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Regularization in Regression: Comparing
Bayesian and Frequentist Methods in a Poorly

Informative Situation

Gilles Celeux∗, Mohammed El Anbari†, Jean-Michel Marin‡ and Christian P. Robert§

Abstract. Using a collection of simulated and real benchmarks, we compare
Bayesian and frequentist regularization approaches under a low informative con-
straint when the number of variables is almost equal to the number of observations
on simulated and real datasets. This comparison includes new global noninforma-
tive approaches for Bayesian variable selection built on Zellner’s g-priors that are
similar to Liang et al. (2008). The interest of those calibration-free proposals is
discussed. The numerical experiments we present highlight the appeal of Bayesian
regularization methods, when compared with non-Bayesian alternatives. They
dominate frequentist methods in the sense that they provide smaller prediction
errors while selecting the most relevant variables in a parsimonious way.

Keywords: Model choice, regularization methods, noninformative priors, Zellner’s
g–prior, calibration, Lasso, elastic net, Dantzig selector

1 Introduction

Given a response variable, y and a collection of p associated potential predictor variables
x1, . . . , xp, the classical linear regression model imposes a linear dependence on the
conditional expectation (Rao, 1973)

E[y|x1, . . . , xp] = β0 + β1x1 + . . . βPxp .

A fundamental inferential direction for those models relates to the variable selection
problem, namely that only variables of relevance should be kept within the regression
while the others should be removed. While we cannot discuss at length the potential
applications of this perspective, variable selection is particularly relevant when the num-
ber p of regressors is larger than the number n of observations (as in microarray and
other genetic data analyses).
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478 Regularization in Regression

To deal with poorly or ill-posed regression problems, many regularization methods
have been proposed, like ridge regression (Hoerl and Kennard, 1970) and Lasso (Tibshi-
rani, 1996). Recently the interest for frequentist regularization methods has increased
and this has produced a flurry of methods (see, among others, Candes and Tao, 2007,
Zou and Hastie, 2005, Zou, 2006, Yuan and Lin, 2007).

However, a natural approach for regularization is to follow the Bayesian paradigm as
demonstrated recently by the Bayesian Lasso of Park and Casella (2008). The amount
of literature on Bayesian variable selection is quite enormous (a small subset of which is,
for instance, Mitchell and Beauchamp, 1988, George and McCulloch, 1993, Chipman,
1996, Smith and Kohn, 1996, George and McCulloch, 1997, Dupuis and Robert, 2003,
Brown and Vannucci, 1998, Philips and Guttman, 1998, George, 2000, Kohn et al., 2001,
Nott and Green, 2004, Schneider and Corcoran, 2004, Casella and Moreno, 2006, Cui
and George, 2008, Liang et al., 2008, Bottolo and Richardson, 2010). The number of
approaches and scenarios that have been advanced to undertake the selection of the
most relevant variables given a set of observations is quite large, presumably due to the
vague decisional setting induced by the question Which variables do matter? Such a
variety of resolutions signals a lack of agreement between the actors in the field. Most
of the solutions, including Liang et al. (2008) and Bottolo and Richardson (2010), focus
on the use of the g-prior, introduced by Zellner (1986). While this prior has a long
history and while it reduces the prior input to a single integer, g, the influence of this
remaining prior factor is long-lasting and large values of g are no guarantee of negligible
effects, in connection with the Bartlett or Lindley–Jeffreys paradoxes (Bartlett, 1957,
Lindley, 1957, Robert, 1993), as illustrated for instance in Celeux et al. (2006) or Marin
and Robert (2007). In order to alleviate this influence, some empirical Bayes [Cui and
George (2008)] and hierarchical Bayes [Zellner and Siow (1980), Celeux et al. (2006),
Marin and Robert (2007), Liang et al. (2008) and Bottolo and Richardson (2010)]
solutions have been proposed. In this paper, we pay special attention to two calibration-
free hierarchical Zellner g-priors. The first one is the Jeffreys prior which is not location
invariant. A second one avoids this problem by only considering models with at least
one variable in the model.

The purpose of our paper is to compare the frequentist and the Bayesian points of
view in regularization when n remains (slightly) greater than p, we limit our attention
to full rank models. This comparison is considered from both the predictive and the
explicative point of views. The outcome of this study is that Bayesian methods are
quite similar while dominating their frequentist counterpart.

The plan of the paper is as follows: we recall the details of Zellner’s (1986) original g-
prior in Section 2, and discuss therein the potential choices of g. We present hierarchical
noninformative alternatives in Section 3. Section 4 compares the results of Bayesian and
frequentist methods on simulated and real datasets. Section 5 concludes the paper.
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2 Zellner’s g-priors

Following standard notations, we introduce a variable γ ∈ Γ = {0, 1}p that indicates
which variables are active in the regression, excluding the constant vector corresponding
to the intercept that is assumed to be always present in the linear regression model.

We observe y,x1, . . . ,xp ∈ Rn, and the model Mγ is defined as the conditional
distribution

y|X,γ,βγ , σ2 ∼ Nn
(
Xγβγ , σ2In

)
, (1)

where

I pγ =
∑p
i=1 γi,

I Xγ is the (n, pγ + 1) matrix with columns made of the vector 1n and of the
variables xi for which γi = 1,

I βγ ∈ Rpγ+1 and σ2 ∈ R∗+ are unknown parameters.

The same symbol for the parameter σ2 is used across all models. For model Mγ ,
Zellner’s g-prior is given by

βγ |X,γ, σ2 ∼ Npγ+1(β̃
γ
, gγσ

2((Xγ)′Xγ)−1) ,

π(σ2|X,γ) ∝ σ−2 .

The experimenter chooses the prior expectation β̃
γ

and gγ . For such a prior, we obtain
the classical average between prior and observed regressors,

E(βγ |X,γ,y) =
gγ β̂

γ
+ β̃

γ

gγ + 1
.

This prior is traditionally called Zellner’s g-prior in the Bayesian folklore because of
the use of the constant gγ by Zellner (1986) in front of Fisher’s information matrix
((Xγ)′Xγ)−1. Its appeal is that, by using the information matrix as a global scale,

I it avoids the specification of a whole prior covariance matrix, which would be a
tremendous task;

I it allows for a specification of the constant gγ in terms of observational units, or
virtual prior pseudo-observations in the sense of de Finetti (1972).

However, a fundamental feature of the g-prior is that this prior is improper, due to the
use of an infinite mass on σ2. From a theoretical point of view, this should jeopardize
the use of posterior model probabilities since these probabilities are not uniquely scaled
under improper priors, because there is no way of eliminating the residual constant factor
in those priors (DeGroot, 1973, Kass and Raftery, 1995, Robert, 2001). However, under
the assumption that σ2 is a parameter that has a meaning common to all models Mγ ,
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Berger et al. (1998) develop a framework that allows us to work with a single improper
prior that is common to all models (see also Marin and Robert, 2007). A fundamental
appeal of Zellner’s g-prior in model comparison and in particular in variable selection is
its simplicity, since it reduces the prior input to the sole specification of a scale parameter
g.

