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SUPREMUM NORM POSTERIOR CONTRACTION AND CREDIBLE
SETS FOR NONPARAMETRIC MULTIVARIATE REGRESSION

BY WILLIAM WEIMIN YOO AND SUBHASHIS GHOSAL

Université Paris Dauphine and North Carolina State University

In the setting of nonparametric multivariate regression with unknown er-
ror variance σ 2, we study asymptotic properties of a Bayesian method for
estimating a regression function f and its mixed partial derivatives. We use
a random series of tensor product of B-splines with normal basis coefficients
as a prior for f , and σ is either estimated using the empirical Bayes approach
or is endowed with a suitable prior in a hierarchical Bayes approach. We es-
tablish pointwise, L2 and L∞-posterior contraction rates for f and its mixed
partial derivatives, and show that they coincide with the minimax rates. Our
results cover even the anisotropic situation, where the true regression func-
tion may have different smoothness in different directions. Using the conver-
gence bounds, we show that pointwise, L2 and L∞-credible sets for f and
its mixed partial derivatives have guaranteed frequentist coverage with opti-
mal size. New results on tensor products of B-splines are also obtained in the
course.

1. Introduction. Consider the nonparametric regression model

Yi = f (Xi ) + εi, i = 1, . . . , n,(1.1)

where Yi is a response variable, Xi is a d-dimensional covariate, and ε1, . . . , εn

are independent and identically distributed (i.i.d.) as N(0, σ 2) with unknown
0 < σ < ∞. The covariates are deterministic or are sampled from some fixed dis-
tribution independent of εi . In both cases, each Xi takes values in some rectangular
region in R

d , which is assumed to be [0,1]d without loss of generality. We follow
the Bayesian approach by representing f by a finite linear combination of tensor
products of B-splines and endowing the coefficients with a multivariate normal
prior. We consider both the empirical and the hierarchical Bayes approach for the
variance σ 2. For the latter approach, a conjugate inverse-gamma prior is particu-
larly convenient.

We study frequentist behavior of the posterior distributions and the resulting
credible sets for f and its mixed partial derivatives, in terms of pointwise, L2 and
L∞ (supremum) distances. We assume that the true regression function f0 belongs
to an anisotropic Hölder space (see Definition 2.1 below), and the errors under the
true distribution are sub-Gaussian.
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Posterior contraction rates for regression functions in the L2-norm are well stud-
ied, but results for the stronger L∞-norm are limited. Giné and Nickl [14] studied
contraction rates in Lr -metric, 1 ≤ r ≤ ∞, and obtained optimal rate using conju-
gacy for the Gaussian white noise model and a rate for density estimation based on
a random wavelet series and Dirichlet process mixture using a testing approach.
In the same context, Castillo [2] introduced techniques based on semiparametric
Bernstein–von Misses (BvM) theorems to obtain optimal L∞-contraction rates.
Hoffman et al. [17] derived adaptive optimal L∞-contraction rate for the white
noise model and also for density estimation. Scricciolo [25] applied the techniques
of [14] to obtain L∞-rates using Gaussian kernel mixtures prior for analytic true
densities.

De Jonge and van Zanten [9] used finite random series based on tensor products
of B-splines to construct a prior for nonparametric regression and derived adaptive
L2-contraction rate for the regression function in the isotropic case. A BvM theo-
rem for the posterior of σ is treated in [10]. Shen and Ghosal [28, 29] used tensor
products of B-splines, respectively, for Bayesian multivariate density estimation
and high dimensional density regression in the anisotropic case.

Nonparametric confidence bands for an unknown function were considered by
[1, 30] and more recently by [5, 6, 13]. A Bayesian approaches the problem by
constructing a credible set with a prescribed posterior probability. It is then natural
to ask if the credible set has adequate frequentist coverage for large sample sizes.
For parametric problems, a BvM theorem concludes that Bayesian and frequentist
measures of uncertainly are nearly the same in large samples. However, for the
infinite dimensional normal mean model (equivalently the Gaussian white noise
model), [7, 12] observed that for many true parameters in �2, credible regions
can have inadequate coverage. Leahu [20] showed that if the prior variances are
chosen very big so that the support of the prior extends beyond �2, then coverage
can be obtained. Knapik et al. [18, 19] showed that for sequences with specific
smoothness, by deliberately undersmoothing the prior, coverage of credible sets
may be guaranteed. Sniekers and van der Vaart [31] obtained similar results for
nonparametric regression using a scaled Brownian motion prior.

Castillo and Nickl [3] showed that for the Gaussian white noise model a BvM
theorem can hold in weaker topologies for some natural priors, and the resulting
credible sets appropriately modified will have asymptotically the correct coverage
and optimal size. A similar result for the stronger L∞-norm using this weak notion
of BvM theorem is considered in [4]. Adaptive L2-credible regions with adequate
frequentist coverage are constructed using the empirical Bayes approach in [34]
for the Gaussian white noise model and in [27] for the nonparametric regression
model using smoothing splines. In the setting of the Gaussian white noise model,
Ray [23] constructed adaptive L2-credible sets using a weak BvM theorem, and
also adaptive L∞-credible band using a spike and slab prior.

In this paper, we consider multivariate nonparametric regression with unknown
variance parameter and study posterior contraction rates and coverage of credible
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sets in the pointwise, L2- and L∞-senses, for the regression function f as well
as its mixed partial derivatives. Study of posterior contraction rate in L∞-norm is
important for its natural interpretation and implications for other problems such
as the convergence of the mode of a function. An L∞-credible band is easier to
visualize than a L2-credible set. We assume that the smoothness of the function
is given but allow anisotropy, so the smoothness level may vary with the direc-
tion. Anisotropic function has applications in estimating time-dependent spectral
density of a locally stationary time series (see [22]), and variable selection (see
[16]).

A prior on the regression function is constructed using a finite random series
of tensor products of B-splines with normally distributed coefficients. Posterior
conjugacy leads to explicit expression for the posterior distribution which is con-
venient for computation as well as theoretical analysis. Although wavelets are also
widely used to construct random series priors, B-splines have the added advan-
tage in that mixed partial derivatives of f are expressible in terms of lower degree
B-splines. This allows posterior analysis for mixed partial derivatives of f , a topic
that is largely unaddressed in the literature, except implicitly as inverse problems
in the Gaussian white noise model.

The paper is organized as follows. The next section introduces notation and
assumptions. Section 3 describes the prior and the resulting posterior distribution.
Section 4 contains main results on pointwise and L∞-contraction rates of f and its
mixed partial derivatives. Section 5 presents results on coverage of the correspond-
ing credible sets. Section 6 contains a simulation study of the proposed method.
Proofs are in Section 7. New results on tensor products of B-splines are presented
in the Appendix.

2. Assumptions and preliminaries. We describe notation and assumptions
used in this paper. Given two numerical sequences an and bn, an = O(bn) or an �
bn means an/bn is bounded, while an = o(bn) or an � bn means an/bn → 0. Also,
an � bn means an = O(bn) and bn = O(an). For stochastic sequence Zn, Zn =
OP(an) means P(|Zn| ≤ Can) → 1 for some constant C > 0. Let N = {1,2, . . .}
and N0 = N∪ {0}.

Define ‖x‖p = (
∑d

k=1 |xk|p)1/p , 1 ≤ p < ∞, ‖x‖∞ = max1≤k≤d |xk|, and write
‖x‖ for ‖x‖2, the Euclidean norm. We write x ≤ y if xk ≤ yk, k = 1, . . . , d . For an
m × m matrix A = ((aij )), let λmin(A) and λmax(A) be the smallest and largest
eigenvalues, and the (r, s) matrix norm of A as ‖A‖(r,s) = sup{‖Ax‖s : ‖x‖r ≤ 1}.
In particular, ‖A‖(2,2) = |λmax(A)| and ‖A‖(∞,∞) = max1≤i≤m

∑m
j=1 |aij |. These

norms are related by |aij | ≤ ‖A‖(2,2) ≤ ‖A‖(∞,∞) for 1 ≤ i, j ≤ m. With another
matrix B of the same size, A ≤ B means B − A is nonnegative definite. We denote
by Im the m × m identity matrix and by 1d the d × 1 vector of ones.

For f : U → R on some bounded set U ⊆ R
d with interior points, let ‖f ‖p

be the Lp-norm, and ‖f ‖∞ = supx∈U |f (x)|. For r = (r1, . . . , rd)T ∈ N
d
0 , let Dr
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be the partial derivative operator ∂ |r|/∂x
r1
1 · · · ∂x

rd
d , where |r| = ∑d

k=1 rk . If r = 0,
we interpret D0f ≡ f . We say Z ∼ NJ (ξ ,�) if Z has a J -dimensional normal
distribution with mean vector ξ and covariance matrix �. For a random function
{Z(t), t ∈ U}, write Z ∼ GP(ξ,�) if Z is a Gaussian process with EZ(t) = ξ(t)

and Cov(Z(s),Z(t)) = �(s, t).

DEFINITION 2.1. The anisotropic Hölder space Hα([0,1]d) of order α =
(α1, . . . , αd)T consists of functions f : [0,1]d →R such that ‖f ‖α,∞ < ∞, where
‖ · ‖α,∞ is the anisotropic Hölder norm

max

{∥∥Drf
∥∥∞ +

d∑
k=1

∥∥D(αk−rk)ekDrf
∥∥∞ : r ∈N

d
0 ,

d∑
k=1

rk/αk < 1

}
(2.1)

and ek ∈R
d has 1 in the kth position and zero elsewhere.

Let α∗ be the harmonic mean of (α1, . . . , αd)T , that is, α∗−1 = d−1 ∑d
k=1 α−1

k .
For x = (x1, . . . , xd)T , we define bJ,q(x) = (Bj1,q1(x1) · · ·Bjd,qd

(xd),1 ≤ jk ≤
Jk, k = 1, . . . , d) to be a collection of J = ∏d

k=1 Jk tensor-product of B-splines,
where Bjk,qk

(xk) is the kth component B-spline of fixed order qk ≥ αk , with knot
sequence 0 = tk,0 < tk,1 < · · · < tk,Nk

< tk,Nk+1 = 1, and let Jk = qk + Nk and
J = (J1, . . . , Jd)T . In the prior construction, the knots depend on n and Nk in-
creases to infinity with n subject to

∏d
k=1 Jk ≤ n. At each k = 1, . . . , d , define

δk,l = tk,l − tk,l−1 to be the one-step knot increment, and let �k = max1≤l≤Nk
δk,l

be the mesh size. We assume that the knot sequence for each direction is quasi-
uniform (Definition 6.4 of [24]), that is, �k/min1≤l≤Nk

δk,l ≤ C, for some C > 0.
This assumption is satisfied for the uniform and nested uniform partitions as spe-
cial cases (Examples 6.6 and 6.7 of [24]) and we can choose a subset of knots
from any given knot sequence to form a quasi-uniform sequence with C = 3
(Lemma 6.17 of [24]).

If the design points Xi = (Xi1, . . . ,Xid)
T for i = 1, . . . , n, are fixed, assume

that there exists a cumulative distribution function G(x), with positive and contin-
uous density on [0,1]d such that

sup
x∈[0,1]d

∣∣Gn(x) − G(x)
∣∣ = o

(
d∏

k=1

N−1
k

)
,(2.2)

where Gn(x) = n−1 ∑n
i=1 1∏d

k=1[0,Xik](x) is the empirical distribution of {Xi , i =
1, . . . , n}, with 1U(·) the indicator function on U .

REMARK 2.1. For example, let n = md for some m ∈N, the discrete uniform
design Xi ∈ {(j − 1)/(m − 1) : j = 1, . . . ,m}d with i = 1, . . . , n, satisfies (2.2)
with G being the uniform distribution on [0,1]d and Nk � nα∗/{αk(2α∗+d)} for k =
1, . . . , d .
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For random design points, assume Xi
i.i.d.∼ G with a continuous density on

[0,1]d , then (2.2) holds with probability tending to one if Nk � nα∗/{αk(2α∗+d)} for
k = 1, . . . , d , and α∗ > d/2 by Donsker’s theorem. In this paper, we shall prove re-
sults on posterior contraction rates and credible sets based on fixed design points;
the random case can be treated by conditioning on Xi , i = 1, . . . , n.

