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On the Support of MacEachern’s Dependent
Dirichlet Processes and Extensions

Andrés F. Barrientos∗, Alejandro Jara† and Fernando A. Quintana‡

Abstract. We study the support properties of Dirichlet process–based models for
sets of predictor–dependent probability distributions. Exploiting the connection
between copulas and stochastic processes, we provide an alternative definition of
MacEachern’s dependent Dirichlet processes. Based on this definition, we provide
sufficient conditions for the full weak support of different versions of the process. In
particular, we show that under mild conditions on the copula functions, the version
where only the support points or the weights are dependent on predictors have full
weak support. In addition, we also characterize the Hellinger and Kullback–Leibler
support of mixtures induced by the different versions of the dependent Dirichlet
process. A generalization of the results for the general class of dependent stick–
breaking processes is also provided.

Keywords: Related probability distributions, Bayesian nonparametrics, Copulas,
Weak support, Hellinger support, Kullback–Leibler support, Stick–breaking pro-
cesses

1 Introduction

This paper focuses on the support properties of probability models for sets of predictor–
dependent probability measures, {Gx : x ∈ X }, where the Gx’s are probability mea-
sures defined on a common measurable space (S, S ) and indexed by a p–dimensional
vector of predictors x ∈ X . The problem of defining probability models of this kind
has received increasing recent attention in the Bayesian literature, motivated by the
construction of nonparametric priors for the conditional densities estimation problem.
To date, much effort has focused on constructions that generalize the widely used class
of Dirichlet process (DP) priors (Ferguson 1973, 1974), and, consequently, the class of
DP mixture models (Ferguson 1983; Lo 1984; Escobar and West 1995) for single den-
sity estimation. A random probability measure G is said to be a DP with parameters
(α, G0), where α ∈ R+

0 = [0, +∞) and G0 is a probability measure on (S, S ), written
as G | α, G0 ∼ DP (αG0), if for any measurable nontrivial partition {Bl : 1 ≤ l ≤ k}
of S, the vector {G(Bl) : 1 ≤ l ≤ k} has a Dirichlet distribution with parameters
(αG0(B1), . . . , αG0(Bk)). It follows that G(B) | α,G0 ∼ Beta(αG0(B), αG0(Bc)), and
therefore, E[G(B) | α, G0] = G0(B) and V ar[G(B) | α, G0] = G0(B)G0(Bc)/(α + 1).
These results show the role of G0 and α, namely, that G is centered around G0 and that
α is a precision parameter.
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An early reference on predictor–dependent DP models is Cifarelli and Regazzini
(1978), who defined a model for related probability measures by introducing a regression
model in the centering measure of a collection of independent DP random measures.
This approach is used, for example, by Muliere and Petrone (1993), who considered
a linear regression model for the centering distribution G0

x ≡ N(x′β, σ2), where x ∈
Rp, β ∈ Rp is a vector of regression coefficients, and N(µ, σ2) stands for a normal
distribution with mean µ and variance σ2, respectively. Similar models were discussed
by Mira and Petrone (1996) and Giudici et al. (2003). Linking nonparametric models
through the centering distribution, however, limits the nature of the dependence of
the process. A more flexible construction, the dependent Dirichlet process (DDP), was
proposed by MacEachern (1999, 2000). The key idea behind the DDP is the construction
of a set of random measures that are marginally (i.e. for every possible predictor value)
DP–distributed random measures. In this framework, dependence is introduced through
a modification of the stick–breaking representation of each element in the set. If G |
α, G0 ∼ DP (αG0), then the trajectories of the process can be almost surely represented
by the following stick–breaking representation provided by Sethuraman (1994):

G(B) =
∞∑

i=1

Wiδθi(B), B ∈ S , (1)

where δθ(·) is the Dirac measure at θ, Wi = Vi

∏
j<i(1− Vj) for all i ≥ 1, with Vi | α iid∼

Beta(1, α), and θi | G0
iid∼ G0. MacEachern (1999, 2000) generalized expression (1) by

considering

Gx(B) =
∞∑

i=1

Wi(x)δθi(x)(B), B ∈ S ,

where the support points θi(x), i = 1, . . ., are independent stochastic processes with
index set X and G0

x marginal distributions, and the weights take the form Wi(x) =
Vi(x)

∏
j<i[1− Vj(x)], where {Vi(x) : i ≥ 1} are independent stochastic processes with

index set X and Beta (1, αx) marginal distributions.

MacEachern (2000) showed that the DDP exists and can have full weak support,
provided a flexible specification for the point mass processes {θi(x) : x ∈ X } and
simple conditions for the weight processes {Vi(x) : x ∈ X } are assumed. Based on
the latter result, he also proposed a version of the process with predictor–independent
weights, Gx(B) =

∑∞
i=1 Wiδθi(x)(B), called the single weights DDP model. Versions of

the single weights DDP have been applied to ANOVA (De Iorio et al. 2004), survival
(De Iorio et al. 2009; Jara et al. 2010), spatial modeling (Gelfand et al. 2005), functional
data (Dunson and Herring 2006), time series (Caron et al. 2008), discriminant analysis
(De la Cruz et al. 2007), and longitudinal data analysis (Müller et al. 2005). We refer
the reader to Müller et al. (1996), Dunson et al. (2007), Dunson and Park (2008),
and Chung and Dunson (2009), and references therein, for other DP–based models for
related probability distributions.

Although there exists a wide variety of probability models for related probability
distributions, there is a scarcity of results characterizing the support of the proposed
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processes. The large support is a minimum requirement and almost a “necessary condi-
tion” for a nonparametric model to be considered “nonparametric”, because it ensures
that a nonparametric prior does not assign too much mass on small sets of probability
measures. This property is also important because it is a typically required condition
for frequentist consistency of the posterior distribution. Some recent results have been
provided by Pati et al. (2011) and Norets and Pelenis (2011), in the context of de-
pendent mixtures of Gaussians induced by probit stick–breaking processes (Chung and
Dunson 2009), and dependent mixtures of location–scale distributions induced by finite
mixing distributions (Norets 2010) and kernel stick–breaking processes (Dunson and
Park 2008), respectively.

In this paper we provide an alternative characterization of the weak support of
the two versions of MacEachern’s DDP discussed above, namely, a version where both
weights and support points are functions of the predictors, and a version where only the
support points are functions of the predictors. We also characterize the weak support of
a version of the DDP model where only the weights depend on predictors. Finally, we
provide sufficient conditions for the full Hellinger support of mixture models induced by
DDP priors, and characterize their Kulback–Leibler support. Our results are based on
an alternative definition of MacEachern’s DDP, which exploits the connection between
stochastic processes and copulas. Specifically, families of copulas are used to define the
finite dimensional distributions of stochastic processes with given marginal distributions.
The alternative formulation of the DDP makes explicit the parameters of the process,
and their role on the support properties. The rest of this paper is organized as follows.
Section 2 provides the alternative definition of MacEachern’s DDP. Section 3 contains
the main results about the support of the various DDP versions, as well as extensions
to more general stick–breaking constructions. A general discussion and possible future
research lines are given in Section 4.

2 MacEachern’s dependent Dirichlet processes

MacEachern (1999, 2000) defined the DDP by using transformations of independent
stochastic processes. Let αX = {αx : x ∈ X } be a set such that, for every x ∈ X ,
αx ∈ R+

0 , and let G0
X =

{
G0

x : x ∈ X
}

be a set of probability distributions with
support on (S, S ). Let Zθi

X =
{
Zθ

i (x) : x ∈ X
}
, i ∈ N, be independent and identically

distributed real–valued processes with marginal distributions
{
F θ

x : x ∈ X
}
. Similarly,

let ZVi

X =
{
ZV

i (x) : x ∈ X
}
, i ∈ N, be independent and identically distributed real–

valued processes with marginal distributions
{
FV

x : x ∈ X
}
. For every x ∈ X , let

TV
x : R −→ [0, 1] and T θ

x : R −→ S be transformations that specify a mapping of ZV
i (x)

into Vi(x), and Zθ
i (x) into θi(x), respectively. Furthermore, set TV

X =
{
TV

x : x ∈ X
}

and T θ
X =

{
T θ

x : x ∈ X
}
. In MacEachern’s definition, the DDP is parameterized by

(
αX ,

{
ZVi

X

}∞
i=1

,
{

Zθi

X

}∞
i=1

, TV
X , T θ

X

)
.

To induce the desired marginal distributions of the weights and support point processes,
MacEachern defined the transformations as a composition of appropriate measurable
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mappings. Specifically, for every x ∈ X , he wrote TV
x = B−1

x ◦ FV
x and T θ

x = G0−1

x ◦
F θ

x , where B−1
x and G0−1

x are the inverse cumulative density function (CDF) of the
Beta(1, αx) distribution and G0

x, respectively.

We provide an alternative definition of MacEachern’s DDP that explicitly exploits
the connection between copulas and stochastic processes. The basic idea is that many
properties of stochastic processes can be characterized by their finite–dimensional dis-
tributions. Therefore, copulas can be used for their analysis. Note however, that many
concepts associated with stochastic processes are stronger than the finite–dimensional
distribution approach. In order to make this paper self–contained, we provide below a
brief discussion about the definition of stochastic processes through the specification of
finite dimensional copula functions.

2.1 Copulas and stochastic processes

Copulas are functions that are useful for describing and understanding the dependence
structure between random variables. The basic idea is the ability to express a multivari-
ate distribution as a function of its marginal distributions. If H is a d–variate CDF with
marginal CDF’s given by F1, . . . , Fd, then by Sklar’s theorem (Sklar 1959), there exists
a copula function C : [0, 1]d −→ [0, 1] such that H(t1, . . . , td) = C(F1(t1), . . . , Fd(td)),
for all t1, . . . , td ∈ R, and this representation is unique if the marginal distributions
are absolutely continuous w.r.t. Lebesgue measure. Thus by the probability integral
transform, a copula function is a d–variate CDF on [0, 1]d with uniform marginals on
[0, 1], which fully captures the dependence among the associated random variables, ir-
respective of the marginal distributions. Examples and properties of copulas can be
found, for example, in Joe (1997).

