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A NEW PRIOR FOR DISCRETE DAG MODELS WITH
A RESTRICTED SET OF DIRECTIONS
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York University and Politechnika Warszawska

In this paper, we first develop a new family of conjugate prior distribu-
tions for the cell probability parameters of discrete graphical models Markov
with respect to a set P of moral directed acyclic graphs with skeleton a given
decomposable graph G. This family, which we call the P-Dirichlet, is a gen-
eralization of the hyper Dirichlet given in [Ann. Statist. 21 (1993) 1272–
1317]: it keeps the directed strong hyper Markov property for every DAG
in P but increases the flexibility in the choice of its parameters, that is, the
hyper parameters.

Our second contribution is a characterization of the P-Dirichlet, which
yields, as a corollary, a characterization of the hyper Dirichlet and a character-
ization of the Dirichlet also. Like the characterization of the Dirichlet given in
[Ann. Statist. 25 (1997) 1344–1369], our characterization of the P-Dirichlet
is based on local and global independence of the probability parameters and
also a separability property explicitly defined here but implicitly used in that
paper through the choice of two particular DAGs. Another advantage of our
approach is that we need not make the assumption of the existence of a posi-
tive density function. We use the method of moments for our proofs.

1. Introduction. The Dirichlet distribution and distributions derived from the
Dirichlet are essential ingredients of Bayesian inference in the analysis of discrete
data. For high-dimensional data, Dirichlet-type distributions are often used in con-
junction with graphical models. Let V = {1, . . . , d} be a finite set indexing the
variables. A graphical model for the discrete random variable X = (Xv, v ∈ V )

is a statistical model where the dependences between Xv taking their value in
the finite set Iv, v ∈ V are expressed by means of a graph G. We will assume
here that the data is gathered under the form of a d-dimensional contingency table
and that the cell counts follow a multinomial distribution with cell probabilities
(p(i) = P(X = i), i ∈ I) where I =×v∈V Iv is the set of cells in the contingency
table.

If the conditional independences between the variables can be expressed by
means of a directed acyclic graph (henceforth abbreviated DAG), the usual priors
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are independent Dirichlet prior distributions on(
P(Xv = iv|Xpv = ipv

), iv ∈ Iv

)
, ipv

∈ Ipv , v ∈ V,(1.1)

where, for A ⊂ V , IA =×v∈AIv , pv denotes the set of parents of vertex v in
the DAG and ipv

= (il, l ∈ pv) denotes the pv-marginal cell. This means that the
conditional probability parameters associated with each node are mutually inde-
pendent (global independence) and for a given node, the parameters associated
with various instances of its parents are also mutually independent (local parame-
ter independence).

A characterization of the Dirichlet distribution through local and global
independence using two particular complete DAGs with vertex orders p =
{1,2, . . . , d − 1, d} and p′ = {d,1,2, . . . , d − 1} is given in Theorem 3 of [9].
This result has important practical ramifications. Indeed, if we request that a node
with the same parents in two distinct DAGs has identical prior distribution on the
parameters associated with this node in both structures (this is called parameter
modularity) and if we also request local and global independence of the param-
eters for p and p′, then the priors on the variables in (1.1) must all be derived
from one single Dirichlet distribution Dir(α(i), i ∈ I) on (p(i), i ∈ I). The hyper
parameters α(i) of such a Dirichlet are of the form

α(i) = αθ(i), i ∈ I,(1.2)

where θ(i) is the expected value of p(i) and α, called the equivalent sample size,
will be added to the actual total cell count

∑
i∈I n(i) in posterior inference. Most

of the time, in practice and in the absence of prior expert information, we take
θ(i) = 1

|I| where |I| is the total number of cells. This implies that our flexibility in
the choice of the hyper parameters is restricted to the choice of α.

If the conditional independences between the variables can be expressed by
means of a decomposable undirected graph G, then the multinomial distribution
on the cell counts is Markov with respect to G and the Diaconis–Ylvisaker [7]
prior on (p(i), i ∈ I) is the hyper Dirichlet defined in [6]. A simple calculation
[see equations (2.10)] shows that the parameters of the hyper Dirichlet have an
interpretation of the type (1.2) and we are therefore faced with the same lack of
flexibility in the choice of the hyper parameters. Moreover (see Section 4) if, for
any DAG with skeleton G, Markov equivalent to G, we make the change of vari-
able from (p(i), i ∈ I), to the variables in (1.1), then, for each of these DAGs, the
distribution induced from the hyper Dirichlet also possesses the property of local
and global independence. One can then be led to think that local and global inde-
pendence in all possible directions imposes strict restrictions on the choice of the
hyper parameters of the prior on (p(i), i ∈ I).

In this paper, we therefore consider a restricted family P of moral DAGs with
skeleton a decomposable graph G and Markov equivalent to G. For the set of
multinomial models Markov with respect to any of the DAGs in P , we build a
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new family of prior distributions for the parameters (p(i), i ∈ I). This family of
priors, called the P-Dirichlet family, is conjugate, possesses the property of local
and global independence and also the directed strong hyper Markov property. Us-
ing these priors will thus facilitate posterior inference. Moreover, because of the
restrictions on the collection of DAGs defined by P , the P-Dirichlet offers more
hyper parameter flexibility than the hyper Dirichlet. We show through an example
how this flexibility gives us more freedom when inserting prior expert knowledge
in the prior distribution. The development and study of this new family of priors is
the first contribution of this paper.

The second contribution is a characterization (Theorem 6.1) of the P-Dirichlet
family through local and global independence. As corollaries, we obtain a charac-
terization of the hyper Dirichlet and also the characterization of the Dirichlet as
given by Geiger and Heckerman in [9] but without assuming the existence of a
density for the vector of random probabilities p = (p(i), i ∈ I).

The remainder of this paper is organized as follows. The P-Dirichlet family of
priors for p, is defined in Section 3. In Section 4, Theorem 4.1, we derive a general
formula for the moments of the P-Dirichlet which will be used in Section 6 for the
proof of its characterization and in Section 5 for the computation of the posterior
mean of any p(i) or other probabilities derived from the (p(i), i ∈ I). In Section 5,
we show that the dimension of the P-Dirichlet family is always larger than that of
the hyper Dirichlet with the same skeleton and we illustrate the interpretation and
flexibility of the hyper parameters with an example. We prove that the P-Dirichlet
is conjugate and has the directed strong hyper Markov property. In Section 6, we
give its characterization, and thus that of the hyper Dirichlet and the Dirichlet. The
next section is devoted to preliminaries.

2. Preliminaries.

2.1. Graph theoretical notions. We first recall some well-known notions. Let
G = (V ,E) be an undirected graph, where V = {1, . . . , d} is a finite set of vertices
and E is the set of edges. A graph is said to be decomposable if it does not have
any chordless cycle of length greater than or equal to 4. A subset D of V is said
to be complete if all vertices of D are linked to each other by an edge. A clique is
a complete subset maximal with respect to inclusion. A sequence B1, . . . ,BK of
subsets of V is said to be perfect if, for

Hj =
j⋃

l=1

Bl, Sj = Bj ∩ Hj−1 and

Rj = Bj \ Hj−1 = Bj \ Sj , j = 1, . . . ,K,

(with the convention that S1 = ∅) the following two conditions are fulfilled: the
sets Sj are complete and for any j > 1, there exists an i < j such that Hj−1 ∩Bj ⊂
Bi . In this paper, we consider in particular perfect orderings C1, . . . ,CK of the
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cliques of a decomposable graph G. Let C denote the set of cliques of G. It is well
known that, for G decomposable, the set of separators S = {S1, S2, . . . , SK} asso-
ciated with a perfect ordering of the cliques is independent of the perfect ordering
considered and it is the set of minimal separators for the graph G. For a vertex
v ∈ V , we write nb(v) to denote the set of neighbours of v in G. A numbering
v1, . . . , vd of the vertices of G is said to be perfect if the sequence of sets

Bj = {v1, . . . , vj } ∩ (
vj ∪ nb(vj )

)
is perfect. It can be shown (Proposition 2.17 in [14]) that a graph G is decompos-
able if and only if its set of cliques admits a perfect order and also if and only if its
set of vertices admits a perfect numbering. A DAG is said to be moral if when v

and v′ are both parents of w, then there is an edge between v and v′. In this paper,
we will deal with moral DAGs having a given decomposable graph G as a skele-
ton. We note that not all DAGs with skeleton a decomposable graph are moral. The
simplest counter example is of course the DAG 1 → 2 ← 3. However, if a DAG is
moral, its skeleton is a decomposable graph: otherwise, there would be a directed
cycle (vi, vi+1, . . . , vi+k−1, vi+k = vi) of length k ≥ 4 without a chord. Since a
DAG is acyclic, there exists vj ∈ {vi, . . . , vi+k−1} with vj−1 → vj ← vj+1 and
since the DAG is moral, there must be an edge between vj−1 and vj+1 contradict-
ing the fact that (vi, vi+1, . . . , vi+k−1, vi+k = vi) is a cycle without chord.