Let B = (bJ,q(X1), . . . ,bJ,q(Xn))
T . Each entry of BT B is indexed by

d-dimensional multi-indices, that is, for u = (u1, . . . , ud)T and v = (v1, . . . , vd)T

with 1 ≤ uk , vk ≤ Jk , k = 1, . . . , d , the (u,v)th entry is (BT B)u,v =∑n
i=1

∏d
k=1 Buk,qk

(Xik)Bvk,qk
(Xik). The following generalization of matrix band-

ing property will be useful.

DEFINITION 2.2. Let A = ((au,v)) be a matrix with rows and columns in-
dexed by d-dimensional multi-indices 1d ≤ u,v ≤ J, respectively, where arrange-
ment of the elements are arbitrary. We say that A is h = (h1, . . . , hd)T banded if
au,v = 0 whenever |uk − vk| > hk for some k = 1, . . . , d .

Given Xi = (Xi1, . . . ,Xid)
T for i = 1, . . . , n, such that Xik ∈ [tk,l−1, tk,l], only

qk adjacent basis functions (Bl,qk
(Xik), . . . ,Bl+qk−1,qk

(Xik))
T will be nonzero

for k = 1, . . . , d . Hence, if |um − vm| > qm for some m = 1, . . . , d , then
Bum,qm(Xim)Bvm,qm(Xim) = 0, and we conclude (BT B)u,v = 0. It then follows
that BT B is q = (q1, . . . , qd)T -banded.

Since approximation results for anisotropic functions by linear combinations
of tensor-products of B-splines assume integer smoothness (see Chapter 12, Sec-
tion 3 of [24]), we assume that α ∈ N

d . For the isotropic case, the norm in (2.1)
can be generalized (see Section 2.7.1 of [35]) and the approximation rate is ob-
tained for all smoothness levels (Theorem 22 of Chapter XII in [8]). This allows
generalization of posterior contraction results for arbitrary smoothness levels. We
now describe the assumption on f0 used in this paper.

ASSUMPTION 1. Under the true distribution P0, Yi = f0(Xi) + εi , such that
εi are i.i.d. sub-Gaussian with mean 0 and variance σ 2

0 for i = 1, . . . , n. Also,
f0 ∈ Hα([0,1]d) with order α = (α1, . . . , αd)T ∈ N

d . If the design points are de-
terministic, we assume that (2.2) holds. If the design points are random, we assume
that α∗ > d/2.

Let E0(·) and Var0(·) be the expectation and variance operators taken with re-
spect to P0. We write Y = (Y1, . . . , Yn)

T , X = (XT
1 , . . . ,XT

n )T , F0 = (f0(X1), . . . ,

f0(Xn))
T and ε = (ε1, . . . , εn)

T .

3. Prior and posterior conjugacy. We induce a prior on f by represent-
ing it as a tensor-product B-splines series, that is, f (x) = bJ,q(x)T θ , where
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θ = {θj1,...,jd
: 1 ≤ jk ≤ Jk, k = 1, . . . , d} are the basis coefficients. Then its

r = (r1, . . . , rd)T mixed partial derivative is

Drf (x) =
J1∑

j1=1

· · ·
Jd∑

jd=1

θj1,...,jd

d∏
k=1

∂rk

∂x
rk
k

Bjk,qk
(xk).

Define an operator Drk
jk

acting on θj1,...,jd
such that D0

jk
θj1,...,jd

= θj1,...,jd
, and for

rk ≥ 1,

D
rk
jk

θj1,...,jd

(3.1)

= D
rk−1
jk

θj1,...,jk−1,jk+1,jk+1,...,jd
−D

rk−1
jk

θj1,...,jk−1,jk,jk+1,...,jd

(tk,jk
− tk,jk−qk+1)/(qk − rk)

.

Furthermore, let Drθj1,...,jd
= D

r1
j1

· · ·Drd
jd

θj1,...,jd
be the application of D

rk
jk

to
θj1,...,jd

for all direction k = 1, . . . , d . Using equations (15) and (16) of Chapter
X from [8], Drf (x) can be written as

J1−r1∑
j1=1

· · ·
Jd−rd∑
jd=1

Drθj1,...,jd

d∏
k=1

Bjk,qk−rk (xk) = bJ,q−r(x)T Wrθ ,(3.2)

where Wr is a
∏d

k=1(Jk − rk) × ∏d
k=1 Jk matrix, with entries given by (A.1)–

(A.4) in Lemma A.2. These entries are coefficients associated with applying the
weighted finite differencing operator of (3.1) iteratively on θ in all directions.

We represent the model in (1.1) by Y|(X, θ, σ ) ∼ Nn(Bθ , σ 2In). In this pa-
per, we treat J = (J1, . . . , Jd)T as deterministic and allow it to depend on n,d

and α. On the basis coefficients, we assign θ |σ ∼ NJ (η, σ 2�), where ‖η‖∞ is
uniformly bounded. The entries of � do not depend on n, and are indexed using
d-dimensional multi-indices described above. We further assume that �−1 is a
m = (m1, . . . ,md)T banded matrix with fixed m. Note that � depends on n only
through its dimension J ×J . Furthermore, as n → ∞, we assume that there exists
constants 0 < c1 ≤ c2 < ∞ such that

c1IJ ≤ � ≤ c2IJ .(3.3)

It follows that Drf |(Y, σ ) ∼ GP(ArY + crη, σ 2r), where Ar, cr and the covari-
ance kernel are defined for x,y ∈ [0,1]d by

Ar(x) = bJ,q−r(x)T Wr
(
BT B + �−1)−1BT ,(3.4)

cr(x) = bJ,q−r(x)T Wr
(
BT B + �−1)−1

�−1,(3.5)

r(x,y) = bJ,q−r(x)T Wr
(
BT B + �−1)−1WT

r bJ,q−r(y).(3.6)

Since the posterior mean of Drf is an affine transformation of Y, Assumption 1
implies that ArY + crη is a sub-Gaussian process under P0. If r = 0, defining
W0 = IJ , we obtain the conditional posterior distribution of f .
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To deal with σ , observe that Y|σ ∼ Nn[Bη, σ 2(B�BT + In)]. Maximizing the
corresponding log-likelihood with respect to σ leads to

σ̂ 2
n = n−1(Y − Bη)T

(
B�BT + In

)−1
(Y − Bη).(3.7)

Empirical Bayes then entails substituting the maximum likelihood estimator σ̂n for
σ in the conditional posterior of Drf , that is,

�
(
Drf |Y, σ

)|σ=σ̂n = �σ̂n

(
Drf |Y) ∼ GP

(
ArY + crη, σ̂ 2

nr
)
.(3.8)

In a hierarchical Bayes approach, we further endow σ with a continuous and pos-
itive prior density. A conjugate inverse-gamma (IG) prior σ 2 ∼ IG(β1/2, β2/2),
with hyperparameters β1 > 4 and β2 > 0 is particularly convenient for both com-
putation and theoretical analysis since by direct calculations, the posterior of σ 2

is

σ 2|Y ∼ IG
(
(β1 + n)/2,

(
β2 + nσ̂ 2

n

)
/2
)
.(3.9)

Under the quasi-uniformity of the knots and (2.2), Lemma A.9 concludes that
there exist constants 0 < C1 ≤ C2 < ∞ such that

C1n

(
d∏

k=1

J−1
k

)
IJ ≤ BT B ≤ C2n

(
d∏

k=1

J−1
k

)
IJ .(3.10)

In particular, ‖BT B‖(2,2) � n
∏d

k=1 J−1
k . Combining the above with (3.3),(

C1n

d∏
k=1

J−1
k + c2

−1

)
≤ λmin

(
BT B + �−1)

≤ λmax
(
BT B + �−1)(3.11)

≤
(
C2n

d∏
k=1

J−1
k + c1

−1

)
.

4. Posterior contraction rates. To establish posterior contraction rates for f

and its mixed partial derivatives with unknown σ , a key step is showing that the
empirical Bayes estimator for σ in the empirical Bayes approach or the posterior
distribution of σ in the hierarchical Bayes approach, are consistent, uniformly for
the true regression function f0 satisfying ‖f0‖α,∞ ≤ R for any given R > 0.

PROPOSITION 4.1. Let Jk � nα∗/{αk(2α∗+d)}, k = 1, . . . , d . Then for any R >

0, the following assertions holds uniformly for the true regression f0 satisfying
‖f0‖α,∞ ≤ R:

(a) the empirical Bayes estimator σ̂n converges to the true σ0 at the rate
max(n−1/2, n−2α∗/(2α∗+d));
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(b) if the inverse gamma prior IG(β1/2, β2/2) is used on σ 2, then the posterior
for σ contracts at σ0 at the same rate;

(c) if the true distribution of the regression errors ε1, . . . , εn is Gaussian, then
for any prior on σ with positive and continuous density, the posterior distribution
of σ is consistent.

For the rest of the paper, we shall treat f and its mixed partial derivatives in
a unified framework by viewing f as D0f . Then the results on posterior con-
traction and credible sets (Section 5) for f can be recovered by setting r = 0.
Since an explicit expression for the conditional posterior of Drf given σ is
available due to the normal-normal conjugacy, we derive contraction rates by
directly bounding posterior probabilities of deviations from the truth uniformly
for σ in a shrinking neighborhood of σ0, which suffices in view of the con-
sistency of the empirical Bayes estimator or that of the posterior distribution
of σ . A decomposition of the posterior mean square error into posterior vari-
ance, variance and squared bias of the posterior mean is used for pointwise
contraction, and uniformized using maximal inequalities to establish contrac-
tion with respect to the supremum distance. Contraction rates below are uni-
form in ‖f0‖α,∞ ≤ R. We write εn,r = n−α∗{1−∑d

k=1(rk/αk)}/(2α∗+d) and εn,r,∞ =
(logn/n)α

∗{1−∑d
k=1(rk/αk)}/(2α∗+d). Observe that for εn,r and εn,r,∞ to approach 0

as n → ∞, we will need
∑d

k=1(rk/αk) < 1. For the hierarchical Bayes approach,
we do not restrict to the inverse gamma prior for σ 2 but throughout assume that its
posterior is consistent uniformly for ‖f0‖α,∞ ≤ R for any R > 0.

THEOREM 4.2 (Pointwise contraction). If Jk � nα∗/{αk(2α∗+d)} for k =
1, . . . , d , then for any x ∈ [0,1]d and Mn → ∞,

Empirical Bayes: E0�σ̂n

(∣∣Drf (x) − Drf0(x)
∣∣ > Mnεn,r|Y) → 0.

Hierarchical Bayes: E0�
(∣∣Drf (x) − Drf0(x)

∣∣ > Mnεn,r|Y) → 0.

REMARK 4.3. The above rate of contraction holds for the L2-distance as well
under the same set of assumptions for both empirical and hierarchical Bayes ap-
proaches. This follows since the posterior expectation of the squared L2-norm can
be bounded by the integral of the corresponding uniform estimates of the pointwise
case obtained in the proof of Theorem 4.2.

THEOREM 4.4 (L∞-contraction). If Jk � (n/ logn)α
∗/{αk(2α∗+d)} for k =

1, . . . , d , then for any Mn → ∞,

Empirical Bayes: E0�σ̂n

(∥∥Drf − Drf0
∥∥∞ > Mnεn,r,∞|Y) → 0.

Hierarchical Bayes: E0�
(∥∥Drf − Drf0

∥∥∞ > Mnεn,r,∞|Y) → 0.
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Note that an extra logarithmic factor appears in the L∞-rate in agreement with
the corresponding minimax rate for the problem (see [32, 33]). A similar result
for the white noise model using a prior based on wavelet basis expansion for the
signal function is given by Theorem 1 of [14] for known variance. It is interesting
to note that given any notion of posterior contraction and smoothness index, the
same optimal Jk , k = 1, . . . , d , applies to f and its mixed partial derivatives, so the
Bayes procedure automatically adapts to the order of the derivative to be estimated.

5. Credible sets for f and its mixed partial derivatives. We begin by con-
structing pointwise credible set for Drf (x) at x ∈ [0,1]d , where r ∈ N

d
0 satisfies∑d

k=1(rk/αk) < 1. Let γn ∈ [0,1] be a sequence such that γn → 0 as n → ∞. De-
fine zδ to be the (1 − δ)-quantile of a standard normal. Since �(Drf (x)|Y, σ ) ∼
N(Ar(x)Y + cr(x)η, σ 2r(x,x)), we can construct a (1 − γn)-pointwise credible
interval for Drf (x) from the relation

�
(
g : ∣∣g(x) − Ar(x)Y − cr(x)η

∣∣ ≤ zγn/2σ
√

r(x,x)|Y, σ
) = 1 − γn.

