and the Glivenko-Cantelli theorem for the normalized inverse-Gaussian
process and its related quantile process. We also derive a finite sum representa-
tion that converges almost surely to the Ferguson and Klass representation of the
normalized inverse-Gaussian process. This almost sure approximation can be used
to simulate the normalized inverse-Gaussian process.

Keywords:  Brownian bridge, Dirichlet process, Ferguson and Klass represen-
tation, Nonparametric Bayesian inference, Normalized inverse-Gaussian process,
Quantile process, Weak convergence

1 Introduction

The objective of Bayesian nonparametric inference is to place a prior on the space of
probability measures. The Dirichlet process, formally introduced in ([I), is
considered the first celebrated example on this space. Several alternatives for the Dirich-
let process have been proposed in the literature. In this paper, we focus on one such
prior, namely the normalized inverse-Gaussian (N-IG) Process introduced by
(EO05H). The authors in the foregoing paper used the normalized inverse-Gaussian pro-
cess in the context of mixture modeling and showed that this prior exhibits an attractive
and useful clustering behavior, quite different from that of the Dirichlet process. We re-
fer the reader to the original paper of (POO5H) for a more detailed comparison
between the two processes. Relevant contributions to the normalized inverse-Gaussian
process include, among others, Eavara ef all (PIT7), Jang et al] (PIIM), Tames et all
(emm) and (coma).

We begin by recalling the definition of the normalized inverse-Gaussian distribution.
The random vector (Z1, ..., Zy,) is said to have the normalized inverse-Gaussian distri-
bution with parameters (y1, ..., vm), where 7; > 0 for all ¢, if it has the joint probability
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density function

ST A
ezi=17 | |i= Vi K
f(Zl, T Zm) = 2m/2—1ﬂ-m/12 X -m/2

< [ 127 % Is(z1, - 2m), (1)
i=1

where K is the modified Bessel function of the third type, S = {(zl, ceyZm) 2 = 0,
Stz = 1}, and Is represents the indicator function of the set S. For more details
about the modified Bessel functions consult Ebramowitz and Stegun ([I72), Chapter 9.

Consider a Polish space X with the Borel o—algebra A of subsets of X. Let H be a fixed
probability measure on (%, .4) and a be a positive number. Following (E00nD),
a random probability measure Py, = {Pga(A)} ., is called a normalized inverse-
Gaussian process on (X,.A) with parameters a and H, if for any finite measurable parti-
tion Ay,..., A, of X, the joint distribution of the vector (Pg 4 (A1), ... Pu,q(Apm)) has
the normalized inverse-Gaussian distribution with parameter (aH(A1),... aH(Ap)).
We assume that if H(A;) =0, then Py 4(A;) = 0 with probability one. The normalized
inverse-Gaussian process with parameters a and H is denoted by N-IGP(a, H), and we
write Py, ~ N-IGP(a, H).

One of the basic properties of the normalized inverse-Gaussian process is that for any
Ac A,

H(A)(1 - H(A))

E(Pu,q(A)) = H(A) and Var(Pue(A)) = ) , (2)
where here and throughout this paper
1
£(a) = 2 T(—2,a) (3)

and I'(—2,a) = SZO t~3e~tdt. Furthermore, for any two disjoint sets A; and A; € A,

fla) -1

E(Pr,a(Ai)Pra(A;)) = H(A)H(A;) £(a)

(4)

Observe that, for large a and any real number r,

a1 r—1 (r—1(r—2)

I(r,a)a™"e® ~ P + e + .- (5)
(Abramowitz and Stegun U7, Formula 6.5.32), where we use the notation f(a) ~ g(a)
if lim, o f(a)/g(a) = 1. Consequently, £(a) ~ a. It follows from (B) that H plays the
role of the center of the process, while a can be viewed as the concentration parameter.
The larger the value of a, the more likely the realization of Py, will be close to H.
Specifically, for any fixed set A € A and ¢ > 0, by Chebyshev’s inequality we have

H(A)(1 - H(A))
§(a)e® '

a2

Pr{|Pu,.(A) — H(A)| > €} <

(6)
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That is, Py.o(A) 2> H(A) as a — .