Under certain regularity conditions a stochastic process is completely characterized
by its finite–dimensional distributions. Therefore, it is possible –and useful– to use cop-
ulas to define stochastic processes with given marginal distributions. The basic idea is
to specify the collection of finite dimensional distributions of a process through a col-
lection of copulas and marginal distributions. The following result is a straightforward
consequence of Kolmogorov’s consistency theorem (Kolmogorov 1933, page 29) and of
Sklar’s theorem (Sklar 1959).

Corollary 1. Let CX = {Cx1,...,xd
: x1, . . . , xd ∈ X , d > 1} be a collection of copula

functions and DX = {Fx : x ∈ X } a collection of one–dimensional probability distri-
butions defined on a common measurable space (D , B(D)), where D ⊆ R. Assume that
for every integer d > 1, x1, . . . , xd ∈ X , ui ∈ [0, 1], i = 1, . . . , d, k ∈ {1, . . . , d}, and
permutation π = (π1, . . . , πd) of {1, . . . , d}, the elements in CX satisfy the following
consistency conditions:

(i) Cx1,...,xd
(u1, . . . , ud) = Cxπ1 ,...,xπd

(uπ1 , . . . , uπd
), and
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(ii) Cx1,...,xd
(u1, . . . , uk−1, 1, uk+1, . . . , ud) =

Cx1,...,xk−1,xk+1,...,xd
(u1, . . . , uk−1, uk+1, . . . , ud) .

Then there exists a probability space (Ω, A , P ) and a stochastic process

Y : X × Ω → ∆,

such that

P {ω ∈ Ω : Y (x1, ω) ≤ t1, . . . , Y (xd, ω) ≤ td} = Cx1,...,xd
(Fx1 (t1) , . . . , Fxd

(td)) ,

for any t1, . . . , td ∈ R.

Notice that conditions (i) and (ii) above correspond to the definition of a consistent
system of probability measures, applied to probability measures defined on appropriate
unitary hyper–cubes. Notice also that finite–dimensional distributions of [0, 1]–valued
stochastic processes necessarily satisfy conditions (i) and (ii), i.e., they form a con-
sistent system of probability measures. Kolmogorov’s consistency theorem states that
conversely, if the sample space is a subset of the real line, every consistent family of
measures is in fact the family of finite–dimensional distributions of some stochastic
process. Since the unitary hyper–cube is a subset of a Euclidean space, Kolmogorov’s
consistency theorem implies that every family of distributions satisfying conditions (i)
and (ii), is the family of finite–dimensional distributions of an [0, 1]–valued stochastic
process.

A consequence of the previous result is that it is possible to interpret a stochastic
process in terms of a simpler process of uniform variables transformed by the marginal
distributions via a quantile mapping. The use of copulas to define stochastic processes
was first considered by Darsow et al. (1992), who studied the connection between Markov
processes and copulas, and provided necessary and sufficient conditions for a process to
be Markovian, based on the copula family. Although in an approach completely differ-
ent to the one considered here, copulas have been used to define dependent Bayesian
nonparametric models by Epifani and Lijoi (2010) and Leisen and Lijoi (2011). These
authors consider a Lévy copula to define dependent versions of neutral to the right and
two–parameter Poisson–Dirichlet processes (Pitman and Yor 1997), respectively.

From a practical point of view, it is easy to specify a family of copulas satisfying
conditions (i) and (ii) in Corollary 1. An obvious approach is to consider the family of
copula functions arising from the finite–dimensional distributions of known and tractable
stochastic processes. The family of copula functions associated with Gaussian or t–
Student processes could be considered as natural candidates in many applications for
which X ⊆ Rp. The finite–dimensional copula functions of Gaussian processes are
given by

Cx1,...,xd
(u1, . . . , ud) = ΦR(x1,...,xd)(Φ−1(u1), . . . , Φ−1(ud)),
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where ΦR(x1,...,xd) is the CDF of a d–variate normal distribution with mean zero, vari-
ance one and correlation matrix R(x1, . . . , xd), arising from the corresponding correla-
tion function, and Φ is the CDF of a standard normal distribution.

In the context of longitudinal or spatial modeling, natural choices for correlation
functions are the Matérn, powered exponential and spherical. The elements of the
correlation matrix induced by the Matérn covariance function are given by

R(x1, . . . , xd)(i,j) =
{
2κ−1Γ(κ)

}−1
( ||xi − xj ||2

τ

)κ

Kκ

( ||xi − xj ||2
τ

)
,

where κ ∈ R+, τ ∈ R+ and Kκ(·) is the modified Bessel function of order κ (Abramowitz
and Stegun 1964). The elements of the correlation matrix under the powered exponential
covariance function are given by

R(x1, . . . , xd)(i,j) = exp
{
−

( ||xi − xj ||2
τ

)κ}
,

where κ ∈ (0, 2] and τ ∈ R+. Finally, the elements of the correlation matrix induced by
the spherical covariance function are given by

R(x1, . . . , xd)(i,j) =

{
1− 3

2

(
||xi−xj ||2

τ

)
+ 1

2

(
||xi−xj ||2

τ

)3

, if ||xi − xj ||2 ≤ τ,

0, if ||xi − xj ||2 > τ,

where τ ∈ R+.

2.2 The alternative definition

Let C V
X and C θ

X be two sets of copulas satisfying the consistency conditions of Corollary
1. As earlier, let αX = {αx : x ∈ X } be a set such that, for every x ∈ X , αx ∈ R+

0 ,
and let G0

X =
{
G0

x : x ∈ X
}

be a set of probability measures defined on a common
measurable space (S, S ), where S ⊆ Rq, q ∈ N, and S = B(S) is the Borel σ–field of
S. Finally, let P (S) be the set of all Borel probability measures defined on (S,S ).

Definition 1. Let {Gx : x ∈ X } be a P (S)–valued stochastic process on an appropriate
probability space (Ω, A , P ) such that:

(i) V1, V2, . . . are independent stochastic processes of the form Vi : X × Ω → [0, 1],
i ≥ 1, with common finite dimensional distributions determined by the set of
copulas C V

X and the set of Beta marginal distributions with parameters (1, αx),
{Beta(1, αx) : x ∈ X }.

(ii) θ1, θ2, . . . are independent stochastic processes of the form θi : X ×Ω → S, i ≥ 1,
with common finite dimensional distributions determined by the set of copulas C θ

X

and the set of marginal distributions G0
X .
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(iii) For every x ∈ X , B ∈ S and almost every ω ∈ Ω,

G (x, ω) (B) =
∞∑

i=1



Vi (x, ω)

∏

j<i

[1− Vj (x, ω)]



 δθi(x,ω) (B) .

Such a process H = {Gx
.= G (x, ·) : x ∈ X } will be referred to as a dependent Dirichlet

process with parameters
(
αX ,C θ

X , C V
X , G0

X

)
, and denoted by DDP

(
αX , C θ

X ,C V
X , G0

X

)
.

In what follows, two simplifications of the general definition of the process will be
of interest. If the stochastic processes in (i) of Definition 1 are replaced by independent
and identically distributed Beta(1, α) random variables, with α > 0, the process will be
referred to as “single weights” DDP. This is to emphasize the fact that the weights in
the stick–breaking representation (iii) of Definition 1, are not indexed by predictors x.

Definition 2. Let {Gx : x ∈ X } be a P (S)–valued stochastic process on an appropriate
probability space (Ω, A , P ) such that:

(i) V1, V2, . . . are independent random variables of the form Vi : Ω → [0, 1], i ≥ 1,
with common Beta distribution with parameters (1, α).

(ii) θ1, θ2, . . . are independent stochastic processes of the form θi : X ×Ω → S, i ≥ 1,
with common finite dimensional distributions determined by the set of copulas C θ

X

and the set of marginal distributions G0
X .

(iii) For every x ∈ X , B ∈ S and almost every ω ∈ Ω,

G (x, ω) (B) =
∞∑

i=1



Vi (ω)

∏

j<i

[1− Vj (ω)]



 δθi(x,ω) (B) .

Such a process H = {Gx
.= G (x, ·) : x ∈ X } will be referred to as a single weights de-

pendent Dirichlet process with parameters
(
α, C θ

X , G0
X

)
, and denoted by wDDP

(
α, C θ

X ,

G0
X

)
.

The second simplification is when the stochastic processes in (ii) of Definition 1
are replaced by independent random vectors with common distribution G0, where G0 is
supported on the measurable space (S, S ). In this case the process will be referred to as
“single atoms” DDP, to emphasize the fact that the support points in the stick–breaking
representation are not indexed by predictors x.

Definition 3. Let {Gx : x ∈ X } be a P (S)–valued stochastic process on an appropriate
probability space (Ω, A , P ) such that:
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(i) V1, V2, . . . are independent stochastic processes of the form Vi : X × Ω → [0, 1],
i ≥ 1, with common finite dimensional distributions determined by the set of
copulas C V

X and the set of Beta marginal distributions with parameters (1, αx),
{Beta(1, αx) : x ∈ X }.

(ii) θ1, θ2, . . . are independent S–valued random variables/vectors, i ≥ 1, with common
distribution G0.

(iii) For every x ∈ X , B ∈ S and almost every ω ∈ Ω,

G (x, ω) (B) =
∞∑

i=1



Vi (x, ω)

∏

j<i

[1− Vj (x, ω)]



 δθi(ω) (B) .

