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THE FUSED KOLMOGOROV FILTER: A NONPARAMETRIC
MODEL-FREE SCREENING METHOD

BY QING MAI1 AND HUI ZOU2

Florida State University and University of Minnesota

A new model-free screening method called the fused Kolmogorov fil-
ter is proposed for high-dimensional data analysis. This new method is fully
nonparametric and can work with many types of covariates and response vari-
ables, including continuous, discrete and categorical variables. We apply the
fused Kolmogorov filter to deal with variable screening problems emerging
from a wide range of applications, such as multiclass classification, nonpara-
metric regression and Poisson regression, among others. It is shown that the
fused Kolmogorov filter enjoys the sure screening property under weak reg-
ularity conditions that are much milder than those required for many existing
nonparametric screening methods. In particular, the fused Kolmogorov filter
can still be powerful when covariates are strongly dependent on each other.
We further demonstrate the superior performance of the fused Kolmogorov
filter over existing screening methods by simulations and real data examples.

1. Introduction. Consider a statistical problem with a response variable Y

and covariates X = (X1, . . . ,Xp)T ∈ R
p . When p is very large, a popular assump-

tion is the sparsity assumption that only a small subset of variables are actually
responsible for modeling Y . To be specific, following Li, Zhong and Zhu (2012),
define

D = {
j :F(y | X) functionally depends on Xj for some y

}
,

where F(y | X) is the conditional cumulative probability function of Y . Then the
sparsity assumption states that |D| � p.

Variable selection aims to discover D exactly. Variable screening is less ambi-
tious in that it only aims to discover a majority of Dc. In other words, a good vari-
able screening method tries to find a subset S such that D ⊂ S, which is referred
to as the sure screening property [Fan and Lv (2008)] in the literature. Consistent
variable selection is a very challenging task. It requires sophisticated estimation
techniques, strong model assumptions and often advanced computing algorithms
[Fan and Li (2001), Lv and Fan (2009), Tibshirani (1996), Zhang (2010)]. Because
variable screening deals with a much less ambitious goal, it is possible that sure
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screening could be achieved by using some simple (both conceptually and com-
putationally) method. This idea was first successfully demonstrated in Fan and
Lv (2008) where marginal correlation screening is shown to lead to sure screen-
ing results in high-dimensional linear regression under certain regularity condi-
tions. Since the sure independence screening paper by Fan and Lv (2008), vari-
able screening has received a lot of attention in the literature and many variable
screening techniques, both parametric and nonparametric, have been proposed and
studied in recent years [Chang, Tang and Wu (2013), Fan and Fan (2008), Fan,
Feng and Song (2011), Fan, Samworth and Wu (2009), Fan and Song (2010), He,
Wang and Hong (2013), Li, Zhong and Zhu (2012), Li et al. (2012), Mai and Zou
(2013), Zhu et al. (2011)]. Variable screening is naturally appealing to practition-
ers, because if sure screening is achieved before doing a thorough analysis, the
analysis part would become much easier with the screening subset. At least, the
computational cost can be greatly reduced.

The main message in Fan and Lv (2008) is that although we should not do vari-
able selection based on marginal correlations alone, marginal correlations can be
used to filter out many noise variables and keep all important variables. Many new
screening methods have been proposed with the aim of improving the marginal
correlation screening method. Fan and Song (2010) propose a screening method
based on the marginal maximum likelihood for generalized linear models. Chang,
Tang and Wu (2013) propose using marginal empirical likelihood ratios to rank
variables and demonstrate their good performance. The nonparametric indepen-
dence screening (NIS) [Fan, Feng and Song (2011)] starts with a generalized
additive model for modeling the regression response variable Y . For each vari-
able Xj , NIS uses nonparametric smoothing, for example, B-spline regression, to
obtain m̂j = arg minmj

‖Y − mj(Xj )‖2
n. NIS then selects the variables with large

‖m̂j (Xj )‖2
n. Compared to marginal correlation learning, NIS is more robust be-

cause it captures nonlinear dependence between Y and Xj . The quantile–adaptive
screening (QA) [He, Wang and Hong (2013)] further improves the robustness of
NIS by allowing heteroscedasticity in the model. Under such models, QA mini-
mizes the check function instead of the squared error loss function to identify the
important predictors. Li et al. (2012) propose using Kendall tau correlation to re-
place the usual Pearson correlation in marginal correlation screening so that the
resulting screening method is more robust and can be useful under a semipara-
metric single-index model with a monotone link function. The distance correlation
screening (DCS) [Li, Zhong and Zhu (2012)] is a model-free screening method that
uses the distance correlation to replace Pearson correlation in marginal correlation
screening. The distance correlation [Székely, Rizzo and Bakirov (2007)] between
two random variables is zero if and only if they are independent. The Kolmogorov
filter [Mai and Zou (2013)] is a fully nonparametric robust screening method. It
deals with binary classification problems and uses the Kolmogorov–Smirnov test
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statistic to screen covariates. The Kolmogorov filter has several unique, nice prop-
erties. First, it significantly outperforms other existing screening methods for bi-
nary classification problems. Second, it works with all types of covariates and is
invariant under univariate monotone transformations of the covariates. Third, it can
have the sure screening property even when the covariates are strongly dependent
on each other. This result is very promising because it was commonly believed
before Mai and Zou (2013) that marginal screening methods tend to work well if
and only if the noise variables are weakly correlated with the important variables.

Fan and Lv (2008) suggest an iterative screening and model fitting procedure to
deal with the strong correlation issue in model-based screening methods. Although
this idea has been empirically demonstrated [Fan, Feng and Song (2011), Fan and
Lv (2008), Fan and Song (2010), He, Wang and Hong (2013)], its theoretical jus-
tification still remains unknown. Furthermore, its theoretical justification heavily
depends on model assumptions and hence may not be very robust. It is now clear
that variable screening can be separated from the model fitting part. Both DCS
[Li, Zhong and Zhu (2012)] and the Kolmogorov filter [Mai and Zou (2013)] have
demonstrated that sure screening can be achieved without resorting to a particular
form of model for the data. Moreover, we advocate the use of model-free screen-
ing methods in practice. The reasons are twofold. First, the model-free screening
results are much more robust in the sense that the sure screening property can
hold under much weaker conditions. The second reason is related to the choice of
the statistical analysis tool in the modeling stage. Note that after the screening we
have a low-dimensional dataset, and one may want to apply modern nonparametric
learning methods such as boosting and random forest for further analysis [Hastie,
Tibshirani and Friedman (2009)]. Yet model-based screening methods typically
eliminate such choices because one has to stick with the model used in the first
stage. For example, if we apply marginal correlation screening or marginal maxi-
mum likelihood screening, we have to use a linear regression model or generalized
linear model in the second stage, although we can do penalized model fitting by
using a penalty such as lasso [Tibshirani (1996)] or SCAD [Fan and Li (2001)].
If the underlying model for the data is highly nonlinear, then boosting or random
forest is expected to be a better choice than linear models.

Our goal here is to develop a new fully nonparametric model-free variable
screening method that can provide a unified solution to variable screening prob-
lems emerging from a wide variety of applications such as binary classification,
multiclass classification, regression and Poisson regression, among others. The
new method should also work with discrete, categorical or continuous covariates.
Moreover, it is desirable to have the new method be invariant under univariate
monotone transformations of response variable or covariates or both, because vari-
able transformation models have wide applications in practice. Imagine that a vari-
able transformation model is determined to be the best fit in the second modeling
stage, we do wish to see that variable screening results should remain unchanged
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if we would repeat the screening procedure by working with the transformed vari-
ables. DCS and the Kolmogorov filter are the two existing, fully nonparametric,
model-free screening methods in the literature. Neither of them completely meets
our expectations. DCS does not have the invariance property under monotone vari-
able transformation, and its sure screening property heavily depends on a distribu-
tion assumption on covariates that they should have sub-exponential tails. In many
applications, the covariates are heavy-tailed, and DCS may not be ideal in such
cases. The limitation of the Kolmogorov filter is obvious as well: it is designed for
binary classification problems and is inapplicable when the response variable can
take more than two values.

