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Integral Priors and Constrained Imaginary
Training Samples for Nested and Non-nested

Bayesian Model Comparison

Juan Antonio Cano * and Diego Salmerón ��

Abstract. In Bayesian model selection when the prior information on the param-
eters of the models is vague default priors should be used. Unfortunately, these
priors are usually improper yielding indeterminate Bayes factors that preclude the
comparison of the models. To calibrate the initial default priors Cano et al. (2008)
proposed integral priors as prior distributions for Bayesian model selection. These
priors were defined as the solution of a system of two integral equations that un-
der some general assumptions has a unique solution associated with a recurrent
Markov chain. Later, in Cano et al. (2012b) integral priors were successfully ap-
plied in some situations where they are known and they are unique, being proper
or not, and it was pointed out how to deal with other situations. Here, we present
some new situations to illustrate how this new methodology works in the cases
where we are not able to explicitly find the integral priors but we know they are
proper and unique (one-sided testing for the exponential distribution) and in the
cases where recurrence of the associated Markov chains is difficult to check. To
deal with this latter scenario we impose a technical constraint on the imaginary
training samples space that virtually implies the existence and the uniqueness of
integral priors which are proper distributions. The improvement over other exist-
ing methodologies comes from the fact that this method is more automatic since
we only need to simulate from the involved models and their posteriors to compute
very well behaved Bayes factors.

Keywords: Bayesian model selection, Bayes factor, intrinsic priors, integral priors.

1 Introduction

For the sake of objectivity default methods have been proposed to obtain prior distribu-
tions for Bayesian estimation and model selection problems. Default methods usually
yield an improper prior distribution πN (θ) ∝ h(θ), then πN (θ) is determined up to a
positive multiplicative constant c, that is πN (θ) = c h(θ). This is not a serious issue in
estimation problems where the posterior is defined by the formal Bayes rule and there-
fore does not depend on c. However, in model selection problems we have two models
Mi, i = 1, 2, the data x are related to the parameter θi ∈ Θi by a density fi(x|θi), the
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default priors are πN
i (θi) = ci hi(θi), i = 1, 2, and the Bayes factor,

BN
21(x) =

mN
2 (x)

mN
1 (x)

=
c2
∫
Θ2
f2(x|θ2)h2(θ2)dθ2

c1
∫
Θ1
f1(x|θ1)h1(θ1)dθ1

,

depends on the arbitrary ratio c2/c1. Therefore we are left with the indetermination of
the ratio c2/c1 and several attempts for solving this problem using the so called intrinsic
priors are in Berger and Pericchi (1996) and Moreno et al. (1998). However, in Cano
et al. (2004) it is shown that when comparing the double exponential versus the normal
location models any prior is intrinsic and the same prior has to be used for the location
parameter of both models. To overcome this difficulty integral priors have been proposed
as prior distributions for Bayesian model selection in Cano et al. (2008), where under
some assumptions it was stated that integral priors are unique. Furthermore, integral
priors have been successfully applied to the one way random effects model in Cano
et al. (2007a, 2007b) and they have been illustrated in different situations in Cano
et al. (2012b). In this last paper we have dealt with situations where integral priors are
unique being proper or not, in particular we developed the toy example of testing the
mean of a normal population with known variance but treated as a testing problem (not
an estimation problem) and the comparison of the normal and the double exponential
location models, where integral priors are unique and improper.

Integral priors are a new methodology to deal with Bayesian model selection prob-
lems and for the sake of self content they are introduced in this section, where it is also
stated how they operate. For the purpose of comparison we also present the expected
posterior priors introduced in Pérez and Berger (2002) that are defined as

π∗
i (θi) =

∫
πN
i (θi|x)m∗(x)dx,

where m∗(x) is an arbitrary predictive density for the imaginary training sample x and
πN
i (θi|x) ∝ fi(x|θi)πN

i (θi), i = 1, 2. The priors π∗
i (θi) will not be proper priors unless

m∗(x) itself is proper, but the resulting Bayes factor B∗
ij(x) is ‘well calibrated’ in the

sense that if m∗(x) is replaced by cm∗(x) for a constant c > 0, the Bayes factor obtained
is B∗

ij(x) again.

Integral priors are defined as the solutions of the system of integral equations

π1(θ1) =

∫
πN
1 (θ1|x)m2(x)dx (1)

and

π2(θ2) =

∫
πN
2 (θ2|x)m1(x)dx, (2)

where x is an imaginary minimal training sample and for i = 1, 2, mi(x) =
∫
Θi
fi(x|θi)

πi(θi)dθi. Note that a minimal training sample is a sample of minimal size for which the
marginals under both models are finite. We emphasize that in this system both priors
πi(θi), i = 1, 2, are unknown. The details on the justification and good properties of
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the integral priors can be found in Cano et al. (2008), where the main result states
that in the continuous case if the Markov chain with transition density Q (θ′1|θ1) =∫
g (θ1, θ