Such a process H = {Gx
.= G (x, ·) : x ∈ X } will be referred to as a single atoms depen-

dent Dirichlet process with parameters
(
αX , C V

X , G0
)
, and denoted by θDDP

(
αX , C V

X ,

G0
)
.

3 The main results

3.1 Preliminaries

As is widely known, the definition of the support of probability models on functional
spaces depends on the choice of a “distance” defining the basic neighborhoods. The
results presented here are based on three different notions of distance between prob-
ability measures. Theorems 1 through 3 below are based on neighborhoods created
using any distance that metrizes the weak star topology, namely, any distance dW such
that, for two probability measures F and Gn defined on a common measurable space,
dW (Gn, F ) −→ 0 if and only if Gn converges weakly to F as n goes to infinity. If F and
G are probability measures absolutely continuous with respect to a common dominat-
ing measure, stronger notions of distance can be considered. The results summarized
in Theorems 4 and 5 are based on neighborhoods created using the Hellinger distance,
which is topologically equivalent to the L1 distance, and the Kullback–Leibler diver-
gence, respectively. If f and g are versions of the densities of F and G with respect
to a dominating measure λ, respectively, the L1 distance, Hellinger distance and the
Kullback–Leibler divergence are defined by

dL1(f, g) =
∫
|f(y)− g(y)|λ(dy),

dH(f, g) =
∫ (√

f(y)−
√

g(y)
)2

λ(dy),

and

dKL(f, g) =
∫

f(y) log
(

f(y)
g(y)

)
λ(dy),
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respectively.

The support of a probability measure µ defined on a space of probability measures
is the smallest closed set of µ–measure one, say C(µ), which can be expressed as

C(µ) = {F : µ(Nε(F )) > 0,∀ε > 0} ,

where Nε(F ) = {G : d(F, G) < ε}, with d being any notion of “distance”. The differ-
ent types of “metrics” discussed above, therefore, induce different types of supports.
Let CW (µ), CL1(µ), CH(µ) and CKL(µ) be the support induced by dW , dL1 , dH and
dKL, respectively. The relationships among these different supports are completely de-
fined by the relationships between the different “metrics”. Since L1 convergence implies
weak convergence, the topology generated by any distance metrizing the weak conver-
gence (e.g., the Prokhorov or Lévy metric) is coarser than the one generated by the
L1 distance, i.e., CW (µ) ⊃ CL1(µ). Hellinger distance is equivalent to the L1 distance
since dL1(f, g) ≤ d2

H(f, g) ≤ 4dL1(f, g), which implies that CH(µ) = CL1(µ). Finally,
the relation between the L1 distance and Kullback–Leibler divergence is given by the
inequality dKL(f, g) ≥ 1

4dL1(f, g), implying that CL1(µ) = CH(µ) ⊃ CKL(µ).

3.2 Weak support of dependent Dirichlet processes

Let P (S)X be the set of all P (S)–valued functions defined on X . Let B
{

P (S)X
}

be the Borel σ-field generated by the product topology of weak convergence. The
support of the DDP is the smallest closed set in B

{
P (S)X

}
with P ◦H −1–measure

one.

Assume that Θ ⊆ S is the support of G0
x, for every x ∈ X . The following theorem

provides sufficient conditions under which P (Θ)X is the weak support of the DDP,
where P (Θ)X is the set of all P (Θ)–valued functions defined on Θ, with P (Θ) being
the set of all probability measures defined on (Θ, B(Θ)).

Theorem 1. Let {Gx : x ∈ X } be a DDP
(
αX , C θ

X , C V
X , G0

X

)
. If C θ

X and C V
X are

collections of copulas with positive density w.r.t. Lebesgue measure, on the appropriate
unitary hyper–cubes, then P (Θ)X is the weak support of the process, i.e., the DDP has
full weak support.

Proof: The proof has two parts. The first part shows that a sufficient condition for
the full weak support result is that the process assigns positive probability mass to a
product space of particular simplices. The second part of the proof shows that the DDP
assigns positive probability mass to that product space of simplices.

Let Pn = {Pn
x : x ∈ X } ∈ P (Θ)X be a collection of probability measures with

support contained in Θ. Let {Pn}n≥1 ⊂ P (Θ)X be a sequence of such collections,

satisfying the condition that for all x ∈ X , Pn
x

weakly−→ Px, when n −→ ∞, where Px



286 Support Properties of Dependent Dirichlet Processes

is a probability measure. Since S is closed and Pn
x

weakly−→ Px, Portmanteau’s theorem
implies that Px (Θ) ≥ lim supn Pn

x (Θ), for every x ∈ X . It follows that P (Θ)X is a
closed set. Now, let ΘX =

∏
x∈X Θ. Since Θ is the support of G0

x, for every x ∈ X , it
follows that

P
{
ω ∈ Ω : θi (·, ω) ∈ ΘX , i = 1, 2, . . .

}
= 1,

i.e.,
P

{
ω ∈ Ω : G(·, ω) ∈ P (Θ)X

}
= 1.

To show that P (Θ)X is the smallest closed set with P ◦H −1–measure one, it suffices
to prove that any basic open set in P (Θ)X has positive P ◦H −1–measure. Now, it is
easy to see that the measure of a basic open set for

{
P 0

x : x ∈ X
} ∈ P (Θ)X is equal

to the measure of a set of the form

T∏

i=1

{
Pxi

∈ P (Θ) :
∣∣∣∣
∫

fijdPxi −
∫

fijdP 0
xi

∣∣∣∣ < εi, j = 1, . . . , Ki

}
, (2)

where x1, . . . , xT ∈ X , T and Ki, i = 1, . . . , T , are positive integers, fij , i = 1, . . . , T ,
and j = 1, . . . ,Ki, are bounded continuous functions and εi, i = 1, . . . , T , are positive
constants. To show that neighborhoods of the form (2) have positive probability mass,
it suffices to show they contain certain subset–neighborhoods with positive probability
mass. In particular, we consider subset–neighborhoods of probability measures which
are absolutely continuous w.r.t. the corresponding centering distributions and that
adopt the form

U (Qx1 , . . . , QxT
, {Aij} , ε∗) =

T∏

i=1

{Pxi ∈ P (Θ) : |Pxi (Aij)−Qxi (Aij)| < ε∗, j = 1 . . . mi} ,

where Qxi is a probability measure absolutely continuous w.r.t. G0
xi

, i = 1, . . . , T ,
Ai1, . . . , Aimi ⊆ Θ are measurable sets with Qxi–null boundary, and ε∗ > 0. For
discrete centering distributions G0

x1
, . . . , G0

xT
, the existence of a subset–neighborhood

U (Qx1 , . . . , QxT
, {Aij} , ε∗) of the set (2) is immediately ensured. The case of center-

ing distributions that are absolutely continuous w.r.t. Lebesgue measure follows after
Lemma 1 in Appendix A.

Next, borrowing the trick in Ferguson (1973), for each νij ∈ {0, 1}, we define sets
Bν11...νmT T as

Bν11...νmT T =
T⋂

i=1

mi⋂

j=1

A
νij

ij ,

where A1
ij is interpreted as Aij and A0

ij is interpreted as Ac
ij . Note that

{
Bν11...νmT T

}
νij∈{0,1}

,
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is a measurable partition of Θ such that

Aij =
⋃

{ν11,...,νmT : νij=1}
Bν11...νmT T .

It follows that sets of the form

T∏

i=1

{
Pxi

∈ P (Θ) :
∣∣∣Pxi

(
Bν11...νmT T

)
−Qxi

(
Bν11...νmT T

)∣∣∣ <

2−
∑T

l=1 mlε∗, ∀ (ν11, . . . , νmT T )
}

,

are contained in U (Qx1 , . . . , QxT
, {Aij} , ε∗). To simplify the notation, set

Jν =
{

ν11 . . . νmT T : G0
x

(
Bν11...νmT T

)
> 0

}
,

and let M be a bijective mapping from Jν to {0, . . . , k}, where k is the cardinality of
Jν minus 1. Therefore, AM(ν) = Bν , for all ν ∈ Jν . Now, set

sxi =
(
w(xi,0), . . . , w(xi,k)

)
= (Qxi (A0) , . . . , Qxi (Ak)) ∈ ∆k, i = 1, . . . , T,

where ∆k =
{

(w0, . . . , wk) : wi ≥ 0, i = 0, . . . , k,
∑k

i=0 wi = 1
}

is the k-simplex, and,
for i = 1, . . . , T , set

B (sxi , ε) =
{
(w0, . . . , wk) ∈ ∆k : w(xi,j) − ε < wj < w(xi,j) + ε, j = 0, . . . , k

}
,

where ε = 2−
∑T

l=1 mlε∗. Note that

{ω ∈ Ω : [G (x1, ω) , . . . , G (xT , ω)] ∈ U (Qx1 , . . . , QxT
, {Aij} , ε)} ⊇

{ω ∈ Ω : [G (xi, ω) (A0) , . . . , G (xi, ω) (Ak)] ∈ B (sxi , ε) , i = 1, . . . , T} .

Thus, to show that (2) has positive P–measure, it suffices to show that

P {ω ∈ Ω : [G (xi, ω) (A0) , . . . , G (xi, ω) (Ak)] ∈ B (sxi , ε) , i = 1, . . . , T} > 0. (3)

Now, consider a subset Ω0 ⊆ Ω, such that for every ω ∈ Ω0 the following conditions are
met:

(A.1) For i = 1, . . . , T ,

w(xi,0) −
ε

2
< V1 (xi, ω) < w(xi,0) +

ε

2
.

