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NEW PROCEDURES CONTROLLING THE FALSE DISCOVERY
PROPORTION VIA ROMANO–WOLF’S HEURISTIC

BY SYLVAIN DELATTRE AND ETIENNE ROQUAIN1

Université Paris Diderot and Sorbonne Universités

The false discovery proportion (FDP) is a convenient way to account
for false positives when a large number m of tests are performed simultane-
ously. Romano and Wolf [Ann. Statist. 35 (2007) 1378–1408] have proposed a
general principle that builds FDP controlling procedures from k-family-wise
error rate controlling procedures while incorporating dependencies in an ap-
propriate manner; see Korn et al. [J. Statist. Plann. Inference 124 (2004) 379–
398]; Romano and Wolf (2007). However, the theoretical validity of the latter
is still largely unknown. This paper provides a careful study of this heuris-
tic: first, we extend this approach by using a notion of “bounding device”
that allows us to cover a wide range of critical values, including those that
adapt to m0, the number of true null hypotheses. Second, the theoretical va-
lidity of the latter is investigated both nonasymptotically and asymptotically.
Third, we introduce suitable modifications of this heuristic that provide new
methods, overcoming the existing procedures with a proven FDP control.

1. Introduction.

1.1. Motivation. Assessing significance in massive data is an important chal-
lenge of contemporary statistics, which becomes especially difficult when the un-
derlying errors are correlated. Pertaining to this class of high-dimensional prob-
lems, a common issue is to make simultaneously a huge number m of 0/1 deci-
sions with a valid control of the overall amount of false discoveries (items declared
to be wrongly significant). In this context, a convenient way to account for false
discoveries is the false discovery proportion (FDP) that corresponds to the propor-
tion of errors among the items declared as significant (i.e., “1”) by the procedure.

The Benjamini and Hochberg (BH) procedure has been widely popularized after
the celebrated paper Benjamini and Hochberg (1995) and is shown to control the
expectation of the FDP, called the false discovery rate (FDR), either theoretically
under constrained dependency structures [see Benjamini and Yekutieli (2001)] or
with simulations; see Kim and van de Wiel (2008). However, many authors have
noticed that the distribution of the FDP of BH procedure can be affected by the
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FIG. 1. Fitted density of the false discovery proportion of the BH procedure when increasing the
dependence. m = 1000, m0 = 800 (number of true null hypotheses), 104 simulations, Gaussian
one-sided equicorrelated model.

dependencies [see, e.g., Delattre and Roquain (2011), Guo, He and Sarkar (2014),
Korn et al. (2004)], which makes the use of the BH procedure questionable.

To illustrate further this phenomenon, Figure 1 displays the distribution of the
FDP of the BH procedure in the classical one-sided Gaussian multiple testing
framework, when the m test statistics are all ρ-equicorrelated. As ρ increases, the
distribution of the FDP becomes less concentrated and turns out to be drastically
skewed for ρ = 0.1 (in particular, it falls outside the Gaussian regime). Clearly,
in this case, the mean fails to describe accurately the overall behavior of the FDP
distribution. In particular, although the mean of the FDP is below 0.2 [as proved in
Benjamini and Yekutieli (2001)], the true value of FDP is not ensured to be small
in this case.

An alternative proposed in Genovese and Wasserman (2004), Lehmann and Ro-
mano (2005), Perone Pacifico et al. (2004) is to control the (1 − ζ )-quantile of the
FDP distribution at level α, that is, to assert

P(FDP > α) ≤ ζ.(1)

While taking ζ = 1/2 into (1) provides a control of the median of the FDP, taking
ζ = 0.05 ensures that the FDP does not exceed α with probability at least 95%.
Markedly, Figure 1 shows that the (1 − ζ )-quantiles of the FDP distribution are
substantially affected by the dependencies, but not equally for all the ζ ’s: while
the 95%-quantile gets substantially larger, the median gets slightly smaller. This
suggests that the BH procedure is much too optimistic for a 95%-quantile control,
but is actually too conservative for a FDP median control. Overall, this reinforces
the fact that in the presence of strong dependence, controlling the (1 − ζ )-quantile
of the FDP is an essential task, not covered by the BH procedure.

1.2. RW’s heuristic and main contributions of this paper. The problem of find-
ing multiple testing procedures ensuring the control (1) has received growing atten-
tion in the last decades; see, for instance, Chi and Tan (2008), Dudoit and van der
Laan (2008), Guo, He and Sarkar (2014), Guo and Romano (2007), Lehmann and
Romano (2005), Romano and Shaikh (2006a, 2006b), Romano and Wolf (2007),
Roquain (2011), Roquain and Villers (2011). However, existing procedures with a
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proven FDP control are in general too conservative. This increases the interest of
simple and general heuristics that work “fairly.” Romano and Wolf (2007), them-
selves referring to Korn et al. (2004), have proposed such a heuristic. It is called
RW’s heuristic in the sequel and can be formulated as follows.

Start from a family Rk , k ∈ {1, . . . ,m}, of procedures such that for all k, with
probability at least 1−ζ , the procedure Rk makes less than k−1 false discoveries.
Then, choose some k̂ such that (k̂ − 1)/R

k̂
≤ α, where Rk denotes the number of

rejections of Rk . Finally use R
k̂
.

Note that, in the original formulation, k̂ was constrained to be chosen such
that any k′ with k′ < k̂ should also satisfy (k′ − 1)/Rk′ ≤ α (“step-down” ap-
proach). This constraint is not necessarily applied here (e.g., “step-up” approach
is allowed). The rationale behind this principle is that, for each k, the FDP of Rk

is bounded by (k − 1)/Rk with probability 1 − ζ , so that the FDP of R
k̂

should

be smaller than (k̂ − 1)/R
k̂

≤ α with probability 1 − ζ , which entails (1). How-
ever, as it is, this argument is not rigorous because it does not take into account the
fluctuations of k̂.

This heuristic has been theoretically justified (in the step-down form) in set-
tings where the p-values under the null are independent of the p-values under the
alternative [full independence in Guo and Romano (2007); alternative p-values all
equal to 0 in Romano and Wolf (2007)]. Since these situations rely on an indepen-
dence assumption, and since the FDP is particularly interesting under dependence,
it seems appropriate to study the precise behavior of this method in “simple” de-
pendent cases. Thus our study is guided by the case where the dependencies are
known, Gaussian multivariate or carried by latent variables.