We next introduce some new notions. Note than any DAG with skeleton G is
in one-to-one correspondence with the function p : V → 2V which describes the
parents of each vertex or with the function c : V → 2V which describes the children
of each vertex. We will write pv and cv for the set of parents and children of v ∈ V ,
respectively. The set of descendants of a vertex v denotes the set of children of
v, children of children and so on. The set of nondescendants of v will be denoted
ndv . Additionally, let qv = pv ∪ {v} for any v ∈ V and let q : V → 2V denote
the corresponding mapping. We will now define some additional graph-theoretical
notions needed in this work.

DEFINITION 2.1. Given a parent function p, a perfect order o = (C1, . . . ,CK)

of the cliques is said to be p-perfect if for any l = 1, . . . ,K there exists a v ∈ Cl \Sl

such that Sl = pv .

A perfect ordering of the cliques of a decomposable graph G induces a perfect
numbering of the vertices by numbering the vertices in C1, then in R2,R3, . . . ,RK

successively (see Proposition 2.12 in [14]). However, a perfect numbering of the
vertices does not necessarily induce a perfect ordering of the cliques. In the next
lemma, we start not with a numbering of the vertices but with the parent function
p of a moral DAG with skeleton G decomposable and we show that given p, we
can always find a p-perfect ordering of the cliques C1, . . . ,CK .

LEMMA 2.1. Let p be a parent function of a moral DAG with skeleton a de-
composable graph G = (V ,E). Then we have the following:
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(1) There exists a unique vertex v0 such that pv0 = ∅.
(2) There exists a p-perfect ordering (C1, . . . ,CK) of cliques of G such that

v0 ∈ C1.
(3) There exists a perfect ordering of the vertices defined as follows:

v =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v1,1, if v = v0,

v1,i , if pv = qv1,i−1, i = 2, . . . , c1,

vj,sj+1, if pv = Sj , j = 2, . . . ,K,

vj,l, if pv = qvj,l−1, l = sj + 2, . . . , cj , j = 2, . . . ,K,

(2.1)

where cj and sj denote the cardinality of Cj and Sj , j = 1, . . . ,K , respectively.

The proof is given in Section 2.1 of the supplementary material [15]. The unique
vertex v0 = v1,1 such that pv = ∅ is called the source for p. This p-perfect order
of cliques is not necessarily unique: see Example 3.1 “continued” in Section 4.2.1
of this paper and of the supplementary material [15]. To obtain it, it suffices to
follow the construction outlined in the proof, that is, choose v1,1 = v0, then v1,i

such that pv1,i
= qv1,i−1 for i = 2, . . . , c1 where qv1,c1

is a maximal complete subset
which is chosen as C1. Then choose v2,s2+1 such that pv2,s2+1 = S2 and so on.
This construction is illustrated in Example 2.1 of the supplementary material [15].
Numbering (2.1) is clearly a perfect ordering of the vertices obtained by following
C1,R2, . . . ,RK .

We now proceed to introduce three sets P, Q and R of subsets of V . Sets P

and Q generalize respectively S and C while R is a new collection of complete
subsets.

LEMMA 2.2. Consider a moral DAG with skeleton G defined by a parent
function p. Then

C ⊂ q(V ) and S ⊂ p(V ).

Moreover

p(V ) \ S = q(V ) \ C.

PROOF. Let o = (C1, . . . ,CK) be a p-perfect order of the cliques. From (2.1),
we have pvl,sl+1 = Sl and qvl,cl

= Cl , l = 1, . . . ,K so that the first statement of the
lemma is proved.

For the second part, note that for l = 1, . . . ,K and j = sl + 2, . . . , cl , we have
qvl,j−1 = pvl,j

/∈ C ∪ S . That is p(V ) \ S = q(V ) \ C = ⋃K
l=1

⋃cl

j=sl+2 pvl,j
. �

Note that if v,w ∈ V are distinct then qv and qw are also distinct, but pv and pw

may be the same. Consequently, a given set can appear in p(V ) more than once.
For example, S ∈ S can be a multiple separator. However, because of the equation
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in Lemma 2.2, such a set can appear at most once in p(V ) \ S , (see DAG p in
Example 2.1 of the supplementary material [15]).

Denote

Rp := p(V ) \ S = q(V ) \ C.

Let P be a family of moral DAGs with the same skeleton G. Consider the
following sets:

Q= ⋂
p∈P

q(V ) ⊃ C and P = ⋂
p∈P

p(V ) ⊃ S.(2.2)

By Lemma 2.2, it follows that Q= C ∪R and P = S ∪R, where R= ⋂
p∈P Rp.

DEFINITION 2.2. The separator S ∈ S and the clique C ∈ C are said to be
paired by the perfect ordering o = (C1, . . . ,CK) of the cliques if

∃l ∈ {1, . . . ,K} : S = Sl, C = Cl

and we write S
o→ C.

As we shall see in Example 3.1 “continued” in Section 4.2.1, to one p may
correspond more than one p-perfect order. In the sequel, for a family P of moral
DAGs, we will use collections

OP = (op,p ∈ P : op is p-perfect)(2.3)

of perfect orders where for each p ∈P , one order op is selected.

LEMMA 2.3. For a family P of moral DAGs with skeleton G, let OP =
(op,p ∈ P) be a given collection of p-perfect orders of cliques. For any clique C,
let RC denote a family of these elements of R which are contained in C. If there

exists p ∈ P such that S � S
op→ C then all the elements QC

1 , . . . ,QC
jC−1 ∈ RC (it

may be empty) can be numbered as follows:

S =: QC
jC

�QC
jC−1 �QC

jC−2 � · · · � QC
2 � QC

1 �QC
0 := C.(2.4)

PROOF. It follows immediately from (2.1) that possible sets QC
i , 1 ≤ i ≤ jC −

1, from RC are of the form qvl,k
= pvl,k+1 , k = sl + 1, . . . , cl − 1. We define QC

jC
=

S = pvl,sl+1 � qvl,sl+1 and QC
0 = C = qvl,cl

� qvl,cl−1 , l = 1, . . . ,K but neither QC
jC

nor QC
0 are in R. �
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2.2. Markov properties and the hyper Dirichlet. Let X = (Xv, v ∈ V ) be a
discrete random vector with variables Xv taking values in the finite set Iv , v ∈ V .
Let I =×v∈V Iv be the set of cells for the corresponding contingency table. The
cell probabilities are

p(i) := P(X = i) = P(Xv = iv, v ∈ V ), i ∈ I.

We are given a sample X(1), . . . ,X(M) from this distribution. The cell counts
(N(i), i ∈ I) taking values (n(i), i ∈ I) are assumed to follow a multinomial dis-
tribution M(M,p(i), i ∈ I). Given an undirected graph G, the distribution of X is
said to be Markov with respect to G if Xi and Xj are independent given XV \{i,j}
whenever the pair {i, j} does not belong to E. Given a DAG G and its correspond-
ing parent function p, we say that X is Markov with respect to G if, for any v ∈ V ,
Xv ⊥ Xndv |Xpv .

In this paper, we consider only moral DAGs G with a decomposable skeleton G

which by Lemma 3.21 of [14] encode the same conditional independences as G.
Then, by Proposition 3.28 of [14], we have the following two equivalent factoriza-
tions of p(i), i ∈ I:∏K

l=1 P(XCl
= iCl

)∏K
l=2 P(XSl

= iSl
)

= p(i) = ∏
v∈V

P(Xv = iv|Xpv = ipv
),(2.5)

according to G and G, respectively.
Since the cell counts (N(i), i ∈ I) follow a multinomial M(M,p(i), i ∈ I)

distribution, the density of (N(i), i ∈ I) with respect to the counting measure is
proportional to

∏
i∈I

p(i)n(i) =
∏K

l=1
∏

iCl
∈ICl

P(XCl
= iCl

)
n(iCl

)

∏K
l=2

∏
iSl

∈ISl
P(XSl

= iSl
)
n(iSl

)

= ∏
v∈V

∏
ipv

∈Ipv

∏
iv∈Iv

P(Xv = iv|Xpv = ipv
)n(iqv

).