(A.2) For i = 1, . . . , T and j = 1, . . . , k − 1,

w(xi,j) − ε
2∏

l<j+1 (1− Vl (xi, ω))
< Vj+1 (xi, ω) <

w(xi,j) + ε
2∏

l<j+1 (1− Vl (xi, ω))
.



288 Support Properties of Dependent Dirichlet Processes

(A.3) For i = 1, . . . , T ,

1−∑k−1
j=0 Wj (xi, ω)− ε

2∏
l<k+1 (1− Vl (xi, ω))

< Vk+1 (xi, ω) <
1−∑k−1

j=0 Wj (xi, ω)∏
l<k+1 (1− Vl (xi, ω))

,

where for j = 1, . . . , k − 1,

Wj−1 (xi, ω) = Vj (xi, ω)
∏

l<j

(1− Vl (xi, ω)) .

(A.4) For j = 0, . . . , k,
[θj+1 (x1, ω) , . . . , θj+1 (xT , ω)] ∈ AT

j .

Now, to prove the theorem, it suffices to show that P ({ω : ω ∈ Ω0}) > 0. It is easy to
see that if assumptions (A.1) – (A.4) hold, then for i = 1, . . . , T ,

[G (xi, ω) (A0) , . . . , G (xi, ω) (Ak)] ∈ B (sxi , ε) .

It then follows from the DDP definition that

P {ω ∈ Ω : [G (xi, ω) (A0) , . . . , G (xi, ω) (Ak)] ∈ B (sxi , ε) , i = 1, . . . , T} ≥
P

{
ω ∈ Ω : [Vj (x1, ω) , . . . , Vj (xT , ω)] ∈ Qω

j , j = 1, . . . , k + 1
}×

k+1∏

j=1

P
{
ω ∈ Ω : [θj (x1, ω) , . . . , θj (xT , ω)] ∈ AT

j−1

}×

∞∏

j=k+2

P
{

ω ∈ Ω : [Vj (x1, ω) , . . . , Vj (xT , ω)] ∈ [0, 1]T
}
×

∞∏

j=k+2

P
{
ω ∈ Ω : [θj (x1, ω) , . . . , θj (xT , ω)] ∈ ΘT

}
,

where,

Qω
1 =

T∏

i=1

[
w(xi,0) −

ε

2
, w(xi,0) +

ε

2

]
,

Qω
j+1 = Qω

j+1 (V1 (x1, ω) , . . . , Vj (xT , ω))

=
T∏

i=1

[
w(xi,j) − ε

2∏
l<j+1 (1− Vl (xi, ω))

,
w(xi,j) + ε

2∏
l<j+1 (1− Vl (xi, ω))

]
,

for j = 1, . . . , k − 1, and

Qω
k+1 = Qω

k+1 (V1 (x1, ω) , . . . , Vk (xT , ω))

=
T∏

i=1

[
1−∑k−1

j=0 Wj (xi, ω)− ε
2∏

l<k+1 (1− Vl (xi, ω))
,

1−∑k−1
j=0 Wj (xi, ω)∏

l<k+1 (1− Vl (xi, ω))

]
.
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By the definition of the process,

P
{

ω ∈ Ω : [Vj (x1, ω) , . . . , Vj (xT , ω)] ∈ [0, 1]T
}

= 1,

and
P

{
ω ∈ Ω : [θj (x1, ω) , . . . , θj (xT , ω)] ∈ ΘT

}
= 1.

It follows that

P {ω ∈ Ω : [G (xi, ω) (A0) , . . . , G (xi, ω) (Ak)] ∈ B (sxi , ε) , i = 1, . . . , T} ≥
P

{
ω ∈ Ω : [Vj (x1, ω) , . . . , Vj (xT , ω)] ∈ Qω

j , j = 1, . . . , k + 1
}×

k+1∏

j=1

P
{
ω ∈ Ω : [θj (x1, ω) , . . . , θj (xT , ω)] ∈ AT

j−1

}
.

Since by assumption C V
X is a collection of copulas with positive density w.r.t. Lebesgue

measure, the non–singularity of the Beta distribution implies that

P {ω ∈ Ω : [Vj (x1, ω) , . . . , Vj (xT , ω)] ∈ Qω
j , j = 1, . . . , k + 1

}
=∫

Q1

∫

Q2(v1)

· · ·
∫

Qk+1(v1,...,vk)

fV
x1,...,xT

(v1) · · · fV
x1,...,xT

(vk+1) dvk+1 · · · dv2dv1 > 0,

(4)

where fV
x1,...,xT

(vj), j = 1, . . . , k + 1, is the density function of

CV
x1,...,xT

(B (v1 | 1, αx1) , . . . , B (vT | 1, αxT )) ,

with B(· | a, b) denoting the CDF of a Beta distribution with parameters (a, b). Finally,
since by assumption C θ

X is a collection of copulas with positive density w.r.t. Lebesgue
measure and, for all x ∈ X , Θ is the topological support of G0

x, it follows that

P {ω ∈ Ω : [θj (x1, ω) , . . . , θj (xT , ω)] ∈ AT
j−1

}
=∫

IAT
j−1

(θ) dCθ
x1,...,xT

(
G0

x1
(θ1) , . . . , G0

xT
(θT )

)
> 0,

where IA(·) is the indicator function for the set A. This completes the proof of the
theorem. ¤

The successful results obtained in applications of the single weights DDP in a variety
of applications (see, e.g. De Iorio et al. 2004; Müller et al. 2005; De Iorio et al. 2009;
Gelfand et al. 2005; De la Cruz et al. 2007; Jara et al. 2010), suggest that simplified
versions of the DDP can be specified to have large support. The following theorem
provides sufficient conditions under which P (Θ)X is the weak support of the single–
weights DDP.
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Theorem 2. Let {Gx : x ∈ X } be a wDDP
(
α, C θ

X , G0
X

)
. If C θ

X is a collection of
copulas with positive density w.r.t. Lebesgue measure, on the appropriate unitary hyper–
cubes, then P (Θ)X is the weak support of the process.

Proof: Using a similar reasoning as in the proof of Theorem 1, it suffices to prove (3),
that is

P {ω ∈ Ω : [G (xi, ω) (A0) , . . . , G (xi, ω) (Ak)] ∈ B (sxi
, ε) , i = 1, . . . , T} > 0.

As in the proof of Theorem 1, we consider constraints for the elements of the wDDP
that imply the previous relation. Since the rational numbers are dense in R, there exist
Mi,mij ∈ N such that for i = 1, . . . , T , and j = 0, . . . , k − 1,

w(xi,j) −
ε

4
<

mij

Mi
< w(xi,j) +

ε

4
.

Now, let N = M1 × . . .×MT and nij = mij

∏
l 6=i Ml. It follows that, for i = 1, . . . , T ,

and j = 0, . . . , k − 1,
w(xi,j) −

ε

4
<

nij

N
< w(xi,j) +

ε

4
.

Therefore, for any

(p1, . . . , pN ) ∈ ∆N−1 =

{
(w1, . . . , wN ) : wi ≥ 0, 1 ≤ i ≤ N,

N∑

i=1

wi = 1

}
,

that verifies
1
N
− ε

4N
< pl <

1
N

+
ε

4N
, for l = 1, . . . , N ,

we have

w(xi,0) −
ε

2
<

ni0∑

l=1

pl < w(xi,0) +
ε

2
, i = 1, . . . , T,

and

w(xi,j) −
ε

2
<

nij∑

l=ni(j−1)+1

pl < w(xi,j) +
ε

2
,

for i = 1, . . . , T and j = 1, . . . , k − 1.

On the other hand, let a(i, l) be a mapping such that

a(i, l) =





0 if l ≤ ni0

1 if ni0 < l ≤ ni0 + ni1

...
...

...
k − 1 if

∑k−2
k′=0 nik′ < l ≤ ∑k−1

k′=0 nik′

k if
∑k−1

k′=0 nik′ < l ≤ N

,
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i = 1, . . . , T , and l = 1, . . . , N . Note that the previous function defines a possible path
for the functions θ1(·, ω), θ2(·, ω), . . . through the measurable sets A0, . . . , Ak.

The required constraints are defined next. Consider a subset Ω0 ⊆ Ω, such that for
every ω ∈ Ω0 the following conditions are met:

(B.1) For l = 1,
1
N
− ε

4N
< Vl(ω) <

1
N

+
ε

4N
.

(B.2) For l = 2, . . . , N − 1,

1
N − ε

4N∏
l′<l (1− Vl′(ω))

< Vl(ω) <
1
N + ε

4N∏
l′<l (1− Vl′(ω))

.

(B.3) For l = N ,

1−∑N−1
l′=1 Wl′(ω)− ε

2∏
l′<N (1− Vl′(ω))

< Vl(ω) <
1−∑N−1

l′=1 Wl′(ω)∏
l′<N (1− Vl′(ω))

,

where for l = 1, 2, . . .

Wl−1(ω) = Vl(ω)
∏

l′<l

[1− Vl′(ω)] .

(B.4) For i = 1, . . . , T and l = 1, . . . , N ,

(θl (x1, ω) , . . . , θl (xT , ω)) ∈ Aa(1,l) × . . .×Aa(T,l).

Now, to prove the theorem, it suffices to show that P ({ω : ω ∈ Ω0}) > 0. It is easy to
see that if assumptions (B.1) – (B.4) hold, then, for i = 1, . . . , T ,

[G (xi, ω) (A0) , . . . , G (xi, ω) (Ak)] ∈ B (sxi , ε) .