In a nutshell, this paper makes the following main contributions:

− It provides a general framework in which RW’s heuristic can be investigated,
by building the initial k-FWE critical values with “bounding devices”: a strong
interest is the possibility to build critical values that “adapt” to m0, the num-
ber of true nulls. This allows to encompass many procedures, either new or
previously known.

− We show that RW’s heuristic may fail to control the FDP nonasymptotically
(even under its step-down form). Two corrections that provably control the FDP
are introduced. By using simulations, we show that the resulting procedures are
more powerful than those previously existing.

− We provide some asymptotic properties of RW’s heuristic (in its step-up form):
first, we show that it is valid under weak dependence. In addition, we argue that
the interest of the latter is only moderate by proving that the simple BH pro-
cedure is also valid in this case. Second, we provide particular types of strong
dependence for which RW’s heuristic can be justified. As a simple illustration,
in a ρ-equicorrelated one-sided Gaussian framework, we prove the asymptotic
FDP control holds for the step-up procedure using the following new critical
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FIG. 2. (a) plot of the critical values (2) in function of �. (b) same as Figure 1 but only for
ρ = 0.1 and by adding the new step-up procedure using (2). m = 1000, α = 0.2, Gaussian one-sided
ρ-equi-correlated model.

values:

τ� = �̄
(
ρ1/2�̄

−1
(ζ ) + (1 − ρ)1/2�̄

−1
(α�/m)

)
, 1 ≤ � ≤ m,(2)

where �̄ is the upper-tail of the standard normal distribution.

Finally, let us emphasize that the critical values (2) allow us to describe how
the quantities α, ζ and ρ come into play when controlling (asymptotically) the
FDP. Taking ρ = 0 just gives Simes’s critical values, and thus the BH procedure,
whatever ζ is. The asymptotic FDP control can be explained in this case by the
fast concentration of the FDP of BH around its expectation as m grows to infinity
under independence; see, for example, Neuvial (2008). Now, for ρ > 0, the new
critical values are markedly different from the BH critical values: taking ζ = 1/2
leads to less conservative critical values (if α ≤ 1/2), while taking ζ smaller can
lead to more conservativeness (as expected); see Figure 2(a) for an illustration.
Finally, we plot in Figure 2(b) the density of the FDP of the step-up procedure
using the new critical values (2) for ζ = 0.05. As one might expect, compared to
the BH procedure, the density has been shifted to the left so that the 95%-quantile
of the FDP of the novel procedure is below α.

1.3. Multiple testing framework. We observe a random variable X, whose dis-
tribution belongs to some set P . For m ≥ 2, we define a setting for performing m

tests simultaneously by introducing a true/false null parameter H ∈ {0,1}m and a
set of associated distributions PH ⊂ P which are candidates to be the distribu-
tion of X under the configuration H . We denote H0(H) = {i :Hi = 0}, m0(H) =∑m

i=1(1 − Hi) and H1(H) = {i :Hi = 1}, m1(H) = ∑m
i=1 Hi the set/number of

true and false nulls, respectively. The basic assumption is the following: for all
i ∈ {1, . . . ,m}, there is a p-value pi(X) satisfying the following assumption:

∀H ∈ {0,1}m with Hi = 0,∀P ∈ PH ,∀t ∈ [0,1], PX∼P (pi(X) ≤ t) ≤ t.
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In this paper, a leading example is the one-sided location model,

Xi = Hiμi + Yi, 1 ≤ i ≤ m,(3)

where H ∈ {0,1}m, μ ∈ (R+ \ {0})m and Y is a m-dimensional centered random
vector with identically distributed components. Then the p-values are given by
pi(X) = F̄ (Xi), where F̄ (x) = P(Y1 ≥ x), x ∈ R. Note that this model implicitly
assumes that the p-values under the null are uniformly distributed. In this paper,
we will often assume that the joint distribution of the noise Y is known, and we
consider the two following models for Y :

− Gaussian: Y is a Gaussian vector with covariance matrix � (such that �i,i = 1
for simplicity), in which case Y1 ∼ N (0,1) and F̄ is denoted by �̄. A simple
particular case is the equi-correlated case,

�i,j = ρ for all i 	= j, where ρ ∈ [−(m − 1)−1,1
]
.(Gauss-ρ-equi)

− Mixture of (1-)factor models: the distribution of Y is given by

Yi = ciW + ξi, 1 ≤ i ≤ m,(facmod)

where ci , 1 ≤ i ≤ m, are i.i.d., ξi , 1 ≤ i ≤ m, are i.i.d., W is a random variable
and (ci)1≤i≤m, (ξi)1≤i≤m and W are independent. Also, the distributions of W ,
c1 and ξ1 are assumed to be known, so that the function F̄ is known, and the
p-values can be computed. A simple particular case is obtained as follows: for
ρ ∈ [0,1],

Yi = εiρ
1/2W + (1 − ρ)1/2ζi, 1 ≤ i ≤ m,(alt-ρ-equi)

where W,ζ1, . . . , ζm are i.i.d. N (0,1) and are independent of ε1, . . . , εm which
are i.i.d. random signs following the distribution (1 − a)δ−1 + aδ1, for a pa-
rameter a ∈ [0,1].

While the Gaussian model is classical and widely used, (facmod) is useful to
model a strong dependence, through the factor W . When the ci’s are determin-
istic, the latter is often referred to as a one factor model in the literature, see,
for example, Fan, Han and Gu (2012), Friguet, Kloareg and Causeur (2009),
Leek and Storey (2008). Here, the ci ’s are unknown and taken randomly with
a prescribed distribution. From an intuitive point of view, (facmod) is model-
ing situations where some of the measurements have been deteriorated by un-
known nuisance factors ciW , 1 ≤ i ≤ m. For instance, choosing ci ∈ {0,1} cor-
responds to simultaneously deteriorate the measurements of some unknown sub-
group {1 ≤ i ≤ m : ci = 1} ⊂ {1, . . . ,m}. Furthermore, note that while the model
(alt-ρ-equi) covers (Gauss-ρ-equi) when ρ ≥ 0 by taking a = 0, (alt-ρ-equi) is
able to include negative dependence between some of the Yi ’s.

