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APPROXIMATE GROUP CONTEXT TREE

BY ALEXANDRE BELLONI AND ROBERTO I. OLIVEIRA1
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We study a variable length Markov chain model associated with a group
of stationary processes that share the same context tree but each process has
potentially different conditional probabilities. We propose a new model se-
lection and estimation method which is computationally efficient. We de-
velop oracle and adaptivity inequalities, as well as model selection proper-
ties, that hold under continuity of the transition probabilities and polynomial
β-mixing. In particular, model misspecification is allowed.

These results are applied to interesting families of processes. For Markov
processes, we obtain uniform rate of convergence for the estimation error of
transition probabilities as well as perfect model selection results. For chains
of infinite order with complete connections, we obtain explicit uniform rates
of convergence on the estimation of conditional probabilities, which have an
explicit dependence on the processes’ continuity rates. Similar guarantees are
also derived for renewal processes.

Our results are shown to be applicable to discrete stochastic dynamic pro-
gramming problems and to dynamic discrete choice models. We also apply
our estimator to a linguistic study, based on recent work by Galves et al. [Ann.
Appl. Stat. 6 (2012) 186–209], of the rhythmic differences between Brazilian
and European Portuguese.

1. Introduction. In this paper, we are interested in applying context tree mod-
els, also known variable length Markov chains (VLMCs), to the estimation of
transition probabilities and dependence structures in discrete-alphabet stochastic
processes. Context tree models describe processes where each infinite “past” has
a finite suffix—the context—that suffices to determine the transition probabilities.
As such, they are generalizations of finite-order Markov chains, for which contexts
exist and are of fixed length. Context tree processes first appeared in Rissanen’s
seminal paper [24], where two appealing traits were noted.

• Parsimony: a Markov chain model must have an order parameter that is large
enough to distinguish any two pasts with different transition probabilities. By
contrast, by using different context lengths for different pasts, one may need
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less parameters to specify the model. (Incidentally, this motivates the VLMC
terminology.)

• Computationally efficient estimation: the set of context has a natural suffix tree
structure, known as the context tree. The fact that this is a tree allows for effi-
ciency search over an exponentially large class of models. Rissanen’s original
Context algorithm for estimating the context tree relied strongly on this.

Both traits have continued to play a role over the years as a growing number of
papers on context tree models appeared in Statistics [10, 11, 16], Information The-
ory [18, 27, 28], Bioinformatics [3] and Linguistics [17]. In this last paper, inter-
pretability of context trees has also played a role, which adds to their interest as
practical tools.

In this paper, we consider context tree model selection and estimation for a
group of L ≥ 1 stationary processes over a discrete alphabet. These stationary pro-
cesses have the same context tree but possibly different conditional probability
distributions. We refer to this model as group context tree alluding to the recent
literature on group lasso [21, 22, 29]. As in the case of group lasso, by combin-
ing different processes with similar dependence structure we hope to improve the
overall estimation. In addition, the model we consider also allows for processes
which are only approximately described by a finite context tree, hence the name
approximate group context tree (AGCT) model.

Although this group context tree setting is new, our estimator and the results
we obtain are related to several papers that considered a single stationary process
(L = 1), which we outline briefly. Bühlmann and Wyner [11] proved properties of
the Context estimator allowing the model to grow with the sample size. They also
studied a bootstrap scheme based on fitted VLMCs. Ferrari and Wyner [16] con-
sider processes with infinite dependence for which there exist “good” context tree
approximations. They established new results on a sieve methodology based on an
adaptation of the Context algorithm. The BIC Context Tree algorithm and its con-
sistency properties have been considered in [14, 18] and [26]. Redundancy rates
were studied by [13] and [18]. Several other works contributed to this literature in
various directions; see [9, 10, 19, 27] and the references therein.

In Section 2, we propose an estimator for model selection and estimation of
conditional probabilities based on context tree models, which does not assume a
true VLMC model. As in Rissanen’s original estimator, we first build a full suffix
tree for the observed sample, then prune the tree by removing “statistically in-
significant” nodes. In addition to considering a group of processes, the proposed
estimator also differs on how we define insignificance. We use a procedure remi-
niscent of Lepskii’s adaptation method [20]. For each suffix, we compute from the
sample an (approximate) confidence radius for its vector of transition probability
estimates (one for each process). We then recursively prune any leaf node w whose
descendants w′ in the full sample suffix tree (i.e., the tree prior to pruning) are all
“compatible” with the parent of w, in the sense that the corresponding confidence
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regions intersect. By a judicious choice of confidence radii, this procedure auto-
matically balances the variance coming from the random sampling with the bias
incurred by the truncation mechanism.

Section 3 details the assumptions we impose on processes, most notably con-
tinuity of transition probabilities (deeper truncation implies arbitrarily good ap-
proximation). Based on this, finite sample results on adaptivity and model selec-
tion properties are presented in Section 4. In that same section, we present stronger
results, including oracle inequalities, that require an added assumption of polyno-
mial β-mixing. Previous work in the area imposed assumptions that implied a true
finite VLMC model, exponential mixing properties and/or nonnullness (positivity)
of the transition probabilities, which we manage to avoid here. Moreover, our ora-
cle inequality for the AGCT estimator (Corollary 1) seems to be the first result of
its kind for context tree estimation, even in the single process case.

In Section 5, we present three classes of examples where our general results
can be applied. For parametric models (i.e., actual finite-order Markov chains),
we derive uniform rate of convergence to transition probabilities, as well as per-
fect model selection, under weaker assumptions than [11] (which only covered the
single process case). For chains of infinite order with complete connections, we
obtain explicit uniform rates of convergence on the estimation of conditional prob-
abilities, which have an explicit dependence on the processes’ continuity rates. We
also derive explicit uniform rates of convergence for certain renewal processes. In
most cases, we show that the group context tree model can lead to improvements
on the estimation when compared to the single-process case.

Group context tree models are used in Section 6 to estimate dynamic marginal
effects in dynamic choice models [1, 7], and to estimate the value function in
discrete stochastic dynamic programming problems [5, 15, 23, 25]. In these appli-
cations, the objects of main interest are functionals of the conditional probabilities.
We derive uniform bounds on the rate of convergence for the estimates that hold
uniformity over all possible contexts and account for model selection mistakes.
Furthermore, in Section 7 we revisit a study by Galves et al. [17], and apply the
AGCT model to understand the difference between the rhythmic features in Euro-
pean and Brazilian Portuguese. A key point is that the AGCT framework allows
for the processes to have different transition probabilities.

Section 8 discusses variations of the estimator and comparisons, and a final sec-
tion adds some further thoughts. Proofs are mostly contained in two Appendices.
Simulations and some auxiliary theoretical results are provided in the supplemen-
tary material [4].

1.1. Notation. Let A denote a finite set (called alphabet), and the set of prob-
ability distributions over A will be denoted by �A. We use A−1

−k to denote all

A-valued sequences with length k, and A∗ = A−1−∞ ∪ (
⋃∞

k=0 A−1
−k). The length

of a string w is denoted by |w| and, for each 1 ≤ k ≤ |w|, w−1
−k is the suffix
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of w with length k. We also let w−1
0 = e, the empty string. A subset T̃ ⊂ A∗

is a tree if the empty string e ∈ T̃ and for all w = w−|w| · · ·w−1 ∈ T̃ \ {e} the
string w−1

−k = w−k · · ·w−1 ∈ T̃ for any k ≤ |w|. The parent of w is denoted by
par(w) = w−|w|+1 · · ·w−1. An element of a tree T̃ that is not the parent of any
other element in T̃ is said to be a leaf of T̃ . For w,w′ ∈ A∗, we write w 
 w′ if w

is a suffix of w′.
We associate with each tree T̃ and each x = · · ·x−3x−2x−1 ∈ A−1−∞ a suffix

T̃ (x) of x with the following rule:

• If x−1
−k ∈ T̃ for all k ∈ N, then T̃ (x) = x;

• Otherwise, take the largest k ∈ N with x−1
−k ∈ T̃ and set T̃ (x) = x−1

−k . (Note that
this is the empty string if k = 0.)

The strings of the form T̃ (x) where x ranges over A−1−∞ will be called the termi-
nal nodes of T̃ . Notice that all terminal nodes are either leaves or infinite strings.
For two sequences an, bn we denote an � bn if an = O(bn). The indicator function
of an event E is denoted by 1E , and for q ≥ 1 the ‖ · ‖L,q -norm of a vector v ∈ RL

is defined as

(1.1) ‖v‖L,q =
(

1

L

L∑
�=1

|v�|q
)1/q

.