We note that for any l = 1, . . . ,K the marginal counts satisfy∑
iCl

∈ICl

n(iCl
) = M,

∑
j

Cl
∈ICl

:j
Sl

=iSl

n(j
Cl

) = n(iSl
),

(2.6) ∑
iSl

∈ISl

n(iSl
) = M

and, for v ∈ Cl and qv ⊆ Cl ,
∑

j
Cl

∈ICl
:j

qv
=iqv

n(j
Cl

) = n(iqv
), iqv

∈ Iqv .

In Bayesian inference, we view the cell probabilities parameter of the multino-
mial distribution as a random vector and accordingly, we will write p = (p(i), i ∈
I) with p(i) > 0 and

∑
i∈I p(i) = 1. Thus, p(i) = P(X = i | p) which, in the
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sequel, we will denote Pp(X = i) when we want to emphasize that p(i) repre-
sents the conditional probability that X = i. The random vector p takes values
p = (p(i), i ∈ I) and is the random variable of interest in this paper.

As mentioned in the Introduction, for G decomposable, the Diaconis–Ylvisaker
conjugate prior on p is the hyper Dirichlet first identified by [6] with density

�(α)
∏K

l=2
∏

iSl
∈ISl

�(α
Sl

iSl

)∏K
l=1

∏
iCl

∈ICl
�(α

Cl

iCl

)

∏K
l=1

∏
iCl

∈ICl
(p

Cl

iCl

)
α

Cl
iCl

−1

∏K
l=2

∏
iSl

∈ISl
(p

Sl

iSl

)
α

Sl
iSl

−1
,(2.7)

where p
Cl

iCl

and p
Sl

iSl

are the values of the random variables pCl

iCl

= Pp(XCl
= iCl

)

and pSl

iSl

= Pp(XSl
= iSl

), l = 1, . . . ,K , respectively, and where the hyper param-

eters satisfy constraints parallel to (2.6), namely∑
iCl

∈ICl

α
Cl

iCl

= α,
∑

j
Cl

∈ICl
:j

Sl
=iSl

α
Cl

j
Cl

= α
Sl

iSl

,
∑

iSl
∈ISl

α
Sl

iSl

= α.(2.8)

Unlike the Dirichlet on the complete graph, this density is typically defined on a
complicated manifold determined not only by summation to one but also by all the
conditional independence properties encoded in G. This is one of the reasons our
approach is through moments and not densities.

We now want to recall the expression of the moments of the hyper Dirichlet.
For simplicity, let us write

α(G,I) = (
α,α

Cl

k , k ∈ ICl
, l = 1, . . . ,K,α

Sl

k , k ∈ ISl
, l = 2, . . . ,K

)
.

For any d-dimensional table (ri, i ∈ I) of nonnegative integers, we write the E-
marginal sums as

rE
e = ∑

i:iE=e

r(i).(2.9)

In particular, we will use r
Cl

iCl

, r
Sl

iSl

. By analogy with α(G,I), we will also use the

notation r(G,I). The normalizing constant of the hyper Dirichlet is

Z
(
α(G,I)

) =
∏K

l=1
∏

iCl
∈ICl

�(α
Cl

iCl

)

�(α)
∏K

l=2
∏

iSl
∈ISl

�(α
Sl

iSl

)
.

The moments are then equal to

E
∏
i∈I

[
p(i)

]ri = E

∏K
l=1

∏
iCl

∈ICl
Pp(XCl

= iCl
)
r
Cl
iCl

∏K
l=2

∏
iSl

∈ISl
Pp(XSl

= iSl
)
r
Sl
iSl

= Z(α(G,I) + r(G,I))

Z(α(G,I))
.
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In particular,

Ep(i) =
∏K

l=1 �(α
Cl

iCl

+ 1)

�(α + 1)
∏K

l=2 �(α
Sl

iSl

+ 1)

�(α)
∏K

l=2 �(α
Sl

iSl

)∏K
l=1 �(α

Cl

iCl

)
=

∏K
l=1 α

Cl

iCl

α
∏K

l=2 α
Sl

iSl

.

Together with the constraints (2.8), this shows that we can write

α
Cl

iCl

= αθ(iCl
), α

Sl

iSl

= αθ(iSl
),(2.10)

where θ(iCl
) = Ep(iCl

) and θ(iSl
) = Ep(iSl

), a relationship similar to (1.2) as
mentioned in the Introduction.

3. p-Dirichlet and P-Dirichlet distributions. Let G a decomposable graph
and X = (Xv, v ∈ V ) Markov with respect to G be as in Section 2.2. Let p be the
parent function of a moral DAG Markov equivalent to G. We introduce the random
variables

pv|pv

m|k := Pp(Xv = m|Xpv = k) = pqv

(k,m)

ppv

k

, m ∈ Iv, k ∈ Ipv , v ∈ V,

where pD
n = ∑

j∈I:j
D

=n p(j) for n ∈ ID , D ⊂ V is the vector of D-marginal prob-
ability for n ∈ ID . We thus have

p(i) = ∏
v∈V

pv|pv

iv |ipv
, i ∈ I.(3.1)

Since X = (X1, . . . ,Xd) is Markov with respect to G, we know from the first
equality in (2.5) that (p(i), i ∈ I), factorizes also with respect to G. When the
random vector p(i) satisfies the first equality in (2.5), we say that the random
vector (p(i), i ∈ I) is associated with the graph G.

DEFINITION 3.1. The random vector (p(i), i ∈ I) associated with the graph
G has a p-Dirichlet distribution if the random vectors (pv|pv

m|k ,m ∈ Iv), k ∈ Ipv ,
v ∈ V , in representation (3.1) are independent and follow (classical) Dirichlet dis-
tributions.

Recall that if a random vector (pv|pv

m|k ,m ∈ Iv) has a classical Dirichlet distribu-

tion Dir(αv|pv

m|k ,m ∈ Iv), its density is

f
v|pv

k (x) = �(
∑

m∈Iv
α

v|pv

m|k )∏
m∈Iv

�(α
v|pv

m|k )

∏
m∈Iv

x
α

v|pv
m|k −1

m IT|Iv |(x),

where
∑

m∈Iv
xm = 1 and Tn+1 = {(x1, . . . , xn) ∈ (0,1)n : ∑n

i=1 xi < 1}. More-

over, since we assume that the random vectors (pv|pv

m|k ,m ∈ Iv), k ∈ Ipv , v ∈ V , are
independent the joint density of(

pv|pv

m|k ,m ∈ Iv, k ∈ Ipv , v ∈ V
)



PRIOR FOR RESTRICTED SET OF DIRECTIONS 1019

FIG. 1. The two DAGs in Example 3.1.

has the form

f
(
xv,k, k ∈ Ipv , v ∈ V

) = ∏
v∈V

∏
k∈Ipv

�(
∑

m∈Iv
α

v|pv

m|k )∏
m∈Iv

�(α
v|pv

m|k )

∏
m∈Iv

(
xv,k
m

)αv|pv
m|k −1

,

where the support is a Cartesian product of unit simplexes ×v∈V T
×|Ipv |
|Iv | , that is

xv,k ∈ T|Iv | and
∑

m∈Iv
x

v,k
m = 1, k ∈ Ipv , v ∈ V .

Now we define a P-Dirichlet distribution, where P is a family of moral DAGs
with skeleton G.

DEFINITION 3.2. Let P be a family of moral DAGs with skeleton G. The
random vector (p(i), i ∈ I) associated with the graph G has the P-Dirichlet dis-
tribution iff it has a p-Dirichlet distribution for any p ∈ P .

Of course, this definition implies that some consistency conditions for the pa-
rameters of the Dirichlet distributions defining the p-Dirichlet distributions for the
various p ∈ P , have to be satisfied. This issue will be conveniently treated by look-
ing at the moments of the p-Dirichlet and P-Dirichlet laws.