However, as σ is unknown, we use empirical Bayes by substituting σ by σ̂n derived
in (3.7), leading to the following empirical credible set:

Ĉn,r,γn(x) = {
g : ∣∣g(x) − Ar(x)Y − cr(x)η

∣∣ ≤ zγn/2σ̂n

√
r(x,x)

}
.

For the hierarchical Bayes approach, the resulting credible region is given by
Cn,r,γn(x) = {g : |g(x) − Ar(x)Y − cr(x)η| ≤ Rn,r,γn(x)}, where Rn,r,γn(x) is the
(1 − γn)-quantile of the marginal posterior distribution of |Drf (x) − Ar(x)Y −
cr(x)η| after integrating out σ with respect to its posterior distribution. If the con-
jugate inverse-gamma prior is used on σ 2, then the cut-off may be expressed ex-
plicitly in terms of quantiles of a generalized t-distribution. In general, the cut-off
value Rn,r,γn(x) may be found by posterior sampling: generate σ from its marginal
posterior distribution and Drf |(Y, σ ) ∼ GP(ArY + crη, σ 2r).

THEOREM 5.1 (Pointwise credible intervals). If Jk � nα∗/{αk(2α∗+d)}, k =
1, . . . , d , then for γn → 0, the coverage of Ĉn,r,γn(x) tends to 1 and its radius
is OP0(εn,r

√
log (1/γn)) at x ∈ [0,1]d uniformly on ‖f0‖α,∞ ≤ R.

If the posterior distribution of σ is consistent, then the same conclusion holds
for the hierarchical Bayes credible set Cn,r,γn(x).

REMARK 5.2. We can also define a (1 − γn)-credible set in the L2-norm for
Drf given Y and σ as the set of all functions which differ from Ar(x)Y + cr(x)η
in the L2-norm by σhn,r,2,γn , where hn,r,2,γn is the 1 − γn quantile of the L2-norm
of GP(0,r). Then the empirical Bayes credible set is obtained by substituting σ

by σ̂n. The hierarchical Bayes credible set is obtained by replacing σhn,r,2,γn by
the 1−γn quantile of ‖Drf −ArY−crη‖2. Both credible regions have asymptotic
coverage 1 under the assumptions in Theorem 5.1.
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The (1−γn)-empirical Bayes L∞-credible set for Drf , can be expressed as {g :
‖g − ArY − crη‖∞ ≤ ρnσ̂nhn,r,∞,γn}, where hn,r,∞,γn is the (1 − γn)-quantile of
the L∞-norm of GP(0,r). It turns out that in order to obtain adequate frequentist
coverage, this natural credible ball needs to be slightly inflated by a factor ρn,
leading to the inflated empirical Bayes credible region

Ĉρn
n,r,∞,γn

= {
g : ‖g − ArY − crη‖∞ ≤ ρnσ̂nhn,r,∞,γn

}
.(5.1)

On the other hand, unlike in the pointwise or the L2-credible regions, we need not
make γn → 0, but can allow any fixed γ < 1/2. In the hierarchical Bayes approach,
we consider the analogous credible ball Cρn

n,r,∞,γ = {g : ‖g − ArY − crη‖∞ ≤
ρnRn,r,∞,γ }, where Rn,r,∞,γ stands for the (1 − γ )-quantile of the marginal pos-
terior distribution of ‖Drf − ArY − crη‖∞ integrating out σ with respect to its
posterior distribution.

THEOREM 5.3 (L∞-credible region). If Jk � (n/ logn)α
∗/{αk(2α+d)} for k =

1, . . . , d , then for any ρn → ∞ and γ < 1/2, the coverage of Ĉρn
n,r,∞,γ tends to 1

and its radius is OP0(εn,r,∞ρn) uniformly in ‖f0‖α,∞ ≤ R. Moreover, if the true
distribution of the regression errors is Gaussian, then we can let ρn = ρ for some
sufficiently large constant ρ > 0.

If the posterior distribution of σ is consistent, then the same conclusion holds
for the hierarchical Bayes L∞-credible ball Cρn

n,r,∞,γ .

REMARK 5.4. To control the size of Ĉρn
n,r,∞,γ and ensure guaranteed frequen-

tist coverage, we can take ρn to be a factor slowly tending to infinity, or a suffi-
ciently large constant for the Gaussian situation. A similar correction factor was
also used by [34] in the context of adaptive L2-credible region.

6. Simulation. We compare finite sample performance of pointwise cred-
ible intervals and L∞-credible bands for f in one dimension (i.e., d = 1,
r = 0) with confidence intervals and L∞-confidence bands proposed by The-
orem 4.1 of [36]. Following [18], we consider the true function f0(x) =√

2
∑∞

i=1 i−3/2 sin i cos{(i − 1/2)πx}, x ∈ [0,1], which has smoothness α = 1.
We observed the signal f0 with i.i.d. N(0,0.1) errors at covariate values at Xi =
(i − 1)/(n − 1) for i = 1, . . . , n. We use cubic B-splines (i.e., q = 4) with uniform
knot sequence, where we added 4 duplicate knots at 0 and 1. For the prior param-
eters, we set η = 0 and � = IJ . We construct (1 − γn)-empirical credible intervals
for γn = 5/n with σ̂n computed using (3.7). The corresponding confidence regions
are constructed using Theorem 4.1 of [36] based on the least squares estimator
f̂ (x) = bJ,q(x)T θ̂ for θ̂ = (BT B)−1BT Y, and σ̃ 2

n = (Y − Bθ̂)T (Y − Bθ̂)/(n−J ).
In the Bayesian context when the smoothing parameter J is to be determined from
the data, it is natural to use its posterior mode. However, for a fair comparison, we
used leave-one-out cross validation to determine J for both methods and also ob-
served that the posterior mode essentially chose the same values. We conduct our
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FIG. 1. Pointwise coverage probabilities for credible and confidence intervals. The y-axis is the
coverage probabilities and the x-axis is the covariate x.

experiment across sample sizes n = 100,300,500,700,1000,2000. For pointwise
credible and confidence intervals, we report the empirical coverage based on 1000
Monte Carlo runs for each n. All simulations were carried out in R using the bs
function from the splines package.

The coverage probabilities of pointwise credible and confidence intervals are
shown in Figure 1. One distinguishing feature is the downward spike at around the
bump of f0 at x = 0.3 in Figure 2, and the plots narrow down to this point as n

increases. Moreover, the pointwise coverage is 0 at this point for both Bayesian
and frequentist methods in all sample sizes considered. This phenomenon occurs
perhaps due to the fact that the true function at x = 0.3 has a sharp bend but the
function is much smoother elsewhere, so based on a limited sample the cross-
validation method oversmooths by choosing a smaller J than ideal. Both methods
yield almost the same pointwise coverage for large sample sizes, and are equivalent
in quantifying uncertainty of estimating f0. To cover the function at all points, we
consider the simultaneous (modified) credible band at the level 1−γ = 0.95, given
by (A0(x)Y + c0(x)η) ± ρσ̂nhn,0,∞,γ .
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FIG. 2. Dots: posterior mean (top) and f̂ (bottom), Solid: true function, Dashes: 95% L∞-credible
(top) and confidence (bottom) bands.

The second assertion of Theorem 5.3 allows us to use a fixed ρ because our true
errors are normally distributed which we choose as ρ = 0.5. To construct (1 − γ )-
asymptotic confidence band, we use Theorem 4.2 of [36].

Table 1 shows the coverage of 95% simultaneous credible and confidence bands.
At n = 100, the apparent higher coverage of the confidence bands is due to the pos-
itive bias of σ̃ 2

n for small n. From n = 300 onward, the coverage of both credible
and confidence bands steadily increase with n. The corresponding graphical rep-

TABLE 1
95% simultaneous credible and confidence bands

n 100 300 500 700 1000 2000

Credible band coverage 0.852 0.896 0.954 0.945 0.964 0.972
Confidence band coverage 0.972 0.948 0.963 0.978 0.985 0.986
Credible band radius 0.235 0.155 0.148 0.127 0.121 0.098
Confidence band mean radius 0.27 0.165 0.147 0.132 0.129 0.101
Confidence band max radius 0.64 0.436 0.409 0.374 0.372 0.3
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resentations of these bands are shown in Figure 2. The top panel corresponds to
the proposed Bayesian method, where the dotted line stands for the posterior mean
and dashed lines for the 95% credible band. The bottom panel corresponds to the
frequentist method of [36], where the dotted line standing for the least squares esti-
mator f̂ and the dashed lines for the 95% L∞-confidence bands. In both panels, the
solid line is the true function f0. Observe that the credible bands have fixed length,
while the confidence bands have varying lengths. This is because the procedure of
[36] is based on the supremum of the scaled absolute differences. Therefore, for
the latter we present both average and maximum radius. The frequentist method
has larger width at the endpoints due to the fact that there are fewer observations,
and this results in larger maximum radius.

7. Proofs. We shall repeatedly use the following fact about approximation
power of tensor product B-splines given by (12.37) of [24].

For any R > 0, if ‖f0‖α,∞ ≤ R, there exists a θ∞ ∈ R
J such that for constant

C > 0 depending only on α, q and d , we have

∥∥bJ,q(·)T θ∞ − f0
∥∥∞ ≤ C

d∑
k=1

J
−αk

k

∥∥∥∥ ∂αk

∂x
αk

k

f0

∥∥∥∥∞
�

d∑
k=1

J
−αk

k .(7.1)

Since ‖bJ,q(·)T θ∞‖∞ ≤ ‖f0‖α,∞ + C
∑d

k=1 J
−αk

k ‖f0‖α,∞ �R + d ,

sup
‖f0‖α,∞≤R

‖θ∞‖∞ � sup
‖f0‖α,∞≤R

∥∥bJ,q(·)T θ∞
∥∥∞ = O(1),(7.2)

by (12.25) of [24]. An extension of the approximation result for derivatives is given
by the following lemma.

LEMMA 7.1. There exists C > 0 depending only on α, q and d such that for
f0 ∈ Hα([0,1]d),

∥∥bJ,q−r(·)T Wrθ∞ − Drf0
∥∥∞ ≤ C

(
d∑

k=1

J
−(αk−rk)
k

∥∥D(αk−rk)ekDrf0
∥∥∞

)
.

PROOF. Let Ij1,...,jd
= ∏d

k=1[tk,jk−qk
, tk,jk

]. Define a bounded linear opera-

tor Qf (x) = ∑J1
j1=1 · · ·∑Jd

jd=1(λj1,...,jd
f )

∏d
k=1 Bjk,qk

(xk) on Hα([0,1]d), where

λj1,...,jd
= ∏d

k=1 λjk
and λjk

is the dual basis of Bjk,qk
(·), that is, λjk

is a linear
functional such that λikBjk,qk

(·) = 1{ik=jk}(·) for k = 1, . . . , d (see Section 4.6 of
[24]). Using Theorem 13.20 of [24], there exists a tensor-product Taylor’s polyno-
mial pj1,...,jd

(x) such that

∥∥Dr(f0 − pj1,...,jd
)|Ij1,...,jd

∥∥∞ ≤ C

d∑
k=1

J
−(αk−rk)
k

∥∥D(αk−rk)ekDrf0|Ij1,...,jd

∥∥∞,
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where f |Ij1,...,jd
is the restriction of f onto Ij1,...,jd

and C > 0 depends only on
α, q and d . By equations (12.30) and (12.31) of Theorem 12.6 in [24], ‖(Drf0 −
QDrf0)|Ij1,...,jd

‖∞ is bounded above by∥∥Dr(f0 − pj1,...,jd
)|Ij1,...,jd

∥∥∞ + ∥∥Q(
Drf0 − Drpj1,...,jd

)|Ij1,...,jd

∥∥∞
≤ C

∥∥Dr(f0 − pj1,...,jd
)|Ij1,...,jd

∥∥∞

≤ C

d∑
k=1

J
−(αk−rk)
k

∥∥D(αk−rk)ekDrf0|Ij1,...,jd

∥∥∞.