2. Setting for group context trees. A pair (T̃ , p̃) will correspond to a tree
T̃ and a mapping p̃ that assigns to each terminal node v of T̃ a probability distri-
bution p̃(·|v) over a finite alphabet A. A stationary ergodic process X ≡ (Xk)k∈Z
will be said to be compatible with (T̃ , p̃) if

P
(
X0 = a|X−1−∞

)= p̃
(
a|T̃ (X−1−∞

))
almost surely.

On a group context tree model, we have a family X = (X(�))L
�=1 of L indepen-

dent and stationary processes

X(�) ≡ (Xk(�)
)
k∈Z (1 ≤ � ≤ L),

a single context tree T ∗, and (possibly distinct) probability distributions p�, � =
1, . . . ,L, such that the �th process is compatible with (T ∗,p�) for � = 1, . . . ,L.
Note that T ∗ is possibly infinite so that this is not a restriction/assumption on the
model. Moreover, if the �th process is compatible with a context tree T �, we have
T ∗ =⋃L

�=1 T �, and we may redefine p� correspondingly.
To quantify the approximation error, we use a metric d� : �A × �A → [0,1]

for each process, � = 1, . . . ,L and write the associated L-vector d(p, q) =
(d1(p1, q1), . . . , dL(pL, qL))′. We will aggregate the approximation errors across
processes through ‖d(p, q)‖L,� where ‖ · ‖L,� is the norm defined in (1.1). For
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simplicity, we consider all metrics d� to be equal and of a certain specific kind.
Namely, there exists a collection S of subsets of A such that

(2.1) d�(p�, q�) = sup
S∈S
∣∣p�(S) − q�(S)

∣∣, � = 1, . . . ,L.

Our main interests are in the �1 metric, where S = 2A consists of all subsets of A,
and the �∞ metric, where S consists of all singletons of A.

2.1. The AGCT estimator. In this section, we discuss the model selection
method which leads to the estimation of the conditional probabilities from a sample
of L processes. For each � = 1, . . . ,L, our sample consists of a string of size n with
symbols from A denoted as Xn

1(�) ≡ (X1(�), . . . ,Xn(�)). For a string w ∈ A∗, we
let Nk,�(w) denote the number of occurrences of w in Xk

1(�).
2 (For notational con-

venience, we assume that the length n of the sample of each process is the same
but the analysis does not rely on that.)

The algorithm proceeds in three steps: Initialization, Identification of Remov-
able Nodes and Pruning. Next, we describe in detail the procedure. In what follows,
we let En be the suffix tree that contains every string w ∈ A∗ which appears in all
L data sequences of the sample Xn−1

1 , namely

(2.2) En =
{
w ∈ A∗ : min

�=1,...,L
Nn−1,�(w) > 0

}
.

Step 1: Initialization. For each w ∈ En, we specify a conditional probability
estimate and a confidence radius:

p̂n,�(a|w) ≡ Nn,�(wa)

Nn−1,�(w)
for a ∈ A,� = 1, . . . ,L, and ĉr�(w).(2.3)

The estimator p̂n,�(a|w) is a nonparametric estimate for the transition probability
p�(a|w). The confidence radius ĉr�(w), to be specified in Section 2.2 below, de-
pends on the choice of �. With high probability, it is essentially an upper bound
for the distance between p(·|w) and p̂n(·|w), up to a bias factor that comes from
truncating the past of the process at w (this is related to the continuity rates, cf.
Assumption 2 below).

Step 2: Identifying removable nodes. For a fixed constant c > 1, define for each
w ∈ En:

(2.4)

CanRmv(w) ≡

⎧⎪⎪⎨
⎪⎪⎩

1, if for all w′,w′′ ∈ En with w 
 w′,par(w) 
 w′′,∥∥d(p̂n

(·|w′), p̂n

(·|w′′))∥∥
L,� ≤ c

∥∥ĉr
(
w′)∥∥

L,r + c
∥∥ĉr
(
w′′)∥∥

L,r;
0, otherwise.

2Formally defined for k ≥ |w| + 1, so that Nk,�(w) denotes the number of indices i, |w| ≤ i ≤ k,

with Xi
i−|w|(�) = w.
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Intuitively, CanRmv(w) = 1 means that we can remove w, which happens if
and only if, for any two nodes w 
 w′, par(w) 
 w′′, the distance between the
corresponding transition probability estimates is smaller than the sum of the noise
levels at the nodes. The slack factor c > 1 allows us to keep a check on the bias
that might be incurred by removing w. Our analysis in the Appendix shows that
using c > 1 implies that, with high probability, this bias will not be much larger
than the noise.3 This is similar, for example, to the slack parameter used in [6], and
we recommend c = 1.01 in practice.

Step 3: Pruning. Let T̂n ← En. Prune any leaf of T̂n with CanRmv(w) = 1.
Repeat until all leaves of T̂n have CanRmv(w) = 0. Return (P̂n, T̂n) where

P̂n(a|x) ≡ p̂n

(
a|T̂n(x)

)
for all x ∈ A−1−∞ and a ∈ A.

This last step keeps the smallest subtree of En containing all nodes that cannot
be removed [i.e., for all w ∈ T̂n we have CanRmv(w) = 0]. For completeness, we
provide detail algorithm in Figure 1 in Section 4 of the supplementary material [4].
The context tree T̂n is our selected model, and the transition probability estimate
P̂n is compatible with it. We will show that pruning typically removes high-noise
nodes, and the bias incurred by pruning is kept manageable by the test in CanRmv.

2.2. Data-driven choices of confidence radii. The performance of our algo-
rithm is heavily dependent on choices of confidence radii ĉr�(w). As noted above,
we will choose those so as to bound from above the deviations ‖d(p̂n(·|w),p(·|
w))‖L,� up to an extra error term depending on the continuity rates. There is an
important tradeoff between a large confidence radius that introduces a large bias
and small confidence radius that do not properly account for the noise in the data.
In this section, we present choices that achieve good balance between these factors.
These choices ultimately derive from the self-normalized martingale inequalities
that we present in the Appendix and supplementary material [4].

DEFINITION 1 (First choice of confidence radius). Let 1 − δ, δ ∈ (0,1) be our
desired confidence level. For w ∈ En, � = 1, . . . ,L, let

ĉr�(w) ≡
√

4

Nn−1,�(w)

(
2 ln
(
2 + log2 Nn−1,�(w)

)+ ln
(

n2L|S|
δ

))
.

The choice above satisfies ĉr�(w) ∼ √log(nL/δ)/Nn−1,�(w). This choice ex-
hibits the same behavior as in the case of a single group (L = 1) provided
log L � logn, which encompasses most cases of interest. The choice in Defini-
tion 1 is desired when we want our estimates of the transition probabilities to be

3See the proof of Lemma 2.
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uniformly good approximations. The next proposal for confidence radius is appro-
priate when the number of processes is large and we want our estimates to be good
on average.

DEFINITION 2 (Second choice of confidence radius). Let 1 − δ, δ ∈ (0,1), be
the desired confidence level. Assume the condition

(2.5) L ≥ 6 ln
(

n2

δ

)

and for w ∈ En, � = 1, . . . ,L, let

ĉr�(w) ≡
√√√√ 4

Nn−1,�(w)

(
2 ln
(
2 + log2 Nn−1,�(w)

)+ ln |S| + 1 +
√

6 ln(n2

δ
)

L

)
.

In this case, because of (2.5), the rate of ĉr�(w) is
√

log logn/Nn−1,�(w) im-
proving upon the single-process case. This is remarkably close to the error in the
estimation of probabilities if the model was known in advance.

3. Assumptions. In this section, we state the main assumptions on the pro-
cesses (X(�))L

�=1 for our main results. For clarity, we decided to use relatively
transparent hypotheses, but slightly more general assumptions can be imposed
with very few changes.

3.1. Basic distributional assumptions. We start with the simplest assumptions
that allow for effective use of the group structure, in that we consider the same
“prefixes” for all processes. To make this precise, we define the support supp� of
process X(�) as the set

supp� ≡ {x−1−∞ ∈ A−1−∞ : ∀k ∈ N,P
(
X−1

−k(�) = x−1
−k

)
> 0
}
,

and formally state our condition.

ASSUMPTION 1 (Framework). We have L processes

X(�) = (Xk(�)
)
k∈Z, 1 ≤ � ≤ L

taking values in the same discrete alphabet A which are independent and station-
ary. All processes have the same (potentially infinite) context tree T ∗ and (poten-
tially different) transition probabilities p1, . . . , pL. The sets supp�, 1 ≤ � ≤ L, are
all equal. We denote by supp ≡ supp1. We observe {Xn

1(�)}L
�=1, samples of length

n ≥ 9 of the stochastic processes {X(�)}L
�=1.
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3.2. Continuity rates and mixing. The uniform control we aim for essentially
requires that truncating the past of the process at some past time −k, k � 1, is not
too hurtful for the transition probabilities.