In (facmod), a quantity of interest throughout the paper is the probability that
a p-value is below t conditionally on W = w (under the null). According to the



1146 S. DELATTRE AND E. ROQUAIN

particular setting that is at hand, this probability can be written as follows: for
ρ ∈ [0,1), w ∈ R,

F0(t,w) = P
(
F̄ (c1w + ξ1) ≤ t

)= E
[
F̄ξ

(
F̄−1(t) − c1w

)];(F0-facmod)

F0(t,w) = (1 − a)f (t,−w,ρ) + af (t,w,ρ);(F0-alt-ρ-equi)

F0(t,w) = f (t,w,ρ),(F0-Gauss-ρ-equi)

where F̄ξ (x) = P(ξ1 ≥ x) and f (t,w,ρ) = �̄((�̄
−1

(t) − ρ1/2w)/(1 − ρ)1/2).

REMARK 1.1 (Modifications of the test statistics). Let us consider the model
(facmod), where ci is equal to some known constant; (Gauss-ρ-equi) is one typical
instance. Then, as noted by a referee, applying a re-centering operation to the Xi’s
makes the factor W disappear, and thus can lead to better test statistics (if the bias
induced by this operation is not too large); see Section S-1 in the Supplementary
Material for more details on this issue. In this respect, our work is particularly rel-
evant in cases where W cannot be estimated (but has a known distribution). On
the other hand, we believe that model (Gauss-ρ-equi) keeps the virtue of simplic-
ity and hence remains interesting when studying procedures that are supposed to
deal with strong dependencies. Hence while our procedures will in general not
be restricted to model (Gauss-ρ-equi), we will also use this model for illustrative
purposes throughout the paper.

In the Gaussian case, the joint distribution of the p-values under the null
(pi, i ∈ H0(H)) depends, in general, on the subset H0(H). Obviously, in this case,
we do not want to explore the

( m
m0(H)

)
possible subsets of {1, . . . ,m} in our infer-

ence, which inevitably should arise when our procedure fits to such a dependence
structure. To circumvent this technical difficulty, we can add random effects to our
model. This makes H become random. More formally, we distinguish between the
two following models:

− Fixed mixture model: the parameter H is fixed by advance and unknown. Over-
all, the parameters of the model are given by θ = (H,P ) to be chosen in the set


F = {
(H,P ) :H ∈ {0,1}m,P ∈ PH

}
.

− Uniform mixture model: the number of true null m0 ∈ {0,1, . . . ,m} is unknown
and fixed by advance, while H is a random vector distributed in such a way
that H0(H) is randomly generated (independently and previously of the other
variables), uniformly in the subsets of {1, . . . ,m} of cardinal m0. The parameters
of the model are given by θ = (m0, (PH )H : m0(H)=m0), to be chosen in the set


U = {
(m0, (PH )H :m0(H)=m0) : m0 ∈ {0,1, . . . ,m},

PH ∈PH for all H : m0(H) = m0
}
.

In this model, the distribution of X conditionally on H is PH .
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While the fixed mixture model is the most commonly used model for multiple test-
ing, the uniform mixture model is new to our knowledge and follows the general
philosophy of models with random effects; see Efron et al. (2001). It is convenient
for the adaptation issue w.r.t. m0, as we will see later on. With some abuse, we
denote m0(θ), H0(θ) (or m0, H0 when not ambiguous) the number of true nulls in
the fixed/uniform mixture models. In the sequel, 
 denotes either 
F or 
U .

1.4. Type I error rates. First, for t ∈ [0,1], denote by Vm(t) = ∑m
i=1(1 −

Hi)1{pi(X) ≤ t} and Rm(t) =∑m
i=1 1{pi(X) ≤ t} the number of false discoveries

and the number of discoveries (at threshold t), respectively. For some pre-specified
k ∈ {1, . . . ,m} and some thresholding method t̂m ∈ [0,1] (potentially depending
on the data), the k-family-wise error rate (k-FWER) is defined as the probabil-
ity that more than k true nulls have a p-value smaller than t̂m; see, for example,
Hommel and Hoffman (1988), Lehmann and Romano (2005). Formally, for θ ∈ 


(in one of the models defined in Section 1.3 and 
 being the corresponding pa-
rameter space),

k-FWER(t̂m) = Pθ

(
Vm(t̂m) ≥ k

)
.(4)

Note that k = 1 corresponds to the traditional family-wise error rate (FWER).
From (4), providing k-FWER(t̂m) ≤ ζ (for all θ ∈ 
), ensures that, with proba-
bility at least 1 − ζ , less than k − 1 false discoveries are made by the thresholding
procedure t̂m.

Next, for some threshold t ∈ [0,1], define the false discovery proportion at
threshold t as follows:

FDPm(t) = Vm(t)

Rm(t) ∨ 1
.(5)

Note that the quantity FDPm(t) is random and not observable because it depends
on the unknown process Vm(t). Controlling the FDP via a threshold t = t̂m (po-
tentially depending on the data) corresponds to the following probabilistic bound:

∀θ ∈ 
 Pθ

(
FDPm(t̂m) ≤ α

)≥ 1 − ζ,(6)

for some pre-specified values α, ζ ∈ (0,1). As mentioned before, (6) corresponds
to upper-bounding the (1 − ζ )-quantile of the distribution of FDPm(t̂m) by α.
Since FDPm(t) > α is equivalent to Vm(t) ≥ �αRm(t)� + 1, the FDP control and
the k-FWER control are intrinsically linked.