Since QDrf0 = DrQf0, identifying (θ∞)j1,...,jd
from (7.1) with λj1,...,jd

f0 and
applying equations (15) and (16) of Chapter X in [8], we see that QDrf0 =
bJ,q−r(·)T Wrθ∞. Now sum both sides over 1 ≤ jk ≤ Jk, k = 1, . . . , d . �

PROOF OF PROPOSITION 4.1. Define U = (B�BT + In)
−1 and J = ∏d

k=1 Jk .
By equation (33) of page 355 in [26],∣∣E0

(
σ̂ 2

n

)− σ 2
0
∣∣ = ∣∣n−1σ 2

0 tr(U) − σ 2
0
∣∣+ n−1(F0 − Bη)T U(F0 − Bη)

� n−1[tr(In − U) + (F0 − Bθ∞)T U(F0 − Bθ∞)(7.3)

+ (Bθ∞ − Bη)T U(Bθ∞ − Bη)
]
,

where we used (x + y)T D(x + y) ≤ 2xT Dx + 2yT Dy for any D ≥ 0. Let PB =
B(BT B)−1BT . Let A be an m × m matrix, C an m × r matrix, T an r × r matrix,
and W an r × m matrix, with A and T invertible. Then by the binomial inverse
theorem (Theorem 18.2.8 of [15])

(A + CTW)−1 = A−1 − A−1C
(
T−1 + WA−1C

)−1WA−1.(7.4)

Therefore, two applications of (7.4) to U yield(
B�BT + In

)−1 = In − B
(
BT B + �−1)−1BT = In − PB + V,(7.5)

where V = B(BT B)−1[� + (BT B)−1]−1(BT B)−1BT ≥ 0. Hence, the first term in
(7.3) is

n−1 tr(PB − V) ≤ n−1 tr(PB) = J/n.(7.6)

Note U ≤ In since B�BT ≥ 0, and the second term in (7.3) is bounded by

n−1‖U‖(2,2)‖F0 − Bθ∞‖2 ≤ ‖F0 − Bθ∞‖2∞ �
d∑

k=1

J
−2αk

k ,(7.7)

in view of (7.1). By (7.5) and (I − PB)B = 0, the last term in (7.3) is n−1(θ∞ −
η)T [� + (BT B)−1]−1(θ∞ − η), which is bounded above by

n−1(c1 + C2
−1J/n

)−1
J‖θ∞ − η‖2∞ � J/n,(7.8)
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where we used (3.3) and (3.10) to bound the maximum eigenvalue of [� +
(BT B)−1]−1. By (7.2) and assumption on the prior, ‖θ∞ − η‖2∞ = O(1). Com-
bining the bounds in (7.6), (7.7) and (7.8) into (7.3), we obtain |E0(σ̂

2
n ) − σ 2

0 | �
J/n +∑d

k=1 J
−2αk

k .
Let Y = F0 + ε and write nσ̂ 2

n = (F0 − Bη)T U(F0 − Bη) + 2(F0 − Bη)T Uε +
εT Uε. Using the fact Var(T1 + T2) ≤ 2 Var(T1) + 2 Var(T2), it follows that
Var0(σ̂

2
n ) is bounded up to a constant multiple by

n−2[(F0 − Bθ∞)T U2(F0 − Bθ∞)
(7.9)

+ (Bθ∞ − Bη)T U2(Bθ∞ − Bη) + Var0
(
εT Uε

)]
.

In view of (7.1) and U ≤ In, the first term above is bounded by

n−2‖U‖2
(2,2)‖F0 − Bθ∞‖2 ≤ n−1‖F0 − Bθ∞‖2∞ � n−1

d∑
k=1

J
−2αk

k .(7.10)

By the idempotency of In − PB and (In − PB)B = 0, we have that BT (In − PB +
V)2B is

BT V2B = [
� + (

BT B
)−1]−1(BT B

)−1[
� + (

BT B
)−1]−1

≤ [
� + (

BT B
)−1]−1 ≤ BT B.

Therefore, in view of (7.5), the second term in (7.9) is bounded by

(θ∞ − η)T BT B(θ∞ − η)/n2 ≤ J
∥∥BT B

∥∥
(2,2)‖θ∞ − η‖2∞/n � n−1,(7.11)

where we used (3.10) to bound ‖BT B‖(2,2), while ‖θ∞ − η‖2∞ is bounded us-
ing (7.2) and the assumption on the prior. By Lemma A.10, the last term in (7.9)
is O(n−1). Combining this with the bounds established in (7.10) and (7.11) into
(7.9), we obtain Var0(σ̂

2
n )� n−1. If Jk � nα∗/{αk(2α∗+d)} for k = 1, . . . , n, the mean

square error is

E0
(
σ̂ 2

n − σ 2
0
)2 � n−1 + J 2n−2 +

d∑
k=1

J
−4αk

k � n−1 + n−4α∗/(2α∗+d),(7.12)

which implies the first assertion.
For the assertion (b), observe that

E
(
σ 2|Y) = β2(β1 + n − 2)−1 + n(β1 + n − 2)−1σ̂ 2

n ,

Var
(
σ 2|Y) = 4(β1 + n − 4)−1(β2(β1 + n − 2)−1 + n(β1 + n − 2)−1σ̂ 2

n

)2
.

Applying Markov’s inequality, the posterior for σ 2 is seen to concentrate around
σ̂ 2

n at the rate n−1/2, so the assertion follows from (a).
Assertion (c) can be concluded from an anisotropic extension of the estimates

obtained in the proof of Theorem 4.1 together with Theorem A.1 of [10]. Indeed
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the posterior contracts at the rate n−α∗/(2α∗+d), and actually at the rate n−1/2 for
α∗ > d/2 by an anisotropic extension of their Theorem 4.1. Consistency can also
be approached directly from the marginal model pn,σ for Y given σ , where f is
integrated out, by a Schwartz-type posterior consistency argument using the test
|σ̂n − σ0| > ε, which is consistent at the true density p0,n by part (a). The only
departure from Schwartz’s argument is that in the present case it is convenient to
directly establish that for any c > 0, ecn

∫
(pn,σ /p0,n) d�(σ) → ∞ in probability

under p0,n using the consistency of σ̂n at σ0. �

We write Un for a shrinking neighborhood of σ0 such that with proba-
bility tending to one, σ̂n ∈ Un and �(σ ∈ Un|Y) → 1. We write Drf̃ for
E(Drf |Y) = ArY + crη. Recall that εn,r = n−α∗{1−∑d

k=1(rk/αk)}/(2α∗+d) and

εn,r,∞ = (logn/n)α
∗{1−∑d

k=1(rk/αk)}/(2α∗+d).

PROOF OF THEOREM 4.2. Recall that at x ∈ [0,1]d , (Drf (x)|Y, σ ) ∼
N(Drf̃ (x), σ 2r(x,x)), with r(x,x) given in (3.6). Under P0, Drf̃ (x) is a sub-
Gaussian variable with mean Ar(x)F0 + cr(x)η and variance σ 2

0 �r(x,x), where
�r(x,y) is

bJ,q−r(x)T Wr
(
BT B + �−1)−1BT B

(
BT B + �−1)−1WT

r bJ,q−r(y).

Note that the posterior variance σ 2r(x,x) of Drf does not depend on Y, while
Drf̃ (x) does not depend on σ . Therefore, uniformly on ‖f0‖α,∞ ≤ R,

E0 sup
σ∈Un

E
([

Drf (x) − Drf0(x)
]2|Y, σ

)
= sup

σ∈Un

E
([

Drf (x) − Drf̃ (x)
]2|σ )+ E0

[
Drf̃ (x) − Drf0(x)

]2(7.13)

= sup
σ∈Un

σ 2r(x,x) + σ 2
0 �r(x,x) + [

E0D
rf̃ (x) − Drf0(x)

]2
.

To bound σ 2r(x,x), first observe that ‖bJ,q−r(x)‖2 is bounded by

d∏
k=1

max
1≤jk≤Jk

Bjk,qk−rk (xk)

J1−r1∑
j1=1

· · ·
Jd−rd∑
jd=1

Bjk,qk−rk (xk) ≤ 1.(7.14)

In view of (3.1), each row of Wr has
∏d

k=1(rk + 1) nonzero entries and each col-
umn has at most

∏d
k=1(rk + 1) nonzero entries. Then by Lemmas A.2 and A.1,

each of these nonzero entries is of the order
∏d

k=1 �
−rk
k � ∏d

k=1 J
rk
k . Hence, both

‖Wr‖(∞,∞) and ‖WT
r ‖(∞,∞) are O(

∏d
k=1 J

rk
k ). Thus,

∥∥WT
r Wr

∥∥
(2,2) ≤ ∥∥WT

r Wr
∥∥
(∞,∞) �

d∏
k=1

J
2rk
k .(7.15)
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By the Cauchy–Schwarz inequality, (7.14), (7.15) and (3.11), σ 2r(x,x) over σ ∈
Un is uniformly bounded by(

σ 2
0 + o(1)

)∥∥bJ,q−r(x)
∥∥2∥∥WT

r Wr
∥∥
(2,2)

∥∥(BT B + �−1)−1∥∥
(2,2)

(7.16)

�
(
C1n

d∏
k=1

J−1
k + c2

−1

)−1( d∏
k=1

J
2rk
k

)
� n−1

d∏
k=1

J
2rk+1
k .

Using (3.11), (3.10), (7.14) and (7.15), the variance σ 2
0 �r(x,x) of Drf (x) is

bounded by

σ 2
0
∥∥(BT B + �−1)−1∥∥2

(2,2)

∥∥BT B
∥∥
(2,2)

∥∥bJ,q−r(x)
∥∥2∥∥WT

r Wr
∥∥
(2,2)

(7.17)

�
(
n−1

d∏
k=1

Jk

)2(
n

d∏
k=1

J−1
k

)(
d∏

k=1

J
2rk
k

)
� n−1

d∏
k=1

J
2rk+1
k .

The last term in (7.13) is bounded as∣∣E0D
rf̃ (x) − Drf0(x)

∣∣
≤ ∣∣bJ,q−r(x)T Wr

(
BT B + �−1)−1(BT F0 + �−1η

)− bJ,q−r(x)T Wrθ∞
∣∣

+ ∣∣Drf0(x) − bJ,q−r(x)T Wrθ∞
∣∣.

By bounding the second term using Lemma 7.1 and using ‖bJ,q−r(x)‖1 = 1, the

right-hand side above, up to O(
∑d

k=1 J
−(αk−rk)
k ), is bounded by∣∣bJ,q−r(x)T Wr

(
BT B + �−1)−1[BT (F0 − Bθ∞) + �−1(η − θ∞)

]∣∣
≤ ∥∥(BT B + �−1)−1∥∥

(∞,∞)‖Wr‖(∞,∞)

{∥∥BT (F0 − Bθ∞)
∥∥∞

+ ∥∥�−1∥∥
(∞,∞)

(‖θ∞‖∞ + ‖η‖∞
)}

.