ASSUMPTION 2 (Continuity). The processes X(�), 1 ≤ � ≤ L, are continuous.
That is, for each �, there exists a version of the conditional probabilities p� of the
X(�) process such that the quantities

γ�

(
x−1
−k

)≡ sup
y,z∈A−1−∞:y−1

−k =z−1
−k=x−1

−k

d�

(
p�(·|y),p�(·|z))

converge to 0 as k → +∞, for all x−1−∞, where d� is a metric as in (2.1).

The numbers γ�(·) are the continuity rates of process �. A compactness argu-
ment implies that their convergence to 0 is uniform in x ∈ A−1−∞. However, our
estimator will adapt to the continuity rates, meaning that it will tend to do better
on pasts that are “more continuous.”

4. Finite sample analysis. In this section, we derive our main theoretical re-
sults on the performance of the estimates proposed in Section 2.

4.1. Main results: Adaptivity and an oracle inequality. We can now state our
main result.

THEOREM 1 (Main theorem; proven in Appendix A). Under Assumptions 1
and 2, let T̂n and P̂n denote the tree and transition probabilities output by the
AGCT algorithm with δ ∈ (0,1), c > 1 and one of the options below:

• General case. We use any � ∈ [1,∞], take r = � and use the confidence radii
as in Definition 1.

• Many processes. In this case, we assume condition (2.5) in Definition 2, take
�= 1, r = 2 and use the confidence radii in that definition.

Then the following facts hold simultaneously with probability at least 1 − δ:

1. The estimated tree is contained in the correct tree: T̂n ⊂ T ∗.
2. Uniformly over x ∈ supp, we have

∥∥d(p(·|x), P̂n(·|x)
)∥∥

L,� ≤ inf
T

2c + 2

c − 1

∥∥γ (T (x)
)∥∥

L,� + (1 + 2c)
∥∥ĉr
(
T (x)

)∥∥
L,r .

Theorem 1 contains two assertions that hold with high probability. First, the
AGCT estimator does not give a bigger tree than necessary: this is advantageous
when there is a true, finite VLMC model with a small T ∗. However, note that, in
general, T ∗ might contain some infinite paths.
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Second, Theorem 1 shows that our estimator adapts to the continuity rates of
the process in a very strong, pastwise sense. The transition probabilities for more
frequent pasts are better approximated because the confidence radii ĉr�(T (x)) de-
crease when the Nn−1,�(T (x)) increase. This is enough to imply the almost sure
converge of the AGCT probability estimates to the transition probabilities for con-
tinuous, ergodic processes, when the sample size n increases and the values of
δ = δ(n) chosen are summable.

An added feature is that, under (2.5), we may use the second choice of confi-
dence radii in Definition 2 (with � = 1, r = 2) and obtain faster rate of conver-
gence by a

√
logn/ log logn factor relative to the choice in Definition 1. This is

indeed the case for some processes studied in more detail in the supplementary
material [4].

REMARK 1 (Generality of adaptivity). The result in Theorem 1 holds for any
stationary process. The generality of Theorem 1 is achieved through the use of
self-normalized martingale inequalities derived in the supplementary material [4].
Those inequalities are used to establish the validity of the data-driven choice of the
confidence radius. However, the rates of convergence depend on sample realization
through the confidence radius. In order to derive explicit rates of convergence, it is
necessary to control how fast the L processes lose memory; see Section 4.2.

4.2. Main results for β-mixing processes. In this section, we assume the pro-
cesses satisfy a polynomial β-mixing condition, which is known to hold for a
wide class of processes. (This property can sometimes be derived from the con-
tinuity rates; see Section 5.) Recall that a process X+∞−∞ with values in a finite
alphabet A is said to be β-mixing (or absolutely regular) if there exists a function
β :N → [0,1] with limb∈N,b→∞ β(b) = 0 and ∀k ∈ Z, s ∈ N:

β(b) ≥ E

[
sup

E⊂As

∣∣P(Xk+b+s−1
k+b ∈ E|Xk∞

)− P
(
Xk+b+s−1

k+b ∈ E
)∣∣].

The function β(·) is called a (β-)mixing rate function for X+∞−∞ . We assume the
following.

ASSUMPTION 3 (Polynomial β-mixing). The L processes X(1), . . . ,X(L)

are all polynomially β-mixing with common rate function β(b) ≡ �b−θ (b ∈ N),
where �, θ > 0.

This extra assumption will allow us to control how “typical” context trees be-
have as estimators, which in turn allows us to establish guarantees for the proposed
AGCT estimator. To characterize the set of typical trees, recall that under Assump-
tion 1 the processes X(1), . . . ,X(L) have the same support supp, and we define

(4.1) π�(w) ≡ P
(
X−1

−|w|(�) = w
)

(w ∈ supp,1 ≤ � ≤ L).
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For a finite tree T , define πT as the minimum stationary probability of a leaf node,

πT := min
{
π�(w) : 1 ≤ � ≤ L,w ∈ supp is a leaf of T

}
,

and let hT denote the height of T ,

hT := max
{|w| : w ∈ supp is a leaf of T

}
.

DEFINITION 3 (Typical trees). For (h,π∗), define the set of typical trees
T (h,π∗) as the set of all finite trees T satisfying πT ≥ π∗ and hT ≤ h.

Define also the population analogues of confidence radii:

cr�(w) ≡

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

√
8

π�(w)n

√
2 ln
(
2 + log2

{
π�(w)n/2

})+ ln
( |S|Ln2

δ

)
, or

√
8

π�(w)n

√√√√2 ln
(
2 + log2

{
π�(w)n/2

})+ ln |S| + 1 +
√

6

L
ln
(

n2

δ

)
,

where Nn−1,�(w) is replaced by π�(w)n/2 in ĉr�(w).
The next result exploits the β-mixing condition to provide finite sample bounds

that depend on the population confidence radii of typical trees.

THEOREM 2 (Adaptivity for β-mixing; proven in Appendix B). Make As-
sumption 3 in addition to the assumptions of Theorem 1, and consider the typical
trees T (h,π∗) with parameters h ∈N, π∗ > 0 such that for δ0 ∈ (0,1/e)

(4.2) n ≥ 2 max
{

40h,

⌈
48�L

π∗δ0

⌉1/θ}
×
{

1 + 1200

π∗
log
(

24(h + 1)

δ0π∗

)}
.

Then the following inequality holds with probability at least 1 − δ − δ0, simulta-
neously over all x ∈ supp:∥∥d(P̂n(·|x),p(·|x)

)∥∥
L,�

≤ inf
T ∈T (h,π∗)

2c + 2

c − 1

∥∥γ (T (x)
)∥∥

L,� + (1 + 2c)
∥∥cr
(
T (x)

)∥∥
L,r .

Theorem 2 shows that the estimator balances continuity rates and population
confidence radii over the set of typical trees. The parameters π−1

T and hT of these
trees may grow polynomially with the sample size n, and this allows for the use of
very deep nodes for the estimation of difficult pasts. This strong adaptivity property
may be rephrased as an oracle inequality when �= ∞.

COROLLARY 1 (Oracle inequality). In the setting of Theorem 2, take any
choice (h,π∗) that satisfies (4.2) and set � = ∞, δ = n−a with a > 0. Then there
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exists a constant C > 0 depending only on the slack parameter c > 1, on the al-
phabet |A| and on the exponent a > 0 of δ, such that with probability at least
1 − n−a − δ0,

sup
T ∈T (h,π∗)
p̃ compatible

with T

(
sup

x∈supp

‖d(P̂n(·|x),p(·|x))‖L,∞
‖d(p̃(·|x),p(·|x))‖L,∞ + ‖{

√
logn

π�(T (x))n
}L
�=1‖L,∞

)
≤ C.

This is a consequence of the previous Theorem 2 because any p̃ that is con-
stant on the leaves of T will make errors that are proportional to the continu-
ity rates at those leaves, therefore, adapting its precision to different parts of the
tree. Alternatively, we could compute a different estimators for the context tree
for each process, namely T̂n,� for � = 1, . . . ,L. Under the stated conditions, both
approaches lead to the same rate of convergence and the pruning rules imply that
T̂n ⊂⋃L

�=1 T̂n,�. The potential advantage of the group approach is to provide a sin-
gle context tree that is applicable to all processes. However, under different choices
of � exploiting the group context tree can lead to improvements as discussed ear-
lier (see examples in Section 5).