At this stage, we need to point out that an alternative g-prior is often used (Berger
et al., 1998, Fernandez et al., 2001, Liang et al., 2008, Bottolo and Richardson, 2010),
by singling out the intercept parameter in the linear regression. By first assuming a
centering of the covariates, i.e. 1′nxi = 0 for all i’s, the intercept α is given a flat prior
while the other parameters of βγ are associated with a corresponding g-prior. Thus,
this is an alternative to model Mγ , which we denote by model Minv

γ to stress the
distinctions between both representations and which is such that

y|X,γ, α,βγ
inv, σ

2 ∼ Nn
(
α1n + Xγ

invβ
γ
inv, σ

2In
)
, (2)

where

I Xγ
inv is the (n, pγ) matrix with columns made of the variables xi for which γi = 1,

I α ∈ R, βγ
inv ∈ Rpγ and σ2 ∈ R∗+ are unknown parameters.

The parameters σ2 and α are denoted the same way across all models and rely on the
same prior. Namely, for model Minv

γ , the corresponding Zellner’s g-prior is given by

βγ
inv|X,γ, σ

2 ∼ Npγ
(β̃

γ

inv, gγσ
2((Xγ

inv)′Xγ
inv)−1) ,

π(α, σ2|X,γ) ∝ σ−2 .

In that case, we obtain

E(βγ
inv|X,γ,y) =

gγ β̂
γ

inv + β̃
γ

inv

gγ + 1
,

and

E(α|X,γ,y) = ȳ =
1
n

n∑
i=1

yi .

For models Mγ and Minv
γ , in a noninformative setting, we can for instance choose

β̃
γ

= 0pγ+1 or β̃
γ

inv = 0pγ
and gγ large. However, as pointed out in Marin and Robert

(2007, Chapter 3) among others, there is a lasting influence of gγ over the resulting
inference and it is impossible to “let gγ go to infinity” to eliminate this influence,
because of the Bartlett and Lindley-Jeffreys (Bartlett, 1957, Lindley, 1957, Robert,
1993) paradoxes that an infinite value of gγ ends up selecting the null model, regardless
of the information brought by the data. For this reason, data-dependent versions of gγ

have been proposed with various degrees of justification:
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I Kass and Wasserman (1995) use gγ = n so that the amount of information about
the parameters contained in the prior equals the amount of information brought
by one observation. As shown by Foster and George (1994), for n large enough
this perspective is very close to using the Schwarz (Kass and Wasserman, 1995)
or BIC criterion in that the log-posterior corresponding to g = n is equal to the
penalized log-likelihood of this criterion.

I Foster and George (1994) and George and Foster (2000) propose gγ = p2
γ , in

connection with the Risk Inflation Criterion (RIC) that penalizes the regression
sum of squares.

I Fernandez et al. (2001) gather both perspectives in gγ = max(n, p2
γ) as a conser-

vative bridge between BIC and RIC, a choice that they christened “benchmark
prior”.

I George and Foster (2000) and Cui and George (2008) resort to empirical Bayes
techniques.

These solutions, while commendable since based on asymptotic properties (see in
particular Fernandez et al., 2001 for consistency results), are nonetheless unsatisfactory
in that they depend on the sample size and involve a degree of arbitrariness.

3 Mixtures of g-priors

The most natural Bayesian approach to solving the uncertainty on the parameter gγ = g
is to put a hyperprior on this parameter:

I This was implicitly proposed by Zellner and Siow (1980) since those authors in-
troduced Cauchy priors on the βγ ’s since this corresponds to a g-prior augmented
by a Gamma Ga(1/2, n/2) prior on g−1.

I For model Minv
γ , Liang et al. (2008), Cui and George (2008) and Bottolo and

Richardson (2010) use

βγ
inv|X,γ, σ

2 ∼ Npγ (0pγ , gσ
2((Xγ

inv)′Xγ
inv)−1)

and a hyperprior of the form

π(α, σ2, g|X,γ) ∝ (1 + g)−a/2σ−2 ,

with a > 2 . This constraint on a is due to the fact that the hyperprior must
be proper, in connection with the separate processing of the intercept α and the
use of a Lebesgue measure as a prior on α. We note that a needs to be specified,
a = 3 and a = 4 being the solutions favored by Liang et al. (2008).

I For model Mγ , Celeux et al. (2006) and Marin and Robert (2007) used

βγ |X,γ, σ2 ∼ Npγ+1(0pγ+1, gσ
2((Xγ)′Xγ)−1)



482 Regularization in Regression

and a hyperprior of the form

π(σ2, g|X) ∝ σ−2g−1IN∗(g) .

The choice of the integer support is mostly computational, while the Jeffreys-like
1/g shape is not justified, but the authors claim that it is appropriate for a scale
parameter.

For model Mγ a more convincing modelling is possible since the Jeffreys prior is
available. Indeed, if

βγ |X,γ, σ2 ∼ Npγ+1(0pγ+1, gσ
2((Xγ)′Xγ)−1) ,

then

y|X,γ, g, σ2 ∼ Npγ+1

(
0n, σ2

[
In −

g

g + 1
Pγ

]−1
)
,

where In is the (n, n) identity matrix and Pγ is the orthogonal projector on the linear
subspace spanned by the columns of Xγ . Since, the Fisher information matrix is

I(σ2, g) =
(

1
2

)[
n
/
σ4 (pγ + 1)

/
(σ2(g + 1))

(pγ + 1)
/

(σ2(g + 1)) (pγ + 1)
/

(g + 1)2

]
,

the corresponding Jeffreys prior on (σ2, g) is

π(σ2, g|X) ∝ σ−2(g + 1)−1 .

Note that, for model Minv
γ , Liang et al. (2008) discuss the choice of a = 2 and then

π(α, σ2, g|X,γ) ∝ (1 + g)−1σ−2 as leading to the reference prior and Jeffreys prior,
presumably also under the marginal model after integrating out βγ , although details
are not given.