Since �−1 is m-banded with fixed m and has uniformly bounded entries,
‖�−1‖(∞,∞) = O(1). As BT B is q-banded, Lemma A.4 and (3.11) imply that
‖(BT B + �−1)−1‖(∞,∞) � n−1 ∏d

k=1 Jk . By (7.15), we have ‖Wr‖(∞,∞) �∏d
k=1 J

rk
k . Also, ‖θ∞‖∞ and ‖η‖∞ are both O(1) by (7.2) and the assumption on

the prior. Using the nonnegativity of B-splines, Lemma A.3 and (7.1), uniformly
on ‖f0‖α,∞ ≤ R, we bound ‖BT (F0 − Bθ∞)‖∞ by

max
1≤jk≤Jk,k=1,...,d

n∑
i=1

d∏
k=1

Bjk,qk
(Xik)

∣∣f0(Xi) − bJ,q(Xi)
T θ∞

∣∣
�

d∑
k=1

J
−αk

k max
1≤jk≤Jk,k=1,...,d

n∑
i=1

d∏
k=1

Bjk,qk
(Xik)� n

d∑
k=1

J
−αk

k

(
d∏

k=1

J−1
k

)
.
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Therefore, combining the bounds obtained and squaring the bias of Drf̃ , we have
for any x ∈ [0,1]d uniformly on ‖f0‖α,∞ ≤ R,

∣∣E0D
rf̃ (x) − Drf0(x)

∣∣2 � d∏
k=1

J
2rk
k

(
n−2

d∏
k=1

J 2
k +

d∑
k=1

J
−2αk

k

)
.(7.18)

Let Pn,r(x) = E0 supσ∈Un
E([Drf (x)−Drf0(x)]2|Y, σ ). Combining (7.16), (7.17)

and (7.18) into (7.13),

sup
‖f0‖α,∞≤R

Pn,r(x)

� 1

n

d∏
k=1

J
2rk+1
k +

d∏
k=1

J
2rk
k

(
1

n2

d∏
k=1

J 2
k +

d∑
k=1

J
−2αk

k

)
(7.19)

�
d∏

k=1

J
2rk
k

(
1

n

d∏
k=1

Jk +
d∑

k=1

J
−2αk

k

)
,

since
∏d

k=1 Jk ≤ n by the assumption. To balance the orders of the two terms on the
right, let Jk = J 1/αk for k = 1, . . . , d . Then the right-hand side of (7.19) reduces to
O(J

∑d
k=1(2rk+1)/αk/n)+O(J 2(

∑d
k=1 rk/αk−1)). They will have the same order if J �

nα∗/(2α∗+d), and Jk = J 1/αk � nα∗/{αk(2α∗+d)} for k = 1, . . . , d . Hence, Pn,r(x) =
O(ε2

n,r) uniformly on ‖f0‖α,∞ ≤ R, implying the first assertion.
For the hierarchical Bayes procedure, the assertion similarly follows from

E0�(|Drf (x) − Drf0(x)| > Mnεn,r|Y) ≤ M−2
n ε−2

n,rPn,r(x) + E0�(σ /∈ Un|Y).
�

PROOF OF THEOREM 4.4. Recall that (Drf |Y, σ ) ∼ GP(Drf̃ , σ 2r). Let
Zn,r ∼ GP(0,r). Under the true distribution P0, Drf̃ is a sub-Gaussian process
with mean function ArF0 + crη and covariance function σ 2

0 �r. Let Qn,r be a
sub-Gaussian process with mean function 0 and covariance function σ 2

0 �r. Note
that Zn,r does not depend on Y and f0, while Drf̃ does not depend on σ . Then
uniformly on ‖f0‖α,∞ ≤ R,

E0 sup
σ 2∈Un

E
(∥∥Drf − Drf0

∥∥2
∞|Y, σ

)
� sup

σ∈Un

E
(∥∥Drf − Drf̃

∥∥2
∞|σ )+ E0

∥∥Drf̃ − Drf0
∥∥2
∞(7.20)

� sup
σ∈Un

σ 2E‖Zn,r‖2∞ + E‖Qn,r‖2∞ + ∥∥ArF0 + crη − Drf0
∥∥2
∞.

Since Qn,r = Arε, then by Assumption 1, Qn,r is sub-Gaussian with respect to the
semi-metric d(t, s) = √

Var(Qn,r(t) − Qn,r(s)). Note that Zn,r and Qn,r satisfy
the condition for Lemma A.11 by Lemma A.6. Applying Lemma A.11 with p = 2,
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we have for any 0 < δn < 1, E‖Zn,r‖2∞ � log (1/δn)(nδ2
n + 1

n

∏d
k=1 J

2rk+1
k ) in view

of (7.16). Similarly, E‖Qn,r‖2∞ � log (1/δn)(nδ2
n + 1

n

∏d
k=1 J

2rk+1
k ) by (7.17). Set-

ting δ2
n � n−2 ∏d

k=1 J
2rk+1
k ,

E‖Zn,r‖2∞ � logn

n

d∏
k=1

J
2rk+1
k ,

(7.21)

E‖Qn,r‖2∞ � logn

n

d∏
k=1

J
2rk+1
k .

Since the bound for (7.18) is uniform for x ∈ [0,1]d and ‖f0‖α,∞ ≤ R,

∥∥ArF0 + crη − Drf0
∥∥2
∞ �

d∏
k=1

J
2rk
k

(
n−2

d∏
k=1

J 2
k +

d∑
k=1

J
−2αk

k

)
.(7.22)

Combining (7.21) and (7.22) with (7.20), uniformly on ‖f0‖α,∞ ≤ R,

E0 sup
σ∈Un

E
(∥∥Drf − Drf0

∥∥2
∞|Y, σ

)
�

d∏
k=1

J
2rk
k

(
logn

n

d∏
k=1

Jk +
d∑

k=1

J
−2αk

k

)
.

To balance the orders of the two terms on the right, let Jk = J 1/αk for k = 1, . . . , d .
Then the bound above reduces to

O
(
J
∑d

k=1(2rk+1)/αkn−1 logn
)+ O

(
J 2(

∑d
k=1 rk/αk−1)) = O

(
ε2
n,r,∞

)
,

if J � (n/ logn)α
∗/(2α∗+d) and Jk = J 1/αk � (n/ logn)α

∗/{αk(2α∗+d)} for k =
1, . . . , d . The rest of the proof can be completed as in Theorem 4.2. �

PROOF OF THEOREM 5.1. Define tn,r,γn(x) = infσ∈Un zγn/2σ
√

r(x,x). To
show Ĉn,r,γn(x) has asymptotic coverage of 1, it suffices to show that

sup
‖f0‖α,∞≤R

P0
(∣∣Drf0(x) − Drf̃ (x)

∣∣ > tn,r,γn(x)
) → 0.(7.23)

Since zγn/2 → ∞ and Un shrinks to σ0, we have tn,r,γn(x)2 � r(x,x). In view of
(3.11), r(x,x) is bounded below by

λmin
{(

BT B + �−1)−1}∥∥WT
r bJ,q−r(x)

∥∥2 � n−1
d∏

k=1

Jk

∥∥WT
r bJ,q−r(x)

∥∥2
.

For any x = (x1, . . . , xd)T ∈ [0,1]d , let ixk
be a positive integer such that xk ∈

[tk,ixk
−1, tk,ixk

]. Then only Bixk
,qk−rk (xk), . . . ,Bixk

+qk−rk−1,qk−rk (xk) are nonzero
at each k = 1, . . . , d . In view of (3.1), (∂rk/∂x

rk
k )Bjk,qk

(xk) is a linear combina-
tion of Bjk,qk−rk (xk), . . . ,Bjk+rk,qk−rk (xk) for any 1 ≤ jk ≤ Jk with k = 1, . . . , d .
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Choose jk = ixk
+ qk − rk − 1 for k = 1, . . . , d , then by (A.1), we have

∥∥WT
r bJ,q−r(x)

∥∥2 =
J1∑

j1=1

· · ·
Jd∑

jd=1

d∏
k=1

(
∂rk

∂x
rk
k

Bjk,qk
(xk)

)2

≥
d∏

k=1

rk∏
u=1

(qk − u)2Bixk
+qk−rk−1,qk−rk (xk)

2

(tk,ixk
+qk−rk−1 − tk,ixk

−rk−1+u)2(7.24)

�
d∏

k=1

1

�
2rk
k

(
qk − rk

qk

)2

�
d∏

k=1

J
2rk
k ,

since tk,ixk
+qk−rk−1 − tk,ixk

−rk−1+u ≤ (qk − u + 1)�k � J−1
k for k = 1, . . . , d , by

Lemma A.1. Consequently, tn,r,γn(x)2 � n−1 ∏d
k=1 J

2rk+1
k .

In view of (7.18), uniformly on ‖f0‖α,∞ ≤ R,

E0
[
Drf0(x) − Drf̃ (x)

]2 � n−1
d∏

k=1

J
2rk+1
k +

d∑
k=1

J
−2(αk−rk)
k .(7.25)

Hence, uniformly on ‖f0‖α,∞ ≤ R, the lack of coverage of Ĉn,r,γn(x)

P0
(∣∣Drf0(x) − Drf̃ (x)

∣∣ > tn,r,γn(x)
)
� n−1 ∏d

k=1 J
2rk+1
k +∑d

k=1 J
−2(αk−rk)
k

tn,r,γn(x)2 .

For the choice Jk � nα∗/{αk(2α∗+d)}, k = 1, . . . , d , the bound tends to zero
uniformly on ‖f0‖α,∞ ≤ R and the diameter σ̂nzγn/2

√
r(x,x) of Ĉn,r,γn(x)

is OP0(εn,r
√

log (1/γn)) because r(x,x) � n−1 ∏d
k=1 J

2rk+1
k by (7.16), σ̂n

converges to σ0 and zγn/2 = O(
√

log (1/γn)) by the estimate P(Z > z) ≤
z−1 exp(−z2/2) for Z ∼ N(0,1).

To prove the corresponding assertion for the hierarchical Bayes credible inter-
val, it suffices to show that

n−1
d∏

k=1

J
2rk+1
k � Rn,r,γn(x)2 � n−1

d∏
k=1

J
2rk+1
k log(1/γn)(7.26)

uniformly on ‖f0‖α,∞ ≤ R. If Un shrinks sufficiently slowly to σ0, we can ensure
that with probability tending to one, �(σ ∈ Un|Y) ≥ 1 − γn. By the definition of
Rn,r,γn(x), we have that

1 − γn = �
(∣∣Drf (x) − Ar(x)Y − cr(x)η

∣∣ ≤ Rn,r,γn(x)|Y)
≤ sup

σ∈Un

�
(∣∣Drf (x) − Ar(x)Y − cr(x)η

∣∣ ≤ Rn,r,γn(x)|Y, σ
)+ γn.

Since given σ , zγnσ
√

�r(x,x) is the (1 − 2γn)-posterior quantile of |Drf (x) −
Ar(x)Y−cr(x)η|, it follows that on a set of probability tending to one, Rn,r,γn(x) ≥
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zγn inf{σ : σ ∈ Un}√�r(x,x). On the other hand, from

1 − γn ≥ inf
σ∈Un

�
(∣∣Drf (x) − Ar(x)Y − cr(x)η| ≤ Rn,r,γn(x)

∣∣Y, σ
)
�(σ ∈ Un|Y),

we get Rn,r,γn(x) ≤ zγn/2(1−γn) sup{σ : σ ∈ Un}√�r(x,x). This establishes (7.26).
�

PROOF OF THEOREM 5.3. For notational simplicity, we write hn,r,∞,γ as
h∞,γ and define t∞,γ = infσ∈Un σhn,r,∞,γ . First, we consider the empirical Bayes
credible region. To show Ĉρn

n,r,∞,γ has asymptotic coverage of 1, it suffices to show
that

sup
‖f0‖α,∞≤R

P0
(∥∥Drf0 − Drf̃

∥∥∞ > ρnt∞,γ

) → 0.(7.27)

Let Zn,r ∼ GP(0,r). Let MZ be the median of ‖Zn,r‖∞, that is, MZ sat-
isfying P(‖Zn,r‖∞ ≤ MZ) ≥ 1/2 and P(‖Zn,r‖∞ ≥ MZ) ≥ 1/2. Let σ 2

Z =
supx∈[0,1]d Var(Zn,r(x)) and note that by (7.16), σ 2

Z � n−1 ∏d
k=1 J

2rk+1
k → 0 for

Jk � (n/ logn)α
∗/{αk(2α+d)}, k = 1, . . . , d . Using the facts that σZ ≤ 2MZ and

|E‖Zn,r‖∞ − MZ| ≤ σZ(π/2)1/2 (see pages 52 and 54 of [21]), we have
E‖Zn,r‖∞ � MZ .

Because P(‖Zn,r‖∞ > h∞,γ ) = γ , and γ < 1/2, we have h∞,γ ≥ MZ �
E‖Zn,r‖∞. To lower bound E‖Zn,r‖∞, we introduce the notation Tk = {tk,1, . . . ,

tk,Nk
}, k = 1, . . . , d and T = ∏d

k=1 Tk . Define I = {(i1, . . . , id) : 1 ≤ ik ≤ Nk, k =
1, . . . , d} and arrange the elements of I lexicographically. Then we can enumerate
the N = ∏d

k=1 Nk elements of T as {τ i : i ∈ I}, where τ i = (t1,i1, . . . , td,id ) with
(i1, . . . , id) ∈ I . Define u(x1, . . . , xd) = ∏d

k=1(∂
rk/∂x

rk
k )Bjk,qk

(xk). Applying the
multivariate mean value theorem to u(x1, . . . , xd) at τ i and τm, we have for some
point τ ∗ = (t∗1 , . . . , t∗d ) = λτ i + (1 − λ)τm with λ ∈ [0,1],

J1∑
j1=1

· · ·
Jd∑

jd=1

∣∣u(τ i) − u(τm)
∣∣2

=
J1∑

j1=1

· · ·
Jd∑

jd=1

∣∣∇u
(
τ ∗)T (τ i − τm)

∣∣2(7.28)

=
J1∑

j1=1

· · ·
Jd∑

jd=1

∣∣∣∣∣
d∑

β=1

(
∂u

∂xβ

)
(tβ,iβ − tβ,mβ )

∣∣∣∣∣
2

.