To this end, we propose the fused Kolmogorov filter and study its theoretical
and numerical properties. As the name suggests, the fused Kolmogorov filter is
built upon two main ideas, the Kolmogorov–Smirnov test statistic, as used in Mai
and Zou (2013), and fusion. When the response variable is binary, the fused Kol-
mogorov filter is exactly the Kolmogorov filter proposed in Mai and Zou (2013),
and fusion is not needed. The fusion part becomes critically important when the
response variable is continuous. We introduce two levels of fusion. In the first
level, we slice the response variables into multiple slices, compute a Kolmogorov–
Smirnov test statistic for each pair of slices and then take the supreme of all pair-
wise Kolmogorov–Smirnov test statistics. To make the method insensitive to the
slicing scheme, we conduct the second level of fusion, where we repeat the first
level for different ways of slicing and then take the sum of their outcomes as the
final screening statistic, which we call the fused Kolmogorov statistic. The second
level of fusion is important when the response variable is continuous or ordinal.
The fused Kolmogorov filter ranks each covariate by its fused Kolmogorov statis-
tic and screens out those covariates at the bottom of the rank list. By definition, the
fused Kolmogorov filter is intuitively appealing, computationally convenient and
automatically has the invariance property under monotone variable transformation.

The rest of the paper is organized as follows. The methodological details of
the fused Kolmogorov filter are given in Section 2. In Section 3 we establish the
sure screening property of the fused Kolmogorov filter under weak regularity con-
ditions. We discuss these regularity conditions and find that they can hold, even
when important variables and noise variables are strongly dependent. This promis-
ing result suggests that marginal variable screening could be more useful than we
expected. Sections 4 and 5 contain simulated and real data examples. Technical
proofs are presented in the Appendix.

2. Method.

2.1. Motivation. To see why the Kolmogorov–Smirnov statistic is very use-
ful for variable screening, let us first revisit the binary Kolmogorov filter. When
the response variable is binary, say Y = 1,2, a variable X is independent of Y if
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and only if the conditional distributions of X given Y = 1 or Y = 2 are identical.
Motivated by this simple fact, Mai and Zou (2013) propose using

Kj = sup
x

∣∣Fj (x | Y = 1) − Fj (x | Y = 2)
∣∣

to measure the dependence between Xj and Y , where Fj denotes the generic cu-
mulative distribution function (CDF) for Xj . Given the observed data, an empirical
version of Kj is defined as

K̂j = sup
x

∣∣F̂j (x | Y = 1) − F̂j (x | Y = 2)
∣∣,

where F̂j denotes the generic empirical CDF. Mai and Zou (2013) demonstrate the
strong theoretical and numerical performance of the binary Kolmogorov filter.

Given the success of the binary Kolmogorov filter, it is natural to ask what its
counterpart is for a continuous response variable or a general discrete variable (like
counts data in Poisson regression). First, it seems straightforward to consider

K∗
j = sup

y1,y2

sup
x

∣∣Fj (x | Y = y1) − Fj (x | Y = y2)
∣∣(1)

because K∗
j = 0 if and only if Xj is independent of Y . Thus K∗

j is a natural gen-
eralization of Kj . In order to use K∗

j , we must have an empirical version of K∗
j .

This step is trivial for the binary response case, but it is much more difficult when
Y takes infinite values because it requires the knowledge of Fj (x | y) for all pos-
sible values y. On the other hand, we can find an approximation of K∗

j by slicing
the response. Define a partition

G =
{
[al, al+1) :al < al+1, l = 0, . . . ,G − 1 and

G−1⋃
j=1

[al, al+1) \ {a0} =R

}
,

where a0 = −∞ and aG = ∞. Note that the interval (a0, a1) is open, but we abuse
the notation a little by writing the intervals [al, al+1) for all l. Each [al, al+1) is
called a slice. We then define a random variable H ∈ {1, . . . ,G} such that H =
l + 1 if and only if Y is in the lth slice. In particular, if Y is discrete as in a
multiclass problem, that is, Y = 1, . . . ,G, we can set H = Y . Now let

KG
j = max

l,m
sup
x

∣∣Fj (x | H = l) − Fj (x | H = m)
∣∣,

where Fj (x | H = l) = Pr(Xj ≤ x | H = l).
The idea of slicing is very natural. First, If Y is binary, KG

j and Kj are the same.
If Y is multiclass, the slicing breaks the multiclass problem into pairwise binary
problems. This strategy has been proven successful as a method for generalizing
a binary classifier to its multiclass counterpart [Hastie and Tibshirani (1998)]. Yet
KG

j can be still be computed when Y is a count that takes infinite discrete values,
such as in the Poisson regression model. When Y is continuous, slicing is widely
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used in the field of sufficient dimension reduction [Cook and Weisberg (1991), Li
(1991)] to infer about the conditional means and/or variances of predictors. How-
ever, these sufficient dimension reduction methods generally deal with problems
with large sample sizes compared to the dimension. To the best of our knowledge,
this paper is the first to utilize slicing for variable screening for large p and small
n problems.

It is obvious that Xj is independent of Y if and only if KG
j = 0 when Y takes

finite values and each possible value forms a slice. In what follows, we assume
that Y is continuous, as it is the more challenging case. The following lemma
shows that KG

j sheds light on the dependence between Y and Xj as well when Y

is continuous.

LEMMA 1. (a) Xj is independent of Y if and only if KG
j = 0 for all possible

choices of G.
(b) Assume that Xj is not independent of Y and for any fixed y ∈ R, Pr(Y ≤ y |

Xj = x) is not a constant in x; then KG
j 	= 0 for any G.

(c) Assume that Fj (x | y) is continuous in y. If maxl=1,...,G Pr(H = l) → 0 as
G → ∞, then KG

j → K∗
j as G → ∞, where K∗

j is defined in (1). Therefore, for

Xj not independent of Y , KG
j > 0 for sufficiently large G.

Although we initially proposed KG
j as a surrogate of K∗

j and Lemma 1 part (c)

indicates this as well, it turns out that KG
j could be a better measure for variable

screening than K∗
j . To see this interesting point, we present the following lemma.

LEMMA 2. If (Xj ,Y ) has a bivariate Gaussian copula distribution such that,
after transformation via two monotone functions g1, g2, (g1(Xj ), g2(Y )) is jointly
normal with correlations ρj = Cor(g1(Xj ), g2(Y )) and g1(Xj ), g2(Y ) are margi-
mally standard normal. Then we have the following two conclusions:

(a) K∗
j = 1 if ρj 	= 0 and K∗

j = 0 otherwise.

(b) Suppose Y is sliced at l
G

’th quantile of Y for l = 1, . . . ,G − 1. Then KG
j

can be expressed as

KG
j = G

∫ �−1(1/G)

−∞

(
2�

( −|ρj |y√
1 − ρ2

j

)
− 1

)
e−y2/2
√

2π
dy,

where � is the CDF for the standard normal distribution. Consequently, for any
G, KG

j is a strictly increasing function in |ρj |.
With Lemma 2 in mind, we revisit the variable screening problem under a high-

dimensional linear regression model as examined in [Fan and Lv (2008)]. For sim-
plicity, assume that the model is

Y = X1 + X2 + Z
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and

Xj = aX1 + Zj , j ≥ 3,

where X1,X2,Z,Zj are independent N(0,1) variables. Then we have

Cor(X1, Y ) = Cor(X2, Y ) = 1√
3
,

Cor(Xj ,Y ) = a√
3(1 + a2)

for j = 3, . . . , p.

So this is a perfect case for using the marginal correlation screening of Fan and Lv
(2008). By Lemma 2 we have the following results:

K∗
j = 1, j = 1,2,3, . . . ,

KG
1 = KG

2 > KG
j , j = 3, . . . .