For such a prior modelling, there exists a closed-form representation for posterior
quantities in that

π(γ, g|X,y) ∝ (g + 1)n/2−(pγ+1)/2−1(1 + g(1− y′Pγy/y′y))−n/2

and

π(γ|X,y) ∝ 2F1(n/2, 1; (pγ + 3)/2; y′Pγy
/
y′y)

pγ + 1
, (3)

where 2F1 is the Gaussian hypergeometric function (Butler and Wood, 2002). We
can thus proceed to undertake Bayesian variable selection without resorting at all to
numerical methods (Marin and Robert, 2007). Moreover, the shrinkage factor due to
the Bayesian modelling can also be expressed in closed form as

E(g/(g + 1)|X,γ,y) =

∫ ∞
0

g(g + 1)n/2−(pγ+1)/2−2(1 + g(1− y′Pγy/y′y))−n/2dg∫ ∞
0

(g + 1)n/2−(pγ+1)/2−1(1 + g(1− y′Pγy/y′y))−n/2dg

=
2 2F1(n/2, 2; (pγ + 3)/2 + 1; y′Pγy

/
y′y)

(pγ + 3) 2F1(n/2, 1; (pγ + 3)/2; y′Pγy
/
y′y)

.
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This obviously leads to straightforward representations for Bayes estimates. If Xnew is
a q× p matrix containing q new values of the explanatory variables for which we would
like to predict the corresponding response ynew, the Bayesian predictor of ynew is given
by

ŷγ
new = E [ynew|Xnew,X,γ,y]

= 2 2F1(n/2, 2; (pγ + 3)/2 + 1; y′Pγy
/
y′y)

(pγ + 3) 2F1(n/2, 1; (pγ + 3)/2; y′Pγy
/
y′y)

Xnewβ̂
γ
.

Similarly, the Bayesian model averaging predictor of ynew is given by

ŷnew = E [ynew|Xnew,X,y] (4)

= 2

∑
γ∈Γ 2F1(n2 , 2; (pγ + 3)/2 + 1; y′Pγy

/
y′y)/ [(pγ + 1)(pγ + 3)]∑

γ∈Γ 2F1(n2 , 1; (pγ + 3)/2; y′Pγy
/
y′y)/(pγ + 1)

Xnewβ̂
γ
.

This numerical simplification in the derivation of Bayesian estimates and predictors is
found in Liang et al. (2008) and exploited further in Bottolo and Richardson (2010).
Note also that Guo and Speckman (2009) have furthermore established the consistency
of the Bayes factors based on such priors.

In contrast with this proposal, the prior of Liang et al. (2008) depends on a tuning
parameter a. Despite that, there also exist arguments to support this prior modelling,
including the important issue of invariance under location-scale transforms. As seen in
the above formulae, the Jeffreys prior associated with modelMγ ensures scale invariance
but not location invariance. In order to ensure location invariance for model Mγ , it
would be necessary to center the observation variable y as well as the dependent variables
X. Obviously, this centering of the data is completely unjustified from a Bayesian
perspective and further it creates artificial correlations between observations. However
it could be argued that the lack of location invariance only pertains to quite specific
and somehow artificial situations and that it is negligible in most situations. We will
return to this point in the comparison section.

A location scale alternative consists in using the prior of Liang et al. (2008) with
a = 2 and excluding the null model from the competitors. This prior leads to the model
posterior probability

π(γ|X,y) ∝ 2F1((n− 1)/2, 1; (pγ + 2)/2; (y − ȳ)′Pγ(y − ȳ)
/

(y − ȳ)′(y − ȳ))
pγ

. (5)

Equations (3) and (5) are similar. However, in the last part of (5), y is centered,
ensuring the location invariance of the selection procedure.
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4 Numerical comparisons

We present here the results of numerical experiments aiming at comparing the behav-
ior of Bayesian variable selection and of some (non-Bayesian) popular regularization
methods in regression, when considered from a variable selection point of view: The
regularization methods that we consider are the Lasso, the Dantzig selector, and elastic
net, described in Section 4.1. The Bayesian variable selection procedures we consider
adopt different strategies for selecting the hyperparameter g in Zellner’s g-priors: We
include in this comparison the intrinsic prior (Casella and Moreno, 2006) which is an-
other default objective prior for the non informative setting that does not require any
tuning parameters and is also invariant under location and scale changes. All procedures
under comparison are described in Table 1. We have also included in this comparison
the highly standard AIC and BIC penalized likelihood criteria. Moreover, we will refer
to the performances of an ORACLE procedure that assumes the true model is known
and that estimates the regression coefficients with the least squares method.

AIC Akaike Information Criterion
BIC Bayesian Information Criterion

BRIC g prior with g = max(n, p2) (Fernandez et al., 2001)
EB-L Local EB estimate of g in g-prior (Cui and George, 2008)
EB-G Global EB estimate of g in g-prior (Cui and George, 2008)
ZS-N Base model in Bayes factor taken as the null model (Liang et al., 2008)
ZS-F Base model in Bayes factor taken as the full model (Liang et al., 2008)
OVS Objective variable selection using the intrinsic prior (Casella and Moreno, 2006)
HG-3 Hyper-g prior with a = 3 (Liang et al., 2008)
HG-4 Hyper-g prior with a = 4 (Liang et al., 2008)

HG-2 Hyper-g prior with a = 2 (Liang et al., 2008), null model excluded
NIMS Jeffreys prior on the non-invariant model

LASSO Lasso (Tibshirani, 1996)
DZ The Dantzig Selector (Candes and Tao, 2007)
ENET The elastic-net (Zou and Hastie, 2005)

Table 1: Acronyms and descriptions for the variable selection methods compared in the
numerical experiment. The blocks separate the methods by their nature.

4.1 Regularization methods

1) The Lasso: Introduced by Tibshirani (1996), the Lasso is a shrinkage method for
linear regression. It is defined as the solution to the following `1 penalized least
squares optimization problem

β̂Lasso = arg min
β
||y −Xβ||22 + λ

p∑
j=1

|βj |,

where λ is a positive tuning parameter.
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2) The Dantzig Selector: Candes and Tao (2007) introduced the Dantzig Selector
as an alternative to the Lasso. The Dantzig Selector is the solution to the opti-
mization problem

min
β∈Rp

‖β‖1 subject to ‖Xt(y −Xβ)‖∞ ≤ λ,

where λ is a positive tuning parameter. The constraint ‖Xt(y −Xβ)‖∞ ≤ λ can
be viewed as a relaxation of the normal equation in the classical linear regression.

3) The Elastic Net (Enet): The Lasso has at least two limitations: a) Lasso does
not encourage grouped selection in the presence of high correlated covariates and
b) for the p > n case Lasso can select at most n covariates. To overcome these
limitations, Zou and Hastie (2005) proposed an elastic net that combines both
ridge `2 and Lasso `1 penalties, i.e.

β̂Enet = arg min
β
||y −Xβ||22 + λ

p∑
j=1

|βj |+ µ

p∑
j=1

β2
j ,

where λ and µ are two positive tuning parameters.

4.2 Numerical experiments on simulated datasets

We have designed six different simulated datasets as benchmarks chosen as follows:

1. Example 1 (sparse uncorrelated design) corresponds to an uncorrelated co-
variate setting (ρ = 0), with p = 10 predictors and where the components of xi
(i = 1, . . . , 10) are iid N1(0, 1) realizations. The response is simulated as

y ∼ Nn(2 + x2 + 2x3 − 2x6 − 1.5x7, In) .

