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Adrian Dobra ˚

This is an interesting and thought-provoking paper which focuses on defining new prior
distributions on graphical structures. Priors on graphs represent a key component
of any Bayesian approach for graphical models, hence the identification of new prior
distributions for graphs is a very important topic. The author proceeds by modeling the
possible edges of a graph through appropriate joint probability distributions. This idea
receives a good treatment in this writing, but it is certainly not as novel as the author
might seem to suggest by not mentioning many other papers who used various priors
on graphs which are different from the uniform prior given in equation (2) page 2 of the
paper. In fact, the Bayesian literature dedicated to graphical models has a longstanding
track of using priors that encourage sparsity in order to increase interpretability and
avoid the risk of overfitting. Some of these priors are constructed precisely by treating
edges as random variables. In the context of DAGs, a typical prior specification starts
with the traditional Bayesian variable selection prior for regressions which is defined by
assuming a constant probability of inclusion β of each variable xi, i P V “ t1, 2, . . . , pu,
in the regression model. This leads to a prior Prpkq9pβ{p1 ´ βqqk associated with a
regression with k predictors. Independent priors for regressions in the compositional
specification of a DAG D,

xi “
ÿ

jPpapiq

γijxj ` ϵi, for each i P V,

where papiq are the parents of vertex i in D, lead to the following prior for D (see, for
example, Dobra et al. (2004)):

PrpDq9pβ{p1 ´ βqq

p
ř

i“1
#papiq

.

The DAG D becomes sparser as
`

p
2

˘

β gets smaller. In the context of Gaussian graphical
models, a usual choice is the uniform prior PrpGq91. Alternative priors on Gp, the set
of graphs with p vertices, have been developed by assuming a constant probability of
inclusion β P p0, 1q of each edge. This leads to a prior for a graph G P Gp (Dobra et al.
2004; Jones et al. 2005)

PrpGq 9 pβ{p1 ´ βqqsizepGq, (1)

where sizepGq is the number of edges in G. Sparse graphs receive high prior probabilities
when

`

p
2

˘

β is small. By assuming β „ Betapa, bq, Carvalho and Scott (2009) integrate
out β in (1) to obtain the following prior on Gp:

PrpGq 9 B

ˆ

a ` sizepGq, b `

ˆ

p

2

˙

´ sizepGq

˙

{Bpa, bq, (2)
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where Bp¨, ¨q is the beta function. Armstrong et al. (2009) introduced the size based
prior on Gp which gives equal probability to the size of a graph and equal probability
to graphs of each size. The size based prior is obtained by setting a “ b “ 1 in (2).
We note that the expected size of a graph under the size based prior is

`

p
2

˘

{2, which
is also the expected size of a graph under the uniform prior on Gp. Due to their bias
towards middle size graphs, the size based prior and the uniform prior should be avoided
if sparse graphs are desired. Instead, the prior (1) with small expected graph sizes

`

p
2

˘

β
should be preferred.
It would be interesting to see how the aforementioned priors on graphs compare with
the new priors proposed by the author in this writing. Besides comparisons focusing
on how the mean and variance of the graph size change as a function of the number
of vertices, I would find an in-depth discussion of the problem of sampling from these
new priors to be extremely relevant. Sampling is very important since, if one cannot
sample from a prior in some efficient manner, actually using that prior to explore large
graphs becomes quite problematic. For example, direct sampling from the uniform prior
on graphs is easy when any graphical structure is allowed. But direct sampling from
the uniform prior over the space of decomposable graphs is certainly an open problem
which does not have, to the best of my knowledge, a good solution.
I disagree with the author’s view that Bayesian inference should be split in two steps:
structure learning (in which the edges of the graph are determined) and parameter
learning (in which parameters of the underlying joint distribution are estimated given
the graph determined at the first step). There are two very good reasons for perform-
ing both steps together by sampling from the joint posterior distribution of the model
parameters and the graphs. The first reason comes from applications of graphical mod-
els for high-dimensional datasets with a small number of observed samples. For such
datasets, it is likely that the highest posterior probability graph receives only a small
(almost zero) posterior probability. Furthermore, changing a few edges in this graph
could lead to graphs with comparable posterior probabilities. When model uncertainty
is high, Bayesian model averaging becomes key because it avoids the need to perform
inference by making an explicit choice about which edges are present or absent. Sam-
pling from the joint posterior of graphs and model parameters performs Bayesian graph
averaging for model parameter estimates and for the edge inclusion probabilities. By
conditioning on one or on a relatively small number of graphs, the uncertainty in the
model parameter estimates can be severely underestimated for high-dimensional data
applications.
The second reason for not separating Bayesian inference in two steps is conceptual and
it is precisely related to prior specification for graphs. The structure learning step is
performed by integrating out the model parameters and making use of the marginal
(integrated) likelihood to obtain the posterior probability of a graph — see equation
(1) page 1 of the paper. While taking this approach can be justified, for example, from
a computational perspective as it avoids having to sample the model parameters (an
expensive and, quite possibly, less than trivial task in some settings), the use of the
marginal likelihood effectively disconnects the model parameters from the underlying
graph. This aspect is key because the complexity of a model is not necessarily reflected
in the number of edges of the graph. Here I will give an example which shows that
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removing one edge from the same graph can lead to setting one parameter to zero for
one class of graphical models, but it leads to setting a large number of parameters to
zero for another class of graphical models.
Consider the graph G from Figure 1 which gives the conditional independence rela-
tionships among four random variables A, B, C and D, and the graph G1 obtained by
removing the edge between B and D from G. First, we assume that the four random