Thus K∗
j cannot separate (Xj , j ≥ 3) from X1,X2 no matter how small a is. On

the other hand, KG
j works perfectly in this example, just like the marginal corre-

lations. Of course, KG
j in general works much better than Cor(Xj ,Y ), which will

be clearly demonstrated in the later sections.

2.2. The fused Kolmogorov filter. In this subsection we show how to use KG
j

for variable screening based on a random sample (Xi , Y i)ni=1. We first need to
estimate KG

j accurately for all p variables. Given a partition G, we estimate KG
j

by

K̂G
j = max

(l,m)
sup
y

∣∣F̂j (x | Hj = l) − F̂j (x | Hj = m)
∣∣,

where

F̂j (x | H = l) = 1

nl

∑
Hi=l

1
(
Xi

j ≤ x
)
,

and nl is the sample size within the lth slice, and Hi = l if Y i is in the lth slice.
If Y is a multi-level categorical variable, then the partition is simply done

according to Y ’s value. When Y has infinitely many possible values, the parti-
tion/slicing scheme can be important. With finite sample size, it is important to
have enough sample sizes within each slice to control the estimation variance. As
mentioned in the Introduction, the idea of slicing response variable has been used
by researchers in sufficient dimension reduction. Early researchers proved that the
sliced inverse regression (SIR) can be consistent even when there are only two
observations in each slice [Hsing and Carroll (1992), Li (1991)], which implies
that SIR is reasonably insensitive to the slicing scheme. Yet Zhu and Ng (1995)
later observed that, even though SIR can be consistent for all slicing schemes
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with the same number of observations in each slice, there is a loss of efficiency
when there are too many slices. Based on our experience, the choice of slices does
not affect variable screening results very much. However, significant improvement
can be achieved by fusion. Suppose that we have N different partitions, Gi for
i = 1, . . . ,N , where each partition Gi contains Gi intervals. Then we let

K̂j =
N∑

i=1

K̂
Gi

j .

By doing so, we combine the information from all Gi . This fusion step is motivated
by Cook and Zhang (2014), who showed that in sufficient dimension reduction,
combining several slicing schemes works better than the usual practice relying on a
single slicing scheme. As shown in Section 4, fusion does yield variable screening
results that are superior to using a single slicing scheme.

We suggest an intuitive uniform slicing to partition data into G slices. If Y is cat-
egorical with levels 1, . . . ,G, or Y is discrete with finite possible values 1, . . . ,G,
we set H = Y . If Y is discrete and can take infinite values as in a Poisson regres-
sion model, we set H = Y + 1 if Y < G − 1 and H = G if Y ≥ G − 1. For the
case where Y is continuous, we let the partition G contain the intervals bounded
by the l

G
th sample quantiles of Y for l = 0, . . . ,G. From now on, we always write

K̂j (G) = K̂G
j when G is a uniform partition with G slices. By fusion, we consider

multiple uniform slicing Gi ,1 ≤ i ≤ N where Gi has Gi many slices. In practice,
we suggest choosing Gi ≤ 
logn� for all i so that there is a decent sample size
within each slice for all slicing schemes. This is important because the fused Kol-
mogorov filter is a fully nonparametric method and sample size plays a central role
in nonparametric statistics. Then the final fused Kolmogorov filter statistic is

K̂j =
N∑

i=1

K̂
Gi

j ,(2)

and the fused Kolmogorov filter screening set is defined as

D̂ = {
j : K̂j is among the dn’th largest

}
.(3)

3. Theory. In this section we establish the sure screening property of the
fused Kolmogorov filter.

3.1. Main theorem. We first introduce a concept called the oracle fused Kol-
mogorov filter. If we know the distribution of Y , then we can use an oracle uni-
form slicing such that the partition Gi contains the intervals bounded by the
l

Gi
th theoretical quantiles of Y for l = 0, . . . ,Gi . For this special slicing, write

K
(o)
j (Gi) = K

Gi

j and K
(o)
j = ∑

i K
(o)
j (Gi). Then we can obtain a screening set as

D̂(oracle) = {j : K̂(o)
j is among the dn’th largest}, where dn is a predefined positive

integer. Throughout this section, C denotes a generic positive constant.
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To show the sure screening property of the fused Kolmogorov filter, we consider
the following two regularity conditions:

Regularity conditions.

(C1) There exists a set S such that D ⊂ S and

�S = min
i

(
min
j∈S

K
(o)
j (Gi) − max

j /∈S
K

(o)
j (Gi)

)
> 0.

(C2) Let Gmin = mini{Gi}. Then for any b1, b2 such that Pr(Y ∈ [b1, b2)) ≤
2/Gmin, we have ∣∣Fj (x | y1) − Fj (x | y2)

∣∣ ≤ �S

8
(4)

for all x, j and y1, y2 ∈ [b1, b2).

THEOREM 1. Assume conditions (C1) and (C2). Define

η = CNp
(
log2 n

)
exp

(
−C

n�2
S

logn

)
+ CN

(
log2 n

)
exp

(
−C

n

log2 n

)
.

If Gi ≤ 
logn� for all i and dn ≥ |S|, we have the following conclusions:

(1) For the oracle fused Kolmogorov filter, we have

Pr
(
D ⊂ D̂(oracle)

) ≥ 1 − η.(5)

Therefore, the oracle fused Kolmogorov filter enjoys the sure screening property

with a probability tending to one if �S �
√

logn·log (pN logn)
n

.
(2) For the fused Kolmogorov filter defined in (2) and its screening set defined

in (3), we have

Pr(D ⊂ D̂) ≥ 1 − η.(6)

Therefore, the fused Kolmogorov filter enjoys the sure screening property with a
probability tending to one if

�S �
√

logn log (pN logn)

n
.(7)

REMARK 1. By comparing (5) and (6), we see that the fused Kolmogorov fil-
ter can handle the same order of dimensions as the oracle fused Kolmogorov filter.
Therefore, slicing at the sample quantiles results in a method that is as powerful
as one utilizing oracle information about the theoretical quantiles. Also, Theo-
rem 1 sheds light on the choice of Gi . The minimum number of slices was 3 in
Cook and Zhang (2014). Then Theorem 1 requires that Gi ≤ 
logn�, with each Gi

containing Gi intervals bounded by sample quantiles. Therefore, in practice, we
suggest setting Gi = 3, . . . , 
logn�, with each Gi containing Gi intervals bounded
by sample quantiles.
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REMARK 2. One could obtain a limit on the dimension for the fused Kol-
mogorov filter from Theorem 1. Suppose we choose the slicing scheme recom-
mended in Remark 1. It follows that N ≤ logn. Then if there exists 0 < κ < 1
such that �S � n−κ , (7) reduces to

logp � nξ ,

for any ξ ∈ (0,1 − 2κ). Note that this restriction on p is the same as that for SIS;
see Conditions 1 and 3 in Fan and Lv (2008). Therefore, the fused Kolmogorov
filter can handle the same order of dimensions as SIS without imposing any para-
metric assumptions.

REMARK 3. Theorem 1 shows that the fused Kolmogorov filter enjoys the
sure screening property with a probability tending to one as long as we choose a
reasonably large dn. One interesting fact is that (6) does not involve dn explicitly.
It holds as long as dn ≥ |S|. This insensitivity to dn leads to tremendous practical
convenience, because we can always use a reasonably large dn to guarantee a high
probability of enjoying the sure screening property. In particular, when performing
variable selection, one often assumes that the number of important variables is
less than n. For example, lasso can only produce up to n nonzero coefficients.
Therefore, when we apply the fused Kolmogorov filter, we can use dn = a
 n

logn
�

where a is some constant. A more conservative choice could be dn = n.

REMARK 4. With the regularity conditions (C1)–(C2), the sure screening
property results from the fact that K̂j are close to K

(o)
j , which is a consequence

of the Dvoretzky–Kiefer–Wolfowitz inequality. In the following subsection, we
further discuss the implications of the two regularity conditions.