EXAMPLE 3.1. Let G = (V ,E) be the decomposable graph with V =
{1,2,3,4,5} and cliques {1,2,5}, {2,3,5} and {3,4,5}. Let P = {p,p′} with p

and p′ as in Figure 1. We have

p1 = {2,5}, p2 = ∅, p3 = {2,5}, p4 = {3,5}, p5 = {2}
and

p′
1 = {2,5}, p′

2 = {3,5}, p′
3 = ∅, p′

4 = {3,5}, p′
5 = {3}.

Then the p-Dirichlet distribution is defined up to a multiplicative constant
through the following independent Dirichlets:

p2 ∼ Dir
(
α2

m,m ∈ I2
)
, p5|2

k ∼ Dir
(
α

5|2
m|k,m ∈ I5

)
, k ∈ I2,

p1|25
k ∼ Dir

(
α

1|25
m|k ,m ∈ I1

)
, k ∈ I25,
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p3|25
k ∼ Dir

(
α

3|25
m|k ,m ∈ I3

)
, k ∈ I25,

p4|35
k ∼ Dir

(
α

4|35
m|k ,m ∈ I4

)
, k ∈ I35

and the p′-Dirichlet is defined through

p3 ∼ Dir
(
β3

m,m ∈ I3
)
, p5|3

k ∼ Dir
(
β

5|3
m|k,m ∈ I5

)
, k ∈ I3,

p1|25
k ∼ Dir

(
β

1|25
m|k ,m ∈ I1

)
, k ∈ I25,

p2|35
k ∼ Dir

(
β

2|35
m|k ,m ∈ I2

)
, k ∈ I35,

p4|35
k ∼ Dir

(
β

4|35
m|k ,m ∈ I4

)
, k ∈ I35.

We will come back to this example later in Section 4.2.1 and see how the con-
straints on the hyper parameters, that is, the parameters of the P-Dirichlet come
about.

4. Moments.

4.1. The p-Dirichlet distribution. If the vector of random probabilities
(p(i), i ∈ I) follows the p-Dirichlet distribution, then for any nonnegative inte-
gers ri , i ∈ I ,

E
∏
i∈I

[
p(i)

]ri = ∏
v∈V

∏
k∈Ipv

E
∏

m∈Iv

[
pv|pv

m|k
]rqv

(k,m)

= ∏
v∈V

∏
k∈Ipv

�(
∑

m∈Iv
α

v|pv

m|k )∏
m∈Iv

�(α
v|pv

m|k )

∏
m∈Iv

�(r
qv

(k,m) + α
v|pv

m|k )

�(r
pv

k + ∑
m∈Iv

α
v|pv

m|k )
,

where for (k,m) ∈ Ipv × Iv = Iqv , r
qv

(k,m) and r
pv

k are as defined in (2.9). That is,

E
∏
i∈I

[
p(i)

]ri = ∏
v∈V

∏
k∈Ipv

∏
m∈Iv

(α
v|pv

m|k )
r
qv
(k,m)

(α̃
pv

k )
r
pv
k

,(4.1)

where we write (α)r = �(α+r)
�(α)

= α(α + 1) · · · (α + r − 1) for the rising factorial
power and

α̃
pv

k = ∑
m∈Iv

α
v|pv

m|k .(4.2)

Note that since the p-distribution has a bounded support it is uniquely deter-
mined by the moments as given in (4.1).
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4.2. The P-Dirichlet distribution. If a vector of random probabilities
(p(i), i ∈ I) follows the P-Dirichlet distribution then the formula for moments
(4.1) holds for all p ∈ P .

Since its support is bounded, the P-Dirichlet distribution can be defined through
the form of its moments. The equality of the moments for the different representa-
tions of the P-Dirichlet by the p-Dirichlet, p ∈ P , will impose equality constraints
on the parameters of the p-Dirichlet’s, and consequently those of the P-Dirichlet.
Before developing the theory let us illustrate the mechanism using Example 3.1
above.

4.2.1. Example 3.1 continued. Using (2.9) with r∅ = r , the equality of the
moments obtained from (4.1) for both p and p′ yields

E
∏
i∈I

[
p(i)

]ri =
∏

m∈I2
(α2

m)r
2
m

(α̃)r

∏
n∈I2

∏
m∈I5

(α
5|2
m|n)

r25
(n,m)

(α̃2
n)

r2
n

∏
n∈I25

∏
m∈I1

(α
1|25
m|n )

r125
(m,n)

(α̃
25,1
n )

r25
n

× ∏
n∈I25

∏
m∈I3

(α
3|25
m|n )

r325
(m,n)

(α̃
25,3
n )

r25
n

∏
n∈I35

∏
m∈I4

(α
4|35
m|n )

r435
(m,n)

(α̃35
n )

r35
n

=
∏

m∈I3
(β3

m)r
3
m

(β̃)r

∏
n∈I3

∏
m∈I5

(β
5|3
m|n)

r35
(n,m)

(β̃3
n)r

3
n

∏
n∈I35

∏
m∈I2

(β
2|35
m|n )

r235
(m,n)

(β̃
35,2
n )

r35
n

× ∏
n∈I35

∏
m∈I4

(β
4|35
m|n )

r435
(m,n)

(β̃
35,4
n )

r35
n

∏
n∈I25

∏
m∈I1

(β
1|25
m|n )

r125
(m,n)

(β̃25
n )

r25
n

.

Since there are no factorial powers in r2
m on the right-hand side of the equation

above the terms in r2
m on the left-hand side must cancel out, that is, α2

m = α̃2
m.

Similarly, β3
m = β̃3

m. The factorial power r125
n on the right- and left-hand side must

be the same and, therefore, α
1|25
m|n = β

1|25
m|n . Similarly, α

3|25
m|n = β

2|35
m|n , α

4|35
m|n = β

4|35
m|n

and also α̃ = β̃ . For the factorial powers in r25
n we observe that on the left-hand

side there is one power in the numerator and two in the denominator, while on the
right-hand side there is only one power in the denominator. Therefore, the factorial
power in the numerator must cancel with one of the two factorial powers of α̃25,3

n

or of α̃25,1
n in the denominator. This means that for any n ∈ I25:

• either α
5|2
n = α̃25,3

n and β̃25
n = α̃25,1

n , which as we will see later, corresponds

to the p-perfect order of cliques o
(1)
p = (C1 = {2,3,5},C2 = {1,2,5},C3 =

{3,4,5}),
• or α

5|2
n = α̃25,1

n and β̃25
n = α̃25,3

n , which as we will see later, corresponds to the

p-perfect order of cliques o
(2)
p = (C1 = {1,2,5},C2 = {2,3,5},C3 = {3,4,5}).
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Similarly, for the factorial powers r35
n one can choose to cancel the factorial

power of r35
n in the numerator with factorial powers of either β̃35,2

n or β̃35,4
n . Then,

for any n ∈ I35:

• either β
5|3
n = β̃35,2

n and α̃35
n = β̃35,4

n , corresponding to the p′-perfect order of

cliques o
(1)
p′ = (C1 = {2,3,5},C2 = {3,4,5},C3 = {1,2,5}),

• or β
5|3
n = β̃35,4

n and α̃35
n = α̃35,2

n , corresponding to the p′-perfect order of cliques

o
(2)
p′ = (C1 = {3,4,5},C2 = {2,3,5},C3 = {1,2,5}).

From any of these cancelation possibilities, we obtain four P-Dirichlet families
with the same formula of moments

E
∏
i∈I

[
p(i)

]ri =
∏

n∈I125
(ν125

n )
r125
n

∏
n∈I235

(ν235
n )

r235
n

∏
n∈I345

(ν345
n )

r345
n

(μ)r
∏

m∈I25
(μ25

m )
r25
m

∏
m∈I35

(μ35
m )

r35
m

,

but with different sets of parameter constraints depending on the choice of pairs
OP = (o

(i)
p , o

(j)

p′ ), i, j = 1,2. See Section 4.2.1 of the supplementary material [15]
for further details.

In the remainder of this section, we will show that to each collection OP of
orders, as defined in (2.3), corresponds a family of P-Dirichlet distributions.

4.2.2. The moment formula. In the following theorem giving us the moments
of the P-Dirichlet distribution, we use the notions of P, Q, R and Lemmas 2.2
and 2.3 and the notation OP and QC

1 , . . . ,QC
jC−1, C ∈ C of (2.3) and (2.4), respec-

tively.