Choosing j1 = ix1 + q1 − r1 − 2 and jk = ixk
+ qk − rk − 1 for k = 2, . . . , d , it

then follows that (∂r1+1/∂x
r1+1
1 )Bj1,q1(x1) > 0, while (∂rk/∂x

rk
k )Bjk,qk

(xk) > 0

and (∂rk+1/∂x
rk+1
k )Bjk,qk

(xk) = 0 for k = 2, . . . , d . We show only the first impli-
cation; the other two can be argued similarly. For x = (x1, . . . , xd)T ∈ [0,1]d , let
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ixk
be a positive integer such that xk ∈ [tk,ixk−1, tk,ixk

] for k = 1, . . . , d . Now by

(3.1), (∂r1+1/∂x
r1+1
1 )Bj1,q1(x1) is a linear combination of the set of functions

{Bj1,q1−r1−1(x1), . . . ,Bj1+r1+1,q1−r1−1(x1)} while only {Bix1 ,q1−r1−1(x1), . . . ,

Bix1+q1−r1−2,q1−r1−1(x1)} are nonzero by the support property of B-splines.
For j1 = ix1 + q1 − r1 − 2, only the positive term corresponding to
Bix1+q1−r1−2,q1−r1−1(x1), with coefficients given by the second equation of
(A.1) below survives. Thus, only ∂u/∂x1 will be positive while ∂u/∂xk = 0 for
k = 2, . . . , d . By repeated applications of (7.24), the right-hand side of (7.28) is
bounded below by(

∂r1+1

∂x
r1+1
1

Bj1,q1(x1)

)2 d∏
k=2

(
∂rk

∂x
rk
k

Bjk,qk
(xk)

)2

(t1,i1 − t1,m1)
2

� J
2r1+2
1

d∏
k=2

J
2rk
k

(
min

1≤l≤N1
δ2

1,l

)
�

d∏
k=1

J
2rk
k ,

where δ1,l = t1,l − t1,l−1 for 1 ≤ l ≤ N1, and the last inequality follows from the
quasi-uniformity of knots and Lemma A.1. Define Vi = Zn,r(τ i) for 1d ≤ i ≤ N
where N = (N1, . . . ,Nd)T . Note that ‖Zn,r‖∞ ≥ max1d≤i≤N Vi. Then by (3.11),
for any 1d ≤ i,m ≤ N,

E(Vi − Vm)2 ≥ λmin
{(

BT B + �−1)−1}∥∥WT
r
(
bJ,q−r(τ i) − bJ,q−r(τm)

)∥∥2

�
(

1

n

d∏
k=1

Jk

)
J1∑

j1=1

· · ·
Jd∑

jd=1

∣∣u(τ i) − u(τm)
∣∣2 ≥ c

n

d∏
k=1

J
2rk+1
k ,

for a universal constant c > 0. Define Ui = √
(2n/c)

∏d
k=1 J

−(rk+1/2)
k Vi and let Hi

be i.i.d. N(0,1) with 1d ≤ i ≤ N. By (3.14) of [21], we have E(max1d≤i≤N Hi) �√
logN . Now, E(Ui − Um)2 ≥ 2 = E(Hi − Hm)2, and hence by Slepian’s lemma

(Corollary 3.14 of [21]),

E
(

max
1d≤i≤N

Ui

)
≥ E

(
max

1d≤i≤N
Hi

)
�

√
logN,

where N = ∏d
k=1 Nk ∼ ∏d

k=1 Jk by definition. It follows that t2∞,γ � σ 2
0 h2∞,γ �

(logn/n)
∏d

k=1 J
2rk+1
k . Therefore, using (7.21) and (7.22), we have uniformly

on ‖f0‖α,∞ ≤ R,

E0
(∥∥Drf0 − Drf̃

∥∥2
∞
) ≤ 2E

(‖Qn,r‖2∞
)+ 2

∥∥ArF0 + crη − Drf0
∥∥2
∞

(7.29)

� logn

n

d∏
k=1

J
2rk+1
k +

d∑
k=1

J
−2(αk−rk)
k .

Hence, for the choice Jk � (n/ logn)α
∗/{αk(2α∗+d)}, k = 1, . . . , d , P0(‖Drf0 −

Drf̃ ‖∞ > ρnt∞,γ ) → 0 since t2∞,γ � (logn/n)
∏d

k=1 J
2rk+1
k and ρn → ∞.
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If the true errors are i.i.d. N(0, σ 2
0 ), then Qn,r ∼ GP(0, σ 2

0 �r) under P0. Define
σ 2

Q = supx∈[0,1]d Var(Qn,r(x)). We have for constants C1,C2,C3 > 0,

t∞,γ ≥ C1εn,r,∞,
∥∥Drf0 − E0D

rf̃
∥∥∞ ≤ C2εn,r,∞,

E‖Qn,r‖∞ ≤ C3εn,r,∞.

The first inequality was established above, while the second and third inequalities
follow from (7.22) and (7.21). Then by Proposition A.2.1 of [35], P0(‖Qn,r‖∞ >

2C3εn,r,∞) is bounded by

P0
(‖Qn,r‖∞ > E‖Qn,r‖∞ + C3εn,r,∞

) ≤ 2 exp
{−C2

3ε2
n,r,∞/

(
2σ 2

Q

)}
.

In view of (7.17), we have σ 2
Q = O(ε2

n,r). Since εn,r � εn,r,∞, this implies that the
right-hand side above tends to zero as n → ∞. By the triangle inequality, we have

P0
(∥∥Drf0 − Drf̃

∥∥∞ > ρt∞,γ

)
≤ P0

(‖Qn,r‖∞ > ρt∞,γ − ∥∥Drf0 − E0D
rf̃

∥∥∞
)

which tends to 0 if ρ ≥ (2C3 + C2)/C1.
To estimate the diameter σ̂nρnh∞,γ , the last inequality in Proposition A.2.1

of [35] gives γ = P(‖Zn,r‖∞ > h∞,γ ) ≤ 2 exp{−h2∞,γ /(8E‖Zn,r‖2∞)}. Therefore,
h∞,γ � (E‖Zn,r‖2∞)1/2√− logγ, and hence the assertion follows from (7.21).

To prove the assertions about hierarchical Bayes credible regions, we proceed
as in the proof of Theorem 5.1. By definition,

1 − γ = �
(∥∥Drf − ArY − crη

∥∥∞ ≤ Rn,r,∞,γ |Y)
≤ sup

σ∈Un

�
(∥∥Drf − ArY − crη

∥∥∞ ≤ Rn,r,∞,γ |Y, σ
)+ �(σ /∈ Un|Y).

Choose γ ′ strictly between γ and 1/2. Making Un to shrink sufficiently slowly to
σ0 so that �(σ ∈ Un|Y) ≥ 1 − γ ′ + γ with probability tending to one and using
the facts that the conditional posterior distribution of (Drf −ArY − crη)/σ given
σ is equal to the distribution of the Gaussian process Zn,r, which is free of σ , and
‖Zn,r‖∞ has (1 − γ ′) quantile t∞,γ ′ , we obtain

Rn,r,∞,γ ≥ inf{σ : σ ∈ Un}t∞,γ ′ � t∞,γ ′ � εn,r,∞.

Hence, the modified hierarchical Bayes credible region Cρn
n,r,∞,γ has asymptotic

coverage 1 for any ρn → ∞, and for the Gaussian true error we can choose ρn = ρ

for a sufficiently large constant. To bound the diameter of Cρn
n,r,∞,γ we use the

relation

1 − γ ≥ inf
σ∈Un

�
(∥∥Drf − ArY − crη

∥∥∞ ≤ Rn,r,∞,γ |Y, σ
)
�(σ ∈ Un|Y)

to conclude that Rn,r,∞,γ ≤ t∞,γ /(1−γ ′+γ ), which is of the order εn,r,∞ since
γ /(1 − γ ′ + γ ) < 1/2 by the choice of γ ′. �
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PROOF OF REMARK 5.2. We indicate how to show coverage of the empirical
Bayes credible region; the necessary changes for the hierarchical version can be
made as in the proofs of Theorems 5.1 and 5.3. The adequacy of the coverage
will be shown if P0(‖Drf0 − Drf̃ ‖2 > tn,r,2,γn) → 0 uniformly on ‖f0‖α,∞ ≤
R, where tn,r,2,γn = infσ 2∈Un

σhn,r,2,γn . Let Zn,r ∼ GP(0,r). Since ‖Zn,r‖2 ≥∫
Zn,r which is normally distributed with mean 0 and variance

∫∫
r(x,y) dxdy,

it follows from (3.6) that

h2
n,r,2,γn

�
∫∫

r(x,y) dxdy � 1

n

d∏
k=1

Jk

∥∥∥∥∫ WT
r bJ,q−r(x) dx

∥∥∥∥2

.

Extending the last two equations in the proof of Lemma 6.7 in [36] to multivariate
splines by arguments used in the proof of the last two theorems, it follows from
the last display that t2

n,r,2,γn
� σ 2

0 h2
n,r,2,γn

� n−1 ∏d
k=1 J

2rk+1
k . On the other hand,

E0‖f0 − f̃ ‖2
2 =

∫
E0

∣∣f0(x) − f̃ (x)
∣∣2 dx � 1

n

d∏
k=1

J
2rk+1
k +

d∑
k=1

J
−2(αk−rk)
k ,

by (7.25). Then uniformly on ‖f0‖α,∞ ≤ R, the coverage of Ĉn,r,2,γn goes to
one in probability by Markov’s inequality. Since in view of (3.5) from [21],
γn = P(‖Zn,r‖2 > hn,r,2,γn) ≤ 4 exp{−h2

n,r,2,γn
/(8E‖Zn,r‖2

2)}, the size of the ra-
dius of the L2-confidence region is estimated as OP0(εn,r

√
log (1/γn)). �

APPENDIX

LEMMA A.1. Under quasi-uniform knots, �k � N−1
k � J−1

k , k = 1, . . . , d .

PROOF. The proof is straightforward because all Nk spacings are of the same
order and they sum to one. �

LEMMA A.2. Each nonzero entry of Wr defined implicitly in (3.2) is uni-
formly O(

∏d
k=1 �

−rk
k ).

PROOF. Recall that the dimension of Wr is
∏d

k=1(Jk − rk)×∏d
k=1 Jk . In view

of (3.1), each row of Wr has only
∏d

k=1(rk + 1) nonzero entries and their arrange-
ment is analogues to a banded matrix, namely the position of nonzero entries in
the current row is a shift of one entry to the right of the nonzero entries’ position
in the previous row. Also, each column of Wr has at most

∏d
k=1(rk + 1) nonzero

entries. We index the rows and columns of Wr using d-dimensional indices as in
Definition 2.2.

Define r̃ = ∏d
k=1(rk + 1) − 2, and let G = {u = (u1, . . . , ud) : 0 ≤ u ≤ r,u �=

r,u �= 0}. By ordering the elements in G lexicographically, we can enumerate its
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elements by G = {g1, . . . ,gr̃}. Furthermore, define sets I = {(i1, . . . , id) : 1 ≤ ik ≤
Jk − rk, k = 1, . . . , d} and J = {(j1, . . . , jd) : 1 ≤ jk ≤ Jk, k = 1, . . . , d}, where
we order their elements lexicographically. Let w

(r)
i,j denote the (i, j)th element of

Wr such that i ∈ I and j ∈ J . The expressions for the nonzero entries can be
described as follows: for each row i ∈ I , the first and last nonzero entries are given
by

w
(r)
i,i = (−1)

∑d
k=1 rk

d∏
k=1

rk∏
l=1

qk − l

tk,ik − tk,ik−qk+l

,

(A.1)

w
(r)
i,i+r =

d∏
k=1

rk∏
l=1

qk − l

tk,ik+l−1 − tk,ik−qk+rk

.