Thus, from the definition of the wDDP, it follows that

P {ω ∈ Ω : [G (xi, ω) (A0) , . . . , G (xi, ω) (Ak)] ∈ B (sxi , ε) , i = 1, . . . , T} ≥
P {ω ∈ Ω : Vl (ω) ∈ Qω

l , l = 1, . . . , N} ×
N∏

l=1

P
{
ω ∈ Ω : [θl (x1, ω) , . . . , θl (xT , ω)] ∈ Aa(1,l) × . . .×Aa(T,l)

}×
∞∏

l=N+1

P {ω ∈ Ω : Vl (ω) ∈ [0, 1]} ×

∞∏

l=N+1

P
{
ω ∈ Ω : [θl (x1, ω) , . . . , θl (xT , ω)] ∈ ΘT

}
,
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where,

Qω
1 =

[
1
N
− ε

4N
,

1
N

+
ε

4N

]
,

Qω
l+1 = Qω

l+1 {V1(ω), . . . , Vl(ω)}

=
[ 1

N − ε
4N∏

l′<l+1 (1− Vl′(ω))
,

1
N + ε

4N∏
l′<l+1 (1− Vl′(ω))

]
,

l = 1, . . . , N − 2, and

Qω
N = Qω

N {V1(ω), . . . , VN−1(ω))

=

[
1−∑N−1

l′=1 Wl′(ω)− ε
2∏

l′<N (1− Vl′(ω))
,

1−∑N−1
l′=1 W′l(ω)∏

l′<N (1− Vl′(ω))

]
.

From the definition of the process, P {ω ∈ Ω : Vl (ω) ∈ [0, 1] , l ∈ N} = 1, and

P
{
ω ∈ Ω : [θl (x1, ω) , . . . , θl (xT , ω)] ∈ ΘT , l ∈ N}

= 1.

It follows that

P {ω ∈ Ω : [G (xi, ω) (A0) , . . . , G (xi, ω) (Ak)] ∈ B (sxi , ε) , i = 1, . . . , T} ≥
P {ω ∈ Ω : Vl (ω) ∈ Qω

l , l = 1, . . . , N} ×
N∏

l=1

P
{
ω ∈ Ω : [θl (x1, ω) , . . . , θl (xT , ω)] ∈ Aa(1,l) × . . .×Aa(T,l)

}
.

The non–singularity of the Beta distribution implies that

P {ω ∈ Ω : Vl (ω) ∈ Qω
l , l = 1, . . . , N} > 0. (5)

Finally, since by assumption C θ
X is a collection of copulas with positive density w.r.t.

Lebesgue measure and, for all x ∈ X , Θ is the topological support of G0
x, it follows

that

P {ω ∈ Ω : [θl (x1, ω) , . . . , θl (xT , ω)] ∈ AT
l−1

}
=∫

IAT
l−1

(θ) dCθ
x1,...,xT

(
G0

x1
(θ1) , . . . , G0

xT
(θT )

)
> 0,

which completes the proof. ¤

In the search of a parsimonious model, the previous result shows that full weak
support holds for the single–weights DDP for which only the atoms are subject to a
flexible specification. The following theorem provides sufficient conditions under which
P (Θ)X is the weak support of the single–atoms DDP.
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Theorem 3. Let {Gx : x ∈ X } be a θDDP
(
αX , C V

X , G0
)
, where the support of G0 is

Θ. If C V
X is a collection of copulas with positive density w.r.t. to Lebesgue measure, on

the appropriate unitary hyper–cubes, then the support of the process is P (Θ)X .

Proof: In analogy with the proofs of Theorems 1 and 2, it suffices to prove (3), that is

P {ω ∈ Ω : [G (xi, ω) (A0) , . . . , G (xi, ω) (Ak)] ∈ B (sxi , ε) , i = 1, . . . , T} > 0.

Consider a subset Ω0 ⊆ Ω, such that for every ω ∈ Ω0 the following conditions are met:

(C.1) For i = 1, . . . , T ,

w(xi,0) −
ε

2
< V1 (xi, ω) < w(xi,0) +

ε

2
.

(C.2) For i = 1, . . . , T and j = 1, . . . , k − 1,

w(xi,j) − ε
2∏

l<j+1 (1− Vl (xi, ω))
< Vj+1 (xi, ω) <

w(xi,j) + ε
2∏

l<j+1 (1− Vl (xi, ω))
.

(C.3) For i = 1, . . . , T ,

1−∑k−1
j=0 Wj (xi, ω)− ε

2∏
l<k+1 (1− Vl (xi, ω))

< Vk+1 (xi, ω) <
1−∑k−1

j=0 Wj (xi, ω)∏
l<k+1 (1− Vl (xi, ω))

,

where,
Wj−1 (xi, ω) = Vj (xi, ω)

∏

l<j

(1− Vl (xi, ω)) ,

for j = 1, . . . , k − 1.

(C.4) For j = 0, . . . , k,
θj+1(ω) ∈ Aj .

Now, to prove the theorem, it suffices to show that P ({ω : ω ∈ Ω0}) > 0. It is easy to
see that if assumptions (C.1) – (C.4) hold, then, for i = 1, . . . , T ,

[G (xi, ω) (A0) , . . . , G (xi, ω) (Ak)] ∈ B (sxi , ε) .

Thus, from the definition of the θDDP, it follows that

P {ω ∈ Ω : [G (xi, ω) (A0) , . . . , G (xi, ω) (Ak)] ∈ B (sxi , ε) , i = 1, . . . , T} ≥
P

{
ω ∈ Ω : [Vj (x1, ω) , . . . , Vj (xT , ω)] ∈ Qω

j , j = 1, . . . , k + 1
}×

k+1∏

j=1

P {ω ∈ Ω : θj (ω) ∈ Aj−1} ×

∞∏

j=k+2

P
{

ω ∈ Ω : [Vj (x1, ω) , . . . , Vj (xT , ω)] ∈ [0, 1]T
}
×

∞∏

j=k+2

P {ω ∈ Ω : θj (ω) ∈ Θ} ,



294 Support Properties of Dependent Dirichlet Processes

where,

Qω
1 =

T∏

i=1

[
w(xi,0) −

ε

2
, w(xi,0) +

ε

2

]
,

Qω
j+1 = Qω

j+1 (V1 (x1, ω) , . . . , Vj (xT , ω))

=
T∏

i=1

[
w(xi,j) − ε

2∏
l<j+1 (1− Vl (xi, ω))

,
w(xi,j) + ε

2∏
l<j+1 (1− Vl (xi, ω))

]
,

for j = 1, . . . , k − 1, and

Qω
k+1 = Qω

k+1 (V1 (x1, ω) , . . . , Vk (xT , ω))

=
T∏

i=1

[
1−∑k−1

j=0 Wj (xi, ω)− ε
2∏

l<k+1 (1− Vl (xi, ω))
,

1−∑k−1
j=0 Wj (xi, ω)∏

l<k+1 (1− Vl (xi, ω))

]
.

By the definition of the process, P {ω ∈ Ω : θj (ω) ∈ Θ, j ∈ N} = 1, and

P
{

ω ∈ Ω : [Vj (x1, ω) , . . . , Vj (xT , ω)] ∈ [0, 1]T , j ∈ N
}

= 1.

It follows that

P {ω ∈ Ω : [G (xi, ω) (A0) , . . . , G (xi, ω) (Ak)] ∈ B (sxi , ε) , i = 1, . . . , T} ≥
P

{
ω ∈ Ω : [Vj (x1, ω) , . . . , Vj (xT , ω)] ∈ Qω

j , j = 1, . . . , k + 1
}×

k+1∏

j=1

P {ω ∈ Ω : θj (ω) ∈ Aj−1} .

Since by assumption C V
X is a collection of copulas with positive density w.r.t. Lebesgue

measure, the non–singularity of the Beta distribution implies that

P {ω ∈ Ω : [Vj (x1, ω) , · · · , Vj (xT , ω)] ∈ Qω
j , j = 1, . . . , k + 1

}
=∫

Q1

∫

Q2(v1)

· · ·
∫

Qk+1(v1,··· ,vk)

fV
x1,...,xT

(v1) · · · fV
x1,...,xT

(vk+1) dvk+1 · · · dv2dv1 > 0.

(6)

Finally, since Θ is the topological support of G0, it follows that

P {ω ∈ Ω : θj (ω) ∈ Aj−1} > 0,

which completes the proof of the theorem. ¤
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3.3 The support of dependent Dirichlet process mixture models

As in the case of DPs, the discrete nature of DDPs implies that they cannot be used
as a probability model for sets of predictor–dependent densities. A standard approach
to deal with this problem is to define a mixture of smooth densities based on the DDP.
Such an approach was pioneered by Lo (1984) in the context of single density estimation
problems. For every θ ∈ Θ, let ψ(·, θ) be a probability density function, where Θ ⊆ Rq

now denotes a parameter set. A predictor–dependent mixture model is obtained by
considering fx(· | Gx) =

∫
Θ

ψ(·, θ)Gx(dθ). These mixtures can form a very rich family.
For instance, the location and scale mixture of the form σ−1k

( · −µ
σ

)
, for some fixed

density k, may approximate any density in the L1–sense if σ is allowed to approach
to 0. Thus, a prior on the set of predictor–dependent densities {fx : x ∈ X } may be
induced by placing some of the versions of the DDP prior on the set of related mixing
distributions {Gx : x ∈ X }.

The following theorem shows that under simple conditions on the kernel ψ, the full
weak support of the different versions of DDPs ensures the large Hellinger support of
the corresponding DDP mixture model.

Theorem 4. Let ψ be a non–negative valued function defined on the product measurable
space (Y × Θ,B(Y ) ⊗B(Θ)), where Y ⊆ Rn is the sample space with corresponding
Borel σ–field B(Y ), Θ ⊆ Rq is the parameter space with corresponding Borel σ–field
B(Θ) and B(Y )⊗B(Θ) denotes the product σ–field on Y ×Θ. Assume that ψ satisfies
the following conditions:

(i)
∫

Y ψ (y, θ)λ (dy) = 1 for every θ ∈ Θ and some σ–finite measure λ on (Y , B (Y )).