A C

B

D

Figure 1: A conditional independence graph with four vertices and five edges.

variables are continuous and we model their joint distribution with a Gaussian graph-
ical model N4

`

0,K´1
G

˘

defined by the graph G (Whittaker 2009), where the precision
matrix is parametrized as

KG “

¨

˚

˚

˝

kAA kAB 0 kAD

kBB kBC kBD

kCC kCD

kDD

˛

‹

‹

‚

Note that kAC “ 0 in KG because there is no edge between A and C in G. The Gaussian
graphical model defined by the graph G1 is N4

`

0,K´1
G1

˘

, where KG1 is obtained from
KG by setting kBD “ 0. Second, we assume that the random variables A, B, C and D
are discrete with IA, IB , IC and ID categories, respectively. In this case, we model their
discrete distribution with a graphical loglinear model defined by the graph G (Fienberg
2007). This loglinear model involves four main effects associated with each random
variable, five two-factor interaction terms associated with each edge of G and two three-
factor interaction terms associated the two cliques of G, tA,B,Du and tB,C,Du:

logmABCD
ijkl “ u ` uA

i ` uB
j ` uC

k ` uD
l `

uAB
ij ` uAD

il ` uBD
jl ` uBC

jk ` uCD
kl `

uABD
ijl ` uBCD

jkl , (3)

where 1 ď i ď IA, 1 ď j ď IB , 1 ď k ď IC and 1 ď l ď ID. The loglinear model (3) is
made identifiable by imposing the usual ANOVA-like constraints that the sum over any
index i, j, k or l of a u-term is zero, which implies that the number of fitted parameters
of this model is
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1 ` pIA ´ 1q ` pIB ´ 1q ` pIC ´ 1q ` pID ´ 1q`

pIA ´ 1qpIB ´ 1q ` pIA ´ 1qpID ´ 1q ` pIB ´ 1qpID ´ 1q ` pIB ´ 1qpIC ´ 1q ` pIC ´ 1qpID ´ 1q`

pIA ´ 1qpIB ´ 1qpID ´ 1q ` pIB ´ 1qpIC ´ 1qpID ´ 1q.

The graphical loglinear model defined by the graph G1 involves four main effects and
four two-factor interaction terms associated with each edge of G1:

logmABCD
ijkl “ u ` uA

i ` uB
j ` uC

k ` uD
l `

uAB
ij ` uAD

il ` uBC
jk ` uCD

kl . (4)

Remark that the four edges of G1 also happen to be the cliques of G1. Therefore the
difference in the number of fitted parameters of the graphical loglinear models (3) and
(4) is

pIB ´ 1qpID ´ 1q ` pIA ´ 1qpIB ´ 1qpID ´ 1q ` pIB ´ 1qpIC ´ 1qpID ´ 1q.

For example, if the random variables A, B, C and D have three categories each, the
difference in the number of fitted parameters is 20. Therefore, for graphical loglinear
models, removing one edge in the independence graph can lead to a significant change
in the number of fitted parameters. On the other hand, for Gaussian graphical models,
removing one edge in the independence graph corresponds with setting only one param-
eter to zero.
Specifying priors for graphs should be directly linked with the number of parameters
each edge corresponds to. For Gaussian graphical models, an edge always corresponds
to exactly one parameter, but for graphical loglinear models, the same edge could cor-
respond to one or more parameters depending on the graph it belongs to. To see this,
consider removing the edge between A and B in the graph G and in the graph G1 in the
categorical data case. By splitting Bayesian inference in two steps, the author oversim-
plifies the problem of prior specification for graphs by effectively assuming that edges
have similar roles in terms of model complexity. While such an assumption is certainly
valid in some cases (e.g., Gaussian graphical models), it is questionable in other cases
(e.g., graphical loglinear models). Therefore specifying priors for graphs based on mul-
tivariate discrete distributions for edges — the key idea of this paper — might not be
an ideal solution for certain classes of graphical models.
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