If r̃ is odd, we partition G = G1 ∪ {g(r̃+1)/2} ∪ G2 where G1 = {g1, . . . ,g(r̃−1)/2}
and G2 = {g(r̃+3)/2, . . . ,gr̃}. The intermediate nonzero entries w

(r)
i,i+h for h =

(h1, . . . , hd)T ∈ G1 are

(−1)
∑d

k=1(rk−hk)w
(r)
i,i

[
1 +

d∏
k=1

(
rk
hk

)−1∑
t=1

t∏
s=1

tk,ik − tk,ik−qk+s

tk,ik+1 − tk,ik+1−qk+s

]
,(A.2)

while for h ∈ G2, it is

(−1)
∑d

k=1(rk−hk)w
(r)
i,i+r

[
1 +

d∏
k=1

(rk
hk

)−1∑
t=1

t∏
s=1

tk,ik+rk−s − tk,ik+rk−qk

tk,ik+rk−1−s − tk,i+rk−1−qk

]
.(A.3)

When h = g(r̃+1)/2, we have

w
(r)
i,i+h = w

(r)
i,i

d∏
k=1

(
tk,ik − tk,ik−qk+1

tk,ik+1 − tk,ik+2−qk

)

×
[

1 +
d∏

k=1

(
rk−1

rk/2−1)−1∑
t=1

t−1∏
s=0

tk,ik+s − tk,ik+2−qk

tk,ik+1+s − tk,ik+3−qk

]
(A.4)

+ w
(r)
i,i+r

d∏
k=1

(
tk,ik+rk−1 − tk,ik+rk−qk

tk,ik+rk−2 − tk,ik+rk−1−qk

)

×
[

1 +
d∏

k=1

(
rk−1
rk/2)−1∑
t=1

t−1∏
s=0

tk,ik+rk−2 − tk,ik+rk−qk−s

tk,ik+rk−3 − tk,ik+rk−1−qk−s

]
.

If r̃ is even, we partition G = G1 ∪ G2 where G1 = {g1, . . . ,gr̃/2} and G2 =
{gr̃/2+1, . . . ,gr̃}. Then the expression for w

(r)
i,i+h is (A.2) for h ∈ G1 and is (A.3)
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for h ∈ G2. By the quasi-uniformity of the knots, the endpoints in (A.1) are
O(

∏d
k=1 �

−rk
k ), while the fractions of knot differences appearing in (A.2)–(A.4)

are O(1). �

LEMMA A.3.
∑n

i=1
∏d

k=1 Bjk,qk
(Xik)

pk � n
∏d

k=1 J−1
k for 1 ≤ jk ≤ Jk and

pk ∈ N, k = 1, . . . , d .

PROOF. As Bjk,qk
(·) ≤ 1 and is positive only inside (tk,jk−qk

, tk,jk
),

n∑
i=1

d∏
k=1

Bjk,qk
(Xik)

pk ≤ n

∫
[0,1]d

d∏
k=1

1(tk,jk−qk
,tk,jk

](x) dGn(x).

By the quasi-uniformity of the knots, we have tk,jk
− tk,jk−qk

≤ qk�k and tk,jk
−

tk,jk−qk
≥ qk min1≤l≤Nk

δk,l ≥ qk�k/C. This implies that tk,jk
− tk,jk−qk

� �k for
k = 1, . . . , d . Moreover, Assumption (2.2) and Lemma A.1 imply that the right-
hand side above is

nGn

[
d∏

k=1

(tk,jk−qk
, tk,jk

)

]
= nG

[
d∏

k=1

(tk,jk−qk
, tk,jk

)

]
+ o

(
n

d∏
k=1

N−1
k

)

� n

d∏
k=1

�k + o

(
n

d∏
k=1

�k

)

� n

d∏
k=1

J−1
k .

�

LEMMA A.4. Let A be a J × J symmetric and positive definite matrix
with its rows and columns indexed by d-dimensional multi-indices, that is, for
i = (i1, . . . , id) and j = (j1, . . . , jd), such that 1 ≤ ik, jk ≤ Jk, k = 1, . . . , d, J =∏d

k=1 Jk , the (i, j)th element of A is ai,j = A{(i1, . . . , id), (j1, . . . , jd)}. Let A
be q = (q1, . . . , qd)T banded as in Definition 2.2. Furthermore, assume that the
eigenvalues of A are contained in [aτm, bτm] for fixed 0 < a < b < ∞ and some
sequence τm. Then ‖A−1‖(∞,∞) = O(τ−1

m ).

PROOF. We adapt the proof given in Proposition 2.2 of [11] to the case of mul-
tidimensional banded matrix. We first note that if A is q-banded and B is w-banded
as in Definition 2.2, then AB is q + w banded. To see this, observe that (AB)i,j =∑J1

l1=1 · · ·∑Jd

ld=1 a(i1,...,id ),(l1,...,ld )b(j1,...,jd ),(l1,...,ld ) �= 0 only if at least one of the
terms in the sum is nonzero. Thus, a(i1,...,id ),(l1,...,ld ) �= 0 and b(j1,...,jd ),(l1,...,ld ) �= 0
for some (l1, . . . , ld). Hence, |ik − lk| ≤ qk and |jk − lk| ≤ wk for k = 1, . . . , d ,
and by the triangle inequality, |ik − jk| ≤ qk + wk for k = 1, . . . , d . Therefore,
AB is q + w banded. Repeated applications of the same argument show that An is
nq-banded.
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Since we can scale A by τm such that its eigenvalues are in [a, b], we set τm = 1
without loss of generality. Let pn(·) be a polynomial of degree n. Then pn(A) is
nq-banded. Since the set of eigenvalues for A is �(A) ⊆ [a, b] by assumption,
spectral theorem and Proposition 2.1 of [11] imply that∥∥A−1 − pn(A)

∥∥
(2,2) = max

x∈�(A)

∣∣1/x − pn(x)
∣∣

≤ C0
[
(
√

b/a − 1)/(
√

b/a + 1)
]n+1

for C0 = (1 + √
b/a)2/(2b). For any n ∈ N, pn(A)i,j = 0 if |ik − jk| > nqk for

some 1 ≤ k ≤ d . Suppose i �= j, choose n to satisfy n < max1≤k≤d |ik − jk|q−1
k ≤

n + 1. Therefore,∣∣A−1(i, j)
∣∣ = ∣∣A−1(i, j) − pn(A)i,j

∣∣ ≤ ∥∥A−1 − pn(A)
∥∥
(2,2)

≤ C0
[
(
√

b/a − 1)/(
√

b/a + 1)
]max1≤k≤d |ik−jk |/qk(A.5)

≤ C0λ
∑d

k=1 |ik−jk |,

where λ = [(√b/a − 1)/(
√

b/a + 1)]1/
∑d

k=1 qk . When ik = jk for all k =
1, . . . , d , we have A−1(i, i) ≤ ‖A−1‖(2,2) = 1/λmin(A) ≤ 1/a. Combining this

case with (A.5), we have |A−1(i, j)| ≤ Cλ
∑d

k=1 |ik−jk | for C = max{C0,1/a}. Since
0 < λ < 1,

∥∥A−1∥∥
(∞,∞) ≤ C max

1≤ik≤Jk,k=1,...,d

J1∑
j1=1

· · ·
Jd∑

jd=1

d∏
k=1

λ|ik−jk |

�
d∏

k=1

(
1 + 2

Jk∑
jk=1

λjk

)

�
(

1 + 2
∞∑

j=1

λj

)d

< ∞.
�

LEMMA A.5. ‖bJ,q−r(x) − bJ,q−r(y)‖2 � ‖J‖2‖x − y‖2 for x,y ∈ [0,1]d .

PROOF. By equation (8) of Chapter X in [8] and the triangle inequality,∣∣B ′
jk,qk−rk

(xk)
∣∣� |Bjk,qk−rk−1(xk)|

tk,jk+qk−rk−1 − tk,jk

+ |Bjk+1,qk−rk−1(xk)|
tk,jk+qk−rk − tk,jk+1

(A.6)

�
(

min
1≤l≤Nk

δk,l

)−1
��−1

k � Jk,

where we have used the quasi-uniformity of the knots and Lemma A.1. Using
|∏d

i=1 ai −∏d
i=1 bi | ≤ ∑d

i=1 |ai − bi | for |ai | ≤ 1, |bi | ≤ 1, i = 1, . . . , d , the mean
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value theorem, (A.6) and the Cauchy–Schwarz inequality,∣∣∣∣∣
d∏

k=1

Bjk,qk−rk (xk) −
d∏

k=1

Bjk,qk−rk (yk)

∣∣∣∣∣ ≤
d∑

k=1

∣∣Bjk,qk−rk (xk) − Bjk,qk−rk (yk)
∣∣

�
d∑

k=1

Jk|xk − yk| ≤ ‖J‖‖x − y‖.

Since at most 2
∏d

k=1(qk − rk) elements in both bJ,q−r(x) and bJ,q−r(y) will be
nonzero for any x,y ∈ [0,1]d , ‖bJ,q−r(x) − bJ,q−r(y)‖2 is

J1−r1∑
j1=1

· · ·
Jd−rd∑
jd=1

∣∣∣∣∣
d∏

k=1

Bjk,qk−rk (xk) −
d∏

k=1

Bjk,qk−rk (yk)

∣∣∣∣∣
2

�
[

2
d∏

k=1

(qk − rk)

]
d∑

k=1

J 2
k ‖x − y‖2 �

d∑
k=1

J 2
k ‖x − y‖2.

�

LEMMA A.6. Let r ∈ N
d
0 be such that

∑d
k=1 rk/αk < 1. Let Zn,r ∼ GP(0,r)

and Qn,r be a sub-Gaussian process with mean function 0 and covariance func-
tion σ 2

0 �r. Let Jk � nα∗/{αk(2α∗+d)} for k = 1, . . . , d . Then for any t, s ∈ [0,1]d ,
we have Var[Zn,r(t) − Zn,r(s)] ≤ C‖J‖2‖t − s‖2 and Var[Qn,r(t) − Qn,r(s)] ≤
C‖J‖2‖t − s‖2 for some constant C > 0.

PROOF. Let Jk � nα∗/{αk(2α∗+d)} for k = 1, . . . , d , then Var[Zn,r(t)−Zn,r(s)]
is bounded above by∥∥bJ,q−r(t) − bJ,q−r(s)

∥∥2∥∥(BT B + �−1)−1∥∥
(2,2)

∥∥WT
r Wr

∥∥
(2,2)

� 1

n

(
d∏

k=1

J
2rk+1
k

)(
d∑

k=1

J 2
k

)
‖t − s‖2 � ‖J‖2‖t − s‖2,

where we used Lemma A.5, equations (3.11) and (7.15) to bound the three norms,
respectively. Similarly, Var[Qn,r(t) − Qn,r(s)] is bounded by∥∥bJ,q−r(t) − bJ,q−r(s)

∥∥2∥∥(BT B + �−1)−1∥∥2
(2,2)

∥∥BT B
∥∥
(2,2)

∥∥WT
r Wr

∥∥
(2,2),

which is O(‖J‖2‖t − s‖2), where we used Lemma A.5, (3.11), (3.10) and (7.15)
to bound the four norms, respectively. �

LEMMA A.7. Let f (x) = bJ,q(x)T θ and Ij1,...,jd
= ∏d

k=1[tk,jk−qk
, tk,jk

]. Fur-
thermore, let f |Ij1,...,jd

be the restriction of f onto Ij1,...,jd
. Then there exists con-

stant C > 0 depending on q = (q1, . . . , qd)T such that

‖f |Ij1,...,jd
‖∞ ≤ C

d∏
k=1

(tk,jk
− tk,jk−qk

)−1/2‖f |Ij1,...,jd
‖2.
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PROOF. By equation (12.8) of Theorem 12.2 from [24],

f (x)|Ij1,...,jd
=

J1∑
m1=1

· · ·
Jd∑

md=1

θm1,...,md

d∏
k=1

Bmk,qk
(xk)|Ij1,...,jd

=
q1−1∑
l1=0

· · ·
qd−1∑
ld=0

αl1,...,ld

d∏
k=1

x
lk
k for xk ∈ [tk,jk−qk

, tk,jk
].