The proof of Theorem 2 shows that (4.2) suffices as a requirement for the empir-
ical frequency of any leaf w ∈ T in the sample to be close to its expected frequency,
for any given T ∈ T (h,π∗). In the next section, we consider important classes of
processes that fall within this β-mixing framework.

5. Rates of convergence for theoretical examples. In what follows, we ap-
ply the finite sample analysis from the previous section to obtain asymptotic re-
sults for some classes of processes. Throughout this section, we assume that S
and A are fixed. The sample size n diverges, and for each n we have parameters
δ(n), δ

(n)
0 ,L(n) and processes

X(n)(1), . . . ,X(n)(L(n)).
We impose the restrictions

δ(n) + δ
(n)
0 = O

(
n−ξ ) and L(n)(δ(n)δ

(n)
0

)−1 = O
(
nα)

for constants α ≥ ξ > 0. For each example, we make mixing assumptions that we
assume to hold uniformly in n and �. We will omit the superscript (n) from our
notation.

5.1. Parametric case. In our first example, we assume that the true model for
the L processes has a finite context tree T ∗, which is allowed to vary with n. For
a fixed n, this implies the L processes are finite Markov chains, thus exponentially
φ-mixing; we assume uniform exponential β-mixing over all processes and all
values of n. We also assume that T ∗ is a complete tree, meaning that any node has
0 or |A| children (cf. Remark 3 in the supplementary material for some comments
on this condition which is needed just to achieve uniqueness of the context tree).
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EXAMPLE 1 (Parametric case). The processes X(1), . . . ,X(L) are stationary
and ergodic. Moreover, there exist a finite complete tree T ∗ and transition proba-
bilities p = (p1, . . . , pL) that are compatible with the processes

∀1 ≤ � ≤ L,∀a ∈ A : P
(
X(�)0 = a|X(�)−1−∞

)= p�

(
a|T ∗(X(�)−1−∞

))
a.s.

Moreover, each of these processes is stationary β-mixing with the same exponen-
tial rate function:

β(b) = χe−νb,

where χ, ν > 0 are independent of the sample size. We assume that hT ∗π−1
T ∗ =

o(n/ logn) and π−1
T ∗ = O(n1−ε) for some ε > 0.

Finally, we define dT ∗ ≡ 1 if T ∗ = {e}; otherwise, when T ∗ �= {e}, we set

dT ∗ ≡ inf
w leaf of T ∗,w �=e

{
sup

w′�par(w) leaf of T ∗
d
(
p(·|w),p

(·|w′))}.
We assume

d−1
T ∗ = o

(√
πT ∗n

logn

)
.

Note that, by Remark 3 in the supplementary material [4], dT ∗ > 0 is equiva-
lent to requiring that T ∗ is the unique minimal complete context tree compatible
with the processes X(1), . . . ,X(L). Our analysis implies that the “leaf separation
quantity” dT ∗ above is an appropriate detection threshold.

We have the following result.

THEOREM 3. In the parametric case considered in Example 1, with probabil-
ity 1 − O(n−ξ ), we have T̂n = T ∗ and

sup
x∈supp

∥∥d(P̂n(·|x),p(·|x)
)∥∥

L,� = O

(√
logn

πT ∗n

)
.

Moreover, the logn term in the error estimate may be improved to log logn in the
“many processes” case of Theorem 1.

Remark 5 in the supplementary material [4] shows that this compares favourab-
ly with the theorem of Bühlmann and Wyner [11] for the case L = 1.

5.2. Chains with infinite connections. In our second example, we allow for
infinite-order chains, but require a nonnullness condition and polynomial uniform
continuity.
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EXAMPLE 2 (Chains with infinite connections). The processes X(1), . . . ,
X(L) are stationary and ergodic. There exist constants η > 0, θ > 1 + 2α and
�0 > 0 not depending on the sample size n such that for all 1 ≤ � ≤ L,

(nonnullness) : inf
a∈A,x∈A−1−∞

p�(a|x) ≥ η

and

∀k ∈ N max
w∈A−1

−k

∥∥γ (w)
∥∥

L,� ≤ �0k
−1−θ .

In this case, we have the following uniform bound.

THEOREM 4. In the case of chains with infinite connections considered in
Example 2, we have

P

(
sup

x∈supp

∥∥d(P̂n(·|x),p(·|x)
)∥∥

L,� = O

(
1

log1+θ n

))
= 1 − O

(
n−ξ ).

This result shows that P̂n(·|x) converges to p(·|x) uniformly over pasts x, al-
beit at a slow rate 1/ log1+θ n. Section 9 in the supplementary material [4] shows
that this is the minimax rate for uniform convergence over pasts, when L = 1 and
A = {0,1}. Nonetheless, because of the adaptivity of the estimator, faster rates of
convergence would be achieved for pasts with better continuity rates.

5.3. Renewal processes. Our last example consists of stationary binary re-
newal processes whose arrival distributions have uniformly bounded 2 + θ mo-
ments, θ > 0.

EXAMPLE 3 (Renewal processes). Each process X(�) is a stationary and er-
godic binary renewal process. The arrival distributions μ� have support on the
whole of N and satisfy ∑

k∈N
μ�(k)k2+θ ≤ C

for constants C,θ > 0 that do not depend on 1 ≤ � ≤ L or on the sample size.
Moreover, there exist values {f�}L

�=1 (possibly depending on n) such that

(5.1) f� = lim
k→+∞

μ�(k)∑
j≥k μ�(j)

.

In this example, we have no control over the continuity rates of the process at
arbitrarily deep levels. We establish the following result.
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THEOREM 5. In the case of renewal processes as in Example 3, let G ⊂ A−1−∞
be the subset of all strings x = · · ·10s−1 where s is such that

min
1≤�≤L

∑
j≥s

μ�(j) ≥ n− θ
θ+1 logn.

Then the AGCT estimator satisfies the following with probability 1 − O(n−ξ ):

∀x = · · ·10s−1 ∈ G :
∥∥d(P̂n(·|x),p(·|x)

)∥∥
L,∞ ≤ C

∥∥∥∥
{√

logn

n
∑

j≥s μ�(j)

}L

�=1

∥∥∥∥
L,∞

.

Theorem 5 highlights the adaptivity of the rates of convergence. Indeed for
pasts x ∈ G that are more frequent, corresponding to larger values of

∑
j≥s μ�(j),

a faster rate of convergence is obtained.

6. Example of applications to functionals. In this section, we develop two
applications of the AGCT model and estimation algorithms. In both cases, the
main objects of interest are neither the context trees, nor the transition probabili-
ties, but rather functionals of these quantities. In what follows, we estimate these
functionals based on T̂n and P̂n accounting for the estimation error and possi-
ble misspecification. These two applications rely on different metrics and penalty
functions, providing a motivation for the generality of the previous analysis.

6.1. Discrete stochastic dynamic programming. Discrete stochastic dynamic
programming (DSDP) focuses on solving structured optimization problems in
which a control u is chosen from a set of discrete options U at time t and yields
some instantaneous payoff f (a,u), where a ∈ A is the current state. The system
evolves to a state xt+1 at period t + 1 according to an A-valued random function
s(xt−∞, u) satisfying

P
(
s
(
xt−∞, u

)= a
)= pu

(
a|xt−∞

)
(a ∈ A,u ∈ U).

That is, the transition probabilities of s(xt−∞, u) depend on the chosen control
u ∈ U and (potentially) the complete history of states xt−∞ ∈ A−1−∞.

In applications, the main object of interest is the value function that characterize
the expected future payoffs as a function of the history of states:

V (x) = max
u∈U
{
f (x−1, u) + λE

[
V
(
xs(x,u)

)]}
,

where λ < 1 is the discount factor and xs(x,u) is the concatenation of x with
s(x,u). In practice, the transition probabilities between states need to be esti-
mated. However, even if transition probabilities were known a priori, the tractabil-
ity of a dynamic programming formulation relies on avoiding a large state space
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(in this case potentially A−1−∞). Nonetheless, the selected state space needs to be
rich enough to capture the main features of the transition function s(·, ·).

Our motivation to apply the AGCT estimator is to create estimates for the tran-
sition probabilities while maintaining a data-driven manageable state space. This
is exactly the case in which using the AGCT model can be more attractive than
using a (potentially much larger) compatible tree T ∗. We advocate in favor of a
small approximation error (i.e., comparable with the noise in the estimation) with
a substantially smaller state space. Thus, for x ∈ A−1−∞, we propose to estimate the
value function with

V̂ (x) = V̂
(
T̂n(x)

)
,

and the transition probabilities with p̂n,u(·|T̂n(x)) = P̂n,u(·|x), which are allowed
to depend on the action u ∈ U . The total number of states of the estimated system
is the number of leaves of T̂n.