From a historical point of view, the introduction of the FDP goes back to Ek-
lund in the 1960s [as reported in Seeger (1968)], who has presented the FDP as
a solution to the “mass-significance problem.” Much later, the seminal paper of
Benjamini and Hochberg (1995) has widely popularized the use of the FDP in
practical problems by introducing and studying the false discovery rate (FDR),
which corresponds to the expectation of the FDP.
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1.5. Step-up and step-down procedures. Let us consider the ordered p-values
p(1) ≤ · · · ≤ p(m). Consider a nondecreasing sequence (τ�)1≤�≤m of nonnegative
values, referred to as the critical values. The corresponding step-up (resp., step-
down) procedure is defined as rejecting the p-values smaller than τ

�̂
, where �̂

is defined by either of the two following quantities (with the convention p(0) =
0, τ0 = 0):

max
{
� ∈ {0,1, . . . ,m} such that p(�) ≤ τ�

};(SU)

max
{
� ∈ {0,1, . . . ,m} such that ∀�′ ∈ {0,1, . . . , �},p(�′) ≤ τ�′

}
.(SD)

Let us also recall the so-called switching relation: p(�) ≤ τ� is equivalent to
Rm(τ�) ≥ �. This entails Rm(τ

�̂
) = �̂ both in the step-up and step-down cases.

2. Building k-FWE-based critical values.

2.1. Revisiting RW’s heuristic. Starting from arbitrary critical values
(τ�)1≤�≤m, and by taking an integer �̂ such that Rm(τ

�̂
) = �̂, we have

Pθ

(
FDPm(τ

�̂
) > α

)= Pθ

(
Vm(τ

�̂
) > αRm(τ

�̂
)
)

(7)
= Pθ

(
Vm(τ

�̂
) ≥ �α�̂� + 1

)
.

Hence, by taking τ� such that (�α�� + 1)-FWER(τ�) ≤ ζ for all �, we should
get that (7) is below ζ . However, as already mentioned, the above reasoning does
not rigorously establish (6) (with t̂m = τ

�̂
) because it implicitly assumes that �̂ is

deterministic. Nevertheless, this heuristic is a suitable starting point for building
critical values related to the FDP control.

2.2. Bounding device. Let us consider either the fixed model 
 = 
F or
the uniform model 
 = 
U . First, let us define a bounding device as any func-
tion B0

m : (t, k, u) 
→ B0
m(t, k, u) ∈ [0,1], defined for t ∈ [0,1], k ∈ {1, . . . ,m} and

u ∈ {0, . . . ,m}, which is nonincreasing in k, with B0
m(0, k, u) = 0 for all u, k,

B0
m(t, k, u) = 0 for all t ∈ [0,1] whenever u < k, and such that for all t ∈ [0,1],

k ∈ {1, . . . ,m} and u ∈ {k, . . . ,m}, we have

B0
m(t, k, u) ≥ sup

θ∈

m0(θ)=u

{
Pθ

(
Vm(t) ≥ k

)}
.(Bound)

Now, define for t ∈ [0,1], k ∈ {1, . . . ,m} and � ∈ {k, . . . ,m}, the quantities

B̄m(t, k) = sup
0≤u≤m

{
B0

m(t, k, u)
};(Bound-nonadapt)

B̃m(t, k, �) = sup
k≤k′≤�

{
sup

0≤u≤m−�+k′
B0

m

(
t, k′, u

)}
,(Bound-adapt)

which are additionally assumed to be nondecreasing and left-continuous in t . Note
that B̄m(t, k) and B̃m(t, k, �) are both nonincreasing in k.
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DEFINITION 2.1. Let us consider a bounding device B0
m(t, k, u) and the above

associated quantities B̄m(t, k) and B̃m(t, k, �). Then the nonadaptive (resp., adap-
tive, oracle) k-FWE-based critical values associated to the bounding function B0

m

are defined as follows (resp.):

τ̄� = max
{
t ∈ [0,1] : B̄m

(
t, �α�� + 1

)≤ ζ
}
, 1 ≤ � ≤ m;(8)

τ̃ � = max
{
t ∈ [0,1] : B̃m

(
t, �α�� + 1, �

)≤ ζ
}
, 1 ≤ � ≤ m;(9)

τ 0
� = max

{
t ∈ [0,1] :B0

m

(
t, �α�� + 1,m0

)≤ ζ
}
, 1 ≤ � ≤ m.(10)

The above definition implies that (τ̄�)1≤�≤m, (τ̃ �)1≤�≤m and (τ 0
� )1≤�≤m are non-

decreasing sequences, so that they can be used as critical values. The critical values
τ̃ �, � = 1, . . . ,m, are said to be adaptive because they implicitly (over-)estimate
m0 by

m(�) = m − � + �α�� + 1.(11)

In the literature, this way to adapt to π0 is often referred to as one-stage [in contrast
to two-stage; see Benjamini, Krieger and Yekutieli (2006), Blanchard and Roquain
(2009), Sarkar (2008)]. It has been proved to be asymptotically optimal in a spe-
cific sense; see Finner, Dickhaus and Roters (2009). Also, τ̄� ≤ τ̃ � for all �; that is,
adaptation always leads to less conservative critical values. Finally, it is worth to
check that τ̄m ≤ τ̃m < 1 [this comes from B0

m(1, k, u) = 1 for all u ≥ k] so that the
output �̂ of the step-up algorithm is not identically equal to m.

2.3. Examples. We provide below three examples of bounding devices:
Markov, K-Markov and Exact. Instances of resulting critical values are displayed
in Figure 3 under Gaussian equi-correlation (see Figure S-2 for similar pictures
under alternate equi-correlation). As we will see, while the exact bounding device
leads to the largest critical values, the Markov-type devices are still useful because
they can offer finite sample controls. Also note that in all these examples, we have
B̃m(t, k, �) = B0

m(t, k,m − � + k).
Markov. By Markov’s inequality, we have

Pθ

(
Vm(t) ≥ k

)≤ Eθ (Vm(t))

k
= m0t

k
=: B0

m(t, k,m0).(12)

Since B̄m(t, k) = mt/k and B̃m(t, k, �) = (m − � + k)t/k, this gives rise to the
critical values

τ̄� = ζ(�α�� + 1)

m
; τ̃ � = ζ(�α�� + 1)

m(�)
, 1 ≤ � ≤ m,(13)

where m(�) is defined by (11). The adaptive critical values (τ̃ �)1≤�≤m are those
proposed by Lehmann and Romano (2005). Note that these critical values do not
adapt to the underlying dependence structure of the p-values.
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FIG. 3. Plot of − log(τ̃ �) in function of � ∈ {1, . . . ,m}, for k-FWE-based critical values obtained
with several types of bounding devices and assuming (Gauss-ρ-equi). For comparison, the solid thin
black line corresponds either to the BH critical values − log(α�/m) (nonadaptive) or the AORC
critical values − log(α�/(m − (1 − α)�)) defined in Finner, Dickhaus and Roters (2009) (adaptive).