Similar to the Dirichlet process, a series representation of the normalized inverse-
Gaussian process can be easily derived from the [Ferguson and Klasq ([IA). See also
Nicto-Barajas and Prunsteq (EO0). Specifically, let (E;);>1 be a sequence of indepen-
dent and identically distributed (i.i.d.) random variables with an exponential distribu-
tion with mean of 1. Define

I'is=FE.+---+ E;. (7)

Let (6;);=1 be a sequence of i.i.d. random variables with values in X and common
distribution H, independent of (T';);>1. Then the normalized inverse-Gaussian process
with parameters a and H has the series representation

Pial) = Y e, (), 0

where
a

0

L(z) = \/ﬂf e 24732 4t for & > 0, (9)
and dx denotes the Dirac measure at X (i.e. 0x(B) = 1 if X € B and 0 otherwise).
Note that, working with (@) is relatively difficult in practice because no closed form for
the inverse of the Lévy measure (B) exists. Moreover, to determine the random weights
in (@), an infinite sum must be computed. A remedy of such complexity will appear
in Theorem 4 of Section 5 in this paper, where an almost sure approximation to () is
given based on a similar result in Zarepour and AT Labad) (EII32).

xT

The main objective of the present paper is to study the weak convergence of the centered
and scaled process

Dia() = vVa(Pua() = H()), (10)

as a — 00. Nonparametric Bayesian procedures can be viewed as functionals on priors.
Therefore, like frequentists’ empirical process (Eharackand Wellned [URA), large sample
theory of many important functionals of the N-IGP(a, H) will simply follow from this
result. For example, it will pave the way for studying the Bayesian bootstrap based on
the normalized inverse-Gaussian process. We point out that, the weak convergence of the
centered and scaled Dirichlet process was studied by Cd (IXD) to establish asymptotic
validity of the Bayesian bootstrap. See also (ZOmd). An interesting
generalization of [Cd ([IX7) to the two-parameter Poisson-Dirichlet process was obtained
by [amed (EOIN). We would like to emphasize that the result of James for the two-
parameter Poisson-Dirichlet process holds for any discount parameter o € [0,1]. In
the two foregoing papers, the proofs of the results are based on constructing certain
distributional identities which conclude summability. We refer the reader to Proposition
4.1 of Mamed (POOR) for more details. Since constructing an analogous distributional
identity for the normalized inverse-Gaussian process does not seem to be trivial, the
approach of [amed (POOR) is not followed in this paper.

This paper is organized as follows. In Section 2, as a — o0, we show that the limiting
process for the process (M) is the Brownian bridge. In Section 3, we derive the limiting
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process for the quantile process
Qua() = Va (Prh() = HT'()), (11)
as a — o0, where, in general, the inverse of a distribution function F is defined by
Fl't)=inf{x: F(x)=>t}, 0<t<l.

The strong law of large numbers and the Glivenko-Cantelli theorem for the normalized
inverse-Gaussian process are discussed in Section 4. In Section 5, we derive a finite
sum-representation which converges almost surely to the Ferguson and Klass represen-
tation of the normalized inverse-Gaussian process. Section 6 contains some concluding
remarks.

2 Asymptotic Properties of the N-IG Process

In this section, we study the weak convergence of the process Dy, defined in () for
large values of a. Let . be a collection of Borel sets in R and H be a probability
measure on R. We recall the definition of a Brownian bridge indexed by .. A Gaussian
process {Bp(S): S e .} is called a Brownian bridge with parameter measure H if
E[Bg(S)] =0 for any S € . and

Cov (BH(SZ),BH(SJ)) = H(SZ N S]) — H(SZ)H(SJ)

for any S;,S; € . (EKiiand Ficke] COIT3).

The next lemma gives the limiting distribution of the process (I0) for any finite Borel
set S1,...,5, € &, as a — o0. The proof of the lemma for m = 2 is given in the
appendix and can be generalized easily to the case of arbitrary m.