Let the number of groups L = |U |, d� = ‖ · ‖1/2 and � = r = ∞. The data
consists of |U | time series of length n where on each series the decision is chosen
to be constant u ∈ U .

THEOREM 6. In the discrete stochastic dynamic programming problem, by
choosing ĉr as in Definition 1, we have that with probability at least 1 − δ the
estimator V̂ of the value function satisfies

sup
x∈supp

|V̂ (x) − V (x)|
sup
a∈A

|V (xa)|inf
T

{‖γ (T (x))‖L,1 + ‖ĉr(T (x))‖L,∞} ≤ λ

1 − λ
4c

c + 1

c − 1
,

where ‖ĉr(T (x))‖L,∞ � max�=1,...,L

√
log(nL/δ)+|A|
Nn−1,�(T (x))

.

As before, the estimator enjoys adaptivity. In particular, if we restrict the mini-
mum above to typical trees we have the following corollary.

COROLLARY 2 (Value function approximation for β-mixing). Under the same
assumptions of Theorems 2 and 6 with probability at least 1 − δ − δ0

sup
T ∈T (h,π∗)

sup
x∈A−1−∞

|V̂ (x) − V (x)|
sup
a∈A

|V (xa)|{‖γ (T (x))‖L,1 + max
�=1,...,L

√
log(n/δ)

nπ�(T (x))
}

≤ Cλ

1 − λ
.

6.2. Dynamic discrete choice models. In dynamic discrete choice models, a
group of agents makes choices among the same set of options over time [1, 2, 7,
8, 12]. Models usually pre-specify a Markovian structure of the process, which is
commonly assumed to be of order 1. We are interested in relaxing this assumption
and to estimate the relevant context tree and the associated transition probabilities.
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Agents are assumed to be sampled independently from the same population. We

assume that the underlying context tree is the same across agents, but allow for the

specific transition probability to vary by agent to account for heterogeneity. Herein

we focus on the case with no covariates, but results can be extended to the case of

discrete covariates [7, 8].

In applications, the main interest is on statistics that are functions of the condi-

tional probabilities rather than the conditional probabilities themselves. Here, we

focus on the average marginal dynamic effect for a ∈ A, x, y ∈ A−1−∞

AVEm(a, x, y) = E
[
m�(a, x, y)

]
,
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where the marginal dynamic effect m�(a, x, y) = p�(a|x) − p�(a|y), and the ex-
pectation is taken over the distribution of agents in the population of interest. The
average marginal dynamic effect measures the average over the population of the
change in the probability of selection of an option a ∈ A between two different his-
tories of past consumption x, y ∈ A−1−∞. Other measures of interest in the literature
are the long run proportions of a particular option being chosen, or the probability
of selecting a particular option t periods ahead given the current state; see [7].

The estimator of the marginal dynamic effect for an option a ∈ A and histories
of consumptions x, y ∈ A−1−∞ for the �th agent is

m̂�(a, x, y) = p̂n,�

(
a|T̂n(x)

)− p̂n,�

(
a|T̂n(y)

)
,

and the estimator for the average marginal dynamic effect is

ˆAVEm(a, x, y) = 1

L

L∑
�=1

m̂�(a, x, y).

Therefore, if the conditional probabilities were known, a rate of 1/
√

L would be
optimal for the estimation of a single average marginal dynamic effect. In what
follows, we will use the AGCT model to estimate these dynamic effects uniformly
over all histories. This motivates the choice of d� = ‖ · ‖∞, �= 1 and r = 2 in the
AGCT estimator.

THEOREM 7. In the dynamic discrete choice model, if the context tree and
conditional probabilities are estimated with ĉr as in Definition 2, we have that
with probability at least 1 − 2δ the estimator for the average marginal dynamic
effect satisfies

sup
a∈A,

x,y∈supp

| ˆAVEm(a, x, y) − AVEm(a, x, y)|

max
z=x,y

inf
T

{‖γ (T (z))‖L,1 + ‖ĉr(T (z))‖L,2} +
√

2 log(
|A|·n4

4δ
)

L + 2
L

≤ 8c
c + 1

c − 1
,

where ‖ĉr(T (z))‖L,2 �
√

log logn+log |A|
L

∑L
�=1 1/Nn−1,�(T (z)), z ∈ A−1−∞.

This uniform rate of convergence for the average marginal dynamic effect is
governed by the rate of convergence of the conditional probabilities of the best
context tree estimator, and the number of different agents in the data. Interestingly,
the above result holds uniformly over all pairs x, y ∈ A−1−∞.
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7. Linguistic rhythm differences between European and Brazilian Por-
tuguese. In this section, we revisit the application and the data considered in
[17] regarding the linguistic features underlying the European Portuguese (EP)
and Brazilian Portuguese (BP) languages. The goal of [17] was to compare the
rhythmic fingerprints of the two languages in written form.

For each language, the data consist of articles from a popular daily newspa-
per from the years 1994 and 1995. For each year and each newspaper, 20 articles
were randomly selected. The linguistic features are represented by a quinary alpha-
bet with four rhythmic features (0,1,2,3) and an additional feature representing
the end of an article (4). The four rhythmic features represent: nonstressed, non-
prosodic word initial syllable (0); stressed, nonprosodic word initial syllable (1);
no-stressed, prosodic word initial syllable (2); and stressed prosodic word initial
syllable (3). Each data sample was then treated as a stochastic process, and a vari-
ant of the BIC model selection method was used to fit a context tree to each sample.
Their main finding was summarized as follows.

[T]he main difference between the two languages is that whereas in BP both 2 (unstressed
boundary of a phonological word) and 3 (stressed boundary of a phonological word) are contexts,
in EP only 3 is a context. This means that in EP, as far as noninitial stress words are concerned,
the choice of lexical items is dependent on the rhythmic properties of the preceding words. This
is not true when the word begins with a stressed syllable. This does not occur in BP, where word
boundaries are always contexts, and as such insensitive to what occurs before, independently of
being stressed or not. These statistical findings are compatible with the current discussion in the
linguistic literature concerning the different behavior of phonological words in the two languages
[...] (Galves et al., [17], Section 6)

In [17], for each newspaper, the 40 days sample is concatenated into a single
string containing respectively a sequence of 105,326 and 97,750 linguistic fea-
tures. In order to concatenate articles from different days, a homogeneity assump-
tion was required. However, heterogeneity over different days, or at least over the
different years are a source of potential concern. For example, 1994 was a World
Cup year and the media in both countries are heavily influenced by such event.
Our own study accounts for possible heterogeneity on the conditional probabilities
by treating each year as a group in the group context tree model. Thus, we allow
for year specific conditional probabilities.

Figure 1 displays the estimated context trees. Our findings are in good agree-
ment with [17], in that the context trees found for BP in both studies are the same,
and our tree for EP strictly contains the one found in [17]. In particular, we cor-
roborate their finding that 2 is a context for BP but not for EP.

8. Discussions and variations.

8.1. Comparisons with single-process case. We briefly indicate similarities
and differences between the results presented above with [16], which concerns the
single-process case. The work [16] proves weak consistency in the estimation of
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FIG. 1. Estimated context trees for the Brazilian Portuguese and European Portuguese languages
based accounting for heterogeneity in different years.

conditional probabilities and of (truncated) context trees for all nodes in a tree Tn

that grows with the sample size n. For this, they assume that the stochastic process
is geometrically α-mixing, and also that there is sufficient separation between the
conditional probabilities corresponding to leaves of the tree and their parents. The
authors of [16] point out that the latter assumptions might be hard to check in
practice.

Our analysis differs from theirs in several important aspects even in the case of
L = 1 processes. Our goal is to estimate transition probabilities given the entire
infinite past, uniformly over all such pasts. Achieving consistency in our setting
requires that these probabilities be continuous functions of the infinite past, which
[16] do not need to assume. By contrast, given continuity and β-mixing, model se-
lection and probability estimation become separate tasks. In particular, our results
on the transition probabilities do not require any kind of separation between leaves
and their parents. In addition, our results cover natural and interesting classes of
processes (such as certain renewal processes) where geometric mixing bounds are
not available. Other points of the analysis are mostly incomparable due to the dif-
ferences in assumptions.
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8.2. Computational efficiency and variations. The algorithm can be imple-
mented efficiently, that is, in polynomial time with respect to the parameters L
and n of the data. Observe that CanRmv(w) can be computed efficiently from the
list of values:

List(w) ≡ {(p̂n

(·|w′), ĉr
(
w′)) : w′ ∈ En,w

′ � w
}

and the corresponding list for par(w). Since CanRmv(w) is only computed for
leaves of the current tree T̂n, we only need to ensure that at all times, each leaf
node and each parent of a leaf stores the correct list List(w). This can be achieved
as follows:

• initially, one sets List(w) = {p̂n(·|w), ĉr(w)} for each w ∈ En;
• whenever a leaf w is examined in T̂n, its parent’s list is updated:

List
(
par(w)

)← List
(
par(w)

)∪ ( ⋃
w′∈T̂n:par(w′)=par(w)

List
(
w′)).