K-Markov. When ζ is small, the Markov device can be too conservative, and
we might want to use a sharper tool. Let K ≥ 1 be an integer. As suggested in Guo,
He and Sarkar (2014) (for K = 2), we can use the following bound: for k ≥ K ,

1
{
Vm(t) ≥ k

}≤ 1( k
K

) ∑
X⊂H0 : |X|=K

1
{
max
i∈X

{pi} ≤ t
}
,(14)

which leads to upper-bounding sup{Pθ (Vm(t) ≥ k), θ ∈ 
,m0(θ) = u} by

B0
m(t, k, u) = u(u − 1) · · · (u − K + 1)

k(k − 1) · · · (k − K + 1)
sup
θ∈


m0(θ)=u

{
Pθ

(
max
i∈X0

{pi} ≤ t
)}

,(15)

where X0 ⊂ H0 with |X0| = K is let arbitrary. In the latter, we implicitly as-
sume that for all θ , the probability Pθ(maxi∈X{pi} ≤ t) depends on X only
through |X| = K . When k < K , bound (15) is useless in essence, so we replace
it by the simple Markov device, by letting B0

m(t, k, u) = (ut/k) ∨ B0
m(t,K,m) if

1 ≤ k ≤ K − 1. Note that the operator “∨” in the last display is added to keep
the nonincreasing property w.r.t. k. As a first illustration, in the one-sided location
model (3), if

pi, i ∈ H0, are mutually independent
(
cond. on H in model 
U ),(Indep)
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we have Pθ(maxi∈X0{pi} ≤ t) = tK , which entails

(τ̃ �)
K = ζ

(�α�� + 1)(�α�� + 1 − 1) · · · (�α�� + 1 − K + 1)

m(�)(m(�) − 1) · · · (m(�) − K + 1)

for � ≥ �(K − 1)/α�. A second illustration is the one-factor model (facmod), for
which Pθ(maxi∈X0{pi} ≤ t) = E[F0(t,W)K ] where F0 is defined by (F0-facmod).
Hence, inverting B0

m(t, �α�� + 1,m(�)) = ζ gives rise to critical values τ̄� and τ̃ �,
which both take into account the dependence induced by the common factor W .

Exact. In some cases, closed-formulas can be derived for the RHS of (Bound).
First, by assuming (Indep), the distribution of Vm(t) is a binomial with parame-
ters (u, t). Hence, B0

m(t, k, u) = ∑u
j=k

(u
j

)
tj (1 − t)u−j . The corresponding adap-

tive critical values can be obtained by a numerical inversion [these critical values
were already proposed in Guo and Romano (2007)]. Second, the following exact
formula can be used in model (facmod):

B0
m(t, k, u) = EW

[
u∑

j=k

(
u

j

)(
F0(t,W)

)j (1 − F0(t,W)
)u−j

]
,(16)

where F0 is defined by (F0-facmod). Third, in a more general manner, nonadaptive
threshold can be obtained in the one-sided location model (3), provided that the full
joint distribution of Y is known: for this, observe that Vm(t) is upper-bounded by
the full null process

V ′
m(t) = m−1

m∑
i=1

1
{
�̄(Yi) ≤ t

}
,(17)

whose distribution can be approximated by a Monte Carlo method. Finally, to ob-
tain an adaptive threshold, we can make use of the uniform model 
U : the added
random effect on H0 entails that Vm(t) can be easily generated for each value of
u = m0(θ). This leads to nonadaptive and adaptive critical values that incorporate
any pre-specified joint distribution for the noise Y (e.g., � in the Gaussian case).

3. Finite sample results.

3.1. Preliminary results. The following theorem gathers the only existing
cases where RW’s heuristic has been proved to provide FDP control (to our knowl-
edge).

PROPOSITION 3.1 [Guo, He and Sarkar (2014), Guo and Romano (2007),
Romano and Wolf (2007)]. Consider some bounding device B0

m and the asso-
ciated k-FWE-based critical values (τ�)1≤�≤m, being either adaptive or not and
computed either in the fixed mixture model (
 = 
F ) or in the uniform mixture
model (
 = 
U ). Let us consider the corresponding number of rejections �̂ of the
associated step-down (SD) or step-up (SU) procedure. Then the FDP control (6)
holds (with t̂m = τ

�̂
) in the following cases:
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(i) step-down algorithm and the null p-values (pi, i :Hi = 0) are independent
of the alternative p-values (pi, i :Hi = 1);

(ii) step-down or step-up algorithm with the Lehmann–Romano critical values,
that is, with (τ�)1≤�≤m given by (13), and assuming that Simes’s inequality is valid,

∀θ ∈ 
 Pθ

(
m0⋃
k=1

{q(k) ≤ ζk/m0}
)

≤ ζ,(18)

where q(1) ≤ q(2) ≤ · · · ≤ q(m0) denote the ordered p-values under the null.

Case (i) comes from inequalities established in Lehmann and Romano (2005),
Romano and Wolf (2007), that we recall in Section 7.1 under an unified form; see
also Theorem 5.2 in Roquain (2011). Note that it contains the case where all the
p-values under the alternative are equal to zero (Dirac configuration). Case (ii) has
been solved more recently in Guo, He and Sarkar (2014). Here, it can be seen as a
consequence of the following general inequality; see Section 7.3 for a proof.

PROPOSITION 3.2. Consider the setting of Proposition 3.1 in the step-down
or step-up case. Then we have for all θ ∈ 


Pθ

(
FDPm(τ

�̂
) > α

) ≤ Pθ

(
Vm

(
ν0
k̂

)≥ k̂ ≥ 1
)

(19)
= Pθ

(
q
(k̂)

≤ ν0
k̂
, k̂ ≥ 1

)
,

for k̂ = Vm(τ
�̂
), where

ν0
k = max

{
t ∈ [0,1] :B0

m(t, k,m0) ≤ ζ
}
.(20)

Proposition 3.1(ii) thus follows from Proposition 3.2, used with the adaptive
Markov bounding device; see (12). Markedly, Proposition 3.2 establishes that the
FDP control for adaptive k-FWE based critical values is linked to a specific in-
equality between the null p-values and the bounding device using the true value of
m0.