3.2. Comments on the regularity conditions. The conditions for Theorem 1
are very mild. First, note that, in contrast to DCS [Li, Zhong and Zhu (2012)], we
make no assumption on the distribution of X. Therefore, the fused Kolmogorov
filter is expected to be more powerful than DCS when the predictors are heavy-
tailed. Moreover, we do not assume any form of the dependence of Y on X. So
the fused Kolmogorov filter will be more flexible than NIS and QA. The only two
conditions we require are conditions (C1) and (C2).

We first comment on condition (C2). This condition is slightly stronger than
requiring Fj (x | y) to be continuous in y, as in Conclusion (c) of Lemma 1. Such
a condition guarantees that the sample quantiles of Y are close enough to the pop-
ulation quantiles of Y . Obviously, this result is expected for many distributions
of Y . A conseqence is that the actual slicing used in practice is very close (asymp-
totically) to the oracle slicing such that K̂j ’s accurately approximate K̂

(o)
j ’s.

In order to establish the sure screening property, a nontrivial condition is needed.
For example, the partial orthogonality condition, that is, XD ⊥ XDC [Fan and Song
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(2010), Huang, Horowitz and Ma (2008)], has been considered in the literature.
Clearly, the theory is more interesting when XD and XDC are dependent. In our
theory, condition (C1) is the core condition which is used to guarantee that jointly
important predictors, that is, the predictors belonging to the set D, should also
be marginally important, which is more or less assumed in the theory for existing
marginal screening methods in the literature. In the context of binary classification,
it has been shown that the sure screening property of the Kolmogorov filter can be
established even when XD and XDC are strongly correlated [Mai and Zou (2013)].
This phenomenon can be generalized to the multiclass classification rather directly,
whose derivation is omitted here for the sake of space. In what follows we focus on
the case where Y is continuous to show that condition (C1) can still be true even
when XD and XDC are strongly correlated, and hence the sure screening property
can hold with high probability. We highlight this interesting point by considering
the following variable-transformation linear normal model:

Ty(Y ) = T(X)Tβ + ε,(8)

where T = (T1, . . . , Tp) and Ty, T1, . . . , Tp are strictly monotone univariate trans-
formations. It is also assumed that T(X) ∼ N(0,�) with 
jj = 1 for j = 1, . . . , p,
and ε ∼ N(0, σ 2) is independent of X. Note that (Ty,T) are unknown, and we do
not assume any parametric forms for them. Therefore, (8) is a very flexible semi-
parametric regression model. The main idea in model (8) is that after whitening
each variable in the dataset we could fit a linear regression model. This interesting
model has close connections to many transformation models in the literature; for
example, see Breiman and Friedman (1985), He and Shen (1997), Li et al. (2012).

LEMMA 3. Consider the model in (8). Without loss of generality, assume that
β = (βD,0). Define α = �β . Then for any set of Gi , i = 1, . . . ,N , we have:

(1) Condition (C1) is true if and only if there exists S such that minj∈S |αj | >

maxj /∈S |αj |.
(2) If � is blockwise diagonal, that is, σij = 0 if i ∈ D, j /∈ D, then �D > 0 if

and only if minj∈D |αj | > 0.
(3) Suppose 
ij = ρ|i−j |. If minj∈D |αj | > 0 and we let

S =
{

1, . . . , d +
⌈

log (minj∈D |αj |/|αd |)
log |ρ|

⌉}
,

then �S > 0.
(4) Suppose 
ij = ρ and 
jj = 1. Define S = {j :αj 	= 0}. Then �S > 0.

Moreover, D ⊂ S if and only if 1Tβ = 0.
(5) Suppose 
ij = ρ and 
jj = 1. Then �D > 0 if ρ > 0 and βj has the same

sign for all j ∈ D.

In the following we discuss the implications of Lemma 3.
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REMARK 5. In part (3) where the covariance has an autoregressive structure,

to ensure the sure screening property, we need dn ≥ d + 
 log (minj∈D |αj |/|αd |)
log |ρ| �. It

follows that

|ρ| ≤ exp
(

log (minj∈D |αj |/|αd |)
dn − d

)
.

With dn = 
 n
logn

�, the upper bound of |ρ| tends to 1. Therefore, there is little re-
striction on ρ. In parts (4) and (5) where � has the compound symmetry structure,
ρ can be arbitrary as well.

REMARK 6. A direct calculation shows that in the fused Kolmogorov filter,
Kj is monotone in αj , while the joint importance Xj is measured by βj . Part (2) of
Lemma 3 corresponds to the partial orthogonality condition under which the im-
portant variables and noise variables are independent, so this is an expected result.
Somewhat surprisingly, parts (3)–(5) of Lemma 3 show that even when the predic-
tors are highly correlated, condition (C1) still holds. Then by Theorem 1, the fused
Kolmogorov filter will enjoy the sure screening property with high probability.

REMARK 7. Let us consider the normal linear model where we further as-
sume Ty(Y ) = Y and Tj (Xj ) = Xj , that is, Y = XTβ + ε, where X ∼ N(0,�).
Lemma 3 can be applied to marginal correlation screening (SIS) and distance cor-
relation screening (DCS). However, the fused Kolmogorov filter is more flexible
than SIS, DCS and many other screening methods because it is invariant under
monotone transformations. Many existing screening methods, except rank corre-
lation screening [Li et al. (2012)], do not have this nice invariance property. As a
result, when the true mode is a transformation normal linear model, SIS and DCS
can perform poorly, while the fused Kolmogorov filter’s performance remains the
same, regardless of the transformations. We will clearly demonstrate this point in
the simulation study in Section 4.

4. Simulations.

4.1. Simulation design. In this section, we compare the fused Kolmogorov fil-
ter with existing screening methods on simulated datasets. In all the models, we
set n = 200,p = 5000. We consider the fused Kolmogorov filter based on Kj(Gi)

for Gi = 3, . . . ,6, because 
logn� = 6. When the response is continuous, we slice
Y at l

Gi
th sample quantiles for l = 1, . . . ,Gi − 1. We further include six other suc-

cessful screening methods in the literature for comparison, marginal correlation
screening (SIS) [Fan and Lv (2008)], nonparametric independence screening (NIS)
[Fan, Feng and Song (2011)], distance correlation screening (DCS) [Li, Zhong and
Zhu (2012)], rank correlation screening (RCS) [Li et al. (2012)], empirical likeli-
hood screening (ELS) [Chang, Tang and Wu (2013)] and the quantile–adaptive
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screening (QA) [He, Wang and Hong (2013)]. In all the models, we use SIS to de-
note the linear screening method. For example, if the response is continuous, SIS
is the original marginal correlation screening. For the generalized linear model we
use SIS to denote the marginal maximum likelihood estimator (MMLE) [Fan and
Song (2010)]. When Y is a multi-level categorical variable, SIS fits p multinomial
models with the R package nnet [Venables and Ripley (2002)] and selects the
predictors with the largest deviances. With a little abuse of notation, we refer to all
these methods as SIS when it is clear from the context.

Following He, Wang and Hong (2013), we consider α = 0.5,0.75 for QA. We
use the implementation of NIS and QA at http://users.stat.umn.edu/~wangx346/
research/example1b.txt. The distance correlation is computed by the R package
energy. For ELS, we use the implementation of ELS by the authors of Chang,
Tang and Wu (2013). As in Fan and Lv (2008), we report the minimum number
of predictors needed to keep all the useful predictors. The results are based on 500
replicates. We consider the following six models in this simulation study:

Model 1. Ty(Y ) = T(X)Tβ + ε, where β = 2.8 × (1,−1,0p−2), T(X) ∼
N(0,�) with � = CS(0.7), ε ∼ N(0,1) is independent of X. We consider three
sets of (Ty,T):

(a) Ty(Y ) = Y,Tj (Xj ) = Xj ;

(b) Ty(Y ) = Y,Tj (Xj ) = X
1/9
j ;

(c) Ty(Y ) = Y 1/9, Tj (Xj ) = Xj .

Models 1(a), 1(b) and 1(c) are examples of model (8) with a compound symmetry
correlation matrix of which the correlation coefficient is 0.7.