Actually, this update only needs to be performed at the first time a child of
par(w) is examined.

We note in passing that more efficient algorithms can be found for the case L = 1
with the �∞ metric by using compact suffix trees. This will be elaborated upon in
a companion paper.

All results established in this work would remain valid if in the definition of
CanRmv(w) in (2.4) we set w′′ ∈ W where par(w) ∈ W ⊆ {z ∈ En : z � par(w)}.
For the same choice of confidence radius, computationally we would like to use
the smallest set W while statistically we would like to use the largest such set.

8.3. Improvement on confidence radii based on maximal variance. The
choices of confidence radii described in Definitions 1 and 2 do not explore the
intrinsic variance within the norm, namely

σ̄ 2
� (w) := max

S∈S p̄n,�(S|w)
(
1 − p̄n,�(S|w)

)
where p̄n,�(S|w) is a weighted sum of probabilities defined in (A.3) for which
p̂n,�(S|w) is a consistent estimator. (These probabilities can be seen as an ora-
cle estimator; see Section 1 in the supplementary material [4] for a discussion.)
Generically, adding variance to our bounds does not necessarily improve rates of
convergence but can improve finite sample performance, particularly in the case
of d� = ‖ · ‖∞ with |A| > 2. Here, we discuss such a modification of Definition 1
that leads to strictly smaller confidence radii while still achieving the same guar-
antees as in Theorem 1. However, the variance-based control can be applied to a
suffix w only if there were enough occurrences of the suffix in the data, namely
the following event occurred:

J�,w :=
{
Nn−1,�(w) ≥ 2 log(n2|S|/δ) + 4 log[2 + 2 log(σ̄ 2

� (w)Nn−1,�(w))]
σ̄ 2

� (w) log2(3/2)

}
.
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Otherwise, we use the previous choice as in Definition 1. To concisely state the
results regarding the maximum variance, we define

σ̃�(w) := √
2σ̄�(w)1{J�,w} + 1{J c

�,w} ≤ 1.

We define ĉrσ̃� (w) := σ̃�(w)ĉr�(w). By construction, it follows that ĉrσ̃� (w) ≤
ĉr�,m(w) since σ̃�(w) ≤ 1. However, ĉrσ̃� (w) might not be nonincreasing in w.
Nonetheless, the confidence radius ĉrσ̃� (w) can be majorated by the monotone con-
fidence radius which still leads to an improvement over ĉr�,m(w), namely

ĉr∗�(w) = max
w′
w

ĉrσ̃�
(
w′)≤ max

w′
w
ĉr�,m

(
w′)= ĉr�,m(w).

A side remark is that ĉr∗�(w) requires the estimation of σ̄�(w). Indeed, the esti-
mates need to satisfy σ̄�(w) ≤ σ̂�(w) with high probability uniformly over w ∈ En.
However, it follows that any such estimator will satisfy σ̂�(w) ≤ 1/2 so that even
by setting σ̂�(w) = 1/2 we still achieve smaller confidence radius than the original
definition.

9. Conclusion. Understanding the memory structure of stochastic processes
has proved to be of fundamental importance in applications. VLMC models have
been playing a central role in modeling and estimating stationary processes with
discrete alphabets. In this work, we consider an extension of the traditional VLMC
in which many stationary processes share the same context tree but potentially
different conditional probabilities. Since we allow for potentially infinite mem-
ory processes, we propose to focus the estimation on an oracle context tree that
optimally balances the bias and variance trade-off for a given sample.

We propose a computationally efficient estimator for the underlying context tree
and the associated conditional probabilities. We establish several properties of the
proposed estimator, including adaptivity and oracle inequalities for the estimation
of conditional probabilities. We propose and analyze data-driven choices of the
penalty parameters for the regularization, and study its typical behavior under β-
mixing conditions. Two applications, discrete dynamic stochastic programming
and discrete choice models, motivated the proposal of the AGCT model. In these
applications, we are interest in functionals of the conditional probabilities. We
developed the uniform bounds for the estimation of these functionals accounting
for possible misspecification of the estimated context tree.

Finally, we investigate the application of the group context tree model and the
proposed estimators to investigate the rhythmic differences between Brazilian and
European Portuguese allowing for possible heterogeneity in the sample. Our re-
sults fully support previous findings of the literature.
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APPENDIX A: PROOF OF THEOREM 1

Theorem 1 follows directly from three lemmas related to the good event Good∗:

Good∗
(A.1)

≡ ⋂
w∈A∗

{∥∥d(p(·|w), p̂n(·|w)
)∥∥

L,� ≤ ∥∥{γ�(w)
}L
�=1

∥∥
L,� + ∥∥ĉr(w)

∥∥
L,r

}
,

where r = � ∈ [1,+∞] in the “general case” and r = 2, � = 1 in the “many
processes” case of Theorem 1, and for |w| < ∞ we define p�(a|w) = P(X0(�) =
a|X−1

−|w|(�) = w), if P(X−1
−|w|(�) = w) > 0, and p�(a|w) = 1/|A| if P(X−1

−|w|(�) =
w) = 0.

LEMMA 1 (Proven in Section A.1). If Good∗ holds, T̂n ⊂ T ∗.

LEMMA 2 (Proven in Section A.2). If Good∗ holds, then for all x ∈ A−1−∞ and
any finite tree T

∥∥d(p(·|x), P̂n(·|x)
)∥∥

L,� ≤ 2c + 2

c − 1

∥∥{γ�

(
T (x)

)}L
�=1

∥∥
L,� + (1 + 2c)

∥∥ĉr
(
T (x)

)∥∥
L,r .

LEMMA 3 (Proven in Section A.3). The probability of Good∗ is ≥ 1 − δ.

These three lemmas are proven subsequently.

A.1. Proof of Lemma 1. Let z ∈ A∗ \ T ∗ and assume Good∗; we will show
that z /∈ T̂n. Let w be an ancestor of z which is a leaf of T ∗. Because T ∗ is the
true context tree, ‖{γ�(w

′)}L
�=1‖L,� = 0 for all descendants of w, in particular for

z,par(z) and their descendants. If we assume Good∗ holds, the triangle inequality
gives

∀u, v � par(z) : ∥∥d(p̂n(·|u), p̂n(·|v)
)∥∥

L,� ≤ ∥∥ĉr(u)
∥∥

L,r + ∥∥ĉr(v)
∥∥

L,r ,

and one can easily deduce from this that CanRmv(u) = 1 for all u � z. This means
z is pruned from the tree.

A.2. Proof of Lemma 2. Fix x and T . Recall that P̂n(·|x) = p̂n(·|T̂n(x)) and
that ‖ĉr(w)‖L,r is monotone nondecreasing in w. Notice that T̂n(x) and T (x) are
both finite suffixes of x. This allows us to divide the analysis into three cases.

Case 0: T̂n(x) = T (x). The result follows from∥∥d(p(·|x), p̂n

(·|T̂n(x)
))∥∥

L,�

= ∥∥d(p(·|x), p̂n

(·|T (x)
))∥∥

L,�

≤ ∥∥d(p(·|x),p
(·|T (x)

))∥∥
L,� + ∥∥d(p(·|T (x)

)
, p̂n

(·|T̂n(x)
))∥∥

L,�

≤ 2
∥∥{γ�

(
T (x)

)}L
�=1

∥∥
L,� + ∥∥ĉr

(
T (x)

)∥∥
L,r ,



AGCT 377

where the first equality is from T̂n(x) = T (x), the second step from triangle in-
equality, and the third from the event Good∗ and the definition of the continuity
rates.

Case 1: T̂n(x) ≺ T (x). Let w denote the child of T̂n(x) on the path to T (x).
Note that w must have been pruned, otherwise w ∈ T̂n would be a longer suffix of
x than T̂n(x).