Lemma 1. Let Dy, be defined by (). For any fixed sets Sy, ..., Sy, in.” we have

(DH,0(51),Di,a(S2),. .., Di,a(Sm)) LA (B (S1), Bu(S2),...,Br(Sm)),

as a — o0, where By is the Brownian bridge with parameter H.

In this paper, D[—o0, 0] denotes the space of cadlag functions (right continuous with
left limits) on [—oo,00] which is equipped with the Skorokhod topology. The process
Dy in () can be defined on [—0, «0] in which its sample path is in D[—o0, 0] such
that Dy o(t) = Dpo ((—0,t]). Right continuity at —oo can be achieved by setting
Dy o(—00) = 0; the left limit at +oo also equals zero, the natural value of Dy ,(+0).
For more details, consult Pollard ([9=d), Chapter 5. The following theorem shows
that the process Dy, converges to the process By in D[—o0,00]. If X and (Xg)e>0
are random variables with values in a metric space M, we say that (X,), converges

in distribution to X as a — oo (and we write X, 4, X) if for any sequence (ap)n
converging to o0, X,, converges in distribution to X. The proof of the theorem is given
in the appendix.
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Theorem 1. We have, as a — 0,

Dira(-) = Va(Pua(-) — H(-)) > By ()

in D[—o0, 0] with respect to Skorokhod topology, where By is the Brownian bridge
with parameter measure H.

3 Asymptotic Properties of the N-IG Quantile Process

(IA) considered different estimation problems including estimation of the
median and quantiles using different loss functions under the Dirichlet prior. In this
section, similar to the frequentist asymptotic theory of quantile process, we establish
large sample theory for the normalized inverse-Gaussian quantile process. The following
corollary derives the weak limit of the inverse-Gaussian quantile process defined in (I0)
when the concentration parameter a is large.

Corollary 1. Let 0 < p < g < 1, and H be a continuous function with positive deriva-
tive h on the interval [H™*(p) — e, H"*(q) + €| for some € > 0. Let X be the Lebesgue
measure on [0, 1]. Let Qp,, be the normalized inverse-Gaussian process defined in ().
As a — o0, we have

Qural) 5~ A

in D[p,q]. That is, the limiting process is a Gaussian process with zero-mean and
covariance function

A(s A t) — A(s)A(E)

Cov (Q(s),Q(1)) = h(H-1(s))h(H-1(t))’

s,teR,

where s A t denotes the minimum of s and t.

Proof. By Theorem [, the process v/a (Py,q(-) — H(-)) converges in distribution to the
process By = Bj o H. Notice that, almost all sample paths of the limiting process are
continuous on the interval [H~!(p) — ¢, H'(g) + €] . By Lemma 3.9.23 of Ean_der Vaard
End Wellned (CI9H), the inverse map H — H ! is Hadamard tangentially differentiable
at H to the subspace of functions that are continuous on this interval. By the functional
delta method (Eander Vaarf and Wellnell T990, Theorem 3.9.4) we have

i ByxoHoH'() Bia()
QH#I(') - = 1 == 1
h(H=1()) h(H=1())
in D[p, q]. This completes the proof of the corollary. O

Remark 1. Parallel to Remark 1 of Bickel and Freedman (U=3), if H *(04) > —o0
and H=1(1) < o0 and h is continuous on [H=(0+), H='(1)], the conclusion of Corol-
lary O holds in D [H_1(0+),H_1(1)] . For example, if H is a uniform distribution on
[0, 1], then the convergence holds in D[0,1].
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The following simple example shows how a practitioner can apply Corollary O to special
cases such as median and interquartile range.

Example 1. In this example we derive the asymptotic distribution for the median
and the interquartile range for the normalized inverse-Gaussian process. Let Q}LLG,

#.o and Q3 , be the first, the second (median) and the third quartiles of P4 (i.e.
PI}}a(O.QE)) = Q}{,a, PEL(O.IS) = %141 and Pﬁ’la(O.75) = Q%Q) Let ¢1, g2 and g3 be the
first, the second (median) and the third quartiles of H. From Corollary O, after some
simple calculations, the asymptotic distribution of the median and the interquartile
range are given, respectively, by

) 1
Va Qo —a) >N <07 4h2(qz)>
and
d 3 3 2
Va(IQR - (g5 —q1)) > N (O’ h2(gs) + h2(q1) a h(Ql)h(QS)) ’

where h = H and IQR = Q?I)-I,a — Q}-I,a‘ Note that, the asymptotic distributions of the
median and the interquartile range for the normalized inverse-Gaussian process coincide
with the asymptotic distribution of the sample median and the sample interquartile
range ([DasGuptd P8, page 93).