2. Example 2 (sparse correlated design) corresponds to a correlated case (ρ =
0.9), with p = 10 predictors and xi = (zi + 3z11)/

√
10, for i = 1, 2, xi =

(zi + 3z12)/
√

10, for i = 3, 4, 5, and xi = (zi + 3z13)/
√

10 for i = 6, . . . , 10,
the components of zi (i = 1, . . . , 13) being iid N1(0, 1) realizations. The use of
common terms in the xi’s obviously induces a correlation among those xi’s: the
correlation between variables x1 and x2 is 0.9, as for the variables (x3, x4 and x5),
and for the variables (x6, x7, x8, x9 and x10). There is no correlation between
those three groups of variables. The response is simulated as

y ∼ Nn(2 + x2 + 2x3 − 2x6 − 1.5x7, In) .

3. Example 3 (sparse noisy correlated design) involves p = 8 predictors. Those
variables are generated using a multivariate Gaussian distribution with correla-
tions

ρ(xi,xj) = 0.5|i−j| .

The response is simulated as

y ∼ Nn(3x1 + 1.5x2 + 2x5, 9In) .
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4. Example 4 (saturated correlated design) is the same as Example 4, except
that the response is simulated as

y ∼ Nn

(
0.85

8∑
i=1

xi, In

)
.

5. Example 5 involves p = 9 predictors. Those variables are generated using a
multivariate Gaussian distribution with correlations

ρ(xi,xj) = 0.7|i−j| .

The response is simulated as

y ∼ Nn(2x2 − 3x4, In) .

6. Example 6 (null model) involves p = 8 predictors. Those variables are generated
using a multivariate Gaussian distribution with correlations

ρ(xi,xj) = 0.5|i−j| .

The response is simulated as

y ∼ Nn(2, 4In) .

Each dataset consists of a training set of size n = 15, on which the regression model
has been fitted and a test set T of size nT = 200 for assessing performances. Tuning
parameters in the Lasso, the Dantzig selector (DZ), and the elastic net (ENET) have
been selected by minimizing the cross-validation prediction error through leave-one-
out. For each example, 100 independent datasets have been simulated. We use three
measures of performances:

1. The root mean squared error (MSE)

MSEy =
√∑nT

i=1(yi − ŷi)2
/
nT ,

ŷi being the prediction of yi in the test set;

2. HITS: the number of correctly identified influential variables;

3. FP (False Positives): the number of non-influential variables declared as influen-
tial.

Using those six different datasets as benchmarks, we compare the variable selection
methods listed in Table 1. The performances of the above selection methods are sum-
marized in Tables 2–13, presented in the Appendix. In the Bayesian approaches, the
set of variables is naturally selected according to the maximum posterior probability
π(γ|X,y) and the predictive is obtained via the Bayesian model averaging predictors.
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In this numerical experiment, the Bayesian procedures are clearly much more parsi-
monious than the regularization procedures in that they almost always avoid overfitting.
In all examples, the false positive rate FP is smaller for the Bayesian solutions than for
the regularization methods. Except for the ZS-F and OVS scenarios which behave
slightly worse than the others, all the Bayesian procedures tested here produce the
same selection of predictors. It seems that ZS-F has a slight tendency to select too
many variables. The performances of OVS are somewhat disappointing and this proce-
dure seems to have a tendency to be too parsimonious. From a predictive viewpoint,
computing the MSE by model averaging, Bayesian approaches also perform better than
regularization approaches except for the saturated correlated example (Example 4). We
further note that the classical selection procedures based on AIC and BIC do not easily
reject variables and are thus slightly worse than Bayesian and regularization procedures
(a fact not surprising for AIC). In all examples, the NIMS and HG-2 approaches lead to
optimal performances in that they select the right covariates and only the right covari-
ates, while achieving close to the minimal root mean squared error compared with all
the other Bayesian solutions we considered. They also do almost systematically better
than BIC and AIC.

A global remark about this comparison is that all Bayesian procedures have a very
similar MSE and thus that they all correspond to the same regularization effect, except
for OVS which does systematically worse. However it is important to notice that the
MSE for OVS has not been computed by model averaging, but by using the best model.
Otherwise, it would be hazardous to recommend one of the priors from those simulations
since there is no sensitive difference between them from both selection and prediction
points of view.

Translating the data Since NIMS is not location invariant, it is important to measure
the impact of adding a constant to all observations. As stressed by a reviewer, when
this constant goes to infinity, keeping n fixed, the last argument of 2F1 in (3) goes to
one for all models. Thus if the empirical mean is large relative to the regression sum
of squares, the data end up having little input in distinguishing between models. In
order to measure this possible negative impact of adding a large constant, we replace in
Example 1 y by y = y + 10k RSS (Regression Sum of Squares) for k ∈ {1, 2, 3}. The
results derived from NIMS criterion are summarized in Tables 14 and 15, presented in
the Appendix. As predicted, the NIMS criterion tends to choose the null model as k
increases and the null model with no variable is always selected when k = 3. Therefore
some prior assumption must be made about the magnitude of the intercept when using
NIMS. Otherwise, the criterion is over-parsimonious. If this is a possible case, we suggest
using instead the HG-2 approach.

4.3 Real datasets

Two datasets considered in this section are associated with a moderate number of vari-
ables compared to the number of observations.
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Body fat dataset The body fat dataset has been first used by Penrose et al. (1985). The
corresponding study aims at estimating the percentage of body fat from various body
circumference measurements observed on 252 men. The thirteen regressor variables are:

1. age,

2. weight (lbs),

3. height (inches),

4. neck circumference,

5. chest circumference,

6. abdomen to circumference,

7. hip circumference,

8. thigh circumference,

9. knee circumference,

10. ankle circumference,

11. biceps (extended) circumference,

12. forearm circumference,

13. wrist circumference.

In order to investigate the performances of the different methods, a dataset from
Penrose et al. (1985) has been split 25 times into a training set of 151 observations
and a test set of 101 observations. Tuning parameters for the frequentist regularization
methods have been chosen by minimizing the (ten fold) cross-validated prediction error.

For this dataset, the Bayesian procedures we investigated are much more parsi-
monious than the standard regularization procedures, as shown in Table 16 in the
Appendix. There is no variability in the prediction MSE. (We stress that MSEs are
computed by model averaging for the Bayesian procedures.) As in the simulation ex-
periment, all Bayesian approaches are highly similar, except for ZS-F which remains
more open to incorporating the last two covariates (see Table 17 in the Appendix).