(ii) θ 7→ ψ (y, θ) is bounded, continuous and B (Θ)–measurable for every y ∈ Y .

(iii) At least one of the following conditions hold:

(iii.a) For every ε > 0 and y0 ∈ Y , there exists δ(ε, y0) > 0, such that

|y − y0| ≤ δ(ε, y0),

then
sup
θ∈Θ

|ψ (y, θ)− ψ (y0, θ)| < ε.

(iii.b) For any compact set K ⊂ Y and r > 0, the family of mappings

{θ 7→ ψ (y, θ) : y ∈ K} ,

defined on B(0, r), is uniformly equicontinuous, where B(0, r) denotes a
closed L1–norm ball of radius r and centered at 0, that is,

B(0, r) ≡ {θ ∈ Θ : ‖θ‖1 ≤ r} .
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If {Gx : x ∈ X } is a DPP, a wDDP or a θDDP, satisfying the conditions of Theorem
1, 2 or 3, respectively, then the Hellinger support of the process

{∫

Θ

ψ (·, θ) Gx (dθ) : x ∈ X

}
,

is ∏

x∈X

{∫

Θ

ψ (·, θ) Px (dθ) : Px ∈ P(Θ)
}

,

where P(Θ) is the space of all probability measures defined on (Θ, B(Θ)).

Proof: The proof uses a similar reasoning to the one of Section 3 in Lijoi et al. (2004). In
what follows, we consider the Borel σ–field generated by the product topology induced
by the Hellinger metric. It is easy to see that the measure of a basic open set for{
f0

xi
: x ∈ X

}
, where f0

xi
(·) =

∫
Θ

ψ (·, θ) P 0
xi

(dθ) and
{
P 0

x : x ∈ X
} ∈ P (Θ)X , is

equal to the measure of a set of the form

T∏

i=1

{∫

Θ

ψ (·, θ) Pxi (dθ) :

∫

Y

∣∣∣∣
∫

Θ

ψ (y, θ)Pxi (dθ)− f0
xi

(y)
∣∣∣∣ λ (dy) < ε, Pxi ∈ P (Θ)

}
, (7)

where ε > 0, x1, . . . , xT ∈ X , and λ is a σ-finite measure on (Y , B (Y )).

To show that the DDP mixture model assigns positive probability mass to sets of
the form (7), we construct a weak neighborhood around

{
P 0

x : x ∈ X
} ∈ P (Θ)X such

that every element in it satisfies (7). This is done by appropriately defining the bounded
and continuous functions that determine the weak neighborhood.

Let ν, ρ and η be positive constants. Fix a compact set Kxi ⊂ B (Y ) such that∫
Kc

xi

f0
xi

(y)λ (dy) < ε
8 , and define

h0
i,1 (θ) =

∫

Kc
xi

ψ (y, θ)λ (dy) ,

for i = 1, . . . , T . For any ρ and ν, it is possible to define a closed ball of the form
B (0, r − ν) = {θ ∈ Θ : ‖θ‖1 ≤ r − ν}, for some r > ν such that P 0

xi

[
B (0, r − ν)c] ≤ ρ.

Now, choose continuous functions h0
i,2, such that, for i = 1, . . . , T ,

IB(0,r)c (θ) ≤ h0
i,2 (θ) ≤ IB(0,r−ν)c (θ) ,

for every θ ∈ Θ. Note that condition (iii.a) (by continuity) or (iii.b) (by Arzelà–Ascoli’s
theorem) implies that the family of functions {ψ (y, ·) : y ∈ Kxi} on B (0, r) is a totally
bounded set. Thus, given η, we can find a partition Ai,1, . . . , Ai,ni of Kxi and points
zi,1 ∈ Ai,1, . . . , zi,ni ∈ Ai,ni such that

sup
y∈Ai,j

sup
θ∈B(0,r)

|ψ (y, θ)− ψ (zi,j , θ)| < η
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for each i = 1, . . . , T and j = 1, . . . , ni. Finally, for i = 1, . . . , T and j = 1, . . . , ni, define

h1
i,j (θ) = k (zi,j , θ) .

All the hk
i,j functions considered above are continuous and bounded. Notice also that

some of these functions may depend on ν, r, ρ and η. Define now the following family
of sets

T∏

i=1

{Pxi ∈ P (Θ) :

∣∣∣∣
∫

hl
i,jl

dPxi −
∫

hl
i,jl

dP 0
xi

∣∣∣∣ < ν, l = 0, 1, j0 = 1, 2, 1 ≤ j1 ≤ ni

}
, (8)

for ν > 0. We will show that for appropriate choices of η, ν, r, and ρ, every collection
{Px1 , . . . , PxT

} in sets of the form (8), satisfies
∫

Y

∣∣∣∣
∫

Θ

ψ (y, θ) Pxi
(dθ)− f0

xi
(y)

∣∣∣∣ λ (dy) < ε,

for i = 1, . . . , T . Note that
∫

Y

∣∣∣∣
∫

Θ

ψ (y, θ)Pxi (dθ)− f0
xi

(y)
∣∣∣∣ λ (dy) =

∫

Kc
xi

∣∣∣∣
∫

Θ

ψ (y, θ)Pxi (dθ)− f0
xi

(y)
∣∣∣∣ λ (dy)

+
∫

Kxi

∣∣∣∣
∫

Θ

ψ (y, θ)Pxi (dθ)− f0
xi

(y)
∣∣∣∣ λ (dy) ,

for i = 1, . . . , T . Now note that if
∣∣∫ h0

i,1dPxi −
∫

h0
i,1dP 0

xi

∣∣ < ν, then
∫

h0
i,1dPxi < ν +

∫
h0

i,1dP 0
xi
≤ ν +

ε

8
,

by the definition of h0
i,1, and therefore,

∫

Kc
xi

∣∣∣∣
∫

Θ

ψ (y, θ)Pxi (dθ)− f0
xi

(y)
∣∣∣∣ λ (dy) ≤

∫
h0

i,1dPxi +
∫

Kc
xi

f0
xi

(y)λ (dy)

≤ ν +
ε

4
. (9)

In addition, note that
∫

Kxi

∣∣∣∣
∫

Θ

ψ (y, θ)Pxi (dθ)− f0
xi

(y)
∣∣∣∣ λ (dy) ≤ B1 + B2 + B3 (10)

where,

B1 =
ni∑

j=1

∫

Ai,j

∣∣∣∣
∫

Θ

ψ (zi,j , θ)Pxi (dθ)−
∫

Θ

ψ (zi,j , θ) P 0
xi

(dθ)
∣∣∣∣ λ (dy)

=
ni∑

j=1

∫

Ai,j

∣∣∣∣
∫

h1
i,jdPxi −

∫
h1

i,jdP 0
xi

∣∣∣∣ λ (dy)

≤ νλ (Kxi) ,
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B2 =
ni∑

j=1

∫

Ai,j

∣∣∣∣
∫

Θ

ψ (zi,j , θ) P 0
xi

(dθ)−
∫

Θ

ψ (y, θ)P 0
xi

(dθ)
∣∣∣∣ λ (dy)

≤
ni∑

j=1

∫

Ai,j

∫

B(0,r−δ)

|ψ (zi,j , y)− ψ (y, θ)|P 0
xi

(dθ)λ (dy)

+
ni∑

j=1

∫

Ai,j

∫

B(0,r−δ)C

[ψ (zi,j , θ) + ψ (y, θ)] P 0
xi

(dθ)λ (dy)

≤ ηλ (Kxi
) + Mxi

ρλ (Kxi
) + ρ,

where, Mxi
= maxj∈{1,...,ni} supθ ψ (zi,j , θ), and

B3 =
ni∑

j=1

∫

Ai,j

∣∣∣∣
∫

Θ

ψ (zi,j , θ)Pxi
(dθ)−

∫

Θ

ψ (y, θ) Pxi
(dθ)

∣∣∣∣ λ (dy) .

Now, since

Pxi

[
B (0, r)C

]
≤ ν +

∫
h0

i,2dP 0
xi
≤ ν + P 0

xi

[
B (0, r − ν)C

]
≤ ν + ρ,

it follows that

B3 ≤
ni∑

j=1

∫

Ai,j

∫

B(0,r)

|ψ (zi,j , θ)− ψ (y, θ)|Pxi (dθ)λ (dy)

+
ni∑

j=1

∫

Ai,j

∫

B(0,r)C

[ψ (zi,j , θ) + ψ (y, θ)] Pxi (dθ) λ (dy)

≤ ηλ (Kxi) + Mxi (ν + ρ)λ (Kxi) + ν + ρ.

Finally, by (9) and (10), if

η =
ε

8max1≤i≤T {λ (Kxi)}
,

ν =
ε

4 (2 + max1≤i≤T {Mxiλ (Kxi)})
,

and
ρ =

ε

8 max1≤i≤T {(1 + Mxiλ (Kxi))}
,

then
∫

Y

∣∣∫
Θ

ψ (y, θ) Pxi (dθ)− f0
xi

(y)
∣∣ λ (dy) ≤ ε. Since ε > 0 is arbitrary, the proof is

complete. ¤

If stronger assumptions are placed on ψ, it is possible to show that DDP mixture
models have large Kullback–Leibler support. Specifically, we consider the case where
ψ belongs to an n–dimensional location–scale family of the form ψ(·, θ) = σ−nk

( · −µ
σ

)
,
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where k (·) is a probability density function defined on Rn, µ = (µ1, . . . , µn) is an
n–dimensional location vector, and σ ∈ R+. The following result characterizes the
Kullback–Leibler support of the resulting DDP mixture models.