We deduce that w satisfies CanRmv(w) = 1, like any other pruned node. In
particular, this implies that T (x) � w and T̂n(x) = par(w) satisfy∥∥d(p̂n

(·|T (x)
)
, p̂n

(·|T̂n(x)
))∥∥

L,� ≤ c
[∥∥ĉr
(
T (x)

)∥∥
L,r + ∥∥ĉr

(
T̂n(x)

)∥∥
L,r

]
.

Since T̂n(x) ≺ T (x), the RHS of the above display is ≤2c‖ĉr(T (x))‖L,r , and the
occurrence of Good∗ gives∥∥d(p(·|T (x)

)
, p̂n

(·|T (x)
))∥∥

L,� ≤ ∥∥{γ�

(
T (x)

)}L
�=1

∥∥
L,� + ∥∥ĉr

(
T (x)

)∥∥
L,r .

Combining these observations and employing the triangle inequality gives∥∥d(p(·|T (x)
)
, p̂n

(·|T̂n(x)
))∥∥

L,� ≤ ∥∥{γ�

(
T (x)

)}L
�=1

∥∥
L,� + (1 + 2c)

∥∥ĉr
(
T (x)

)∥∥
L,r .

Using ‖d(p(·|x),p(·|T (x)))‖L,� ≤ ‖{γ�(T (x))}L
�=1‖L,� and another application

of the triangle inequality completes the proof in this case.
Case 2: T̂n(x) � T (x). We make the following claim.

CLAIM 1 (Proven subsequently).

∥∥ĉr
(
T̂n(x)

)∥∥
L,r + ∥∥ĉr

(
T (x)

)∥∥
L,r ≤ 3

c − 1

∥∥{γ�

(
T (x)

)}L
�=1

∥∥
L,�.

To see how the claim implies the result, we note that∥∥d(p(·|x), p̂n

(·|T̂n(x)
))∥∥

L,� ≤ ∥∥d(p(·|x),p
(·|T̂n(x)

))∥∥
L,�

+ ∥∥d(p(·|T̂n(x)
)
, p̂n

(·|T̂n(x)
))∥∥

L,�,

(use continuity rates) ≤ ∥∥{γ�

(
T̂n(x)

)}L
�=1

∥∥
L,�

+ ∥∥d(p(·|T̂n(x)
)
, p̂n

(·|T̂n(x)
))∥∥

L,�,

(Good∗ holds) ≤ 2
∥∥{γ�

(
T̂n(x)

)}L
�=1

∥∥
L,�

+ ∥∥ĉr
(
T̂n(x)

)∥∥
L,r ,(

T (x) 
 T̂n(x) ⇒ γ�

(
T (x)

)
larger

)≤ 2
∥∥{γ�

(
T (x)

)}L
�=1

∥∥
L,�

+ ∥∥ĉr
(
T̂n(x)

)∥∥
L,r ,

(use Claim) ≤
(

2 + 3

c − 1

)∥∥{γ�

(
T (x)

)}L
�=1

∥∥
L,�.
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It remains to prove the claim. Since T̂n(x) was not pruned, there exist w′ �
T̂n(x), w′′ � par(T̂n(x)) � T (x) with

(A.2) c
[∥∥ĉr
(
w′)∥∥

L,r + ∥∥ĉr
(
w′′)∥∥

L,r

]
<
∥∥d(p̂n

(·|w′), p̂n

(·|w′′))∥∥
L,�.

On the other hand,∥∥d(p̂(·|w′), p̂n

(·|w′′))∥∥
L,� ≤ ∥∥d(p(·|w′),p(·|w′′))∥∥

L,�

+ ∥∥d(p̂(·|w′),p(·|w′))∥∥
L,�

+ ∥∥d(p̂(·|w′′),p(·|w′′))∥∥
L,�.

The first term in the RHS is ≤‖{γ�(T (x))}L
�=1‖L,� since w′,w′′ � T (x). The other

two terms can be bounded via Good∗, and we obtain∥∥d(p̂(·|w′), p̂n

(·|w′′))∥∥
L,� ≤ 3

∥∥{γ�

(
T (x)

)}L
�=1

∥∥
L,�

+ ∥∥ĉr
(
w′)∥∥

L,r + ∥∥ĉr
(
w′′)∥∥

L,r .

Combining this with (A.2) gives

∥∥ĉr
(
w′)∥∥

L,r + ∥∥ĉr
(
w′′)∥∥

L,r ≤ 3

c − 1

∥∥{γ�

(
T (x)

)}L
�=1

∥∥
L,�.

The proof of the claim is complete once we recall that w′ � T̂n(x), w′′ � T (x) and
the confidence radii ‖ĉr(w)‖L,r are monotone functions of w.

A.3. Proof of Lemma 3. We define what one might call oracle transition
probabilities: given a context w ∈ En, a ∈ A,� = 1, . . . ,L as

(A.3) pn,�(a|w) ≡ 1

Nn−1,�(w)

n∑
i=|w|+1

1{Xi−1
i−|w|(�)=w}p�

(
a|Xi−1−∞(�)

)
,

and as pn,�(a|w) ≡ 1/|A| if w /∈ En. A salient feature is that these random tran-
sition probabilities are always close to the actual transition probabilities in the
following sense:

(A.4) If T (x) ∈ En,
∥∥d(p(·|x),pn

(·|T (x)
))∥∥

L,� ≤ ∥∥{γ�

(
T (x)

)}L
�=1

∥∥
L,�.

This follows from the fact that pn,�(·|T (x)) is a convex combination of transition
probabilities p�(·|y) with y � T (x).

To continue, we choose a parameter m = ∞ in the “general case” of Theorem 1,
and m = 2 in the “many processes” case of the same theorem. The following reg-
ularization event will be important in our analysis:

(A.5) Goodm ≡ ⋂
w∈En

{∥∥∥∥
{
d�(pn,�(·|w), p̂n,�(·|w))

ĉr�(w)

}L

�=1

∥∥∥∥
L,m

≤ 1
}
.
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CLAIM 2. Goodm ⊂ Good∗, where Good∗ was defined in (A.1).

PROOF. By (A.4) and the triangle inequality, it suffices to show that we have
the inequality ∥∥d(p̂n(·|w), p̄n(·|w)

)∥∥
L,� ≤ ∥∥ĉr(w)

∥∥
L,r

for all w ∈ A∗ whenever Goodm holds. This is trivially true when w /∈ En. When
w ∈ En, Hölder’s inequality implies

∥∥d(p̂n(·|w), p̄n(·|w)
)∥∥

L,� ≤
∥∥∥∥
{
d�(pn,�(·|w), p̂n,�(·|w))

ĉr�(w)

}L

�=1

∥∥∥∥
L,m

∥∥ĉr(w)
∥∥

L,r

and the first term in the RHS is ≤ 1 in Goodm. �

The remainder of the proof consists of showing the following.

CLAIM 3. P(Goodm) ≥ 1 − δ.

This clearly suffices to complete the proof in both cases.
We will use a martingale framework from Section 7 in the supplementary mate-

rial [4]. The following is the special case γ = 2 and i0 = log2 n of Lemma 4 in the
Supplementary Material.

LEMMA 4. Let (Mj ,Fj )
n
m=0 be a martingale with M0 = 0. Assume that for

each 1 ≤ j ≤ n we have a Fj−1-measurable indicator random variable Yj−1 with
|Mj − Mj−1| ≤ Yj−1 almost surely, and define Vn ≡∑n−1

j=0 Y 2
j . Then

∀t ≥ 0 : P

(
M2

n

4Vn

− 2 ln(2 + log2 Vn) ≥ t |Vn > 0
)

≤ e−t .

Recall that the metric d = d1 = · · · = dL is given by

d�(p, q) = dS(p, q) = sup
A∈S
∣∣p(A) − q(A)

∣∣.
We will consider a family of martingales indexed by w ∈ A∗, S ∈ S and 1 ≤ � ≤ L.
A simple calculation reveals that for any j ∈ N

Mj,�(wS) = Nj−1,�(w)
∑
a∈S

(
p̂j,�(a|w) − pj,�(a|w)

)
is a martingale under the natural filtration. One may take

Yj−1 = 0 if j − 1 < |w| and Yj−1 = 1
{
Xm−1

m−|w| = w
}

otherwise,

so that the corresponding Vn = Vn,�(wS) equals Nn−1,�(w) ∨ 1. We also have that

Nn−1,�(w)d�

(
p̂n,�(·|w),pn,�(·|w)

)2 = max
S∈S

Mn(wS)2

Vn(wS)
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whenever Nn−1,�(w) > 0. The following is immediate from this discussion com-
bined with Lemma 4.