4 Glivenko-Cantelli Theorem for the N-1G Process

In this section, we show that a similar form of the empirical strong law of large numbers
and the empirical Glivenko-Cantelli theorem continue to hold for the normalized inverse-
Gaussian process.

Theorem 2. Let Py, ~ N-IGP(a,H). Assume that a = n’c, for a fixed positive
number c. Then, as n — o0,

Py p2e(A) =5 H(A)

for any measurable subset A of X.

Proof. For any € > 0, by (0), we have

H(A)(1 - H(A))

Pr{| Py n2c(A) — H(A)| > €} < £(n2c)e? ’

where £(n?c) is defined by (B). Note that

lim E(n%)

=1
n—w n2c
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(Ibramowitz and Stegun [U72, Formula 6.5.32). Since the series Y| 1/n? converges,
it follows by the limit comparison test that the series Zle £(n?c) is also convergent.
Thus,

o]

Z v {| Py p2e(A) — H(A)| > €} < 0.

Therefore, by the first Borel-Cantelli lemma, the proof follows. O

The next theorem establishes the Glivenko-Cantelli theorem for the normalized inverse-
Gaussian process. The proof of the theorem follows by arguments similar to that given
in the proof of the Glivenko-Cantelli theorem for the empirical process. See, for example,

D gsley] (TI9F), Theorem 20.6 and for the exchangeable sequences see
m.um

Theorem 3. Let Py, ~ N-IGP(a,H). Assume that a = n’c, for a fixed positive
number c. Then

sup |PH7n2C(:17) — H(x)|

zeR

=0,

as n — oo, where H and Py, live in (X, A).

Remark 2. Results similar to Corollary @ and Theorem B can also be established for
the two-parameter Poisson-Dirichlet process. The proof will based on Theorem 4.1 and
Theorem 4.2 of Hamed (BOO8) and arguments analogous to that used in the present paper.

5 Monotonically Decreasing Approximation to the N-IG
Process

In next theorem, we mimic the approach of Zarepour and Al Labad] (EOIA) for the
Dirichlet process to derive a finite sum representation which converges almost surely
to the Ferguson and Klass sum representation of the normalized inverse-Gaussian pro-
cess. The proof of the theorem is similar to the proof of Lemma 2 in Farepour and Al
[Cabadi (EOI2) and a simple application of the continuous mapping theorem. Hence, it
is omitted.

Theorem 4. Let (0;);>1 be a sequence of i.i.d. random variables with values in X and
common distribution H, independent of (I';);>1, then as n — o

prew  _ i F;l <%>

o = T E =%, (12)
(Fi) ZZ 1 7/)
n+1

i= 121, lF

e 1 2
F,(z) = f naZWt_B/QeXp{—2 (at —I—t) + Z}dt.

Here T'; and L(z) are defined in (@) and (@), respectively.

where
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Note that, for any 1 < i < n, I';/T11 < Iip1/Tny1 almost surely. Since F, 1 is a
decreasing function, we have F,; ! (I';/T11) > F,; ' (Iii1/Ty1) almost surely. That
is, the weights of the new representation given in Theorem O decrease monotonically
for any fixed positive integer n. The suggested approximation in Theorem 4 and the
stick-breaking representation of the normalized inverse-Gaussian process (Eavaraefall
PO1) have been studied and compared in [AT Tabadt and Zarepouy (EII2). We refer the
reader to the previous paper for more details.

Remark 3. For P9, in Theorem [, we can write
n
new d
n,H,a — Zpi,n59i7 (13)
i=1

where (P1n,---,Pnm) ~ N-IG(a/n,...,a/n), 2 denotes equality in distribution and
N-1G is the normalized inverse-Gaussian distribution with probability density function
given in (@). Therefore, a similar result to Theorem 2 of [shwaran_and Zarepout (Z0I3)
Jor the normalized inverse-Gaussian process follows immediately. Similar to P9, in

(@), representation (3) can be used for simulation purposes.