′
1, θ2, x, x

′) dxdx′dθ2, where

g (θ1, θ
′
1, θ2, x, x

′) = πN
1 (θ′1|x) f2 (x|θ2)πN

2 (θ2|x′) f1 (x′|θ1) ,

is recurrent then there exists a solution to the integral equations and it is unique up to a
multiplicative constant; in fact the σ-finite invariant measure for the recurrent Markov
chain is the integral prior π1(θ1). The transition density Q (θ′1|θ1) can be made into
a transition density on the parameter space Θ2 too. Therefore, there exists a parallel
Markov chain with the same properties; in particular, if one is (Harris) recurrent then so
is the other. Moreover, in the case where Harris recurrence holds but we are unable to
explicitly find the unique pair of integral priors the corresponding Bayes factor can be
approximated simulating the associated Markov chain and using the ergodic theorem.
Then, we can operate in one of the two following ways, the theoretical one, looking for
the invariant measure of the Markov chain with transition density Q (θ′1|θ1), and the
empirical one, obtaining a realization of this Markov chain and using it to approximate
the corresponding Bayes factor. The transition θ1 → θ′1 of this Markov chain is made
of the following four steps:

1. x′ ∼ f1(x
′|θ1)

2. θ2 ∼ πN
2 (θ2|x′)

3. x ∼ f2(x|θ2)
4. θ′1 ∼ πN

1 (θ′1|x),

(3)

that is we jump from parameters to samples and between models. Note that to operate
in the empirical way we just need to simulate from the models and the posteriors which
is likely to be easy. In Cano et al. (2007a, 2007b) using the theoretical way we obtained
a couple of integral priors and its corresponding Bayes factor for the nested case of the
one way random effects model.

Section 2 is devoted to illustrate this methodology with the non-nested case of the
one-sided testing for the exponential distribution, where an objective answer is far from
being simple since even the use of the encompassing model, see Berger and Pericchi
(1996), does not work well because it does not provide true Bayes factors. In Moreno
(2005) a good ad hoc solution is proposed but it is far from being automatic. In
that sense our solution is competitive since it is as good as Moreno’s solution and its
development is automatic, in fact we obtain in this case the recurrence of the associated
Markov chain and for it we only need the usual reference prior for the exponential model.
In section 3 we present a way to be followed when recurrence of the associated Markov
chain is not present or it is not easy to assess it, in this case we simply impose a technical
constraint on the imaginary training samples space that has no loss of generality and
ensures recurrence. Next, in section 4 we develop some applications of the theory
stated in section 3 by considering testing a normal mean with unknown variance where
we obtain similar results to those that are obtained using intrinsic priors (but no more
choices than the reference priors are virtually needed) and the one-sided testing for the
variance of a normal model with unknown mean, obtaining results that are as good
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as those that are obtained using expected posterior priors although we do not need to
use a predictive density and they are obtained more automatically. We also present
an example with heavy tails, testing the location parameter of the Cauchy density
with unknown scale, and we finish this section by considering the application of our
methodology to the one-way homoscedastic ANOVA problem. Finally, in section 5 we
present some relevant conclusions.

2 One-sided testing for the exponential distribution

Now, we suppose that data x = (x1, ..., xm) are independently drawn from the expo-
nential distribution. Consider the problem of testing H0 : θ ∈ (0, 1) versus H1 : θ > 1,
where θ is the mean of the exponential distribution Exp(θ). As a model selection
problem, we are interested in the comparison of the following two models

M1 : f1(x|θ1) =
1

θ1
exp(−x/θ1), πN

1 (θ1) =
c1
θ1

1(0,1)(θ1)

and

M2 : f2(x|θ2) =
1

θ2
exp(−x/θ2), πN

2 (θ2) =
c2
θ2

1(1,∞)(θ2).

Intrinsic priors do not necessarily exist for this type of non-nested problem and if
they do they are not necessarily unique, see Cano et al. (2004). On the other hand,
the Bayes factor obtained from the intrinsic priors for the encompassing approach does
not correspond to an actual Bayes factor, see Moreno (2005), where an ad hoc alter-
native solution is proposed. Nevertheless, as we show next integral priors are unique,
proper and they operate in an automatic way. The minimal training sample is a single
replication x and the posterior distributions are

πN
1 (θ1|x) = xexθ−2

1 e−x/θ11(0,1)(θ1)

and

πN
2 (θ2|x) =

x

1− e−x
θ−2
2 e−x/θ21(1,∞)(θ2).

The transition θ1 → θ′1 of the associated Markov chain is made of the following
steps:

1. x′ = −θ1 log u1, where u1 ∼ U(0, 1).

2. θ2 = −x′/ log(u2(1− e−x′
) + e−x′

), where u2 ∼ U(0, 1).

3. x = −θ2 log u3, where u3 ∼ U(0, 1).