Further note that (19) in Proposition 3.2 is sharp whenever m0(θ) = m: in this
case, the LHS and RHS are both equal to the probability that k̂(= �̂) is not zero,
that is, that at least one � ∈ {1, . . . ,m} is such that p(�) ≤ τ�. For instance, in the
independent case and using the exact device (16), when m = m0 = 2 and α = 0.5,
we have τ̄1 = τ̃ 1 = 1 − (1 − ζ )1/2 and τ̄2 = τ̃ 2 = ζ 1/2 and Pθ (FDPm(τ

�̂
) > α) =

2ζ − (1 − (1 − ζ )1/2)(2ζ 1/2 − 1 + (1 − ζ )1/2). We merely check that the latter is
larger than ζ for all ζ ∈ (0,1). Also, simulations of Section S-5 in the Supplemen-
tary Material [Delattre and Roquain (2015b)] indicate that this exceeding can hold
for a larger value of m. This establishes the following:
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FACT 3.3. RW’s heuristic does not always provide a valid FDP control for
finite m in its step-up form under independence.

Now, an important question is to know whether RW’s heuristic always provides
a valid FDP control for finite m in its step-down form. First, we can merely check
that the following cases can be added in Proposition 3.1 in the step-down case:

(iii) for all θ ∈ 
, �αbα(m0(θ))� = 0 (e.g., m0(θ) ∈ {1,m} or �αm� = 0);
(iv) under (Gauss-ρ-equi) when ρ = 1.

Note that (iii) contains the case m0 = m which is problematic in the step-up case.
A consequence is that any configuration for which the FDP control fails should
be searched outside cases (i), (ii), (iii) and (iv). As a matter of fact, we found
a numerical example under equi-correlation when using the critical values (τ 0

� )�
defined by (10), with the exact device. To this end, we have evaluated the ex-
ceedance probability of the FDP by the exact calculations proposed in Blanchard
et al. (2014), Roquain and Villers (2011). This method is time consuming for
large m but avoids the undesirable fluctuations due to the Monte Carlo approxi-
mation while performing simulations. Precisely, in model (Gauss-ρ-equi), when
m = 30, α = 0.2, ζ = 0.05, ρ = 0.3, m0 = 15, μi = 1.5, 1 ≤ i ≤ m, we obtain
Pθ (FDPm(τ 0

�̂
) > α) > ζ + 10−3. Admittedly, the FDP control is just slightly vio-

lated. Nevertheless, this gives numerical evidence of the following fact.

FACT 3.4. RW’s heuristic does not always provide a valid FDP control for
finite m in its oracle step-down form in model (Gauss-ρ-equi).

Note that the case of the non-oracle adaptive version is studied with extensive
simulations in Section S-6 in Supplementary Material, the conclusion is similar.
Fact 3.4 is interesting from a theoretical point of view: it annihilates any hope of
finding a general finite sample proof of FDP control in the step-down case, even
under a very simple form of positive dependence.

3.2. Existing modifications. Facts 3.3 and 3.4 indicate that to obtain a provable
finite sample control, it is appropriate to slightly decrease the initial k-FWE-based
critical values (τ�)1≤�≤m. Interestingly, several existing procedures that provably
control the FDP can be reinterpreted as modifications of the τ�’s. In the literature,
we have identified the following principles that provide a control of the FDP under
general dependence:

• The “diminution” principle Guo, He and Sarkar (2014), Romano and Shaikh
(2006a, 2006b): first, establish a rigorous upper-bound for P(FDP > α) for a
step-down or step-up procedure with arbitrary critical values (c�(x))1≤�≤m de-
pending on a single parameter x. Second, adjust x to make the bound smaller
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than ζ . As an illustration, Romano and Shaikh (2006a, 2006b) have proposed the
following bound that can be rewritten as follows (see Section 7.2 for a proof):

CRS(x) = max
1≤u≤m

{
u

bα(u)∑
�=1

c�(x) − c�−1(x)

d(�,m,u)

}
;(21)

where for all u, � ∈ {0, . . . ,m}, we let

bα(u) =
⎧⎪⎨⎪⎩
(⌊

(m − u)/(1 − α)
⌋+ 1

)∧ (�u/α� − 1
)∧ m,

(step-down),(�u/α� − 1
)∧ m, (step-up),

(22)

d(�,m,u) =
{ �α�� + 1, (step-down),(�α�� + 1

)∨ (� − m + u), (step-up).
(23)

This bound does not incorporate the dependence. Finally, let us mention that
the diminution principle has been recently followed by using much more so-
phisticated bounds that incorporate the pairwise dependence; see Theorems 3.7
and 3.8 in Guo, He and Sarkar (2014).

• The “augmentation” principle Farcomeni (2009), van der Laan, Dudoit and Pol-
lard (2004): consider the 1-FWE controlling procedure at level ζ rejecting the
null hypotheses corresponding to the set R(1) = {1 ≤ i ≤ m :pi ≤ τ1(ζ )}, denote
�(1) the number of rejections of R(1) and

�̃Aug = ⌊
�(1)/(1 − α)

⌋∧ m.

Then the “augmented” procedure rejects the nulls associated to the �̃Aug small-
est p-values. This procedure can incorporate the dependence if R(1) is appro-
priately chosen.

• The “simultaneous” k-FWE control proposed in Genovese and Wasserman
(2006): consider critical values (τ�(ζ/m))1≤�≤m (with ζ divided by m), and
let

�̃sim =
⌊

max{R(τ�(ζ/m)) − �α�� :� ≤ R(τ�(ζ/m)), � ≥ 0}
1 − α

⌋
∧ m.

Then the “simultaneous” procedure rejects the nulls corresponding to the �̃sim

smallest p-values. Again, this procedure is able to incorporate the dependence
if the τ�’s are suitably built.