Ozone data This second benchmark dataset is taken from Breiman and Friedman (1985)
and consists of daily measurements of the maximum ozone concentration and of eight
meteorological variables near Los Angeles. Those variables are:

1. the daily ozone concentration (maximum one hour average, parts per million) at Upland,
California (CA), which is the response variable;

2. the Vandenburg 500 millibar pressure height (m);

3. the wind speed (mph) at Los Angeles International Airport (LAX);

4. the humidity (percent) at LAX;

5. the Sandburg Air Force Base temperature (F o);

6. the inversion base height at LAX;

7. the inversion base temperature at LAX;
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8. the Daggett Pressure gradient (mm Hg) from LAX to Daggett, CA;

9. the visibility (miles) at LAX.

The original Ozone database contains 366 observations, of which 203 are complete.
Our study is made just on the complete observations. We split this dataset 25 times
into a training set of 101 observations and a test set of 102 observations.

For this dataset, as shown by Tables 18 and 19 in the Appendix, all Bayesian ap-
proaches, as well as AIC and BIC, select about three variables, while the regularization
methods opt for five. The MSE differences between all procedures are negligible. (This
lack of significant differences in the MSEs is also exhibited through the boxplots of
Figure 1.)

BIC NIMS LASSO ENET

4.0
4.5

5.0
5.5

Comparison of methods for 25 random splits of Bodyfat data

BIC NIMS LASSO ENET

4.0
4.2

4.4
4.6

4.8
5.0

5.2
5.4

Comparison of methods for 25 random splits of Ozone data

MS
E_Y

Figure 1: Body fat and Ozone datasets: variability of the root mean squared errors over
25 random splits for BIC, NIMS, LASSO and ENET methods.
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5 Conclusion

In this numerical study, we have compared Bayesian variable selection methods with
regularization methods in a poorly informative setting. From a variable selection point
of view, it appears that the Bayesian methods are more parsimonious and more relevant
than the regularization methods. From a predictive point of view, there is no significant
difference between both approaches. Regularization methods could however be expected
to perform better from this latter point of view since they minimize a cross-validated
prediction error. But, owing to model averaging, efficiency, Bayesian methods provide
competitive MSE’s.

An additional appeal of this study is to single-out and to assess two calibration-free
prior models (NIMS and HG-2). They both appear as valuable competitors when com-
pared with earlier Bayesian approaches. However, both methods have a clear drawback
(NIMS is not location invariant and HG-2 excludes the null model). Nonetheless our
series of examples shows that they provide an acceptable objective Bayesian solution
for Bayesian variable selection and regularization in linear models.

A limitation of this study on our objective Bayesian approach is that we do not
consider large dimensions as in Bottolo and Richardson (2010), which require different
computational tools to face the enormous number of potential models. This difficulty
is obviously faced by all Bayesian solutions considered in this paper and is not an issue
in terms of the validity of the prior modelling.
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MSEy HITS FP
ORACLE 1.24(0.02) 4.00(0.00) 0.00(0.00)
AIC 1.75(0.08) 3.94(0.02) 2.78(0.17)
BIC 1.69(0.08) 3.90(0.03) 2.29(0.17)
BRIC 1.43(0.04) 3.75(0.05) 0.65(0.09)
EB-L 1.46(0.04) 3.80(0.04) 0.66(0.09)
EB-G 1.45(0.04) 3.78(0.04) 0.65(0.09)
ZS-N 1.44(0.03) 3.78(0.04) 0.65(0.09)
ZS-F 1.49(0.03) 3.90(0.03) 1.73(0.14)
OVS 1.52(0.06) 3.63(0.06) 0.54(0.09)
HG-3 1.49(0.04) 3.75(0.05) 0.55(0.09)
HG-4 1.57(0.04) 3.65(0.05) 0.54(0.08)
HG-2 1.50(0.04) 3.75(0.05) 0.59(0.09)
NIMS 1.45(0.03) 3.75(0.05) 0.57(0.08)
LASSO 1.67(0.05) 3.89(0.03) 2.68(0.20)
DZ 1.66(0.06) 3.72(0.07) 2.41(0.15)
ENET 1.72(0.05) 3.89(0.04) 2.79(0.29)

Table 2: Example 1: Mean of MSE, HITS and FP. The numbers between parentheses
are the corresponding standard errors.

Variables 1 2 3 4 5 6 7 8 9 10
AIC 0.47 0.95 1.00 0.45 0.44 0.99 1.00 0.46 0.52 0.44
BIC 0.41 0.91 1.00 0.38 0.40 0.99 1.00 0.32 0.44 0.34
BRIC 0.18 0.77 1.00 0.10 0.11 0.99 0.99 0.07 0.10 0.09
EB-L 0.17 0.81 1.00 0.11 0.11 0.99 1.00 0.07 0.11 0.09
EB-G 0.17 0.79 1.00 0.11 0.11 0.99 1.00 0.07 0.10 0.09
ZS-N 0.17 0.79 1.00 0.11 0.11 0.99 1.00 0.07 0.10 0.09
ZS-F 0.34 0.90 1.00 0.29 0.33 1.00 1.00 0.20 0.33 0.24
OVS 0.14 0.72 0.98 0.07 0.08 0.97 0.96 0.08 0.10 0.07
HG-3 0.17 0.77 1.00 0.11 0.10 0.99 0.99 0.07 0.09 0.08
HG-4 0.15 0.77 1.00 0.10 0.08 0.99 0.99 0.07 0.08 0.07
HG-2 0.10 0.83 0.99 0.07 0.16 0.98 0.95 0.13 0.06 0.07
NIMS 0.15 0.77 1.00 0.09 0.09 0.99 0.99 0.06 0.10 0.08
LASSO 0.49 0.91 1.00 0.41 0.45 0.98 1.00 0.49 0.47 0.37
DZ 0.42 0.84 0.96 0.41 0.47 0.97 0.95 0.38 0.37 0.36
ENET 0.45 0.93 1.00 0.45 0.43 0.99 0.97 0.52 0.44 0.50

Table 3: Example 1: Relative frequencies of the selected variables for methods under
comparison.
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MSEy HITS FP
ORACLE 1.19(0.01) 4.00(0.00) 0.00(0.00)
AIC 1.81(0.06) 3.12(0.08) 2.75(0.16)
BIC 1.76(0.05) 2.97(0.09) 2.39(0.16)
BRIC 1.46(0.02) 2.44(0.10) 0.99(0.10)
EB-L 1.45(0.02) 2.43(0.10) 1.03(0.10)
EB-G 1.45(0.02) 2.42(0.10) 0.95(0.10)
ZS-N 1.45(0.02) 2.43(0.10) 1.03(0.10)
ZS-F 1.42(0.02) 2.97(0.08) 2.18(0.10)
OVS 1.71(0.04) 2.16(0.11) 1.09(0.09)
HG-3 1.45(0.02) 2.32(0.11) 0.96(0.10)
HG-4 1.45(0.02) 2.35(0.10) 0.86(0.09)
HG-2 1.52(0.04) 2.35(0.10) 0.81(0.09)
NIMS 1.45(0.02) 2.42(0.10) 0.96(0.09)
LASSO 1.66(0.05) 3.35(0.09) 2.95(0.15)
DZ 1.59(0.03) 2.83(0.09) 2.23(0.10)
ENET 1.50(0.03) 3.70(0.07) 4.36(0.17)

Table 4: Example 2: Mean of MSE, HITS and FP. The numbers between parentheses
are the corresponding standard errors.