4. θ′1 = (1− 1
x log u4)

−1, where u4 ∼ U(0, 1),

from where it is obtained the following expression for the transition
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θ′1 =

(
1 +

log u4

(θ1 log u1/ log(u2(1− uθ11 ) + uθ11 )) log u3

)−1

.

Since x/(1− e−x) > 1 we deduce that πN
2 (θ2|x) > θ−2

2 e−x/θ2 and therefore

Q(θ′1|θ1) ≥
∫
πN
1 (θ′1|x)f2(x|θ2)

(∫
θ−2
2 e−x′/θ2f1(x

′|θ1)dx′
)
dxdθ2

=

∫
πN
1 (θ′1|x)f2(x|θ2)
θ2(1 + θ2)

dxdθ2 =: q(θ′1).

Then β =
∫ 1

0
q(θ′1)dθ

′
1 = log 2 ≃ 0.69 and therefore Q(θ′1|θ1) satisfies the Doeblin

condition and integral priors are unique and proper priors. Note that the Doeblin
condition, see Athreya et al. (1996), states that when for a Markov chain with transition
density Q(θ′1|θ1) there exists a density f(θ′1), an integer k and an ε > 0 such that

Qk(θ′1|θ1) ≥ εf(θ′1) ∀θ1 and ∀θ′1,

where Qk(θ′1|θ1) denotes the k-step transition density, then there exists a unique invari-
ant probability measure to which the Markov chain converges at a geometric rate from
any starting point.

Although in this case we have not been able to explicitly obtain the integral priors
we have simulated their associated Markov chains and we present their histograms in
figures (1) and (2).
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Figure 1: Histogram of the integral prior for modelM1 in the one-sided testing example
of the Exponential Distribution.

Table 1 shows the Bayes factor of modelM2 to modelM1 for different values of (m, x̄)
using the intrinsic priors proposed in Moreno (2005) and the Bayes factor obtained
running the Markov chains associated with the integral priors. Numbers in this table
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Figure 2: Histogram of the integral prior for modelM2 in the one-sided testing example
of the Exponential Distribution.

m x̄=0.1 x̄=0.6 x̄=1.4 x̄=1.9
5 0.002, 0.000 0.205, 0.241 1.596, 4.370 5.64, 20.22
10 0.000, 0.000 0.089, 0.098 2.320, 7.676 21.74, 98.06
15 0.000, 0.000 0.045, 0.046 3.326, 12.360 81.91, 422.28
20 0.000, 0.000 0.024, 0.023 4.720, 19.08 306.8, 1735.1
50 0.000, 0.000 0.001, 0.001 35.34, 187.09 813537, 6040420

Table 1: Bayes factor B21 of model M2 to model M1 using the integral priors (left) and
the intrinsic priors proposed in Moreno (2005) (right).

show that both types of priors are well behaved. Note that the integral prior for model
M1 is increasing despite the restriction of the initial default prior is decreasing in the
constrained parameter space specified in model M1 while the integral prior for model
M2 is decreasing as it is the restriction of the initial default prior in the constrained
parameter space specified in modelM2; on the other hand, intrinsic priors are decreasing
for both models.

3 Existence of a unique and proper solution when using
constrained imaginary training samples

In Cano et al. (2012b) the normal and the double exponential location models were
compared using integral priors and it was found that integral priors were unique al-
though improper and exact Bayes factors were obtained. On the other hand, a lack of
stability was detected where obtaining approximated Bayes factors running their asso-
ciated Markov chains. Although small differences were observed between the exact and
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the approximated posterior probabilities of the normal model for different sample sizes,
as we were concerned with this problem we satisfactorily explored how to control these
Markov chains by imposing some restrictions in their evolution. The exploration of this
problem leads us to investigate how recurrence could be assessed for complex problems
where even we initially did not know the existence or uniqueness of the integral priors.
Here we propose using a constraint on the imaginary training samples space to ensure
recurrence of the associated Markov chain. The constraint is applied in steps 1 and 3
of (3) and now the transition θ1 → θ′1 is made of the following four steps

1. x ∼ fA1 (x|θ1) ∝ f1(x|θ1)IA(x)
2. θ2 ∼ πN

2 (θ2|x)
3. x′ ∼ fA2 (x′|θ2) ∝ f2(x′|θ2)IA(x′)
4. θ′1 ∼ πN

1 (θ′1|x′),

(4)

where IA(x) is the indicator function (1 if x ∈ A, 0 otherwise) and A is a subset of the
imaginary training samples space to be chosen later.

The idea behind this is that the constraint on the imaginary training samples pre-
vents the Markov chain from escaping to infinity and therefore guarantees the existence
and the uniqueness of an invariant probability measure. The result is stated in the
following proposition where x, x′, x∗ and x̃ denote imaginary training samples.

Proposition 1. If the set A is chosen such that the function

KA(x|x∗) = IA(x∗)
∫
fA1 (x|θ̃1)πN

1 (θ̃1|x̃)fA2 (x̃|θ′2)πN
2 (θ′2|x∗)dθ′2dx̃dθ̃1

satisfies the minorizing condition KA(x|x∗) ≥ gA(x), for some function gA(x) with
β =

∫
gA(x)dx > 0, then there exists a unique invariant probability for the Markov

chain defined by (4).