Model 2. Y = T(X)Tβ + ε, where β = 0.8 × (110,0p−10). T(X) ∼ N(0,�)

with � = AR(0.7). Again, we consider three sets of (Ty,T):

(a) Ty(Y ) = Y,Tj (Xj ) = Xj ;
(b) Ty(Y ) = Y,Tj (Xj ) = 1

2 logXj ;
(c) Ty(Y ) = log(Y ), Tj (Xj ) = Xj .

Models 2(a), 2(b) and 2(c) are examples of model (8) with an autoregressive cor-
relation matrix of which the autoregressive correlation coefficient is 0.7.

Model 3 (Single index regression model). Y = (X1 +X2 + 1)3 + ε, where Xj ’s
follow the Cauchy distribution independently and ε ∼ N(0,1) is independent of X.

Model 4 (Additive model). Y = 4X1 + 2 tan(πX2/2) + 5X2
3 + ε, where Xj ’s

follow Unif(0,1) independently and ε ∼ N(0,1) is independent of X.

Model 5 (Heteroskedastic regression model). Y = 2(X1 + 0.8X2 + 0.6X3 +
0.4X4 + 0.2X5) + exp(X20 + X21 + X22)ε, where ε ∼ N(0,1), and X ∼ N(0,�)

with � = AR(0.8). This model is adapted from He, Wang and Hong (2013). In He,
Wang and Hong (2013), they report the minimum number of predictors to keep the

http://users.stat.umn.edu/~wangx346/research/example1b.txt
http://users.stat.umn.edu/~wangx346/research/example1b.txt
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first five predictors for QA with α = 0.5 because QA with α = 0.5 can only detect
the predictors affecting the median. However, it is difficult to use such information
for other methods. Therefore, we report the minimum number of predictors we
need to keep all the eight important predictors for QA with α = 0.5 too, so that it
is fair to other methods.

Model 6 (Poisson regression model). Y ∼ Poisson(μ), where μ = exp(XTβ),
β = (0.8,−0.8,0p−2), Xj ∼ t2 independently. The counterpart for SIS for this
model is the marginal maximum likelihood estimator (MMLE) [Fan and Song
(2010)]. Note that the predictors are heavy-tailed in this model, and Y may con-
sequently have extreme outliers. Therefore, to resolve computational issues, we
delete an observation whenever Y > 1000 in MMLE. In addition, we consider the
Kolmogorov filter and DCS on this model because all other methods are inappli-
cable to such datasets. Now, for the Kolmogorov filter, we set H = Y if Y < 2;
otherwise, H = 3.

Model 7 (Multiclass classification model). Y = 1, . . . ,5. For each g, if Y = g,
X2(g−1)+1 and X2g independently follow 0.5N(3,0.32) + 0.5N(−3,0.32), and
Xj follows the Cauchy distribution independently for all other j . The counter-
part for SIS for this model is to screen the predictors by marginally performing
multinomial regression. Other than SIS, only the Kolmogorov filter and DCS are
applicable to this model. Because Y is categorical, we directly take H = Y for
the Kolmogorov filter and apply no further fusion. For DCS, we create a dummy
variable Y dm ∈ R

n×5 and compute the distance correlation between Y dm and Xj .

4.2. Simulation results and conclusions. The simulation results are reported
in Table 1. There are two important conclusions.

• We see that the Kolmogorov filter using a single slicing works reasonably well,
and its performance is rather insensitive to the choice of number of slices. Never-
theless, the Kolmogorov filters with fewer slices tend to be more efficient when
the underlying model is simple, such as in Model 1 where the true model is
a transformed linear model. On the other hand, the Kolmogorov filters with
more slices tend to be more accurate when the model is complicated, such as
in Model 5. However, by combining different slicing schemes, the fused Kol-
mogorov filter has the best overall performance. The fused Kolmogorov filter is
at least as good as the best K̂j (Gi) in Models 1–3. In Models 4 and 5, where the
fused Kolmogorov filter is slightly worse than the K̂j (Gi) with the best Gi , the
difference is very small.

• Compared with SIS, DCS, NIS, ELS and QA, the fused Kolmogorov filter is
either the best or one of the best, and outperforms the rest by a large margin. This
clearly shows that the fused Kolmogorov filter is a superior screening technique.

This simulation also reveals some major drawbacks of the existing screening
methods. Although SIS, DCS, NIS and ELS work well in Models 1(a) and 2(a),
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TABLE 1
Simulation results for Models 1–7. We report the minimum number of predictors needed to keep all
the useful predictors. The numbers in the table are medians of 500 replicates. Standard errors are in

parentheses. A cell is left empty if the corresponding method is not applied to the specific model

Model 1 Model 2

(a) (b) (c) (a) (b) (c)
d = 2 d = 2 d = 2 d = 10 d = 10 d = 10

Kolmogorov
G = 3 4 (0.5) 4 (0.5) 4 (0.5) 10 (0) 10 (0) 10 (0)
G = 4 6 (0.9) 6 (0.9) 6 (0.9) 10 (0) 10 (0) 10 (0)
G = 5 12 (1.6) 12 (1.6) 12 (1.6) 10 (0) 10 (0) 10 (0)
G = 6 21 (3.2) 21 (3.2) 21 (3.2) 10 (0) 10 (0) 10 (0)
Fused 2 (0.3) 2 (0.3) 2 (0.3) 10 (0) 10 (0) 10 (0)

SIS 2 (0) 1636 (93.5) 486.5 (100.5) 10 (0) 1552.5 (99.2) 1084.5 (62.9)
DCS 2 (0) 354 (34.8) 229 (54.0) 10 (0) 10 (0) 543 (52.8)
RCS 2 (0) 2 (0) 2 (0) 10 (0) 10 (0) 10 (0)
NIS 2 (0) 2 (0.4) 1214 (79.0) 10 (0) 10 (0) 1462.5 (92.8)
ELS 2 (0) 2879 (103.4) 2460.5 (87.7) 10 (0) 565 (287.8) 4401 (36.9)

QA
τ = 0.5 5 (0.6) 30.5 (5.4) 5 (0.6) 10 (0) 10 (0) 12 (0.4)
τ = 0.75 13.5 (1.9) 84.5 (13.7) 44 (7.6) 10 (0) 11 (0) 36 (2.4)

Model 3 Model 4 Model 5 Model 6 Model 7
d = 2 d = 3 d = 8 d = 2 d = 8

Kolmogorov
G = 3 2 (0) 6 (0.8) 207.5 (27.1) 2 (0)
G = 4 2 (0) 5 (0.4) 54.5 (7.2) 15 (0.4)
G = 5 2 (0) 5 (0.4) 32 (3.0)
G = 6 2 (0) 7 (0.7) 25 (1.3)
Fused 2 (0) 3 (0) 16 (0.9)

SIS 439.5 (38.3) 3177 (95.9) 4094 (81.0) 13 (1.7) 4661.5 (25.6)
DCS 260.5 (36.2) 40.5 (6.5) 22 (2.7) 1002 (89.2) 1038 (121.2)
RCS 2 (0) 3 (0) 3430 (124.4)
NIS 494 (96.4) 3258.5 (114.5) 4260.5 (55.3)
ELS 3247.5 (94.7) 3801 (69.1) 4510 (26.6) 3253 (96.2)

QA
τ = 0.5 50 (2.3) 17 (1.7) 1193 (129.4)
τ = 0.75 70 (3.7) 1234.5 (75.4) 32.5 (1.4)

variable transformation as in Models 1(b)–1(c) and Models 2(b)–2(c) can easily
destroy their performance. Models 3 and 4 are nonlinear with heavy-tailed co-
variates. Most screening methods other than the fused Kolmogorov filter have too
many false discoveries, especially in Model 4. NIS, RCS and QA are not directly
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applicable when we have a Poisson regression model in Model 6. Model 5 has
heteroscedasticity, which impairs SIS, NIS, RCS and ELS.