LEMMA 5. For any w ∈ A∗ and any process 1 ≤ � ≤ L, we have

∀t ≥ 0 :

P

(
Nn−1,�(w)d�(p̂n,�(·|w),pn,�(·|w))2

4[2 ln(2 + log2 Nn−1,�(w)) + ln |S| + t] > 1
∣∣∣Nn−1,�(w) > 0

)
≤ e−t .

We use this lemma to prove Claim 3 in the two cases.

PROOF OF CLAIM 3 IN THE “GENERAL CASE”. Set t := ln(n2L/δ). For � =
1,2, . . . ,L, define

A� :=
{

Nn−1,�(w)d�(p̂n(·|w),pn(·|w))2

4[2 ln(2 + log2 Nn−1,�(w)) + ln |S| + t] > 1
}
;

B� := {Nn−1,�(w) > 0
}
.

Lemma 5 gives P(A�|B�) ≤ δ/n2L for each 1 ≤ � ≤ L. Recalling the formula for
ĉr�(w) in Definition 1, we see that d�(p̂n,�(·|w),pn,�(·|w)) > ĉr�(w) if and only if
A� holds. Therefore,

P

(∥∥∥∥
{
d�(p̂n(·|w),pn(·|w))

ĉr�(w)

}L

�=1

∥∥∥∥
L,∞

> 1
∣∣∣min

�
Nn−1,�(w) > 0

)

= P

( L⋃
�=1

A�

∣∣∣ L⋂
�′=1

B�′

)
(A.6)

≤
L∑

�=1

P

(
A�

∣∣∣ L⋂
�′=1

B�′

)
.

Now recall that the L processes X(�) are all independent, therefore, A� depends
on B� but not on B�′ for �′ �= �. We obtain

P

(
A�

∣∣∣ L⋂
�=1

B�′

)
= P(A�|B�) ≤ δ

n2L
.

Plugging this back into (A.6) and removing the conditioning gives

P

(∥∥∥∥
{
d�(p̂n(·|w),pn(·|w))

ĉr�(w)

}L

�=1

∥∥∥∥
L,∞

> 1
)

≤ δ

n2P
(

min
1≤�≤L

Nn−1,�(w) > 0
)
.

Taking a union bound over all w ∈ A∗ and bounding

P

(
min

1≤�≤L
Nn−1,�(w) > 0

)
≤ P
(
Nn−1,1(w) > 0

)
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gives

1 − P(Good∞) ≤ δ

n2

∑
w∈A∗

P
(
Nn−1,�(w) > 0

)
.

The sum of probabilities in the RHS is the expected number of distinct substrings
of Xn−1

1 (1), which is at most n2. This implies Good∞ occurs with probability at
least 1 − δ, as desired. �

PROOF OF CLAIM 3 IN THE “MANY PROCESSES” CASE. For each w ∈ A∗
and 1 ≤ � ≤ L, define the random variable

��(w) ≡ Nn−1,�(w)d�

(
p̂n,�(·|w),pn,�(·|w)

)2
(A.7)

− [4 ln
(
2 + 2 log2 Nn−1,�(w)

)+ ln |S|].
The definition of ĉr�(w) in Definition 2 implies

∥∥∥∥
{
d�(p̂n,�(·|w),pn,�(·|w))

ĉr�(w)

}L

�=1

∥∥∥∥
L,2

> 1 ⇔ 1

L

L∑
�=1

��(w) > 1+
√

6 ln(n2/δ)

L
.

Lemma 5 implies that, conditionally on Nn−1,�(w) > 0, ��(w) is dominated by
an exponential random variable with mean 1. The independence of the L processes
implies that

P

(
1

L

L∑
�=1

��(w) > 1 +
√

6 ln(n2/δ)

L

∣∣∣min
�

Nn−1,�(w) > 0

)

can be upper bounded as if the ��(w)’s were independent exponentials. A standard
Laplace transform calculation implies

P

(
1

L

L∑
�=1

��(w) > 1 + ε
∣∣∣min

�
Nn−1,�(w) > 0

)
≤ e− ε2L

4+2ε .

We apply this with ε =
√

6 ln(n2/δ)/L. Since ε ≤ 1 the RHS is ≤ δ/n2. We deduce
that for all w ∈ A∗

P

(∥∥∥∥
{
d�(p̂n,�(·|w),pn,�(·|w)

ĉr�(w)

}L

�=1

∥∥∥∥
L,2

> 1
∣∣∣ min

1≤�≤L
Nn−1,�(w) > 0

)

≤ δ

n2

L∏
�=1

P
(
Nn−1,�(w) > 0

)
.

The rest of the proof follows the argument for the “General case.” �
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APPENDIX B: PROOF OF THEOREM 2

The proof of Theorem 2 follows from the oracle inequality in Theorem 1 re-
stricted to T (h,π∗) and properly replacing the empirical confidence radii with the
population confidence radii. Lemma 6 stated below (proven in the supplementary
material [4]) establishes that the frequencies Nn−1,�(w) are close to π�(w)n for
typical trees provided a sample size condition holds. In turn, Lemma 7 below al-
lows one to switch from empirical to population confidence radii, at the price of a
small multiplicative constant.

In what follows, we use

β−1(x) ≡ min
{
b ∈ N : ∀b′ ≥ b,β

(
b′)≤ x

} (
x ∈ (0,1)

)
.

LEMMA 6. Let X = (Xk)k∈Z be a stationary and β-mixing process over al-
phabet A with mixing rate function β(·). Consider a nonempty finite set S ⊂ A∗
and define

hS ≡ max
w∈S

|w|, πS ≡ min
w∈S

π(w) where π(w) ≡ P
(
X−1

−|w| = w
)
.

Let ξ > 0, δ0 ∈ (0,1/e) and n ∈ N satisfy

n ≥ 2
{⌈

10hS

ξ

⌉
∨ β−1

(
ξπSδ0

24

)}
×
{

1 + 300

ξ2πS

ln
(

12|S|
δ0

)}
,

then the random variables

Nn(w) ≡ ∣∣{|w| ≤ j ≤ n : Xj
j−|w|+1 = w

}∣∣, w ∈ S,

satisfy

P

(
∀w ∈ S,1 − ξ ≤ Nn(w)

π(w)n
≤ 1 + ξ

)
≥ 1 − δ0.

LEMMA 7. Assume X(1), . . . ,X(L) satisfy Assumptions 1 through 3, and the
sample size n obeys

n ≥ 2 max
{

40h,

⌈
48�L

π∗δ0

⌉1/θ}
×
{

1 + 1200

π∗
log
(

24(h + 1)

δ0π∗

)}
.

Let

Typr ≡ ⋂
T̃ ∈T (h,π∗)

⋂
w leaf of T̃

{‖ĉr(w)‖L,r

‖cr(w)‖L,r

≤ √
2
}
.

Then P(Typr ) ≥ 1 − δ0.
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PROOF. Define a set S consisting of all w ∈ A∗ of length |w| ≤ h and
min� π�(w) ≥ π∗. This set contains all leaves of trees T ∈ T (h,π∗), and it is clear
from the definitions of confidence radii that

E =
L⋂

�=1

E� with E� ≡
{
∀w ∈ S : 1

2
≤ Nn−1(w)

nπ�(w)
≤ 3

2

}

is contained in Typr . We will apply the previous lemma to prove P(E�) ≥ 1 −
δ0/L, which implies P(E) ≥ 1 − δ0 and completes the proof. We have processes
X(1), . . . ,X(L) as in Definition 3, and choose parameters n ≥ 9, ξ = 1/2, δ0 =
δ0/L. The mixing rate function β(b) = �b−θ is the same for all processes. To
obtain a bound on |S|, we note that∣∣S ∩ A−1

−k

∣∣π∗ ≤ ∑
w∈S∩A−1

−k

P
(
X−1

−k(1) = w
)≤ ∑

w∈S∩A−1
−k

π1(w) ≤ 1,

so

|S| ≤
h∑

k=0

∣∣S ∩ A−1
−k

∣∣≤ h + 1

π∗
.

Thus, we see that, in order to apply Lemma 6 to X(�), we need the condition

n ≥ 2 max
{

40h,

⌈
48�L

π∗δ0

⌉1/θ}
×
{

1 + 1200

π∗
log
(

24(h + 1)

δ0π∗

)}
,

which is precisely the assumption in the present lemma. This implies that Lemma 6
is indeed applicable, and we deduce P(E�) ≥ 1 − δ0/L, as desired. �
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SUPPLEMENTARY MATERIAL

Supplement to “Approximate group context tree” (DOI: 10.1214/16-
AOS1455SUPP; .pdf). We provide additional discussion on the oracle context tree,
omitted proofs from Section 5, a compendium of Martingale results, minimax rates
for chain with infinite connections, and simulation results.
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