3.3. Two new modifications. This section presents new results that can be seen
as modifications of k-FWE based procedures that ensure finite sample FDP con-
trol. Both modifications incorporate the dependence between the p-values. Fur-
thermore, the numerical experiments of Section 5 show that they are more power-
ful than the state-of-the-art procedures described in Section 3.2.
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A first modification. The first result follows the “diminution” principle. For any
arbitrary critical values (c�(x))1≤�≤m (depending on a variable x), let Cex(x) be

max
1≤u≤m

{
bα(u)∑
�=1

max
θ∈


m0(θ)=u

{(
Pθ

(
Vm

(
c�(x)

)≥ d(� − 1,m,u)
)

− Pθ

(
Vm

(
c�−1(x)

)≥ d(� − 1,m,u)
))

(24)

∧ (
Pθ

(
Vm

(
c�(x)

)≥ d(�,m,u)
)

− Pθ

(
Vm

(
c�−1(x)

)≥ d(�,m,u)
))}}

,

where bα(u) and d(�,m,u) are given by (22) and (23), respectively. The following
result is established in Section 7.2.

THEOREM 3.5. Let us consider either the fixed model (
 = 
F ) or the uni-
form model (
 = 
U ) and any family of critical values (c�(x))1≤�≤m, x ≥ 0,
such that cm(0) = 0. Consider some x� ≥ 0 satisfying Cex(x�) ∧ CRS(x�) ≤ ζ ,
where Cex(·) is defined by (24) and CRS(·) by (21). Let �̂ be the number of
rejections of the step-down (SD) [resp., step-up (SU)] algorithm associated to
the critical values (c�(x

�))1≤�≤m. Then the FDP control (6) holds, with t̂m =
τ
�̂
.

Theorem 3.5 can be applied with any starting critical values (c�(x))1≤�≤m.
A choice in accordance with RW’s heuristic is c�(x) = xτ̃ �, � ∈ {1, . . . ,m}, x ≥ 0,
where (τ̃ �)1≤�≤m are the adaptive k-FWE based critical values (9) for some appro-
priate bounding device. Next, while Theorem 3.5 does not require any assumption
on the dependence, it implicitly assumes that the function Cex(·) is known or eas-
ily computable. This is the case, for instance, in the model (facmod) because we
have

Cex(x) = max
1≤u≤m

{
bα(u)∑
�=1

(
B0

m

(
c�(x), d(� − 1,m,u),u

)
− B0

m

(
c�−1(x), d(� − 1,m,u),u

))
(25)

∧ (
B0

m

(
c�(x), d(�,m,u), u

)
− B0

m

(
c�−1(x), d(�,m,u), u

))}
,

where B0
m(t, k, u) is the exact bounding device defined by (16). A second illustra-

tion is the Gaussian case where � is known but arbitrary and where the model is

 = 
U . In this situation, Cex(x) in (24) can be approximated by Monte Carlo



1156 S. DELATTRE AND E. ROQUAIN

calculations. Finally, let us underline that Theorem 3.5 provides FDP control even
if the incorporated dependence is not positive.

A second modification. The second result presented in this section relies on the
K-Markov device B0

m(t, k, u) given by (15) (for some integer K ≥ 1). It specifi-
cally uses the two following assumptions (here 
 = 
F only):

for all θ ∈ 
, for any permutation σ of {1, . . . ,m} with σ(i) = i

for all i /∈ H0(θ), the distribution of (pσ(i))1≤i≤m is equal to the
one of (pi)1≤i≤m;

(Exch-H0)

for all θ ∈ 
, for any measurable nondecreasing set D ⊂ [0,1]m
and subset X ⊂ H0(θ), x ∈ [0,1] 
→ Pθ

(
(pi)1≤i≤m ∈ D|∀i ∈

X,pi ≤ x
)

is nondecreasing.
(Posdep)

In (Posdep), a set D ⊂ [0,1]m is said nondecreasing if for any x, y ∈ [0,1]m such
that x ∈ D, the inequality x ≤ y (holding component-wise) entails y ∈ D. Con-
dition (Posdep) induces a form of positive dependence between the p-values.
It is stronger than the condition of positive dependence ensuring FDR control
for the BH procedure, for which the conditioning holds w.r.t. only one element;
see Benjamini and Yekutieli (2001), Blanchard, Delattre and Roquain (2014),
Blanchard and Roquain (2008). However, assumption (Posdep) is satisfied as soon
as the p-value family is multivariate totally positive of order 2 (MTP2); see Sarkar
(1969). We refer to Section 3 of Karlin and Rinott (1981) for several examples of
MTP2 models, which thus satisfy assumption (Posdep). More explicit examples
will be provided at the end of the section.

Now, assuming (Exch-H0), we consider for � ∈ {1, . . . ,m},

τ new
� =

⎧⎪⎨⎪⎩
τ̃ �

(
λζ,m(�)

)
, if � ≥ �K,(

(1 − λ)ζ(�α�� + 1)

m(�)

)
∧ τ̃ �K

(λζ,m), if � < �K ,
(26)

where �K = �(K − 1)/α�, λ ∈ [0,1] is some tuning parameter. Also, τ̃ �(ζ, u) de-
notes the value of t obtained by solving the equation

sup
θ∈


m0(θ)=u

{
Pθ

(
max
i∈X0

{pi} ≤ t
)}

(27)

= ζ
(�α�� + 1)(�α�� + 1 − 1) · · · (�α�� + 1 − K + 1)

u(u − 1) · · · (u − K + 1)
,

where X0 denotes any subset of H0 of cardinal K . The following result holds; see
Section 7.4 for a proof.

THEOREM 3.6. In the fixed model 
 = 
F , let �̂ be the number of rejections
of the step-up (SU) algorithm associated to the critical values (τ new

� )1≤�≤m given
by (26). Then the finite sample FDP control (6) holds for t̂m = τ new

�̂
under assump-

tions (Posdep) and (Exch-H0).
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The proof of Theorem 3.6 is given in Section 7.4. It shares some similarity with
the proofs developed in Sarkar (2007) in the FDR case. When K = 1 and λ = 1,
the critical values (τ new

� )1≤�≤m are the Lehmann–Romano critical values (13), and
thus Theorem 3.6 is in accordance with Proposition 3.1(ii) and Theorem 3.1 of
Guo, He and Sarkar (2014) because Simes’s inequality is valid in that case. The
originality of Theorem 3.6 lies in the case K > 1 that allows us to incorporate the
dependence in an FDP controlling procedure. Below, some examples are provided
in the one-sided location models (3):

(i) When the noise Y is Gaussian multivariate, assumption (Exch-H0) im-
poses equicorrelation between the p-values (pi, i ∈ H0), say ρ-equicorrelation
with ρ ∈ [0,1). In this case, equation (27) can be solved by using Pθ (∀i ∈ X0,pi ≤
t) = E[(F0(t,W))K ], where F0 is given by (F0-Gauss-ρ-equi) and W ∼ N (0,1).
Furthermore, the p-value family is MTP2 if and only if −�−1 has nonnegative
off-diagonal elements; see, for example, Rinott and Scarsini (2006). For instance,
both assumptions are satisfied if � is ρ-equi-correlated (Gauss-ρ-equi). Additional
examples can be provided with matrices � such that (�i,j )i∈H0,j∈H0 is ρ-equi-
correlated while −�−1 has nonnegative off-diagonal elements.