5. A real data example. In this section, we demonstrate the fused Kol-
mogorov filter on the Tecator dataset. The Tecator dataset was collected by Tecator
Infratec Food and Feed Analyzer working in the wavelength range 850–1050 nm
by the Near Infrared Transmission (NIT) principle. The predictors are 100 chan-
nel spectrum of absorbances. The response is the percentage of fat in finely
chopped meat. This dataset is available at http://lib.stat.cmu.edu/datasets/tecator.
The provider of the dataset suggested using the first 215 samples to test the perfor-
mance of a statistical method by treating 43 of them as the testing set. However,
samples #103 and #105 appear to be outliers, so we deleted them. Then we stan-
dardized the response so that it has a standard deviation of 1. We randomly chose
41 samples as our testing set in each replicate. Also, in addition to the 100 predic-
tors in the original dataset, we added 4900 independent noise variables following
the Cauchy distribution.

We include the fused Kolmogorov filter, DCS, SIS, QA, NIS and ELS for com-
parison. First, we examine whether the screening methods can distinguish the use-
ful predictors from the noise variables. In the fused Kolmogorov filter, we still
consider the combination of Gi = 3, . . . ,6, as in the simulation studies. For each
screening method we keep the top 100 predictors, as the “truth” is there are 4900
pure noise variables. We report the number of the original 100 predictors captured
by screening in Table 2. It is easy to see that the fused Kolmogorov filter, DCS and
NIS have much better performance in preserving the true predictors. In particular,
the fused Kolmogorov filter has a nearly perfect screening result.

We further examine how variable screening helps predict the response variable.
Again, we start with the augmented dataset with the additional 4900 pure noise
variables. For a nonparametric model-free method such as the fused Kolmogorov
filter and DCS, the prediction is made by fitting a random forest after screening.
Hence the resulting methods are called K-RF and DCS-RF, respectively. NIS is
designed based on a generalized additive model. So when NIS is used for variable

TABLE 2
Comparison of the screening methods on the tecator dataset. We report the number of true
predictors that are preserved after the screening step. The numbers are averaged over 100

replicates. Standard errors are in parentheses

QA

Kolmogorov DCS NIS SIS α = 0.5 α = 0.75 ELS

True predictors 99.6 75.4 77.3 11.7 45.4 42.2 6.24
(0.06) (0.44) (0.28) (0.27) (0.56) (0.43) (0.14)

http://lib.stat.cmu.edu/datasets/tecator
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TABLE 3
Comparison of the prediction performance on the tecator dataset. The numbers are averaged over
100 replicates. Standard errors are in parentheses. A paired t-test shows that K-RF is significantly

better than DCS-RF and NIS-RF, with p-values less than 1 × 10−5

K-RF DCS-RF NIS–GroupLasso INIS–GroupLasso NIS-RF

Average MSE 0.097 0.102 0.195 0.187 0.103
(0.009) (0.010) (0.019) (0.017) (0.010)

screening, the prediction is made by a sparse generalized additive model. We de-
note this method by NIS–GroupLasso. In K-RF, DCS-RF and NIS–GroupLasso,
we let dn = 100.

Moreover, we include an iterative procedure that performs NIS and group-lasso
penalized regression repeatedly. After the initial screening, we keep the top 100
predictors, and then we follow Fan, Feng and Song (2011) to iteratively conduct the
following two-step procedure: first, we add the predictor with the most predictive
power that is not in the selected set of predictors; second, we delete some predictors
in the selected set of predictors via group-lasso. In the deletion step, the tuning
parameter is chosen to be the largest tuning parameter that produces an error within
one standard deviation of the minimum error. This resulting method is referred to
as INIS–GroupLasso. We use the R package gglasso [Yang and Zou (2015)] to
fit the group-lasso penalized additive model.

Finally, as suggested by a referee, we also include the prediction performance
for NIS followed by random forest, which is denoted by NIS-RF. The average
mean squared errors (MSE) on the testing sets are listed in Table 3. The method
K-RF has significantly better performance than all the other methods.

6. Discussion. In this paper we have proposed the fused Kolmogorov filter
and demonstrated its superior performance over the existing screening methods.
Before concluding this work, we would like to further comment on two main mes-
sages delivered in this paper. First, we have proposed the slicing and fusion idea
to deal with general response variables such as continuous response variable and
counts (e.g., Poisson) response variable. In this general approach one may use a
different test statistic for testing the equivalence of two distributions to replace the
Kolmogorov–Smirnov statistic, and the resulting screening method would be dif-
ferent and likely effective as well. We prefer the Kolmogorov–Smirnov statistic be-
cause it is invariant under variable transformation and works naturally with many
different types of covariates. Moreover, its sure screening property can be estab-
lished without assuming any special distributional property of the covariates. Any
future proposal for variable screening should possess all these nice properties of
the fused Kolmogorov filter and some nontrivial new properties. The second mes-
sage is about nonparametric screening versus model-based screening. The vibrant
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research on variable screening started with a simple model-based method, marginal
correlations screening. However, it is clear now that nonparametric model-free
variable screening should be preferred in real data analysis, unless the user strongly
believes that the data can be fit well by a parametric model. Otherwise, nonpara-
metric screening methods are more robust, have wider applicability and when com-
bined with nonparametric learning techniques, they can provide better prediction
than a model-based method. On the other hand, an obvious advantage of model-
based screening is that its performance can be boosted by an iterative screening
and model-fitting procedure. It is unclear how to derive a similar iterative pro-
cedure for a nonparametric model-free screening method. It would be interesting
and useful to do so, such that we could have an iterative way to combine the fused
Kolmogorov filter or other nonparametric screening method and nonparametric
learning methods. This is an open question left for future study. We do not expect
an easy solution. Note that even for the model-based iterative screening methods,
their theoretical properties still remain unknown.

APPENDIX: TECHNICAL PROOFS

Throughout this appendix, F denotes the generic cumulative distribution func-
tion, and f denotes the generic probability density function for a random variable.

PROPOSITION 1. Consider a pair of random variables (X,Y ). For any inter-
val [a, b) such that fY (y) > 0 for y ∈ [a, b), we have

inf
y∈[a,b)

F (x | Y = y) ≤ F
(
x | Y ∈ [a, b)

) ≤ F
(
x | Y ∈ [a, b)

)
≤ sup

y∈[a,b)

F (x | Y = y)

for all x.

PROOF OF PROPOSITION 1. By definition,

F
(
x | Y ∈ [a, b)

) =
∫ b
a

∫ x
−∞ f (x, y)dx dy∫ b

a fY (y)dy

=
∫ b
a

∫ x
−∞ f (x | y)fY (y)dx dy∫ b

a fY (y)dy
.

Because for any y ∈ [a, b),

inf
y∈[a,b)

F (x | Y = y) ≤
∫ x

−∞
f (x | y)dx ≤ sup

y∈[a,b)

F (x | Y = y),

we have the desired conclusion. �
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PROOF OF LEMMA 1. We start with the first conclusion. If Xj is independent
of Y , then Xj will be independent of any H , which is a function of Y . Therefore,
KG

j = 0 for all G. Now suppose KG
j = 0 for all choices of G. For any y, consider

H = 1 if Y ≤ y and H = 2 otherwise. Because KG
j = 0, Xj is independent of H .

Consequently, Pr(Y ≤ y | Xj) = Pr(Y ≤ y) for all y, and Y is independent of Xj .
For the second conclusion, suppose there exists G such that KG

j = 0. Then
Xj ⊥ H for the corresponding H . Therefore, Pr(Y ≤ a1 | Xj) = Pr(H = 1 | Xj) =
Pr(H = 1) is a constant, which contradicts our assumption. Therefore, we must
have KG

j 	= 0.
Now we turn to the third conclusion. Because Xj is not independent of Y ,

K∗
j > 0. Hence, it suffices to show that KG → K∗

j as G → ∞. This is indeed
true. By the definition of K∗

j , for any ε > 0, there exists (y∗
1 , y∗

2 , x∗) such that∣∣K∗
j − ∣∣Fj

(
x∗ | y∗

1
) − Fj

(
x∗ | y∗

2
)∣∣∣∣ < ε.