Proof. The density of the transition θ1 → θ′1 defined by (4) is given by

QA(θ
′
1|θ1) =

∫
πN
1 (θ′1|x′)fA2 (x′|θ2)πN

2 (θ2|x)fA1 (x|θ1)dxdθ2dx′

and therefore the density for the two-step transition is

Q2
A(θ

′
1|θ1) =

∫
πN
1 (θ′1|x′)fA2 (x′|θ2)πN

2 (θ2|x)KA(x|x∗)f1(x∗|θ1)dx∗dxdθ2dx′.

It follows that Q2
A(θ

′
1|θ1) ≥ p(θ′1)β, where p(θ′1) is the density

p(θ′1) = β−1

∫
πN
1 (θ′1|x′)fA2 (x′|θ2)πN

2 (θ2|x)gA(x)dxdθ2dx′

and hence the Doeblin condition that was previously stated is satisfied and the existence
and uniqueness of an invariant probability for the Markov chain with transition given
by (4) is proved.
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Definition 1. If πA
1 (θ1) is the invariant density of (4), then πA

1 (θ1) and

πA
2 (θ2) =

∫
πN
2 (θ2|x)fA1 (x|θ1)πA

1 (θ1)dθ1dx,

are defined as the integral prior distributions for the comparison of the models {M1,M2}
with imaginary training samples space A. The priors {πA

1 (θ1), π
A
2 (θ2)} can be seen as

the solutions of the following system of integral equations

πA
1 (θ1) =

∫
πN
1 (θ1|x)mA

2 (x)dx

and

πA
2 (θ2) =

∫
πN
2 (θ2|x)mA

1 (x)dx,

where mA
i (x) =

∫
fAi (x|θi)πA

i (θi)dθi, i = 1, 2.

A sensible choice of the set A should contain the observed data. Also note that if A
is a compact set and the model is regular enough to satisfy

inf{πN
2 (θ′2|x′1) : x′1 ∈ A} > 0 ∀θ′2 ∈ Θ2,

the above minimizing condition is easily obtained. Hence, from a practical point of view
we recommend that A be compact, simple to simulate the Markov chain as easily as
possible, and large enough to ensure that virtually all possible data will be contained
in A. For example, a practical choice is the cartesian product of compact intervals of
equal length that can be chosen in a subjective way using the data. Concretely, our
recommendation is keeping the imaginary training samples within an interval of ±5s
about the sample mean, where s is the sample standard deviation.

The resulting Bayes factor

BA
12(x) =

∫
f1(x|θ1)πA

1 (θ1)dθ1∫
f2(x|θ2)πA

2 (θ2)dθ2
,

can be approximated using the simulation of the associated Markov chain.

4 Applying the use of constrained imaginary training sam-
ples

4.1 Testing a normal mean with unknown variance

Suppose the data x are i.i.d. N(µ, σ2) and we consider testing H0 : µ = 0 versus
H1 : µ ̸= 0. A Bayesian setting for this problem is that of choosing between the models

M1 : N(x|0, σ2
1I)
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and

M2 : N(x|µ21, σ
2
2I),

where 1 = (1, ..., 1)′ and I is the identity matrix. The initial conventional priors are
πN
1 (σ1) ∝ 1/σ1 and πN

2 (µ2, σ2) ∝ 1/σ2 and the imaginary training samples considered
are of size two, x = (x1, x2). Here a reasonable choice for the compact set is A =
{(x1, x2) ∈ R2 : |x1| ≤ b, |x2| ≤ b} with b > 0.

The posterior distributions are

πN
1 (σ1|x1, x2) ∝ σ−3

1 exp

(
−x

2
1 + x22
2σ2

1

)
and

πN
2 (µ2, σ2|x1, x2) ∝ N(µ2|x, σ2

2/2)σ
−2
2 exp

(
−x

2 − x2

σ2
2

)
and therefore the transition σ1 → σ′

1 of the associated Markov chain is made of the
following steps

1. xi is simulated from the density proportional to N(xi|0, σ2
1)I[−b,b](xi), i = 1, 2,

that is, a truncated normal density.

2.

σ2
2 =

x2 − x2

v
and µ2 ∼ N(x, σ2

2/2),

with v simulated from a gamma density with shape 1/2 and scale 1.

3. x′i is simulated from the density proportional to N(x′i|µ2, σ
2
2)I[−b,b](x

′
i), i = 1, 2.

4. σ′
1 =

√
x′2
1 +x′2

2

2w , where w ∼ Exp(1).