6 Concluding Remarks

The approach used in this paper can be applied to some similar processes with tractable
finite dimensional distributions. An interesting example is the class of the generalized
Dirichlet process introduced by (b)) and further investigated in Eavard
Efall (EOI). Another class of interest is the class of normalized generalized gamma
processes ([Cijol et al] PO0A), which contains the normalized inverse-Gaussian process
as a special case (a = 1/2). Unfortunately, the finite dimensional distributions of the
normalized generalized gamma processes are unknown. Therefore, a proper modification
of the approach discussed in this paper is necessary.

The results obtained in this paper can be applied to derive asymptotic properties of any
Hadamard-differentiable functional of the N-IGP(a, H) as a — oo. For different applica-
tions in statistics, we refer the reader to kan_der Vaart and Wellnen ([99H), Section 3.9
and [Cd ([UR). Moreover, the obtained results for the univariate cumulative distribu-
tion functions can be generalized to multivariate cumulative distribution functions. To
achieve these generalizations, the results of Bickeland Wichurd (TI71) can be employed
in the proof.
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Appendix

Proof of Lemma 1 for m = 2: Let S; and S5 be any two intervals in R. Without
loss of generality, we assume that S1 N Sy = . The general case when S; and Sy are
not necessarily disjoint follows from the continuous mapping theorem.

Note that

(]315{7@(51),1:71577(1(52)7 1-— PHﬂ(Sl) — PH,a(SQ)) ~ N—IG(GH(Sl),G,H(SQ),
a(l— H(S1) — H(S2))),

where N-IG denotes the normalized inverse-Gaussian distribution with probability den-
sity function given in (@). For notational simplicity, set X; = Py q(S;), I; = H(S;) and
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D; = +/a(X; —1;) for i = 1,2. Thus, the joint density function of X; and X, is

a3 _ —
e®a’lila(1 —1h — o) " x;:a/zx;s/z( —3/2

fxix(T1,22) = 91/2,73/2 1 — 21— x2)

2 12 1—1; —15)2
XK_3/2 a *‘i‘*‘i‘M

1 o 1—21— 22
22 (-1 —1)2\
><a3,/2<1+2+( 1 2)>
T To 1—21— 2o

a®elyla(1 — 1y — lg) ~3/2 _—3/2
91/2,3/2 x @y "y

2 (1—1 — )2
K s \/+ L -h—b)?
].75817502
2 (-l -2\
( 1 +12>) .
T1 T 1—21 — 22

It follows that, the joint probability density function of Dy = y/a (X1 — 1) and Dy =

\/E(Xg— lz) is

1-— Xr1 — .1‘2)_3/2

alelyly(1 — 1y — 1o)
Ipy,Do(Y1,2) = 91/2,3/2

x (y1/va + l1)_3/2 (y2/va + 12)_3/2
x (1= yn/va—1y —yo//a—1) "

2 12
x K _ a
/2 yi/va+1h yz/\F‘F Iy

(1= 1y — 1o)? is
1—211/\/5—11 —y2/va— Iy

l2 12
<y1/\f—i—l1 Ya/va +la

—3/4
(1=1; —1)
1—y1/\/5—ll—y2/\f—lg> .

By Scheffé’s theorem (Billingsley [IIY, page 29), it is enough to show that

1 _
fpy,ps(W1,y2) = fly,y2) = Wexp{*(% y2)S (1 v2)"/2},

where ¥ = [Zl (1-1h) —hl ]

—lily lo(1—12)
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Since, for large z and fixed v, K, (z) ~ 1/m/22~'/?¢~* ([Abramowitz and Stesur] [I72,
Formula 9.7.2) we get

l1112(1 1y — 1)

algrglo fDl,Dz (ylayQ) = lim o

a—00

(B B (1= 1y — )2 -
yi/vVa+li  y/vVa+ls  1—yi/iJa—1i —y2/v/a—1s

x (y1/vVa + 11)73/2 (y2/va + 12)73/2

x (1—y1/va—b —yp/va—1p) "