Variables 1 2 3 4 5 6 7 8 9 10
AIC 0.46 0.79 0.88 0.44 0.46 0.78 0.67 0.52 0.48 0.39
BIC 0.41 0.71 0.86 0.43 0.33 0.77 0.63 0.42 0.45 0.35
BRIC 0.21 0.60 0.80 0.17 0.13 0.65 0.39 0.18 0.18 0.12
EB-L 0.22 0.59 0.80 0.17 0.14 0.66 0.38 0.19 0.19 0.12
EB-G 0.21 0.59 0.81 0.16 0.13 0.65 0.37 0.19 0.16 0.10
ZS-N 0.22 0.59 0.80 0.17 0.14 0.66 0.38 0.19 0.19 0.12
ZS-F 0.40 0.72 0.84 0.37 0.31 0.79 0.62 0.38 0.41 0.31
OVS 0.23 0.44 0.74 0.17 0.23 0.62 0.36 0.19 0.18 0.09
HG-3 0.21 0.54 0.80 0.16 0.13 0.63 0.35 0.18 0.18 0.10
HG-4 0.18 0.56 0.81 0.15 0.11 0.63 0.35 0.17 0.17 0.08
HG-2 0.22 0.60 0.78 0.16 0.13 0.59 0.42 0.10 0.15 0.11
NIMS 0.19 0.59 0.80 0.16 0.14 0.66 0.37 0.19 0.18 0.10
LASSO 0.47 0.77 0.90 0.53 0.40 0.89 0.79 0.57 0.55 0.43
DZ 0.40 0.65 0.79 0.46 0.37 0.76 0.63 0.32 0.36 0.32
ENET 0.68 0.85 0.97 0.74 0.74 0.96 0.92 0.76 0.75 0.69

Table 5: Example 2: Relative frequencies of the selected variables for methods under
comparison.
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MSEy HITS FP
ORACLE 3.31(0.03) 3.00(0.00) 0.00(0.00)
AIC 4.32(0.09) 2.11(0.07) 2.06(0.14)
BIC 4.24(0.08) 1.97(0.07) 1.68(0.14)
BRIC 4.07(0.07) 1.66(0.07) 0.53(0.08)
EB-L 4.06(0.06) 1.84(0.07) 0.79(0.09)
EB-G 4.07(0.07) 1.88(0.07) 0.83(0.09)
ZS-N 4.01(0.06) 1.81(0.07) 0.76(0.09)
ZS-F 4.04(0.07) 2.10(0.07) 1.26(0.11)
OVS 4.27(0.09) 1.78(0.07) 0.64(0.09)
HG-3 4.05(0.06) 1.81(0.07) 0.77(0.09)
HG-4 4.08(0.06) 1.84(0.07) 0.78(0.09)
HG-2 3.98(0.05) 1.80(0.08) 0.73(0.10)
NIMS 3.99(0.06) 1.83(0.07) 0.77(0.09)
LASSO 4.03(0.06) 2.33(0.07) 1.61(0.16)
DZ 4.32(0.10) 2.20(0.11) 2.06(0.16)
ENET 4.13(0.06) 2.38(0.06) 2.04(0.16)

Table 6: Example 3: Mean of MSE, HITS and FP. The numbers between parentheses
are the corresponding standard errors.

Variables 1 2 3 4 5 6 7 8
AIC 0.89 0.52 0.45 0.43 0.70 0.36 0.42 0.40
BIC 0.89 0.44 0.39 0.36 0.64 0.30 0.33 0.30
BRIC 0.82 0.35 0.09 0.13 0.49 0.12 0.08 0.11
EB-L 0.87 0.38 0.13 0.19 0.59 0.18 0.14 0.15
EB-G 0.89 0.39 0.15 0.20 0.60 0.18 0.14 0.16
ZS-N 0.87 0.37 0.13 0.19 0.57 0.16 0.13 0.15
ZS-F 0.92 0.51 0.23 0.34 0.67 0.22 0.24 0.23
OVS 0.86 0.37 0.12 0.14 0.55 0.16 0.08 0.14
HG-3 0.87 0.38 0.13 0.19 0.56 0.16 0.14 0.15
HG-4 0.88 0.38 0.13 0.19 0.58 0.17 0.14 0.15
HG-2 0.80 0.46 0.19 0.17 0.60 0.21 0.12 0.15
NIMS 0.87 0.38 0.12 0.19 0.58 0.17 0.14 0.15
LASSO 0.96 0.70 0.32 0.40 0.67 0.29 0.23 0.37
DZ 0.82 0.71 0.42 0.47 0.67 0.47 0.31 0.39
ENET 0.97 0.71 0.49 0.50 0.70 0.40 0.30 0.35

Table 7: Example 3: Relative frequencies of the selected variables for methods under
comparison.
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MSEy HITS FP
ORACLE 1.43(0.03) 8.00(0.00) 0.00(0.00)
AIC 1.60(0.03) 6.32(0.11) 0.00(0.00)
BIC 1.64(0.03) 5.99(0.12) 0.00(0.00)
BRIC 1.79(0.04) 4.35(0.11) 0.00(0.00)
EB-L 1.75(0.04) 4.39(0.10) 0.00(0.00)
EB-G 1.76(0.04) 4.34(0.10) 0.00(0.00)
ZS-N 1.74(0.04) 4.38(0.10) 0.00(0.00)
ZS-F 1.62(0.04) 5.37(0.10) 0.00(0.00)
OVS 2.22(0.04) 3.82(0.10) 0.00(0.00)
HG-3 1.76(0.04) 4.32(0.10) 0.00(0.00)
HG-4 1.78(0.03) 4.19(0.09) 0.00(0.00)
HG-2 1.77(0.04) 4.18(0.11) 0.00(0.00)
NIMS 1.75(0.04) 4.39(0.10) 0.00(0.00)
LASSO 1.59(0.04) 7.13(0.12) 0.00(0.00)
DZ 1.56(0.03) 6.82(0.11) 0.00(0.00)
ENET 1.54(0.03) 7.53(0.08) 0.00(0.00)

Table 8: Example 4: Mean of MSE, HITS and FP. The numbers between parentheses
are the corresponding standard errors.