For a sample size of n = 10 we approximate the Bayes factor BA
12(x,x

2) for different
values of x and x2. The imaginary training samples spaces A we used are the ones
defined for b = 10, 25, 50 and 100, respectively. The results are in table 2 and they
are based on 100000 transitions of the associated Markov chain. Furthermore, we have
compared our results with the ones obtained using intrinsic priors. The intrinsic priors
for this problem are given by π∗

1(σ1) = πN
1 (σ1) and

π∗
2(µ2, σ2) =

∫
π∗
2(µ2, σ2|σ1)π∗

1(σ1)dσ1,

where π∗
2(µ2, σ2|σ1) =

∫
πN
2 (µ2, σ2|x)N(x1|0, σ2

1)N(x2|0, σ2
1)dx. The posterior for model

M2 can be written as

πN
2 (µ2, σ2|x) = 2|x1 − x2|N(x1|µ2, σ

2
2)N(x2|µ2, σ

2
2)/σ2,
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then, using the change of variables x1 = u + v, x2 = u − v, the density π∗
2(µ2, σ2|σ1)

can be expressed as

π∗
2(µ2, σ2|σ1) =

∫
8|v|
σ2

(4π2σ2
1σ

2
2)

−1 exp (−h(u, v, µ2, σ1, σ2)) dudv,

where h(u, v, µ2, σ1, σ2) is given by

1

2σ2
2

[
(u+ v − µ2)

2 + (u− v − µ2)
2
]
+

1

2σ2
1

[
(u+ v)2 + (u− v)2

]
and therefore π∗

2(µ2, σ2|σ1) is given by∫
2|v|

σ2π2σ2
1σ

2
2

(
π

1/σ2
1 + 1/σ2

2

)1/2

exp

(
− µ2

2

σ2
1 + σ2

2

− (1/σ2
1 + 1/σ2

2)v
2

)
dv =

2 exp
(
−µ2

2/(σ
2
1 + σ2

2)
)

π3/2σ2
1σ

3
2(1/σ

2
1 + 1/σ2

2)
3/2

= N(µ2|0, (σ2
1 + σ2

2)/2)
2σ1

π(σ2
1 + σ2

2)
.

The resulting Bayes factor for the intrinsic priors is B∗
12(x) = m1(x)/m2(x) with

m1(x) =
Γ
(
n
2

)
2

(πnx2)−n/2

and

m2(x) =

∫
H(σ1, σ2,x)N(µ2|x, σ2

2/n)N
(
µ2|0, (σ2

1 + σ2
2)/2

)
dσ1dσ2dµ2, (5)

where

H(σ1, σ2,x) =
21−n/2

π1+n/2

(
2π

σ2
2

n

)1/2
σ−n
2 exp

(
−νs2

2σ2
2

)
σ2
1 + σ2

2

and νs2 =
∑

(xi − x)2. We can integrate out µ2 in (5) and the resulting integral
can be solved numerically. The results for intrinsic priors are also given in table 2
for comparison. From table 2 we can see that posterior probabilities for the simpler
model are similar for both integral and intrinsic priors and they are well behaved,
that is they decrease as x goes away from zero, irrespectively of the value of b. We
note that at the time we faced this problem for the first time running the Markov
chains without restrictions we obtained completely unstable posterior probabilities for
the simpler model, sometimes ranging from zero to one for the same data set; the idea of
using constrained imaginary training samples was first explored in Cano et al. (2012b).

4.2 One-sided testing for the variance of a normal model with un-
known mean

Suppose that x are i.i.d. N(µ, σ2) and consider the problem of testing H0 : σ ≤ σ0
versus H1 : σ > σ0, where σ0 > 0 is a specified value and µ is unknown. This is
equivalent to comparing the non-nested models
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x2 x b=10 b=25 b=50 b=100 Intrinsic
1 0 0.814 0.809 0.817 0.812 0.789

0.2 0.786 0.782 0.788 0.785 0.757
0.4 0.675 0.672 0.677 0.676 0.635
0.6 0.395 0.398 0.397 0.401 0.351
0.8 0.058 0.058 0.056 0.058 0.049
1 0.000 0.000 0.000 0.000 0.000

10 0 0.828 0.820 0.810 0.809 0.789
0.2 0.826 0.816 0.807 0.806 0.786
0.4 0.818 0.808 0.798 0.798 0.777
0.6 0.804 0.793 0.783 0.784 0.761
0.8 0.783 0.770 0.761 0.762 0.736
1 0.752 0.737 0.728 0.731 0.701

50 0 0.806 0.826 0.814 0.807 0.789
0.2 0.806 0.826 0.813 0.806 0.788
0.4 0.804 0.825 0.811 0.804 0.786
0.6 0.802 0.822 0.809 0.801 0.783
0.8 0.798 0.819 0.805 0.797 0.779
1 0.793 0.814 0.799 0.792 0.774

Table 2: Posterior probabilities of the simpler model, M1, for different values of x, x2

and b and for the intrinsic priors.