Because F(x∗ | y) is continuous in y, there exists δ > 0 such that |Fj (x
∗ |

y) − Fj (x
∗ | y∗

1 )| < ε for any |y − y∗
1 | < δ. Take φ = Pr(|y − y∗

1 | < δ). Because
maxl=1,...,G Pr(H = l) → 0, there exists G∗ such that Pr(H = l) <

φ
2 for G > G∗.

In such cases, there exists [al1, bl1) ⊂ (y∗
1 − δ, y∗

1 + δ). By Proposition 1, we have∣∣Fj

(
x∗ | H = l1

) − Fj

(
x∗ | y∗

1
)∣∣ < ε.

Similarly, for sufficiently large G, there exists l2 such that∣∣Fj

(
x∗ | H = l2

) − Fj

(
x∗ | y∗

2
)∣∣ < ε.

Now note that ∣∣Fj

(
x∗ | H = l1

) − Fj

(
x∗ | H = l2

)∣∣ ≤ KG
j ≤ K∗

j .

Hence∣∣K∗
j − KG

j

∣∣
≤ ∣∣Fj

(
x∗ | y∗

1
) − Fj

(
x∗ | y∗

2
)∣∣ + ε − ∣∣Fj

(
x∗ | H = l1

) − Fj

(
x∗ | H = l2

)∣∣
≤ ∑

i=1,2

∣∣Fj

(
x∗ | y∗

i

) − Fj

(
x∗ | H = li

)∣∣ + ε

< 3ε.

Therefore, the conclusion follows. �

PROOF OF LEMMA 2. Because K∗
j and KG

j are invariant under monotone
transformations, it suffices to consider the case g1(t) = t , g2(t) = t , and hence
Xj and Y are jointly normal. Let fy(y) be the probability density function
of Y , which is standard normal. For the first conclusion, note that if ρj = 0,
then Xj is independent of Y and K∗

j = 0. On the other hand, if ρj 	= 0, Xj |
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Y = y ∼ N(ρjy, (1 − ρ2
j )). Therefore, Fj (x | y) = �(

x−ρj y√
1−ρ2

j

). It follows that

K∗
j ≥ limy→−∞ Fj (0 | y) − limy→∞ Fj (0 | y) = 1. Meanwhile, by definition,

K∗
j ≤ 1. Therefore, K∗

j = 1.

For the second conclusion, again by Xj | Y ∼ N(ρjY, (1−ρ2
j )) and Fj (x | y) =

�(
x−ρj y√

1−ρ2
j

), we have

Fj (x | H = l) = Pr(Xj ≤ x,H = l)

Pr(H = l)

= G

∫ al

al−1

�

(
x − ρjy√

1 − ρ2
j

)
f (y)dy

∈
[
�

(
x − ρjal−1√

1 − ρ2
j

)
,�

(
x − ρjal√

1 − ρ2
j

)]
.

Now, for 1 ≤ l < m ≤ G,

sup
x

∣∣Fj (x | H = l) − Fj (x | H = m)
∣∣

≤ sup
x

(
�

(
x − ρjal−1√

1 − ρ2
j

)
− �

(
x − ρjam√

1 − ρ2
j

))

= 2�

(
ρj (am − al−1)√

1 − ρ2
j

)
− 1.

On the other hand,

sup
x

∣∣Fj (x | H = 1) − Fj (x | H = G)
∣∣

≥ sup
x

(
�

(
x − ρja1√

1 − ρ2
j

)
− �

(
x − ρjaG−1√

1 − ρ2
j

))

= 2�

(
ρj (a1 − aG−1)√

1 − ρ2
j

)
− 1 ≥ 2�

(
ρj (am − al−1)√

1 − ρ2
j

)
− 1

≥ sup
x

∣∣Fj (x | H = l) − Fj (x | H = m)
∣∣.

Therefore,

KG
j = sup

x

∣∣Fj (x | H = 1) − Fj (x | H = G)
∣∣.

Moreover, note that a1 = −aG−1. By checking the derivatives, we have

KG
j = ∣∣Fj (0 | H = 1) − Fj (0 | H = G)

∣∣.
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Hence

KG
j = G

(∫ a1

−∞
�

( −ρjy√
1 − ρ2

j

)
f (y)dy −

∫ ∞
aG−1

�

( −ρjy√
1 − ρ2

j

)
f (y)dy

)

= G

(∫ a1

−∞
�

( −ρjy√
1 − ρ2

j

)
f (y)dy −

∫ a1

−∞

(
1 − �

( −ρjy√
1 − ρ2

j

))
f (y)dy

)

= G

(∫ a1

−∞

(
2�

( −ρjy√
1 − ρ2

j

)
− 1

)
f (y)dy

)
.

Because a1 ≤ 0, �(
−ρj y√
1−ρ2

j

) is strictly increasing in ρj for each y ∈ (−∞, a1).

Hence KG
j is strictly increasing in ρj . �

Now we prove Theorem 1. In order to prove this theorem, we need the following
lemmas.

LEMMA 4. If âl is the sample l
G

th quantile for Y , then with a probability
greater than 1 − C exp(−C n

G2 ), we have

Pr(âl ≤ Y < âl+1) <
2

G
.(9)

LEMMA 5. Under the conditions in Theorem 1, for any ε > 0, we have:

(1)

Pr
(∣∣K̂(o)

j − K
(o)
j

∣∣ ≥ Nε
)

(10)

≤ CN
(
log2 n

)
exp

(
−C

nε2

logn

)
+ CN

(
log2 n

)
exp

(
−C

n

log2 n

)
;

(2)

Pr
(|K̂j − Kj | ≥ Nε

) ≤ CN
(
log2 n

)
exp

(
−C

nε2

logn

)
.(11)

LEMMA 6. Under the conditions in Theorem 1, we have

Pr
(∣∣Kj − K

(o)
j

∣∣ ≥ N�S/4
) ≤ CN exp

(
−C

n

log2 n

)
.

With Lemmas 4–6, we are ready to prove Theorem 1.
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PROOF OF THEOREM 1. We first consider the first conclusion. Note that if
|K̂(o)

j − K
(o)
j | < N�S/4 for all j , we must have D ⊂ D̂. This is indeed true be-

cause, combining it with condition (C1), we have

K̂
(o)
j > K

(o)
j − N�S/4 ≥ max

j /∈S
K

(o)
j + N�/4 for j ∈ S,

K̂
(o)
j < K

(o)
j + N�S/4 ≤ max

j /∈S
K

(o)
j + N�/4 for j /∈ S.

Hence, S ⊂ D̂ and D ⊂ D̂.
By (10), we have the desired conclusion.
For the second conclusion, we again have that, if |K̂j − K

(o)
j | < N�S/4 for

all j , we must have D ⊂ D̂.
Combining (11) and Lemma 6, we have

Pr
(∣∣K̂j − K

(o)
j

∣∣ > N�S/4
)

≤ CN exp
(
−C

n

log2 n

)
+ CN

(
log2 n

)
exp

(
−C

n�2
S

logn

)
.

Then we have the desired conclusion. �

PROOF OF LEMMA 4. First, we show that, under the event A = supy |F̂y(y)−
Fy(y)| ≤ 1

8G
, we must have (9). Indeed, under event A,

Pr(âl ≤ Y < âl+1)

= Pr
(

l

G
≤ F̂y(Y ) <

l + 1

G

)

≤ Pr
(

l

G
− 1

8G
≤ Fy(Y ) <

l + 1

G
+ 1

8G

)
= 5

4G
<

2

G
.