Variables 1 2 3 4 5 6 7 8
AIC 0.80 0.81 0.78 0.75 0.76 0.86 0.77 0.79
BIC 0.76 0.76 0.75 0.72 0.68 0.83 0.71 0.78
BRIC 0.45 0.58 0.50 0.65 0.54 0.55 0.48 0.60
EB-L 0.46 0.57 0.52 0.67 0.54 0.54 0.50 0.59
EB-G 0.45 0.57 0.52 0.66 0.54 0.53 0.48 0.59
ZS-N 0.46 0.57 0.52 0.67 0.54 0.54 0.49 0.59
ZS-F 0.62 0.69 0.60 0.78 0.65 0.67 0.62 0.74
OVS 0.38 0.57 0.45 0.64 0.40 0.49 0.44 0.45
HG-3 0.45 0.57 0.51 0.67 0.54 0.53 0.48 0.57
HG-4 0.44 0.57 0.48 0.66 0.51 0.52 0.45 0.56
HG-2 0.53 0.56 0.50 0.50 0.54 0.55 0.53 0.47
NIMS 0.46 0.58 0.51 0.67 0.54 0.54 0.50 0.59
LASSO 0.82 0.90 0.96 0.92 0.85 0.91 0.87 0.90
DZ 0.84 0.85 0.84 0.82 0.83 0.91 0.89 0.84
ENET 0.89 0.93 0.96 0.97 0.96 0.93 0.96 0.93

Table 9: Example 4: Relative frequencies of the selected variables for methods under
comparison.
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MSEy HITS FP
ORACLE 1.07(0.09) 2.00(0.00) 0.00(0.00)
AIC 1.48(0.05) 1.93(0.02) 2.88(0.19)
BIC 1.39(0.04) 1.94(0.02) 2.04(0.18)
BRIC 1.24(0.02) 1.93(0.02) 0.50(0.09)
EB-L 1.27(0.02) 1.93(0.02) 0.58(0.10)
EB-G 1.27(0.02) 1.93(0.02) 0.60(0.10)
ZS-N 1.26(0.02) 1.93(0.02) 0.57(0.10)
ZS-F 1.33(0.03) 1.94(0.02) 1.84(0.14)
OVS 1.32(0.04) 1.89(0.03) 0.76(0.08)
HG-3 1.28(0.02) 1.93(0.02) 0.53(0.09)
HG-4 1.30(0.02) 1.93(0.02) 0.54(0.09)
HG-2 1.25(0.02) 1.93(0.02) 0.36(0.09)
NIMS 1.22(0.02) 1.93(0.02) 0.57(0.10)
LASSO 1.39(0.03) 1.99(0.01) 2.93(0.21)
DZ 1.36(0.04) 1.91(0.03) 2.70(0.18)
ENET 1.43(0.03) 1.96(0.02) 3.25(0.20)

Table 10: Example 5: Mean of MSE, HITS and FP. The numbers between parentheses
are the corresponding standard errors.

Variables 1 2 3 4 5 6 7 8 9
AIC 0.36 0.94 0.47 0.99 0.35 0.36 0.34 0.53 0.47
BIC 0.30 0.94 0.38 1.00 0.26 0.24 0.22 0.35 0.29
BRIC 0.10 0.94 0.09 1.00 0.10 0.03 0.05 0.08 0.05
EB-L 0.10 0.93 0.14 1.00 0.11 0.04 0.05 0.08 0.06
EB-G 0.11 0.93 0.14 1.00 0.11 0.04 0.05 0.08 0.07
ZS-N 0.10 0.93 0.13 1.00 0.11 0.04 0.05 0.08 0.06
ZS-F 0.29 0.94 0.32 1.00 0.23 0.22 0.19 0.31 0.28
OVS 0.16 0.92 0.10 0.97 0.15 0.07 0.09 0.11 0.08
HG-3 0.10 0.93 0.11 1.00 0.11 0.03 0.04 0.08 0.06
HG-4 0.10 0.93 0.12 1.00 0.11 0.03 0.04 0.08 0.06
HG-2 0.08 0.95 0.07 1.00 0.04 0.03 0.02 0.06 0.06
NIMS 0.06 0.97 0.10 1.00 0.11 0.08 0.05 0.08 0.08
LASSO 0.51 0.99 0.35 1.00 0.47 0.38 0.37 0.41 0.44
DZ 0.50 0.93 0.32 0.98 0.42 0.45 0.26 0.32 0.43
ENET 0.52 0.96 0.37 1.00 0.55 0.44 0.43 0.50 0.44

Table 11: Example 5: Relative frequencies of the selected variables for methods under
comparison.
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MSEy FP
ORACLE 1.99(0.01) 0.00(0.00)
AIC 2.80(0.07) 3.16(0.21)
BIC 2.62(0.06) 2.24(0.19)
BRIC 2.19(0.02) 0.59(0.11)
EB-L 2.12(0.02) 2.87(0.15)
EB-G 2.11(0.02) 1.54(0.19)
ZS-N 2.26(0.02) 1.02(0.17)
ZS-F 2.31(0.03) 2.51(0.17)
OVS 2.57(0.06) 2.10(0.17)
HG-3 2.13(0.02) 2.18(0.18)
HG-4 2.10(0.01) 2.54(0.17)
HG-2 2.16(0.02) 2.17(0.15)
NIMS 2.24(0.02) 0.99(0.13)
LASSO 2.19(0.04) 1.79(0.22)
DZ 2.57(0.05) 2.49(0.20)
ENET 2.20(0.04) 2.23(0.23)

Table 12: Example 6: Mean of MSE and FP. The numbers between parentheses are
the corresponding standard errors.

Variables 1 2 3 4 5 6 7 8
AIC 0.38 0.36 0.31 0.37 0.49 0.42 0.41 0.42
BIC 0.26 0.22 0.23 0.26 0.31 0.36 0.33 0.27
BRIC 0.09 0.04 0.07 0.08 0.08 0.09 0.09 0.05
EB-L 0.37 0.27 0.28 0.30 0.43 0.43 0.38 0.41
EB-G 0.19 0.12 0.16 0.16 0.21 0.27 0.25 0.18
ZS-N 0.14 0.07 0.11 0.10 0.16 0.16 0.18 0.10
ZS-F 0.29 0.27 0.23 0.28 0.41 0.38 0.34 0.31
OVS 0.26 0.26 0.36 0.23 0.28 0.26 0.28 0.17
HG-3 0.27 0.21 0.20 0.26 0.32 0.35 0.30 0.27
HG-4 0.32 0.25 0.23 0.29 0.40 0.38 0.35 0.32
HG-2 0.25 0.19 0.23 0.25 0.31 0.35 0.32 0.27
NIMS 0.12 0.06 0.10 0.11 0.14 0.17 0.18 0.11
LASSO 0.22 0.17 0.23 0.22 0.24 0.25 0.29 0.17
DZ 0.23 0.30 0.17 0.20 0.30 0.27 0.25 0.23
ENET 0.30 0.26 0.27 0.25 0.28 0.28 0.33 0.26

Table 13: Example 6: Relative frequencies of the selected variables for methods under
comparison.
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MSEy HITS FP
y = y + 10×RSS 3.41(0.03) 0.15(0.04) 0.00(0.00)
y = y + 102 ×RSS 3.59(0.03) 0.01(0.01) 0.00(0.00)
y = y + 103 ×RSS 3.59(0.02) 0.00(0.00) 0.00(0.00)

Table 14: Example 1: Mean of MSE, HITS and FP after replacing y by y = y+10kRSS
for k ∈ {1, 2, 3}. The numbers between parentheses are the corresponding standard
errors for the NIMS selection procedure.