M1 : N(x|µ11, σ
2
1I), σ1 ≤ σ0

and

M2 : N(x|µ21, σ
2
2I), σ2 > σ0

where the simplest model is difficult to pinpoint. The initial default priors are πN
i (µi, σi) ∝

IRi(σi)/σi, i = 1, 2, with R1 = (0, σ0] and R2 = (σ0,+∞). Here we use imaginary train-
ing samples of size three, x = (x1, x2, x3), to make computations easier although the
minimal size is two.

The posterior distributions are

πN
i (µi, σi|x) ∝ σ−4

i exp

{
− 1

2σ2
i

[
νs2 + 3(µi − x)2

]}
IRi(σi), i = 1, 2,

where νs2 =
∑3

i=1(xi − x)2 and therefore πN
i (µi|σi, x) = N(µi|x, σ2

i /3) and

πN
i (σi|x) ∝ σ−3

i exp

{
− νs

2

2σ2
i

}
IRi(σi), i = 1, 2.
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The simulation from πN
i (σi|x) can be carried out using the probability integral trans-

form and the integrals∫ σ

0

t−3 exp

{
−νs

2

2t2

}
dt =

exp
(
−νs2/2σ2

)
νs2

and ∫ σ

σ0

t−3 exp

{
−νs

2

2t2

}
dt =

exp
(
−νs2/2σ2

)
− exp

(
−νs2/2σ2

0

)
νs2

,

if νs2 > 0 and σ > 0. Then the transition (µ1, σ1)→ (µ′
1, σ

′
1) of the associated Markov

chain is made of the following steps

1. (x1, x2, x3) is simulated from the density proportional to

N(x1|µ1, σ
2
1)N(x2|µ1, σ

2
1)N(x3|µ1, σ

2
1)IA(x1, x2, x3)

2.

σ2
2 = − νs2

2 log (u(1− α) + α)
, α = exp(−νs2/2σ2

0), u ∼ U(0, 1)

and µ2 ∼ N(x, σ2
2/3), with x = (x1 + x2 + x3)/3

3. (x′1, x
′
2, x

′
3) is simulated from the density proportional to

N(x′1|µ2, σ
2
2)N(x′2|µ2, σ

2
2)N(x′3|µ2, σ

2
2)IA(x′1, x′2, x′3)

4.

σ′2
1 =

νs′
2

σ2
0

νs′2 − 2σ2
0 log v

, v ∼ U(0, 1)

and µ′
1 ∼ N(x′, σ′2

1 /3), with x
′ = (x′1 + x′2 + x′3)/3.

For this example we consider σ0 = 1, sample sizes m = 10 and m = 20, sample mean
x = 0 and standard deviations s from 0.6 to 1.5 with step 0.05. For each value of s we
have approximated the posterior probability of modelM2 using the integral methodology
(blue/dashed lines in figure 3) and the empirical expected posterior priors (red/solid
lines in figure 3). To compute each posterior probability associated with the integral
priors we have approximated the Bayes factor BA

21 simulating the associated Markov
chain (length 100000) with imaginary training samples space A = [−5s, 5s]3. The
posterior probabilities associated with the empirical expected posterior priors have been
computed as follows. For each value of s we have drawn z1, ..., zm ∼ N(0, 1) and we have
considered the data xi = (zi− z)s/sz, i = 1, ...,m, with (m− 1)s2z =

∑m
i=1(zi− z)2, see

Berger and Pericchi (2004), example 7. The mean and the standard deviation of the data
x1, ..., xm are 0 and s, respectively, and using this sample we have built the empirical
expected posterior priors that have been simulated 100000 times to approximate the
posterior probability of M2. Figure 3 shows that both methodologies practically agree
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Figure 3: Posterior probability of model M2 for several values of the sample standard
deviation s, x = 0 and sample size m = 10 (left) and m = 20 (right), using the
integral methodology (blue/dashed lines) and the methodology of the empirical expected
posterior priors (red/solid lines).

but computations derived from integral priors are more stable than those obtained
with the empirical expected posterior priors, perhaps due to the fact that samples
(x1, ..., xm) are varying as s does. Finally, we have checked robustness of the integral
priors methodology in this case. Table 3 shows that the posterior probability of model
M2 is not sensitive with respect to the choice of A for several values of m and s.

4.3 Testing the location parameter of a Cauchy distribution

We consider a Cauchy density with location θ and scale σ

C(x|θ, σ) = 1

πσ
(
1 +

(
x−θ
σ

)2) ,
and the simpler model is θ = 0.
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m s A = [−5s, 5s]3 A = [−10s, 10s]3
10 1.1 0.50 0.49

1.2 0.62 0.63
1.3 0.74 0.75

20 1.1 0.51 0.52
1.2 0.72 0.73
1.3 0.88 0.88

40 1.1 0.59 0.59
1.2 0.86 0.86
1.3 0.98 0.97

Table 3: Posterior probability of model M2 for several values of the sample standard
deviation s, x = 0, two compact sets A, σ0 = 1 and sample size m = 10, 20 and 40.
Each probability is based on a Markov chain of length 500000.