THEOREM 4.1. A vector of random probabilities (p(i), i ∈ I) associated with
the graph G follows a P-Dirichlet distribution iff there exists a collection OP as
defined in (2.3), such that for any nonnegative integers ri, i ∈ I ,

E
∏
i∈I

[
p(i)

]ri =
∏

A∈Q
∏

m∈IA
(νA

m)
rA
m∏

B∈P
∏

n∈IB
(μB

n )
rB
n

,(4.3)

where νA
m , m ∈ IA, A ∈Q, and μB

n , n ∈ IB , B ∈ P, are positive numbers satisfying

μB
n = ∑

k∈IA\B
νA
(n,k) ∀n ∈ IB(4.4)

whenever there exist S � S ⊂ C ∈ C and op ∈ OP such that S
op→ C and B = QC

i �

A = QC
i−1 for some i ∈ {1, . . . , jC}.

The proof is given in Section 4.2.2 of the supplementary material [15].
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It follows from the expression (4.3) of the moments that the P-Dirichlet distri-
bution has a density which, following a given perfect order op ∈ OP of the cliques,
can be expressed as the product of independent classical Dirichlet distributions as
given in (4.5) below. Using the notation R

Cl

i = Q
Cl

i \ Q
Cl

i+1, i ∈ {0, . . . , jCl
− 1},

l ∈ {1, . . . ,K}, we have the following.

COROLLARY 4.2. Let (p(i), i ∈ I) be a random vector having P-Dirichlet
distribution with constraints (4.4) governed by a family OP . Consider any per-
fect order op = (C1, . . . ,CK) ∈ OP of the cliques. There exist independent vec-

tors (p
R

Cl
i |QCl

i+1
m|k ,m ∈ I

R
Cl
i

) having classical Dirichlet distributions Dir(ν
Q

Cl
i

(k,m),m ∈
I

R
Cl
i

), k ∈ I
Q

Cl
i+1

, i ∈ {0,1, . . . , jCl
− 1}, l ∈ {1, . . . ,K}, such that for any i ∈ I

p(i) =
K∏

l=1

jCl
−1∏

i=0

p
R

Cl
i |QCl

i+1
m|k where m = i

R
Cl
i

and k = i
Q

Cl
i+1

.

Thus, the density of the P-Dirichlet distribution can be written as

K∏
l=1

jCl
−1∏

i=0

∏
k∈I

Q
Cl
i+1

Dir
(
ν

Q
Cl
i

(k,m),m ∈ I
R

Cl
i

)
.(4.5)

We note that the well-known decomposition of the hyper Dirichlet density (2.7)
into

C

K∏
l=1

∏
k∈ISl

∏
m∈IRl

(
p

Rl |Sl

m|k
)αCl

(k,m)−1
,

where C is the normalizing constant, is a special case of (4.5) where jCl
= 1 and

Q
Cl

1 and Q
Cl

0 are respectively replaced by Sl and Cl , and ν
Q0
k,m is replaced by α

Cl

k,m.

4.2.3. Interpretation of the hyper parameters. The interpretation of the hy-
per parameters of the P-Dirichlet follows from Corollary 4.2. Since for each

k ∈ I
Q

Cl
i+1

, the vector (p
R

Cl
i |QCl

i+1
m|k ,m ∈ I

R
Cl
i

) is Dirichlet, we have the expected

value

Ep
R

Cl
i |QCl

i+1
m|k = ν

Q
Cl
i

(k,m)∑
n∈I

R
Cl
i

ν
Q

Cl
i

(k,n)

(4.6)

= ν
Q

Cl
i

(k,m)

μ
Q

Cl
i+1

k

, m ∈ I
R

Cl
i

, i = 0, . . . , jCl
− 1,
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where the last equality is due to (4.4). The ratios on the right-hand side of equation
(4.6) above can therefore be interpreted as the cell probabilities in a fictive |RCl

i |-
dimensional contingency table for X

R
Cl
i

given X
Q

Cl
i+1

= k. Equivalently, the hyper

parameters (ν
Q

Cl
i

(k,m),m ∈ I
R

Cl
i

) can be viewed as the cell counts in the same fictive

table with total count (or equivalent sample size) μ
Q

Cl
i+1

k .
To better see how the hyper parameters of the P-Dirichlet differ from that of

the hyper Dirichlet, let us now give the expectation of Pp(X
Q

Cl
i

= m). For the sake

of clarity, we will write mj,l for m
Q

Cl
j

. Using (4.6) and the global independences

inherent to the P-Dirichlet, we have that if p follows the P-Dirichlet, for i =
0, . . . , jCl

− 1,

EPp(X
Q

Cl
i

= m) = E

(
p

Q
Cl
jc

mjCl
,l

jCl
−1∏

j=i

p
R

Cl
j |QCl

j+1
m

R
Cl
j

|mj+1,l

)

= (
Ep

Q
Cl
jc

mjCl
,l

) jCl
−1∏

j=i

Ep
R

Cl
j |QCl

j+1
m

R
Cl
j

|mj+1,l
(4.7)

= (
Ep

Q
Cl
jc

mjCl
,l

) jCl
−1∏

j=i

ν
Q

Cl
j

mj,l

μ
Q

Cl
j+1

mj+1,l

,

where Ep
Q

Cl
jc

mjCl
,l

is computed by summing the expectation of all the p(i) making up

p
Q

Cl
jc

mjCl
,l
. The μ

Q
Cl
j+1

mj+1,l
are the sums of ν

Q
Cl
j

mj,l
as in (4.4) but are otherwise unrelated to

any other hyper parameters.
In contrast, if p follows a hyper Dirichlet with hyper parameters (ν

Cl
m ,m ∈

ICl
, l = 1, . . . ,K), then Q= C,Q

Cl

0 = Cl,Q
Cl

1 = Sl and (4.7) reduces to

EPp(XCl
= m) = ν

Cl
m

μ
,(4.8)

where ∑
k∈ICl\Sl

ν
Cl

(n,k) = μSl
n and

∑
m∈ICl

νCl
m = μ.

We see from (4.7) and (4.8) that if we want to choose the hyper parameters of the
P-Dirichlet according to expert prior knowledge on EPp(X

Q
Cl
i

= mi,l), we have

much more flexibility if p follows a P-Dirichlet than if p follows a hyper Dirichlet.
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FIG. 2. The two DAGs in Example 4.1.

The interpretation and flexibility of the hyper parameters in the P-Dirichlet will
be formalized and illustrated in Section 5.1.

4.2.4. More examples and the hyper Dirichlet as a special case of the P-
Dirichlet. We now give a few examples of the P-Dirichlet distribution. We start
with an example in which R �= ∅.

EXAMPLE 4.1. Let G = (V ,E) be a graph with

V = {1,2,3,4,5} and E = {{1,3}, {2,4}, {3,4}, {3,5}, {4,5}}.
Then C = {{1,3}, {3,4,5}, {2,4}} and S = {∅, {3}, {4}}. Let P = {p,p′} be as
given in Figure 2. We have

p1 = ∅, p2 = {4}, p3 = {1}, p4 = {3}, p5 = {3,4}
and

p′
1 = {3}, p′

2 = ∅, p′
3 = {4}, p′

4 = {2}, p′
5 = {3,4}.

Then

Q = C ∪ {3,4}, P = S ∪ {3,4},
R{3,4,5} = {3,4}, R{1,3} =R{2,4} = ∅.

Moreover, there is only one available collection of orders OP = {o, o′}, where
the p-perfect order o is (C1 = {1,3}, C2 = {3,4,5}, C3 = {2,4}) and the p′-perfect
order o′ is (C′

1 = {2,4}, C ′
2 = {3,4,5}, C ′

3 = {1,3}).
Then formula (4.3) for moments becomes

E
∏
i∈I

[
p(i)

]ri =
∏

m∈I13
(ν13

m )
r13
m

∏
m∈I24

(ν24
m )

r24
m

∏
m∈I345

(ν345
m )

r345
m

∏
m∈I34

(ν34
m )

r34
m

(μ)r
∏

m∈I3
(μ3

m)r
3
m

∏
m∈I4

(μ4
m)r

4
m

∏
m∈I34

(μ34
m )

r34
m

with the following consistency conditions:

μ = ∑
k∈I13

ν13
k = ∑

k∈I24

ν24
k ;(4.9)
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FIG. 3. DAGs for Example 4.2.