12 12
xexp|lall— L + 2
p( ( <1/1/\/a+11 y2/va+ 1o
1/2
N (1 -1y —15)? /
L—y1/va—1 —y2/va—1Is '
Notice that,

Lila(1 =11 — o)
2

-1
" 12 N 13 N (1 -1y —1)?
yi/Va+lh o y/a+le  1—y/a—1li—yz/\Ja—1s
X (yl/\/a + 11)73/2 (yz/\/a + 12)73/2 (1 —y1/Va—1i —y2/va— 12)73/2
converges to 1/ (27n/011022(1 - p%Q)), where

l1ly

o=l =h), o =b=b), pe=—\ G55y

To prove the lemma, it remains to show that

1/2
(B (115 — )2 /
yi/vat+l o y/Vat+ly  1—yi/sJa—li—y2/Ja—1a

converges to

| () () e () () |

The last argument follows straightforwardly from L’Hospital’s rule. o
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Proof of Theorem 1: Let (a,) be an arbitrary sequence such that a, — 0. To
simplify the notations, in the arguments below, we omit writing the index n of a,.
Assume first that H(t) = A(t) = ¢ (i.e. A is the Lebesgue measure on [0,1]). Thus the
process (M) reduces to

Dy a(t) = \/E(P)\ a(t) _t)'

To prove the theorem, we use Lemma 0 and Theorem 13.5 of Billingsley (TTM). There-
fore, we only need to show that for any 0 < t; <t <ty <1,

B [IDxa(t) = Dra(t)*’ |Dra(tz) = Daa()?’] < [F(t2) = F(12)7,

for some § > 0, v > 1/2, and a nondecreasing continuous function F on [0,1]. Take
B =7 =1and F(t) = 2t. Relying on the technique of lamesef a1l (PO0A) for calculating
moments of random probability measures, we show that

E [(Dxa(t) = Dra(t))? (Daaltz) = Daa®))] < 4(t2 — 01)*. (14)
Observe that
Dy o(t) — Dao(t1) = Dy o((t1,t]) and Dy 4(t2) — Dxo(t) = Daa((t, t2]).
Thus, the expectation in the left hand side of (A) is equal to
0B [{Pal(t1,4]) = Mt 1D} {Pral(t, 2]) = M5 D) (15)
where A((¢,t2]) = t2 — t and A((¢1,t]) = t — ¢1. Expanding the expression

{Pra((t1,8]) = A1, 1)) {Pral(t £2]) = A((E, t2]))

gives
P o((t1, 8]) PR o (8 t2]) — 2X((1 t2]) PR o (1, 8]) Pra((2: t2])
+ A2 ((t, 02]) PR o (11, 1]) = 2A((t1, 8]) Proa (1, 1) PR o (8 £2])
+AN((t1 DA D) Pra (1, 1) Pra (8 t2]) = 2M((E, DA ((E 2]) Paa (11, 1])
+ A2 (1, 1) PR o (8 t2]) = 20 (81, EDA((E, t2]) Prua ((t, t2]) + N2 ((t1, AP (8, t2]).
Applying the general technique of Dames eTall (EO0A) to calculate the moments yields
E[P2,((t1, 1) P2 (1, 1])] = 418 | (300, a)a’e” — T(=2, a)a’ — 20° + 6a + 6)

(1, DXL ta]) + (3T(-1, a)ate”

(=3, a)a®e® — 242 +2a+2))\ (1, (DA((, t2])
+ (3F(—1, a)ate® — T(=3,a)a’e® — 2% + 2a + 2)
XA((t, DA% (8 t2]) + (= T(—4, @)aCe”
+30(=2,a)a’e” — 31(0,a)a’e” + a + 1)

XA((t, DA ta]) |-
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Using the approximation (B) gives