We express the Cauchy density as a mixture of the normal and the gamma:

C(x|θ, σ) =
∫ +∞

0

N(x|θ, σ2/λ)G(λ|1/2, 2)dλ.

The posterior distribution for the Cauchy parameters π(θ, σ|x) given the imaginary
minimal training sample x = (x1, x2) and the prior π(θ, σ) ∝ 1/σ, is the marginal of

π(θ, σ, λ1, λ2|x) ∝
1

σ
N(x1|θ, σ2/λ1)N(x2|θ, σ2/λ2)G(λ1|1/2, 2)G(λ2|1/2, 2).

Therefore to simulate (θ, σ) ∼ π(θ, σ|x) we can proceed with the following three steps:

1. λ = (λ1, λ2) ∼ π(λ|x)

2. σ ∼ π(σ|λ, x)

3. θ ∼ π(θ|σ, λ, x)

First, to simulate π(λ|x), note that

π(λ|x) ∝ G(λ1|1/2, 2)G(λ2|1/2, 2)
∫

1

σ
N(x1|θ, σ2/λ1)N(x2|θ, σ2/λ2)dθdσ

= G(λ1|1/2, 2)G(λ2|1/2, 2)
1

2|x1 − x2|

and therefore the simulation is straightforward. Then, to simulate π(σ|λ, x) and π(θ|σ, λ, x)
note that
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π(θ, σ|λ, x) ∝ 1

σ
N(x1|θ, σ2/λ1)N(x2|θ, σ2/λ2)

∝ 1

σ3
exp

(
− 1

2σ2

(
λ1(x1 − θ)2 + λ2(x2 − θ)2

))
=

1

σ3
exp

(
− 1

2σ2

(
H1(λ, x) + (λ1 + λ2)(θ −H2(λ, x))

2
))

=
1

σ3
exp

(
−H1(λ, x)

2σ2

)
exp

(
− (θ −H2(λ, x))

2

2σ2/(λ1 + λ2)

)
,

where
H1(λ, x) = λ1λ2(x1 − x2)2/(λ1 + λ2)

and
H2(λ, x) = (λ1x1 + λ2x2)/(λ1 + λ2).

Therefore π(θ|σ, λ, x) is the normal density with mean H2(λ, x) and variance σ2/(λ1 +
λ2). Moreover

π(σ|λ, x) =
∫
π(θ, σ|λ, x)dθ ∝ 1

σ2
exp

(
−H1(λ, x)

2σ2

)
and to simulate π(σ|λ, x), we made v ∼ G(1/2, 2/H1(λ, x)) and we take σ = 1/

√
v.

For the simpler model we just have the parameter σ and the posterior distribution
is

π(σ|x1, x2) ∝
σ

(σ2 + x21)(σ
2 + x22)

which simulation can be carried out using the probability integral transform as follows∫ t

0

π(σ|x)dσ =
H(t, x)−H(0, x)

limt→+∞H(t, x)−H(0, x)
= 1− H(t, x)

H(0, x)
,

where

H(σ, x) =
log
(

σ2+x2
2

σ2+x2
1

)
2(x21 − x22)

.

Then if u ∼ U(0, 1), the solution t of the equation

H(t, x) = (1− u)H(0, x)

is a simulation from π(σ|x). This equation is equivalent to

log

(
t2 + x22
t2 + x21

)
= (1− u) log(x22/x21)

t2 + x22
t2 + x21

=

(
x22
x21

)1−u
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dataset min max b=30 b=80 b=150
(θ = 3) -3.3 42.9 0.0192 0.0197 0.0200
(θ = 1) -3.7 19.0 0.5346 0.5649 0.5625
(θ = 0) -8.9 15.8 1.8986 1.9103 1.9663

Table 4: Bayes factor BA
12 in favor of the simpler model θ = 0, using integral priors for

different constraints and for 3 simulated datasets.

from which we can obtain t easily.

We have simulated three samples of size 20 from the Cauchy C(θ, 2) for θ = 3, θ = 1
and θ = 0, respectively. We have simulated the associated Markov chains for 3 different
constraints |xi| ≤ b, i = 1, 2, with b = 30, b = 80 and b = 150, respectively. The length
of these chains was 200000. The values of the Bayes factors that are obtained and the
range of the data are shown in table (4).

The p-value associated with a t-test for the simulated data with θ = 0 that is 0.418
and the Bayes factors in the last row of table (4) provide evidence in favor of θ = 0. On
the other hand, the p-values that are obtained with the data simulated from θ = 3 and
θ = 1 that are 0.05715 and 0.007039, respectively, do not provide support for θ = 0.
The same happens with their corresponding Bayes factors, although we observe that
the behavior of these Bayes factors is more robust and consistent. Moreover, another
dataset was simulated from θ = 0 for which the data range was from -28 to 2.8 and
a p-value of 0.029 and Bayes factors of 4.0444, 4.0031 and 4.0401, respectively, were
obtained, showing more intensively the lack of robustness and consistency of the t-test
to departures from normality.