μ3
n = ∑

k∈I4

ν34
(n,k) = ∑

k∈I1

ν13
(k,n), n ∈ I3;(4.10)

μ4
n = ∑

k∈I3

ν34
(k,n) = ∑

k∈I2

ν24
(k,n), n ∈ I4;(4.11)

μ34
n = ∑

k∈I5

ν345
(n,k), n ∈ I34.(4.12)

Consequently, combining the above equations, we also get

μ = ∑
n∈I3

μ3
n = ∑

n∈I4

μ4
n = ∑

k∈I34

ν34
k .

We will now look at the case where R= ∅. We will see that the formula for mo-
ments simplifies and becomes closer to the moment formula for the hyper Dirich-
let. Let us first consider an example.

EXAMPLE 4.2. Consider a tree G = (V ,E) with V = {1,2,3,4,5} and E =
{{1,2}, {2,3}, {2,4}, {4,5}}. Let P = {p,p′} as in Figure 3. We have

p1 = ∅, p2 = {1}, p3 = {2}, p4 = {2}, p5 = {4}
and

p′
1 = {2}, p′

2 = {3}, p′
3 = ∅, p′

4 = {2}, p′
5 = {4}.

Then

Q= C = E, P = {{2}, {2}, {4}} = S.

Moreover, RC =∅ for any C ∈ C. Formula (4.3) for moments is

E
∏
i∈I

[
p(i)

]ri =
∏

m∈I12
(ν12

m )
r12
m

∏
m∈I23

(ν23
m )

r23
m

∏
m∈I24

(ν24
m )

r24
m

∏
m∈I45

(ν45
m )

r45
m

(μ)r
∏

m∈I2
(μ

2(1)
m )r

2
m

∏
m∈I2

(μ
2(2)
m )r

2
m

∏
m∈I4

(μ4
m)r

4
m

,

with the following consistency conditions. If we consider the pair (op, op′),
where op = (C1 = {1,2},C2 = {2,3},C3 = {2,4},C4 = {4,5}) and op′ = (C′

1 =



PRIOR FOR RESTRICTED SET OF DIRECTIONS 1027

{2,3},C′
2 = {1,2},C ′

3 = {2,4},C′
4 = {4,5}) then the constraints are

μ = ∑
k∈I12

ν12
k = ∑

k∈I23

ν23
k ,

μ2(1)
n = ∑

k∈I1

ν12
(k,n) = ∑

k∈I3

ν23
(n,k), n ∈ I2,

μ2(2)
n = ∑

k∈I4

ν24
(n,k), n ∈ I2,

μ4
n = ∑

k∈I5

ν45
(n,k), n ∈ I4.

If we keep op as above and take op′ = (C′
1 = {2,3},C ′

2 = {2,4},C ′
3 = {4,5},C ′

4 =
{1,2}), then we obtain the same restrictions on the parameters as in the preceding
situation.

The above example falls under a more general setting which follows immedi-
ately from Theorem 4.1 and which we formalize as follows.

COROLLARY 4.3. Let the random vector (p(i), i ∈ I), associated with the
graph G, have a P-Dirichlet distribution for a family P of moral DAGs and a
collection OP of p-perfect orders. If P has the property Q = C (equivalently P =
S or R= ∅) then

E
∏
i∈I

[
p(i)

]ri =
∏

C∈C
∏

m∈IC
(νC

m)
rC
m

(μ)r
∏

S∈S
∏

m∈IS
(μS

m)
rS
m

,(4.13)

with the following consistency conditions: whenever S
op→ C for some p ∈ P ,∑

m∈C:mS=n

νC
m = μS

n, n ∈ IS.(4.14)

The hyper Dirichlet distribution is, of course, uniquely defined by moments of
exactly the same form as (4.13) but with stronger consistency conditions. Indeed,
(4.14) is satisfied for any S � S ⊂ C ∈ C. Therefore, a P-Dirichlet distribution for
the family P of all moral DAGs with skeleton G = (V ,E) is a hyper Dirichlet
distribution. Actually, it follows directly from Corollary 4.3 that a considerably
smaller family P forces the P-Dirichlet to be hyper Dirichlet. We state this as
follows.

THEOREM 4.4. Let L be a P-Dirichlet distribution for a family P of moral
DAGs and a collection OP as defined in (2.3). If

R=∅(4.15)
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and

∀(S ∈ S,C ∈ C) if S ⊂ C then ∃op ∈ OP such that S
op→ C(4.16)

then L is a hyper Dirichlet distribution.

At this point, it is important to note that any P-Dirichlet family contains a hy-
per Dirichlet distribution, which is obtained by imposing the following additional
constraints:

• μ
Q
m = ν

Q
m for any m ∈ IQ and any Q ∈ R,

• for any B ∈ S contained in A ∈ C condition (4.4) holds.

Yet, conditions (4.15) and (4.16) may not be satisfied, as can readily be seen from
Example 4.1 if we choose μ34

m = ν34
m for any m ∈ I34.

5. The P-Dirichlet as a prior distribution. In this section, we look at the
properties of the P-Dirichlet as a prior distribution. We first compute the dimen-
sion of the P-Dirichlet family for a given P and show that it is always larger than
the dimension of the hyper Dirichlet family with the same skeleton G [unless the
set P is so large that the corresponding R is empty and (4.16) holds]. We then
show that the P-Dirichlet has the two desirable properties of being conjugate and
directed strong hyper Markov for every p ∈ P . In Section 5.3 we make a remark on
the possible extension of the P-Dirichlet to families of immoral graphs represented
by a given essential graph.

5.1. Dimension of the P-Dirichlet family. We are now going to show that the
dimension of the parameter space of the P-Dirichlet distribution is always greater
than or equal to that of the hyper Dirichlet. This means, of course, that when choos-
ing the P-Dirichlet as a prior rather than the hyper Dirichlet, we gain flexibility in
our choice of the hyper parameters. The dimensions of both families are given in
the following theorem.

If P is a collection of moral DAGs with skeleton G and OP is a collection of p-
perfect orders, p ∈ P , for S ∈ S given, we denote by NS be the number of cliques
C such that

if S ⊂ C then ∃p ∈P such that S
op→ C.

THEOREM 5.1. For G and P as given above, the dimension of the parameter
space of the P-Dirichlet family of distributions is

NP = ∑
Q∈Q

∏
v∈Q

|Iv| −
∑
S∈S

(NS − 1)
∏
v∈S

|Iv|.(5.1)

The dimension of the parameter space of the hyper Dirichlet family of distributions
with the same skeleton G is equal to

NHP = ∑
C∈C

∏
v∈C

|Iv| −
∑
S∈S

(NS − 1)
∏
v∈S

|Iv|.(5.2)
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Moreover, if the P-Dirichlet is not identical to the hyper Dirichlet, we always have

NP > NHP .(5.3)

The proof is given in Section 5.1 of the supplementary material [15].
Let us illustrate Theorem 5.1 by deriving the dimension of the P-Dirichlet and

hyper Dirichlet families respectively when G and P are as given in Example 4.1.
Following the computations of the dimension of the two families, we will consider
the problem of translating prior knowledge given by an expert into specific values
of the hyper parameters. We will see that, of course, we have much more flexibility
with the P-Dirichlet than with the hyper Dirichlet.

EXAMPLE 5.1 (Example 4.1 continued). Let us assume that all variables are
binary. From (4.3), we see that we have 20 νA

m parameters, 4 for (ν13
m ,m ∈ I13), 4

for (ν34
m ,m ∈ I34), 4 for (ν24

m ,m ∈ I24) and 8 for (ν345
m ,m ∈ I345). The separators

are {3} and {4}. We have {3} o′→ {1,3} and {3} o→ {3,4,5} and, therefore, N{3} = 2.

Similarly, {4} o→ {2,4} and {4} o′→ {3,4,5} and, therefore, N{4} = 2. According
to (5.1), the dimension of the P-Dirichlet family is

NP = 20 − 2 − 2 = 16.

The dimension of the hyper Dirichlet family is

NHP = 16 − 2 − 2 = 12.

We will now continue with this example to illustrate how we can use the flexi-
bility of the P-Dirichlet prior. Let us assume that we have expert knowledge which
tells us that one expects that X345 will take the value (0,1,1) more often than the
value (1,1,1). We translate this with the inequality

EPp
(
X345 = (1,1,1)

) ≤ EPp
(
X345 = (0,1,1)

)
.(5.4)

Following (4.7), we obtain after some simplifications the inequality

ν345
111ν34

11

ν345
111 + ν345

110

≤ ν345
011ν34

01

ν345
011 + ν345

010

.(5.5)

The constraints on the hyper parameters are given by (4.9)–(4.12). Constraint
(4.12) is nothing but the definition of μ34

n . Constraints (4.9)–(4.11) do not involve

ν345
m . So there are no constraints on the parameters ν345

m ,m ∈ {0,1}3: we can freely
choose these values to reflect prior expert knowledge.