Variables 1 2 3 4 5 6 7 8 9 10
y = y + 10×RSS 0.00 0.00 0.09 0.00 0.00 0.05 0.01 0.00 0.00 0.00
y = y + 102 ×RSS 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00
y = y + 103 ×RSS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 15: Example 1: Relative frequencies of the selected variables after replacing y
by y = y + 10kRSS for k ∈ {1, 2, 3}.

MSEy Mean
of selected variables

AIC 4.58(0.05) 5.56(0.20)
BIC 4.60(0.05) 4.20(0.18)
BRIC 4.51(0.05) 2.84(0.15)
EB-L 4.52(0.05) 3.00(0.18)
EB-G 4.52(0.05) 3.28(0.17)
ZS-N 4.52(0.05) 2.96(0.18)
ZS-F 4.49(0.05) 4.28(0.20)
OVS 4.65(0.07) 2.96(0.18)
HG-3 4.54(0.05) 3.00(0.18)
HG-4 4.56(0.05) 3.24(0.17)
HG-2 4.50(0.05) 2.48(0.14)
NIMS 4.50(0.05) 2.44(0.14)
LASSO 4.54(0.05) 8.17(0.52)
DZ 4.51(0.06) 11.03(0.11)
ENET 4.54(0.05) 9.04(0.56)

Table 16: Body fat dataset: Mean of the MSEy and of the selected variables.
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Variables 1 2 3 4 5 6 7 8 9 10 11 12 13
AIC 0.44 0.84 0.16 0.64 0.04 1.00 0.20 0.16 0.08 0.16 0.44 0.80 0.88
BIC 0.08 0.84 0.08 0.32 0.00 1.00 0.12 0.08 0.04 0.00 0.16 0.28 0.40

BRIC 0.08 0.84 0.08 0.32 0.00 1.00 0.12 0.08 0.04 0.00 0.16 0.24 0.40
EB-L 0.08 0.84 0.08 0.32 0.00 1.00 0.12 0.08 0.04 0.00 0.16 0.28 0.40
EB-G 0.08 0.88 0.08 0.36 0.00 1.00 0.08 0.08 0.04 0.00 0.20 0.36 0.40
ZS-N 0.08 0.84 0.08 0.32 0.00 1.00 0.12 0.08 0.04 0.00 0.16 0.24 0.40
ZS-F 0.20 0.84 0.12 0.40 0.00 1.00 0.12 0.12 0.08 0.04 0.24 0.60 0.68
OVS 0.12 0.68 0.08 0.16 0.04 1.00 0.08 0.00 0.00 0.00 0.04 0.24 0.52
HG-3 0.08 0.84 0.08 0.32 0.00 1.00 0.12 0.08 0.04 0.00 0.16 0.28 0.40
HG-4 0.08 0.88 0.08 0.32 0.00 1.00 0.08 0.08 0.04 0.00 0.16 0.36 0.40

HG-2 0.04 0.88 0.00 0.08 0.00 1.00 0.08 0.04 0.00 0.04 0.16 0.28 0.60
NIMS 0.04 0.88 0.04 0.08 0.00 1.00 0.04 0.08 0.04 0.00 0.04 0.04 0.12

LASSO 1.00 0.28 1.00 0.88 0.24 1.00 0.44 0.52 0.28 0.56 0.68 0.84 1.00
DZ 1.00 0.80 1.00 0.88 0.60 1.00 0.80 0.72 0.40 0.88 0.92 0.88 0.96
ENET 1.00 0.40 1.00 0.80 0.28 1.00 0.40 0.64 0.44 0.64 0.68 0.84 1.00

Table 17: Body fat dataset: relative frequencies of selections of the variables over the
25 random splits.

MSEy Mean number
of selected variables

AIC 4.79(0.05) 3.52(0.14)
BIC 4.77(0.05) 2.88(0.07)
BRIC 4.78(0.05) 2.88(0.07)
EB-L 4.78(0.05) 2.88(0.07)
EB-G 4.78(0.05) 2.92(0.05)
ZS-N 4.78(0.05) 2.88(0.07)
ZS-F 4.77(0.05) 3.12(0.07)
OVS 4.81(0.05) 2.88(0.10)
HG-3 4.78(0.05) 2.88(0.07)
HG-4 4.78(0.05) 2.92(0.05)
HG-2 4.80(0.05) 2.68(0.10)
NIMS 4.79(0.05) 2.68(0.10)
LASSO 4.78(0.05) 5.24(0.21)
DZ 4.80(0.05) 5.12(0.13)
ENET 4.79(0.05) 5.32(0.16)

Table 18: Ozone dataset: Mean of the MSEy and of the selected variables.
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Variables 1 2 3 4 5 6 7 8
AIC 0.20 0.12 0.96 1.00 0.56 0.08 0.44 0.16
BIC 0.04 0.00 0.96 1.00 0.60 0.00 0.36 0.04
BRIC 0.04 0.00 0.96 1.00 0.60 0.00 0.40 0.04
EB-L 0.04 0.00 0.96 1.00 0.60 0.40 0.36 0.04
EB-G 0.04 0.00 0.96 1.00 0.60 0.00 0.36 0.04
ZS-N 0.04 0.00 0.96 1.00 0.60 0.00 0.36 0.04
ZS-F 0.04 0.08 0.92 1.00 0.60 0.00 0.40 0.08
OVS 0.00 0.00 1.00 0.92 0.00 0.00 0.80 0.08
HG-3 0.04 0.00 0.96 1.00 0.60 0.00 0.36 0.04
HG-4 0.04 0.00 0.96 1.00 0.60 0.00 0.36 0.04
HG-2 0.04 0.00 0.96 1.00 0.60 0.00 0.32 0.04
NIMS 0.04 0.00 0.96 1.00 0.60 0.00 0.32 0.04
LASSO 0.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00
DZ 0.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00
ENET 0.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00

Table 19: Ozone dataset: relative frequencies of selections of the variables over the 25
random splits.