24 12
I'(0,a)a*e® zas—a2+2af6+f7720+
a a
360 2520
[(-2,a)a’" ~ a® — 3a* + 12a — 60 + — — 5 +
a a
24 120
I'(—1,a)a*e” ma2—2a+6—7+72_...
a a
120 840
I'(=3,a)a’" ~ a® —4a +20 — — + — — -
a a
30 210
I'(—4,a)a%" Xa—5+———+
a a
12 60
I'(-2, Cxg—3+ 2 - =
( a)ae a + T
2 6
I'(0, 200 v —14+ 2 — = 4 ...,
(0,a)a’e” ~ a oSt
Therefore,
2 2 6 45\, 2
B[R DR (D]~ (10 ) (00, )1 1)
1 10
= — — )N ((t1, DA((t,
(5 = o )R DA ta])
1 10
— — — )M ((t1, DNP((t,
(5 = o)A, X 1))
1
+E)\((t1,t]))\((t,t2]). (16)
Likewise,
2 _ 1 _ 4.0 2 2
E[P; . ((t1, t]) Pro((t,12])] = 2 [(—1,a)a’e” — a® + 2a + 2 ) N*((t1, t]) A ((t, t2])

+ (].—‘(—27 a)a4ea _ 2]_"(07 a)a2ea +a+ 1)
XA((t, DAt t2]) |
(1= 2+ B pace )

1 6

1-— p +
(= )Mt DA 12]) (17)

1%

a2
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and

E[Pya((ti, )P ,((t12])] = é[(r(—m)a‘*ea —a® + 20+ 2)A((b, DAY (1 )

+ (r(fg, a)ate® — 20(0,a)a%e® + a + 1>/\((t1, AL, tg])]

(1= 2+ 23 )R a))

(2 = A DA 12]). (15)

a

1%

On the other hand, by (B) and (@), the expectation of the expression

N2 ((t, t2]) PR o (t1,2]) + 4X((t1, EDA((E, 22]) Pra (1, 8]) Pra (¢, 22])
— 2X((t1, t]) N ((t, t2]) P a((t1, 1]) + N3((t1, £]) PR o (2, t2])
]

) )
= 222 ((t1, DA((t t2]) Pra (8, t2]) + N2 (11, ()N (8, 22])
simplifies to

BN ((t1, ()N ((¢, t2]) — 6T(=2, a)a”e N ((t1, t]) A*((t, t2])
+ (=2, a)a2e N2 ((t1, AL t2]) + D(=2, a)a2eA((tr, )N2((t, t2])

< IRVt~ 6 (5 - 5 ) R DNt
+ (5 5) R + (5 - Z)amaea. )

B [{Pra((er, 1) = M1, D1 (Pt t2]) = M1 D] > 50300, 6N )
= SR, DA ) — A DN (6 ta) + A DN 2]
< %)\((tl,t]))\((t,tg]). (20)
Thus, by (IH) and (), we have
B[ (Daa(t) = Dxa(t))? (Dxaltz) = Dxa(t)’] < 4X(11 AL 12]

S At —ty) (2 — 1)
< 4(t2 —t1)2
) =

for 0 < t; <t <ty < 1. This proves the theorem in the case when H(t) = ¢, i.e. H is the
uniform distribution. Observe that, the quantile function H~(s) = inf {t H(t) = s}
has the property: H~!(s) < t if and only if s < H(t). If U; is uniformly distributed
over [0,1], then H~(U;) has distribution H. Thus, we can use the representation
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a; = H™Y(U;), where (U;)i>1 is a sequence of i.i.d. random variables with uniform
distribution on [0, 1], to have

Py o(t) = Pro(H(t)) and Dy o(t) = Dy o(H(t)) = Dago H(t), teR,

where P, , is the normalized inverse-Gaussian process with concentration parameter
a and Lebesgue base measure A on [0,1]. From the uniform case, which was already
treated, we have D) () = v/a (Pro(-) — A(*)) < B (). Define ¥ : D[0,1] — D[—0, 0]
by (Pz)(t) = x(H(t)). Since the function ¥ is uniformly continuous (Billingsley] [T,
page 150; Ballard [[9RA, page 97), it follows, from the continuous mapping theorem and
the fact that D) , A B, that Dy g = ¥(Dx,a) A U(B)) = By. This completes the
proof of the theorem. o
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