Then note Pr(A) ≥ 1 − C exp(−C n
G2 ) by the Dvoretzky–Kiefer–Wolfowitz in-

equality, and the conclusion follows. �

PROOF OF LEMMA 5. We first show (10). Consider a single partition Gi with
Gi intervals bounded by the theoretical quantiles. Then H

(o)
i = g if and only if Y

is between its g
Gi

th and g+1
Gi

th quantile. Set K(o)(Gi;g,g′) = supx |Fj (x | H(o)
i =

g)−Fj (x | H(o)
i = g′)|. Then Pr(H(o)

i = g) = Pr(H(o)
i = g′) = 1

Gi
. By Lemma A1

in Mai and Zou (2013), we have

Pr
(∣∣K̂(o)

j

(
Gi;g,g′) − K

(o)
j

(
Gi;g,g′)∣∣ ≥ ε

)

≤ C exp
(
−Cn

ε2

Gi

)
+ C exp

(
−C

n

G2
i

)
.
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Then if |K̂(o)
j (Gi;g,g′) − K

(o)
j (Gi;g,g′)| ≤ ε for all g,g′, we must have

∣∣K̂(o)
j − K

(o)
j

∣∣ =
∣∣∣max
g,g′ K̂

(o)
j

(
Gi;g,g′) − max

g,g′ K
(o)
j

(
Gi;g,g′)∣∣∣

≤ max
g,g′

∣∣K̂(o)
j

(
Gi;g,g′) − K

(o)
j

(
Gi;g,g′)∣∣ ≤ ε.

Therefore,

Pr
(∣∣K̂(o)

j (Gi) − K
(o)
j (Gi)

∣∣ > ε
)

≤ CG2
i exp

(
−Cn

ε2

Gi

)
+ CG2

i exp
(
−C

n

G2
i

)

≤ C
(
log2 n

)
exp

(
−Cn

ε2

logn

)
+ C

(
log2 n

)
exp

(
−C

n

log2 n

)
.

Finally, note that

Pr
(∣∣K̂(o)

j (Gi) − K
(o)
j (Gi)

∣∣ > Nε
) ≤ ∑

i

Pr
(∣∣K̂(o)

j (Gi) − K
(o)
j (Gi)

∣∣ > ε
)
,

and the conclusion follows. For (11), redefine Hi = l if Y is with in the l
Gi

th and
l+1
Gi

th sample quantiles. Note that

Pr
(∣∣K̂j

(
Gi;g,g′) − K̂j

(
Gi;g,g′)∣∣ ≥ ε

)
≤ ∑

l=g,g′
Pr

(
sup
x

∣∣F̂j (x | Hi = l) − Fj (x | Hi = l)
∣∣ ≥ ε/2

)

≤ C exp
(
−Cn

ε2

Gi

)
,

where the last inequality follows from the Dvoretzky–Kiefer–Wolfowitz inequality
and the fact that there are n

Gi
observations in the gth and g′th slice, respectively.

Then because Gi ≤ 
logn�, we have the desired conclusion. Finally, (11) can be
proven in a similar way to (10). �

PROOF OF LEMMA 6. First, note that

Pr
(∣∣Kj − K

(o)
j

∣∣ ≥ N�S/4
) ≤ ∑

i

Pr
(∣∣Kj(Gi) − K

(o)
j (Gi)

∣∣ ≥ �S/4
)
.(12)

Therefore, we establish a bound for Pr(|Kj(Gi) − K
(o)
j (Gi)| ≥ �S/4).

Define

K0j = sup
x

(
sup
y

F (x | y) − inf
y

F (x | y)
)
.
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For any x and l, we have

inf
y

Fj (x | y) ≤ Fj (x | H = l) ≤ sup
y

Fj (x | y).

It follows that Kj(Gi) ≤ K0j and K
(o)
j (Gi) ≤ K0j . Moreover, for any ε > 0, there

exists (x∗, y∗
1 , y∗

2 ) such that

K0j ≤ Fj

(
x∗ | y∗

1
) − Fj

(
x∗ | y∗

2
) + ε.

Then there exists [ali , ali+1) ∈ G such that y∗
i ∈ [ali , ali+1). Hence,

K0j − K
(o)
j (Gi) ≤ ε + ∑

i=1,2

∣∣Fj

(
x∗ | y∗

1
) − Fj

(
x∗ | H = li

)∣∣ ≤ ε + �S/8,

where the last inequality follows from condition (C2) and Proposition 1. Because ε

is arbitrary, we have K0j − K
(o)
j (Gi) ≤ �S/8 and hence Kj ≤ K

(o)
j (Gi) + �S/8.

On the other hand, suppose

K
(o)
j (Gi) = Fj

(
x0 | H(o)

i = l1
) − Fj

(
x0 | H(o)

i = l2
)
.

Set y∗
1 such that y∗

1 ∈ {y :H(o)
i = l1} and inf

y : H
(o)
i =l1

Fj (x | y) = Fj (x | y∗
1 ). Note

that y∗
1 can be +∞ or −∞. Then there exists l′1 such that y∗

1 ∈ {H(o)
i = l1}∩{Hi =

l′1}. Also define y∗
2 as the number that y∗

2 ∈ {y :H(o)
i = l2} and sup

y : H
(o)
i =l1

Fj (x |
y) = Fj (x | y∗

2 ). Note that y∗
2 can be +∞ or −∞ as well. Then there exists l′2 such

that y∗
2 ∈ {H(o)

i = l2} ∩ {Hi = l′2}.
We claim that if Pr(Hi = l′k) ≤ 2/G, we must have Kj(Gi) ≥ K

(o)
j (Gi)−�S/4.

Indeed, by Proposition 1,

Kj ≥ inf
y : Hi=l′1

Fj (x0 | y) − sup
y : Hi=l′2

Fj (x0 | y).

Then by condition (C2), if Pr(Hi = l′k) ≤ 2/G, we must have

Kj ≥ inf
y : Hi=l′1

Fj (x0 | y) − sup
y : Hi=l′2

Fj (x0 | y)

≥ Fj

(
x0 | y∗

1
) − Fj

(
x0 | y∗

2
)

≥ inf
y : H

(o)
i =l1

Fj

(
x∗ | y) − �S/8 − sup

y : H
(o)
i =l2

Fj

(
x∗ | y) − �S/8

≥ K
(o)
j − �S/4,

where the last inequality again follows from condition (C2) and Proposition 1.
By Lemma 4, we have

Pr
(
Pr

(
Hi = l′k

)
> 2/G

) ≤ C exp
(
−C

n

G2
i

)
.
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Therefore,

Pr
(∣∣Kj(Gi) − K

(o)
j (Gi)

∣∣ ≥ �S/4
) ≤ C exp

(
−C

n

G2
i

)
(13)

≤ C exp
(
−C

n

log2 n

)
.

Combining (12) and (13) we have the desired conclusion. �

PROOF OF LEMMA 3. For the first conclusion, note that(
Ty(Y )

T(X)

)
∼ N

((
0
0

)
,

(
βT�β + σ 2 βT�

�β �

))
.

Straightforward calculation shows that

∣∣cor
(
Ty(Y ), Tj (Xj )

)∣∣ = |αj |√
βT�β + σ 2

is monotone in |αj |. Now that, for any Gi , K
(o)
j (Gi) is invariant under strictly

monotone transformations. Therefore, by the second conclusion in Lemma 2,
K

(o)
j (Gi) is strictly increasing in |αj |, and the conclusion follows.
For the second conclusion, note that when � is blockwise independent, we must

have αDC = 0.
For the third conclusion, note that for j > d , we have αj = ρj−dαd . When

j > d + log minj∈D |αj |/|αd |
log |ρ| , we must have |αj | < minj∈D |αj |, and the conclusion

follows.
For the third conclusion, write � = (1 − ρ)I + ρJ, where J is a p × p matrix

of 1. Then �−1 = (1 − ρ)−1I − ρ[{1 + (p − 1)ρ}(1 − ρ)]−1J. Write c = 1Tβ =∑
j∈S βj . For any j ∈ S, we have βj = −ρ[{1 + (p − 1)ρ}(1 − ρ)]−1c. Thus D ⊆

S ⇔ 1Tβ = 0.
For the fourth conclusion, note that for any j ∈ D, we have αj = (1 − ρ)βj +

ρ1Tβ , while for j /∈ D, we have αj = ρ1Tβ . Hence, when ρ > 0 and βj has the
same sign for all j ∈ D, we have �D > 0. �
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