In contrast, if (p(i), i ∈ I) follows the hyper Dirichlet distribution with param-
eters (ν

Cl
m ,m ∈ ICl

), l = 1,2,3, then (5.4) would simply translate as ν345
111 ≤ ν345

011
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with constraints of the type (2.8), that is, with constraints (4.9)–(4.12) of the P-
Dirichlet and the additional constraints

μ34
m = ν34

m , m ∈ I34.

With these constraints, both μ34
m and ν34

m disappear from the moment formula (4.3)
and, as we know, disappear as parameters of the hyper Dirichlet, resulting in much
more coercive constraints on ν345

m ,m ∈ I345.
We note that the set of equations (4.9)–(4.11) defines a hyper Dirichlet distri-

bution for the probabilities of X1234. Therefore, we could say that the P-Dirichlet
in our example is made up of a hyper Dirichlet for the probabilities of X1234 com-
bined with, for each value of X34 = m34, an independent Dirichlet distribution for
the probabilities of X5 with parameters (ν345

(m34,m5)
,m5 ∈ I5). We can then interpret

the parameters of the P-Dirichlet appearing in (4.9)–(4.12) as follows. Consider a
fictive table for X1234 with total count (equivalent sample size) μ. The vectors(

ν13
k , k ∈ I13

)
,

(
ν34
k , k ∈ I34

)
,

(
ν24
k , k ∈ I24

)
,

are the counts in the X13-, X34-, X24-marginal tables, respectively obtained from
the X1234 table. The vectors (μ3

m,m ∈ I3) and (μ4
m,m ∈ I4) are the counts for the

X3- and X4-marginal tables respectively obtained from the same X1234 table or
equivalently from the X13-, X34-, X24-marginal tables. However, for each m ∈ I34,
the vector (ν345

(m,k), k ∈ I5) is a free vector of counts for a fictive X5-table.

5.2. Conjugacy and directed strong hyper Markov property. We will now em-
phasize the properties of the P-Dirichlet that make it a useful prior for Bayesian
inference. In the following theorem, we state that for any p ∈P , the P-Dirichlet is
conjugate and directed strong hyper Markov with respect to any p ∈ P . We now re-
call the definition of the directed strong hyper Markov property. Let X = (Xv, v ∈
V ) be a random variable Markov with respect to a DAG given by a parent function
p, with distribution parameterized by θ ∈ Rk for some k, which itself follows a
law L. Let θpv , θv|pv and θndv denote the parameters of the marginal distribution of
Xpv , the conditional distribution of Xv given Xpv and the marginal distribution of
the non-descendants of v, respectively. Then the law L is said to be directed strong
hyper Markov if we have the conditional independences

θv|pv ⊥ θndv |θpv , v ∈ V.

With this definition, we see that the directed strong hyper Markov property of the
P-Dirichlet follows by construction. Additionally, the P-Dirichlet is conjugate
with respect to the multinomial. These two properties are stated in the following
theorem. Using the family P of Example 4.1 again, we will show how, with the
strong directed hyper Markov and conjugacy properties, one can easily obtain the
posterior mean of the contingency table cell probabilities.



PRIOR FOR RESTRICTED SET OF DIRECTIONS 1031

THEOREM 5.2. Let the conditional distribution of cell counts N = (N(i), i ∈
I) for X = (Xv, v ∈ V ) given p = (p(i), i ∈ I) be multinomial M(M,p(i), i ∈ I)

Markov with respect to the decomposable graph G. Let p follow a P-Dirichlet
distribution with hyper parameters

νA
m,m ∈ IA,A ∈ Q and μB

k , k ∈ IB,B ∈ P

as given in (4.3) and (4.4). Then the posterior distribution of p given N = (n(i), i ∈
I) is P-Dirichlet with hyper parameters

nA
m + νA

m,m ∈ IA,A ∈ Q and nB
k + μB

k , k ∈ IB,B ∈ P,

where nA
m is the A-marginal count for iA = m.

Moreover, for any p ∈ P , the P-Dirichlet is directed strong hyper Markov.

The proof is given in Section 5.2 of the supplementary material [15]. We now
illustrate how we can readily estimate a cell probability with its posterior mean.

EXAMPLE 5.2 (Example 4.1 continued). With the P-Dirichlet for p as in

Example 4.1, we know from (5.5) that EPp(X345 = (111)) = ν345
111ν34

11
μ34

11
. Given data

(n(i), i ∈ I), by Theorem 5.2, the posterior mean of Pp(X345 = (111)) is

E
(
Pp

(
X345 = (111)

) | N = (
n(i), i ∈ I

)) = (ν345
111 + n345

111)(ν
34
11 + n34

11)

μ34
11 + n34

11

.

We see from this example and also from the theorem above that, when A ⊂ V

belongs to both P and Q, the data counts nA
m are added to both νA

m and μA
m. This

is because in that case, the νA
m and μA

m refer to two different fictive tables.

Let us note that our priors could also find applications in model selection when
the class of models to choose from contains only a few models as was done, for
example, in [17], Section 7, for continuous Gaussian variables. In that paper, the
authors studied the quality of the various estimates of the covariance matrix. The
strength of a flexible prior with multiple hyper parameters generally lies in estima-
tion.

5.3. Arbitrary DAGs. In this paper, we have only studied families of moral
DAGs with the same decomposable skeleton G. They all belong to the same
Markov equivalence class with essential graph G∗ = G; see [1] or [20]. We think
that our approach can be extended to families of arbitrary DAGs in any given
Markov equivalence class. In particular, one could consider the family of all DAGs
with a given essential graph G∗. This has potential application to model selection
and will be the subject of further research. We give two examples of this possible
extended P-Dirichlet in Section 5.3 of the supplementary material [15].
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6. Characterization by local and global independence.

6.1. The P-Dirichlet and the hyper Dirichlet. We now briefly recall the defi-
nition of local and global independence and combine them into what we call pa-
rameter independence.

DEFINITION 6.1. Let p be a vector of random probabilities associated with
the graph G. We say that local parameter independence holds for p with respect to
a DAG with parent function p if for any v ∈ V the random vectors(

pv|pv

l|k , l ∈ Iv

)
, k ∈ Ipv ,

are independent (nondegenerate) and we say that global parameter independence
holds for p if the random vectors((

pv|pv

l|k , l ∈ Iv

)
, k ∈ Ipv

)
, v ∈ V

are independent (nondegenerate).
The two properties can be combined: we say that parameter independence holds

for p if the random vectors(
pv|pv

l|k , l ∈ Iv

)
, k ∈ Ipv , v ∈ V

are independent (nondegenerate). Analogously, we say that parameter indepen-
dence holds for p with respect to a family P of DAGs if it holds for any DAG
in P .

We immediately note that under the condition of parameter independence with
respect to a DAG having parent function p, for any d-dimensional table (ri, i ∈ I)

of nonnegative integers and r
qv

(k,l) defined in (2.9), we have, as in Section 4.1,

E
∏
i∈I

[
p(i)

]ri = ∏
v∈V

∏
k∈Ipv

E
∏
l∈Iv

[
pv|pv

l|k
]rqv

(k,l) .(6.1)

This property of parameter independence was crucial for the characterization of
the Dirichlet distribution (for a complete graph) given in [9]. We will now extend
this characterization to the P-Dirichlet distribution. For particular choices of P , it
will yield a characterization of the hyper Dirichlet law. Families P of DAGs will
need to have the separation property which we define now.

DEFINITION 6.2. A family P of DAGs with skeleton G is called separating
if

∀v ∈ V ∃p,p′ ∈ P such that pv �= p′
v.(6.2)

Our main result, Theorem 6.1 below, shows that for separating families of moral
DAGs parameter independence characterizes the P-Dirichlet distribution.
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THEOREM 6.1. Let p be a vector of random probabilities associated with the
graph G. Let P be a separating family of moral DAGs with skeleton a decompos-
able graph G = (V ,E).

If parameter independence for p with respect to P holds, then p follows a P-
Dirichlet distribution.