Theorem 5. Assume that ψ belongs to a location–scale family, ψ(·, θ) = σ−nk
( · −µ

σ

)
,

where µ = (µ1, . . . , µn) is an n–dimensional vector, and σ ∈ R+. Let k be a non–negative
valued function defined on (Y ×Θ, B(Y )⊗B(Θ)), where Y ⊆ Rn is the sample space
with corresponding Borel σ–field B(Y ) and Θ ⊆ Rn × R+ is the parameter space with
corresponding Borel σ–field B(Θ). Assume k satisfies the following conditions:

(i) k (·) is bounded, continuous and strictly positive,

(ii) there exists l1 > 0 such that k (z) decreases as z moves away from 0 outside the
ball {z : ‖z‖ < l1}, where || · || is the L2–norm,

(iii) there exists l2 > 0 such that
∑n

j=1 zj

(
∂k(t)
∂tj

∣∣∣
t=z

)
k(z)−1 < −1, for ‖z‖ ≥ l2,

(iv) when n ≥ 2, k (z) = o (‖z‖) as ‖z‖ −→ ∞.

Furthermore, assume the elements in {f0
xi

: i = 1, . . . , T} satisfy the following condi-
tions:

(v) for some M ∈ R+, 0 < f0
xi

(y) ≤ M , for every y ∈ Rn,

(vi)
∫

f0
xi

(y) log
(
f0

xi
(y)

)
dy < ∞,

(vii) for some δ > 0,
∫

f0
xi

(y) log
(

f0
xi

(y)

inf||y−t||<δ{f0
xi

(t)}
)

dy < ∞,

(viii) there exists η > 0, such that
∣∣∫ f0

xi
(y) log k (2y‖y‖η) dy

∣∣ < ∞ and such that for
any a ∈ Rn and b ∈ R+, we have

∫
f0

xi
(y)

∣∣log k
(

y−a
b

)∣∣ dy < ∞.

If {Gx : x ∈ X } is a DPP, a wDDP or a θDDP, where Rn × R+ is the support of the
corresponding centering distributions, and satisfying the conditions of Theorem 1, 2 or
3, respectively, then

P

{
ω ∈ Ω : dKL

[∫

Rn×R+
ψ (·, θ) G (xi, ω) (dθ) , f0

xi

]
< ε, i = 1, . . . , T

}
> 0,

for ε > 0.

Proof: A direct application of Theorem 2 in Wu and Ghosal (2008), implies that there
exist a probability measure P ε

xi
and a weak neighborhood Wxi such that

∫

Y

f0
xi

(y) log

[
f0

xi
(y)∫

Rn×R+ ψ (y, θ)P ε
xi

(dθ)

]
dy <

ε

2
,
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and ∫

Y

f0
xi

(y) log

[∫
Rn×R+ ψ (y, θ)P ε

xi
(dθ)∫

Rn×R+ ψ (y, θ)Pxi
(dθ)

]
dy <

ε

2
,

for every Pxi
∈ Wxi

and i = 1, . . . , T . Next note that

dKL

[∫

Rn×R+
ψ (·, θ)Pxi

(dθ) ; f0
xi

]
<

∫

Y

f0
xi

(y) log

[
f0

xi
(y)∫

Rn×R+ ψ (y, θ)P ε
xi

(dθ)

]
dy

+
∫

Y

f0
xi

(y) log

[∫
Rn×R+ ψ (y, θ)P ε

xi
(dθ)∫

Rn×R+ ψ (y, θ)Pxi (dθ)

]
dy,

and from Theorems 1, 2 and 3, it follows that

P

{
ω ∈ Ω : dKL

[∫

Rn×R+
ψ (·, θ) G (xi, ω) (dθ) , f0

xi

]
< ε, i = 1, . . . , T

}
≥

P {ω ∈ Ω : (G (x1, ω) , . . . , G (xT , ω)) ∈ Wx1 × . . .×WxT
} > 0,

which completes the proof. ¤

Notice that the conditions of Theorem 5 are satisfied for most of the important
location–scale kernels. In fact, Wu and Ghosal (2008) show that conditions (i) – (iv)
are satisfied by the normal, skew–normal, double–exponential, logistic and t-Student
kernels.

3.4 Extensions to more general dependent processes

Although the previous results about the support of models for collections of probability
distributions are focused on MacEachern’s DDP, similar results can be obtained for
more general dependent processes. Natural candidates for the definition of dependent
processes include the general class of stick–breaking (SB) processes, which includes the
DP, the two–parameter Poisson–Dirichlet processes (Pitman and Yor 1997), the beta
two–parameter processes (Ishwaran and James 2001) and the geometric stick–breaking
processes (Mena et al. 2011), as important special cases. A SB probability measure
is given by expression (1), but where the beta distribution associated with the SB
construction of the weights can be replaced by any collection of distributions defined
on the unit interval [0, 1] such that the resulting weights add up to one almost surely.
Specifically, the weights are given by Wi = Vi

∏
j<i(1 − Vj), for every i ≥ 1, where

Vi | Hi
ind∼ Hi, with Hi being a probability measure on [0, 1], for every i ∈ N, and such

that
∞∑

i=1

Wi
a.s.= 1. (11)

Notice that, under an SB prior, it can be shown that a necessary and sufficient condition
for expression (11) to hold is that

∑∞
i=1 log (1− EHi(Vi)) = −∞.
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For every i ∈ N, let C Vi

X be a set of copulas satisfying the consistency conditions

of Corollary 1 and set C V
X ,N =

{
C Vi

X : i ∈ N
}

. For every i ∈ N, let V Vi

X = {H(i,x) :
x ∈ X } be a collection of probability distributions defined on ([0, 1], B([0, 1])) and set
VX ,N =

{
V Vi

X : i ∈ N
}

.

Definition 4. Let {Gx : x ∈ X } be a P (S)–valued stochastic process on an appropriate
probability space (Ω, A , P ) such that:

(i) V1, V2, . . . are independent stochastic processes of the form Vi : X × Ω → [0, 1],
i ≥ 1, with finite dimensional distributions determined by the set of copulas C Vi

X

and the set of marginal distributions V Vi

X , such that, for every x ∈ X ,

∞∑

i=1

log
[
1− EH(i,x)(Vi(x, ·))] = −∞.

(ii) θ1, θ2, . . . are independent stochastic processes of the form θi : X ×Ω → S, i ≥ 1,
with common finite dimensional distributions determined by the set of copulas C θ

X

and the set of marginal distributions G0
X .

(iii) For every x ∈ X , B ∈ S and almost every ω ∈ Ω,

G (x, ω) (B) =
∞∑

i=1



Vi (x, ω)

∏

j<i

[1− Vj (x, ω)]



 δθi(x,ω) (B) .

Such a process H = {Gx
.= G (x, ·) : x ∈ X } will be referred to as a dependent stick–

breaking process with parameters
(
C V

X ,N, C
θ
X , V V

X ,N, G
0
X

)
, and denoted by DSBP

(
C V

X ,N,

C θ
X ,V V

X ,N, G
0
X

)
.

As in the DDP case, two simplifications of the general definition of the DSBP can be
considered. If the stochastic processes in (i) of Definition 4 are replaced by independent
random variables with label–specific distribution Hi, then the process will be referred to
as “single weights” DSBP, to emphasize the fact that the weights in the stick–breaking
representation (iii) of Definition 4, are not indexed by predictors x. In this case, the
process is parameterized by

(
C θ

X , V V
N , G0

X

)
, and denoted by wDSBP

(
C θ

X , V V
N , G0

X

)
,

where V V
N = {Hi : i ∈ N} is a collection of probability distributions on [0, 1], such that

condition (11) holds. If the stochastic processes in (ii) of Definition 4 are replaced by
independent random vectors with common distribution G0, where G0 is supported on
the measurable space (S, S ), then the process will be referred to as “single atoms”
DSBP, to emphasize the fact that the support points in the stick–breaking representa-
tion are not indexed by predictors x. This version of the process is parameterized by(
C V

X ,N, V
V

X ,N, G
0
)
, and denoted by θDSBP

(
C V

X ,N, V
V

X ,N, G
0
)
.
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Theorem 6. Let {Gx : x ∈ X } be a DSBP
(
C V

X ,N,C
θ
X , V V

X ,N, G
0
X

)
. If Θ ⊆ S is the

support of G0
x, for every x ∈ X , C V

X ,N and C θ
X are collections of copulas with positive

density w.r.t. Lebesgue measure, on the appropriate unitary hyper–cubes, and, for every
i ∈ N, the elements in V Vi

X have positive density on [0, 1], then P (Θ)X is the weak
support of the process, i.e., the DSBP has full weak support.

Proof: The proof follows similar arguments to the ones of Theorem 1. Specifically, it
is only needed to replace

∫

Q1

∫

Q2(v1)

· · ·
∫

Qk+1(v1,...,vk)

fV
x1,...,xT

(v1) · · · fV
x1,...,xT

(vk+1) dvk+1 · · · dv2dv1,

in expression (4) by
∫

Q1

∫

Q2(v1)

· · ·
∫

Qk+1(v1,...,vk)

fV1
x1,...,xT

(v1) · · · fVk+1
x1,...,xT

(vk+1) dvk+1 · · · dv2dv1,

where fVi
x1,...,xT

(vj), j = 1, . . . , k + 1, is the density function of

CVi
x1,...,xT

(Hi,x1 ((0, v1]) , . . . , Hi,xT
((0, vT ])) .

The non–singularity of the H(i,x)’s and of the associated copula functions imply that,
for every i ∈ N,

P {ω ∈ Ω : [Vj (x1, ω) , · · · , Vj (xT , ω)] ∈ Qω
j , j = 1, . . . , k + 1

}
=∫

Q1

∫

Q2(v1)

· · ·
∫

Qk+1(v1,··· ,vk)

fV1
x1,...,xT

(v1) · · · fVk+1
x1,...,xT

(vk+1) dvk+1 · · · dv2dv1 > 0.