If x ∈ Ij1,...,jd
, then x ∈ ∏d

k=1[tk,jk−hk−1, tk,jk−hk
] for some hk = 0,1, . . . , qk − 1.

Therefore, this implies that only terms associated with coefficients γ = {θm1,...,md
:

jk − hk ≤ mk ≤ jk − hk + qk − 1, k = 1, . . . , d} will be nonzero. Furthermore, we
define α = {αl1,...,ld : 0 ≤ lk ≤ qk − 1, k = 1, . . . , d}. The two equivalent repre-
sentations of f on Iji ,...,jd

above implies a one-to-one mapping between γ and
α, that is, each element of α is a linear combination of elements in γ and vice
versa. Hence, there are matrices T and V of dimension

∏d
k=1 qk × ∏d

k=1 qk , re-
spectively, such that Tγ = α and Vα = γ . Since these two linear transforma-
tions have entries and dimensions not depending on n, we have ‖T‖(∞,∞) =
O(1) and ‖V‖(∞,∞) = O(1), with constants in O(1) depending only on q.

Let Uk,qk
= (1,Uk,U

2
k , . . . ,U

qk−1
k )T where Uk ∼ Uniform(tk,jk−qk

, tk,jk
), k =

1, . . . , d . Therefore, ‖f |Ij1,...,jd
‖2

2 is

∫
Ij1,...,jd

(q1−1∑
l1=0

· · ·
qd−1∑
ld=0

αl1,...,ld

d∏
k=1

x
lk
k

)2

dx

=
q1−1∑
l1=0

· · ·
qd−1∑
ld=0

q1−1∑
l′1=0

· · ·
qd−1∑
l′d=0

αl1,...,ld αl′1,...,l′d

d∏
k=1

∫
[tk,jk−qk

,tk,jk
]
x

lk+l′k
k dxk

≥
d∏

k=1

(tk,jk
− tk,jk−qk

)λmin
{
E
(
Uk,qk

UT
k,qk

)}‖α‖2.

Since E(Uk,qk
UT

k,qk
) is nonsingular, its minimum eigenvalue is bounded below by

a positive constant. Hence, λmin{E(Uk,qk
UT

k,qk
)}‖α‖2 � ‖α‖2∞ ≥ ‖V‖−2

(∞,∞)‖γ ‖2∞.

The lower bound is obtained by noting that ‖f |Ij1,...,jd
‖2∞ ≤ ‖γ ‖2∞‖∑J1

m1=1 · · ·∑Jd

md=1
∏d

k=1 Bmk,qk
(·)|Ij1,...,jd

‖2∞ ≤ ‖γ ‖2∞. �

LEMMA A.8. For f (x) = bJ,q(x)T θ , we have

‖f ‖2
2 �

J1∑
j1=1

· · ·
Jd∑

jd=1

θ2
j1,...,jd

d∏
k=1

(tk,jk
− tk,jk−qk

).
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PROOF. Since bJ,q(x) is a probability vector at any x, we use Jensen’s in-
equality to write

∫
[0,1]d

f (x)2 dx ≤
∫
[0,1]d

J1∑
j1=1

· · ·
Jd∑

jd=1

θ2
j1,...,jd

d∏
k=1

Bjk,qk
(xk) dx

≤
J1∑

j1=1

· · ·
Jd∑

jd=1

θ2
j1,...,jd

∫
[0,1]d

d∏
k=1

1(tk,jk−qk
,tk,jk

)(xk) dx

=
J1∑

j1=1

· · ·
Jd∑

jd=1

θ2
j1,...,jd

d∏
k=1

(tk,jk
− tk,jk−qk

).

Using Lemma A.7 and equation (5) of Chapter XI from [8], ‖f ‖2
2 is

J1∑
j1=1

· · ·
Jd∑

jd=1

‖f |Ij1,...,jd
‖2

2 �
J1∑

j1=1

· · ·
Jd∑

jd=1

d∏
k=1

(tk,jk
− tk,jk−qk

)‖f |Ij1,...,jd
‖2∞

≥ c

J1∑
j1=1

· · ·
Jd∑

jd=1

θ2
j1,...,jd

d∏
k=1

(tk,jk
− tk,jk−qk

),

where c > 0 is a constant depending only on q = (q1, . . . , qd)T . �

The following is a multivariate generalization of Lemma 6.1 in [36].

LEMMA A.9. For quasi-uniform knots, θT BT Bθ � n(
∏d

k=1 J−1
k )‖θ‖2 for any

θ ∈ R
J if (2.2) holds.

PROOF. Let f (x) = bJ,q(x)T θ and ‖f ‖2
2,ν = ∫

[0,1]d f (x)2 dν for any sigma-

finite measure ν. Observe that ‖f ‖2
2,Gn

= θT BT Bθ/n. If the density of G lies be-
tween Kmin and Kmax, then by the quasi-uniformity of the knots and Lemma A.8,
the upper bound for ‖f ‖2

2,G is

‖f ‖2
2,G ≤ Kmax

J1∑
j1=1

· · ·
Jd∑

jd=1

θ2
j1,...,jd

d∏
k=1

(tk,jk
− tk,jk−qk

)� ‖θ‖2
d∏

k=1

�k,(A.7)

and for a constant c > 0, the lower bound for ‖f ‖2
2,G is

c2Kmin

J1∑
j1=1

· · ·
Jd∑

jd=1

θ2
j1,...,jd

d∏
k=1

(tk,jk
− tk,jk−qk

)� ‖θ‖2
d∏

k=1

�k.(A.8)
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Noting that (Gn − G)(1d) = (Gn − G)(0) = 0, we use multivariate integration by
parts and (2.2) to bound | ∫[0,1]d f (x)2 d(Gn − G)(x)| by

2 sup
x∈[0,1]d

∣∣Gn(x) − G(x)
∣∣ ∫

[0,1]d

∣∣∣∣f (x)
∂df (x)

∂x1 · · · ∂xd

∣∣∣∣dx

(A.9)

= o

(
d∏

k=1

N−1
k

)
‖f ‖2

∥∥∥∥ ∂df

∂x1 · · · ∂xd

∥∥∥∥
2
,

in view of the Cauchy–Schwarz inequality in the last line. From (3.1), we have
that D1

jk
θj1,...,jk

= (qk − 1)djk
θj1,...,jd

(tk,jk
− tk,jk−qk+1)

−1, where djk
θj1,...,jd

=
θj1,...,jk−1,jk+1,jk+1,...,jd

− θj1,...,jk−1,jk,jk+1,...,jd
. Let dθj1,...,jd

= dj1 · · ·djd
θj1,...,jd

.
By setting r = 1d in (3.2),

∂df (x)

∂x1 · · · ∂xd

=
J1−1∑
j1=1

· · ·
Jd−1∑
jd=1

dθj1,...,jd

d∏
k=1

qk − 1

tk,jk
− tk,jk−qk+1

Bjk,qk−1(xk).

Applying Lemma A.8 to f and its derivatives,

‖f ‖2
2 ≤

J1∑
j1=1

· · ·
Jd∑

jd=1

θ2
j1,...,jd

d∏
k=1

(tk,jk
− tk,jk−qk

)� ‖θ‖2
d∏

k=1

�k,

and ‖∂df/∂x1 · · · ∂xd‖2
2 is bounded by

J1−1∑
j1=1

· · ·
Jd−1∑
jd=1

(dθj1,...,jd
)2

d∏
k=1

(qk − 1)2

tk,jk
− tk,jk−qk+1

� ‖θ‖2
d∏

k=1

1

min1≤l≤Nk
δk,l

,

where the last inequality follows from
∑J1−1

j1=1 · · ·∑Jd−1
jd=1 (dθj1,...,jd

)2 ≤ 22d‖θ‖2.
By the quasi-uniformity of the knots, it follows that the right-hand side of (A.9) is
o(
∏d

k=1 N−1
k )‖θ‖2. Combining this result with (A.7) and using Lemma A.1,

‖f ‖2
2,Gn

� ‖θ‖2
d∏

k=1

�k + o

(
d∏

k=1

N−1
k

)
‖θ‖2 �

(
d∏

k=1

J−1
k

)
‖θ‖2;

while combining the same result with (A.8) and in view of Lemma A.1,

‖f ‖2
2,Gn

� ‖θ‖2
d∏

k=1

�k − o

(
d∏

k=1

N−1
k

)
‖θ‖2 �

(
d∏

k=1

J−1
k

)
‖θ‖2.

�

LEMMA A.10. Let A be an n × n symmetric positive definite matrix. Assume
that ‖A‖(2,2) ≤ C for constant C > 0. Let ε = (ε1, . . . , εn)

T such that εi are i.i.d.
mean 0, variance σ 2

0 with finite fourth moment for i = 1, . . . , n. Then Var(εT Aε) =
O(n).
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PROOF. By eigendecomposition, A = PT �P where � = diag(λ1, . . . , λn)

and P = ((pij )) is an orthogonal matrix. Let Z = (Z1, . . . ,Zn)
T = Pε. Then

Var(εT Aε) = ∑n
i=1 λ2

i Var(Z2
i ) +∑n

r �=s λrλs Cov(Z2
r ,Z

2
s ), and

E
(
Z2

r Z
2
s

) = E
(
ε4

1
) n∑
j=1

p2
rjp

2
sj + σ 4

0

n∑
j1 �=j2

p2
rj1

p2
sj2

+ 2σ 4
0

n∑
j1 �=j2

prj1psj1prj2psj2 .

Therefore,
∑n

i=1 λ2
i Var(Z2

i ) �
∑n

i=1 E(Z4
i ) �

∑n
i=1(

∑n
j=1 p2

ij )
2 � n since λi ≤

C, i = 1, . . . , n, and each row of P has unit norm. By the orthonormality of P,
Var(Z) = σ 2

0 In and E(Z2
i ) = σ 2

0 . Observing that for r �= s,
∑n

j=1 prjpsj = 0,∑n
j1 �=j2

prj1psj1prj2psj2 = (
∑n

j=1 prjpsj )
2 −∑n

j=1 p2
rjp

2
sj ≤ 0 and

∑n
j1,j2=1 p2

rj1
×

p2
rj2

= ∑n
j=1 p4

rj +∑n
j1 �=j2

p2
rj1

p2
rj2

= 1. Hence, using the last display Cov(Z2
r ,Z

2
s )

is bounded by

E
(
ε4

1
) n∑
j=1

p2
sjp

2
rj + σ 4

0

(
1 −

n∑
j=1

p4
rj

)
− E

(
Z2

r

)
E
(
Z2

s

) ≤ E
(
ε4

1
) n∑
j=1

p2
sjp

2
rj .

Therefore,
∑n

r �=s λrλs Cov(Z2
r ,Z

2
s )� E(ε4

1)
∑n

j=1
∑n

r=1
∑n

s=1 p2
sjp

2
rj � n. �

LEMMA A.11. Let {X(t) : t ∈ [0,1]d} be a sub-Gaussian process with respect
to the semi-metric d(t, s) = √

Var[X(t) − X(s)] such that d2(t, s)� C(n)‖t − s‖2

for any t, s ∈ [0,1]d , where C(n) is a polynomial in n. Choose points u =
{u1, . . . ,uTn} in [0,1]d such that

⋃Tn

i=1{z : ‖z − ui‖ ≤ δn} ⊇ [0,1]d , for some se-
quence δn → 0 as n → ∞ with δn < 1, and Tn ≤ (2/δn)

d . Then for 1 ≤ p < ∞,

E‖X‖p∞ �
{
log (1/δn)

}p/2

×
{(

δn

√
C(n)

)p + max
1≤i≤Tn

∣∣E[X(ui)
]∣∣p + max

1≤i≤Tn

{
Var

[
X(ui )

]}p/2
}
.

PROOF. It suffices to bound the Lp-norms of the expected process incre-
ment and the maximum of the process at u. Since X(t) is sub-Gaussian and
Var[X(t)−X(s)]� C(n)‖t−s‖2 by assumption, we can relate the ψ2-Orlicz norm
of the process increment with ‖t − s‖ by Section 2.2.1 of [35]. We then bound the
expected process increment by Corollary 2.2.8 of [35] with d(t, s) = ‖t − s‖. The
expected maximum of the process at u is then bounded using Lemma 2.2.2 of [35].

�
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