4.4 Integral priors for homoscedastic one way ANOVA

The one way homoscedastic ANOVA problem was studied using the intrinsic priors in
Cano et al. (2012a) and now we apply the integral priors methodology to this problem.
Roughly speaking we are comparing the means of k homoscedastic normal populations
and then the models are

M1 : µ1 = µ2 = ... = µk = µ, vs. M2 : all theµi are not equal.

The default priors are πN
1 (µ, τ) ∝ 1/τ and πN

2 (µ1, ..., µ2, σ) ∝ 1/σ, and the data
are z = (x1, ..., xk) with xi ∼ Nni(µi1, σ

2I), i = 1, ..., k, under model M2 and z ∼
Nn(µ, τ

2I) under model M1. Note that

πN
2 (µ1, ..., µk, σ|x1, ..., xk) ∝

1

σ

k∏
i=1

Nni(xi|µi1, σ
2I)

and therefore µ1, ..., µk are independent given (σ, x1, ..., xk) and

πN
2 (µi|σ, x1, ..., xk) = N(µi|xi, σ2/ni).
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On the other hand

πN
2 (σ|x1, ..., xk) =

∫
πN
2 (µ1, ..., µk, σ|x1, ..., xk)dµ1...dµk

∝ 1

σ

∫ k∏
i=1

Nni(xi|µi1, σ
2I)dµ1...dµk =

1

σ

k∏
i=1

∫
Nni(xi|µi1, σ

2I)dµi

∝ 1

σ

k∏
i=1

σ1−ni exp

(
− (ni − 1)s2i

2σ2

)
= σk−n−1 exp

(
− 1

2σ2

k∑
i=1

(ni − 1)s2i

)
where n = n1 + ... + nk and s2i is the sample variance of the sample xi. The minimal
training sample consists of two observations from one of the populations and a single
observation from the remaining k − 1 populations, see Cano et al. (2012a). Therefore,
if two observations are considered from the population j with j ∈ {1, ..., k} then ni =
1∀ i ̸= j, nj = 2 and

πN
2 (σ|x1, ..., xk) ∝ σ−2 exp

(
−
s2j
2σ2

)
.

For the simpler model the posterior πN
1 (µ, τ |x1, ..., xk) can be easily simulated using

that
πN
1 (µ|x1, ..., xk, τ) = N(µ|x, τ2/n)

and

πN
1 (τ |x1, ..., xk) ∝ τ−n exp

(
− (n− 1)s2

2τ2

)
,

where s2 is the sample variance of z.

For k = 3 populations we simulated the Markov chain with the constraint [-10,10]
on the training samples space. For the simulation of the Markov chain at steps 1 and 3
we simulated the imaginary training sample with j ∼ U({1, 2, 3}). Using this Markov
chain we computed the Bayes factor BA

12 for x1 = x2 = 0 and

x3 ∈ {−2,−1.5,−1,−0.5,−0.25, 0, 0.25, 0.5, 1, 1.5, 2}.

The sample size was 10 for each population and the sample variances were 0.9, 1.3
and 1.2, respectively. Figure (4) shows that the Bayes factor is very well behaved,
diminishing as the sample mean of the third population goes away from zero.

5 Conclusions

We have explained how integral priors operate in Bayesian model selection and we have
illustrated their use with some complex problems including one-sided testing situations
that are non-nested problems for which automatic solutions had not been previously
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Figure 4: Bayes factors BA
12 according to the sample mean x3, when xi = 0, i = 1, 2.

found. Integral priors are an automatic tool to compute Bayes factors since we only
have to simulate from the involved models and their posterior distributions once a
default prior has been assigned to each model. Our methodology has been proved to
be competitive to solve complex problems like the one-sided testing for the exponential
distribution and the one way homoscedastic ANOVA problem.

Several situations may arise when applying this methodology. If we are able to
obtain the unique invariant distribution we can straightforwardly compute the unique
integral Bayes factor, this is the case of the problem of testing a normal mean with
known variance that was considered in Cano et al. (2012b). If we can just establish
the positive recurrence of the associated Markov chain we can approximate the unique
integral Bayes factor simulating this Markov chain, this is the case of the one-sided
testing for the exponential distribution. On the other hand, we have satisfactorily
dealt with other problems needing constrained imaginary training samples to assess the
recurrence of the associated Markov chain.
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This research was supported by the Séneca Foundation Programme for the Generation of

Excellence Scientific Knowledge under Project 15220/PI/10.



380 Integral Priors and Constrained Imaginary Training Samples


	mueller_all_new.pdf
	contrib1.pdf
	Contributed Discussion on Article by Müller and Mitrato.44em.


	burgette.pdf.pdf
	Multiple-Shrinkage Multinomial Probit Models with Applications to Simulating Geographies in Public Use Datato.44em.L.F. Burgette and J.P. Reiter