¤

Theorem 7. Let {Gx : x ∈ X } be a wDSBP
(
C θ

X , V V
N , G0

X

)
. If Θ ⊆ S is the support of

G0
x, for every x ∈ X , C θ

X is a collection of copulas with positive density w.r.t. Lebesgue
measure, on the appropriate unitary hyper–cubes, and, for every i ∈ N, Hi has positive
density on [0, 1], then P (Θ)X is the weak support of the process, i.e., the wDSBP has
full weak support.

Proof: The non–singularity of the H(i)’s implies that condition (5) holds, for every
i ∈ N. The rest of the proof remains the same as for Theorem 2. ¤

Theorem 8. Let {Gx : x ∈ X } be a θDSBP
(
C V

X ,N, V
V

X ,N, G
0
)
, where Θ is the support

of G0. If C V
X ,N is a collection of copulas with positive density w.r.t. to Lebesgue measure,
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on the appropriate unitary hyper–cubes, and, for every i ∈ N, the elements in V Vi

X have
positive density on [0, 1], then the support of the process is P (Θ)X .

Proof: The proof follows similar arguments to the ones of Theorem 3. It is only needed
to replace

∫

Q1

∫

Q2(v1)

· · ·
∫

Qk+1(v1,...,vk)

fV
x1,...,xT

(v1) · · · fV
x1,...,xT

(vk+1) dvk+1 · · · dv2dv1,

in expression (6) by
∫

Q1

∫

Q2(v1)

· · ·
∫

Qk+1(v1,...,vk)

fV1
x1,...,xT

(v1) · · · fVk+1
x1,...,xT

(vk+1) dvk+1 · · · dv2dv1,

where fVi
x1,...,xT

(vj), j = 1, . . . , k + 1, is the density function of

CVi
x1,...,xT

(Hi,x1 ((0, v1]) , . . . , Hi,xT
((0, vT ])) .

The non–singularity of the H(i,x)’s and of the associated copula functions imply that,
for every i ∈ N,

P {ω ∈ Ω : [Vj (x1, ω) , · · · , Vj (xT , ω)] ∈ Qω
j , j = 1, . . . , k + 1

}
=∫

Q1

∫

Q2(v1)

· · ·
∫

Qk+1(v1,··· ,vk)

fV1
x1,...,xT

(v1) · · · fVk+1
x1,...,xT

(vk+1) dvk+1 · · · dv2dv1 > 0.

¤

Since the proofs of Theorems 4 and 5 depend on the dependent mixing distributions
through their weak support only, the results are also valid for the different versions of
the DSBP. Thus, the following theorems are stated without any proof.

Theorem 9. Let ψ be a non–negative valued function defined on the product measurable
space (Y × Θ,B(Y ) ⊗B(Θ)), where Y ⊆ Rn is the sample space with corresponding
Borel σ–field B(Y ) and Θ ⊆ Rq is the parameter space with corresponding Borel σ–field
B(Θ). Assume that ψ satisfies conditions (i) – (iii) of Theorem 4. If {Gx : x ∈ X }
is a DSBP, a wDSBP or a θDSBP, satisfying the conditions of Theorem 6, 7 or 8,
respectively, then the Hellinger support of the process

{∫
Θ

ψ (·, θ)Gx (dθ) : x ∈ X
}

is

∏

x∈X

{∫

Θ

ψ (·, θ) Px (dθ) : Px ∈ P(Θ)
}

,

where P(Θ) is the space of all probability measures defined on (Θ, B(Θ)).

Theorem 10. Assume that ψ belongs to a location–scale family, ψ(·, θ) = σ−nk
( · −µ

σ

)
,

where µ = (µ1, . . . , µn) is an n–dimensional vector, and σ ∈ R+. Let k be a non–negative
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valued function defined on (Y ×Θ, B(Y )⊗B(Θ)), where Y ⊆ Rn is the sample space
with corresponding Borel σ–field B(Y ) and Θ ⊆ Rn × R+ is the parameter space with
corresponding Borel σ–field B(Θ). Assume k satisfies conditions (i) – (iv) of Theorem
5 and that the elements in {f0

xi
: i = 1, . . . , T} satisfy conditions (v) – (viii) of Theorem

5. If {Gx : x ∈ X } is a DSBP, a wDSBP or a θDSBP, where Rn × R+ is the support
of the corresponding centering distributions, and satisfying the conditions of Theorem
6, 7 or 8, respectively, then

P

{
ω ∈ Ω : dKL

[∫

Rn×R+
ψ (·, θ) G (xi, ω) (dθ) , f0

xi

]
< ε, i = 1, . . . , T

}
> 0,

for ε > 0.

4 Concluding remarks and future research

We have studied the support properties of DDP and DDP mixture models, as well as
those of more general dependent stick–breaking processes. By exploiting the connection
between copulas and stochastic processes, we have provided sufficient conditions for
weak and Hellinger support of models based on DDP’s. We have also characterized the
Kullback–Leibler support of mixture models induced by DDP’s and showed that the
results can be generalized for the class of dependent stick–breaking processes. Several
versions of the DDP were considered, in particular a version where only the weights
are indexed by the predictors. The results suggest that we may consider parsimonious
models that index only the weights or only the support points by the predictors, while
retaining the appealing support properties of a full DDP model. This opens new possi-
bilities for the development of single–atoms DDP models, for which there is a scarcity
of literature. In particular, a back–to–back comparison of these simplified models is of
interest.

The results on the support of MacEachern’s DDP, DSBP and their induced mixture
models provided here can be useful for studying frequentist asymptotic properties of the
posterior distribution in these models. In fact, using the same strategy adopted in Norets
and Pelenis (2011) and Pati et al. (2011), the weak and strong consistency of the different
versions of MacEachern’s DDP and DSBP mixture models could be anticipated. These
authors study the frequentist consistency of the posterior distribution of the induced
joint model for responses and predictors, (y, x), under iid sampling. Therefore, the
asymptotic properties provided by these authors are based on the consistency results
for single density estimation problems. Our approach differs from these works in that
we adopt a conditional framework (of the responses given the predictors), which implies
the need to work with product spaces. The study of the asymptotic behavior in the
conditional context is also of interest and is the subject of ongoing research.
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Appendix A

Lemma 1. Let P (Θ) be the space of all probability measures defined on (Θ, B(Θ)).
Let G0 be an absolutely continuous probability measure w.r.t. Lebesgue measure, with
support Θ. Let

U (P0, f1, . . . , fk, ε) =
{

P ∈ P (Θ) :
∣∣∣∣
∫

fidP −
∫

fidP0

∣∣∣∣ < ε, i = 1 . . . k

}
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be a weak neighborhood of P0 ∈ P (Θ), where ε is a positive constant and fi, i =
1, . . . , k, are bounded continuous functions. Then there exists a probability measure in
U (P0, f1, . . . , fk, ε) which is absolutely continuous w.r.t. G0.

Proof: Since the set of all probability measures whose supports are finite subsets
of a dense set in Θ is dense in P (Θ) (Parthasarathy 1967, page 44), there exists a
probability measure Q∗ (·) =

∑N
j=1 Wjδθj

(·), where N ∈ N, (W1, . . . , WN ) ∈ ∆N , with
∆N = {w1, . . . , wN : wi ≥ 0, i = 1, . . . , N,

∑N
i=1 wi = 1} denoting the N–simplex, and

different support points θ1, . . . , θN ∈ Θ, such that
∣∣∣∣
∫

fidQ∗ −
∫

fidP0

∣∣∣∣ <
ε

2
, i = 1, . . . , k.

In addition, there exists an open ball of radius δ > 0, denoted by B (θj , δ), such that
for every θ ∈ B (θj , δ), with B (θl, δ)

⋂
B (θj , δ) = ∅, for every l 6= j, fi(θ) satisfies the

following relation
fi (θj)− ε

2N
< fi (θ) < fi (θj) +

ε

2N
.

Now, let Q be a probability measure with density function given by

q (θ) =
N∑

j=1

Wj

cθj ,δ
IB(θj ,δ)

⋂
Θ (θ) ,

where cθj ,δ denotes the Lebesgue measure of B (θj , δ)
⋂

Θ and IA(·) is the indicator
function of the set A. It follows that

Wjfi (θj)−Wj

(
fi (θj) +

ε

2N

)
<

Wjfi (θj)−
∫

B(θj ,δ)

fi (θ) q (θ) dθ < Wjfi (θj)−Wj

(
fi (θj)− ε

2N

)
,

and ∣∣∣∣∣Wjfi (θj)−
∫

B(θj ,δ)

fi (θ) q (θ) dθ

∣∣∣∣∣ <
ε

2N
,

which implies that

∣∣∣∣
∫

fidQ∗ −
∫

fi (θ) q (θ) dθ

∣∣∣∣ <

N∑

j=1

∣∣∣∣∣Wjfi (θj)−
∫

B(θj ,δ)

fi (θ) q (θ) dθ

∣∣∣∣∣ <
ε

2
.

Thus,
∣∣∣∣
∫

fidQ−
∫

fidP0

∣∣∣∣ ≤
∣∣∣∣
∫

fidQ∗ −
∫

fidP0

∣∣∣∣ +
∣∣∣∣
∫

fidQ−
∫

fidQ∗
∣∣∣∣ ≤ ε,

and therefore, Q ∈ U (P0, f1, . . . , fk, ε). Moreover, the support of Q is contained in Θ,
i.e., Q is an absolutely continuous probability measure w.r.t. G0. ¤
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