The proof is given in Section 6.1 of the supplementary material [15].
We emphasize that if P is not a separating family then parameter independence

alone does not imply that p follows a P-Dirichlet distribution. For example, con-
sider the three-chain with cliques {1,2} and {2,3}. Let P = {p ≡ 1 → 2 → 3,p′ ≡
1 ← 2 → 3} and let us assume that (p12

m ,m ∈ I12) follows a classical Dirichlet dis-

tribution while (p3|2
n|k, n ∈ I3), k ∈ I2, has an arbitrary distribution and is indepen-

dent of (p12
m ,m ∈ I12). Clearly, parameter independence for p and p′ is satisfied.

Yet, P is not a separating family since p3 = p′
3.

The hyper Dirichlet distribution is characterized by parameter independence
with respect to a P which is rich enough. We state this result more precisely in the
theorem below which is an immediate consequence of Theorems 6.1 and 4.4.

THEOREM 6.2. Let p be a vector of random probabilities associated with the
graph G. Let P , a separating family of moral DAGs with skeleton G, satisfy (4.15)
and (4.16).

If parameter independence for p with respect to P holds then p has a hyper
Dirichlet distribution.

6.2. Special cases. We now consider some particular graphs.
(a) The chain and the hyper Dirichlet distribution. Let G = (V ,E) be a chain

with vertices V = {1, . . . , d} and edges E = {{i, i + 1}, i = 1, . . . , d − 1}.
Consider the family P = {p,p′}, where p is a DAG following the chain from 1 to

d and p′ is the DAG with reversed arrows. Then P is separating, Rp = p(V ) \S =
{{1}} and Rp′ = p′(V ) \ S = {{d}} so that R = ∅, that is, (4.15) holds. Moreover,
condition (4.16) is clearly satisfied. Thus, from Theorem 6.2 we conclude the fol-
lowing result.

COROLLARY 6.3. Assume that the random vectors(
pj |j−1

l|k , l ∈ Ij

)
, k ∈ Ij−1, j = 1,2, . . . , d(6.3)

are jointly independent.
Assume also that the random vectors(

pj |j+1
l|m , l ∈ Ij

)
, m ∈ Ij+1, j = 1,2, . . . , d(6.4)

are jointly independent.
Then p has a hyper Dirichlet distribution with respect to G.
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In the assumptions above, for ease of notation, we used the convention that
X0 = Xd+1 ≡ 0 and I0 = Id+1 = {0}.

Note that the family P that we defined for the chain is the unique minimal
separating family. That is any other family of DAGs is either nonseparating or it
contains P as a proper subset.

Note also that for the two-chain (that is when d = 2) we obtain the character-
ization of the classical Dirichlet distribution given in Theorem 2 of [3]. At the
same time, we extend the characterization given in [9], Theorem 2, where addi-
tionally to parameter independences (6.3) and (6.4) it was assumed that densities
exist and are sufficiently regular. Some of the regularity assumptions were consid-
erably weakened in [12]. More recently, the entire Chapter 23 of the monograph
[13] was devoted to this issue.

(b) The tree and the hyper Dirichlet distribution. Let G = (V ,E) be a tree. As in
the case of the chain the set of cliques C is equal to E and S = {∅, {v}, v ∈ V \L},
where L ⊂ V is the set of leaves, that is, those vertices which belong to exactly one
edge. Any DAG can be uniquely defined by choosing a vertex v such that pv = ∅.
We will denote this DAG by p(v). Note that for any such p(v), for any w ∈ V \ {v},
the set p(v)

w contains exactly one element.
Consider the family P = {p(v), v ∈ L}. Note that each vertex on the unique

chain connecting v and w in L has different parents under p(v) and p(w). Therefore
P is a separating family. Since any separator consists of only one vertex and any
clique of only two vertices condition (4.16) follows from the same observation.
Since p(v)(V ) = S ∪ {{v}}, it follows that Rp(v) = {{v}}. Consequently, (4.15) is
satisfied. From Theorem 6.2 we have the following result for trees.

COROLLARY 6.4. Assume that for every leaf v ∈ L parameter independence
with respect to p(v) holds. Then (p(i), i ∈ I) follows the hyper Dirichlet distribu-
tion with respect to G.

(c) The complete graph and the classical Dirichlet distribution. Consider a com-
plete graph G = (V ,E). Then C = {V } and S = {∅}. Consider two DAGs with
parent functions p and p′. Let v1, . . . , vd be the numbering corresponding to p,
that is, pvi

= qvi−1 with pv1 = ∅ and similarly for v′
1, . . . , v

′
d corresponding to p′.

Let us assume moreover that

∀j = 1, . . . , d, pvj
�= p′

v′
j
.(6.5)

Since the cardinality of pvj
is equal to j − 1, pvj

= pv′
k

implies j = k. But this is
forbidden for j = 1, . . . , d −1 by condition (6.5). Therefore, the family P = {p,p′}
is separating. A similar cardinality argument combined with (6.5) implies that
Rp = p(V ) \ S = {pvj

, j = 2, . . . , d} and Rp′ = p′(V ) \ S = {p′
v′
j
, j = 2, . . . , d}

cannot have a common element. Thus, (4.15) is satisfied and we have the follow-
ing result.
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COROLLARY 6.5. If for a complete graph G = (V ,E) parameter indepen-
dence holds for any two DAGs satisfying (6.5) then (p(i), i ∈ I) has a classical
Dirichlet distribution.

In Theorem 7 of [10] (see also [9], Theorem 3), the authors considered param-
eter independence for P = (p,p′), where

p1 =∅, pi = {1, . . . , i − 1}, i = 2, . . . , d

and

p′
i = {d} ∪ pi , i = 1, . . . , d − 1, p′

d = ∅.

With such a choice of P the case d > 2 could be reduced to the case d = 2
discussed already in Section 6.2(a). Clearly, p and p′ above satisfy (6.5) and the
characterization of [10] follows from Corollary 6.5 without the assumption of ex-
istence and smoothness of densities made in that paper.

For d = 2, Corollary 6.5 can be found in [3]. Because this paper was focused
on neutralities with respect to partitions the authors assumed independence of(

pl
i , i ∈ Il

)
,

(
pV \{l}|l

iV \{l}|i , iV \{l} ∈ IV \{l}
)
, i ∈ Il

for l = 1, . . . , d . For related characterizations of the classical Dirichlet the reader
is referred to [2, 4, 5, 8, 11, 18, 19] and the monograph [16], Chapter 2.6.

7. Conclusion. This paper makes two contributions. One contribution is the
development of a new family of flexible conjugate prior distributions with the di-
rected strong hyper Markov property, for a family P of moral DAGs with the same
decomposable skeleton. This family, the P-Dirichlet, generalizes the hyper Dirich-
let and the Dirichlet. The development of this family shows that the more elements
P contains, the more restrictions we will have on the set of hyper parameters of
the P-Dirichlet. With this family, we have also defined the new objects P and Q

generalizing the notion of cliques and separators in a decomposable graph G.
The other contribution is a characterization of this new family of distributions

and, as a consequence, of the hyper Dirichlet and the classical Dirichlet. This char-
acterization is based on local and global parameter independence and does not re-
quire the assumption of existence and smoothness of the density. We have also
shed light on the choice of the two DAGs on a complete graph used in [9] for
the characterization of the Dirichlet: we have done so by emphasizing that these
two DAGs form a separating family and that this particular choice of two DAGs,
important for the method of proof in [9], is only one of many possible choices.

The P-Dirichlet finds its application in Bayesian estimation when we can easily
build in expert prior knowledge into our prior. We have also indicated a possible
extension of the P-Dirichlet to a distribution where P would be the family of
immoral DAGs represented by an essential graph. This development will be the
subject of future research.
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SUPPLEMENTARY MATERIAL

Proofs and some detailed examples for “A new prior for discrete DAG mod-
els with a restricted set of directions” (DOI: 10.1214/15-AOS1396SUPP; .pdf).
Supplement A contains proofs and examples. We provide the proof of Lemma 2.1
and give a simple example of p-perfect ordering of the cliques and vertices as given
in (2.1). We also provide the proofs of Theorems 4.1, 5.1, 5.2 and 6.1. We give the
details of the derivation of the four P-Dirichlet families in Example 3.1 contin-
ued. We also illustrate, with two examples, a possible extension of the P-Dirichlet
distribution to arbitrary DAGs through the use of essential graphs.
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