(ii) Consider (facmod) in the particular case where Xi = μi + ciW + ζi −
(a/b)w0, where c1 ∼ γ (a, b), W is a positive random variable (w0 = EW ) and
ζ1 is centered with a log-concave density. In this case, the p-value family is MTP2
by Proposition 3.7 and 3.9 of Karlin and Rinott (1980), which entails (Posdep). As-
sumption (Exch-H0) also clearly holds, and the LHS of (27) is E[(F0(t,W))K ],
where F0 is defined by (F0-facmod).

REMARK 3.7. Assumption (Posdep) is, strictly speaking, weaker than MTP2
property. For instance, (Posdep) is satisfied in the Gaussian case where �i,j ≥ 0
for i ∈H1 and j ∈ H0 and �i,j = 1 for i, j ∈H0.

4. Asymptotic results. The goal of this section is to study RW’s heuristic
from an asymptotic point of view.

4.1. Setting and assumptions. In this section, the FDP control under study is
asymptotic: we search t̂m such that

lim sup
m

{
Pθ(m)

(
FDPm(t̂m) > α

)}≤ ζ .(28)

This requires us to consider a sequence of models (
(m),m ≥ 1) (fixed mixture
models here) and a sequence of parameters (θ(m),m ≥ 1) with θ(m) ∈ 
(m) for
all m ≥ 1. The latter sequence is assumed to be fixed once for all throughout this
section. Moreover, we will assume throughout this study the following common
assumption:

m0
(
θ(m))/m → π0 where π0 ∈ (0,1).(29)
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In particular, any sparse situation where m0(θ
(m))/m → 1 is excluded. Also, un-

der (29), we let π1 = 1 − π0 ∈ (0,1).
Useful assumptions on (θ(m),m ≥ 1) are the following weak dependence as-

sumptions on the processes Ĝm(t) = Rm(t)/m and Ĝ0,m(t) = Vm(t)/m0, t ∈
[0,1]:

‖Ĝm −G‖∞ = oP (1) for some continuous G : [0,1] → [0,1];(weakdep)

‖Ĝ0,m − I‖∞ = oP (1) for I (t) = t , t ∈ [0,1].(weakdep0)

These weak dependence conditions are widely used in the context of multiple test-
ing; see, for example, Gontscharuk and Finner (2013), Storey, Taylor and Sieg-
mund (2004) and the stronger condition (FLT) further on. In the particular one-
sided Gaussian multivariate setting, these conditions have been studied in Delattre
and Roquain (2015a), Fan, Han and Gu (2012), Schwartzman and Lin (2011)
(among others). Lemma S-3.1 of the Supplementary Material states that assump-
tions (weakdep) and (weakdep0) are satisfied with G(t) = π0t + π1F1(t) and

F1(t) = ∫∞
0 �̄(�̄

−1
(t) − β)dν(β) under (29) if the following conditions hold:

(m1)
−1

m∑
i=1

Hiδμi

weak−→ν

(Conv-alt)
for a distribution ν on R

+ with ν
({0})= 0,

m−2
m∑

i,j=1

(�i,j )
2 → 0.(weakdepGauss)

Also, let us underline that under (Gauss-ρ-equi), assumption (weakdepGauss) is
satisfied whenever ρ = ρm → 0.

Finally, we also explore in this section strong dependence, through the factor
model (facmod). This includes (Gauss-ρ-equi) for a parameter ρ ∈ (0,1) taken
fixed with m.

4.2. The BH procedure and FDP control. Let us go back to Figure 1. When
ρ = 0, even if the BH procedure is only intended to control the expectation of
the FDP at level α, the 95% quantile of the FDP is still close to α. This comes
from the concentration of the FDP of the BH procedure around π0α < α = 0.2
as m grows to infinity. It is well known that this quantile converges to π0α as
m grows to infinity, so that the limit in (28) is equal to zero; see, for example,
Neuvial (2008). In other words, the FDP concentration combined with the slight
amount of conservativeness due to π0 < 1 “prevents” the FDP from exceeding α.
The consequence is simple: the BH procedure controls the FDP asymptotically in
the sense of (28) under independence. As a matter of fact, the latter also holds
under weak dependence.
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LEMMA 4.1. Consider the BH procedure, that is, the step-up procedure (SU)
associated to the linear critical values τ� = α�/m, 1 ≤ � ≤ m. Assume that
(θ(m),m ≥ 1) satisfies (29), (weakdep), (weakdep0) and further assume that G

satisfies the following property:

there exists t ∈ (0,1), such that G(t) > t/α.(Exists)

Then we have Pθ(m)(FDPm(τ
�̂
) > α) → 0.

Although this result seems new, its proof, provided in Section 8.1, can certainly
be considered as standard; see, for example, Finner, Dickhaus and Roters (2007),
Genovese and Wasserman (2004). Also, while Lemma 4.1 does not require any
Gaussian assumption in general, all the assumptions of Lemma 4.1 are satisfied
under (29), (Conv-alt) and (weakdepGauss).

In the literature, even under independence, it is common to exclude the BH pro-
cedure while studying (28). For instance, Proposition 4.1 in Chi and Tan (2008)
shows that the “oracle” version of the BH procedure, that is, the step-up procedure
with critical values α�/m0, � ∈ {1, . . . ,m}, has a FDP exceeding α with a prob-
ability tending to 1/2. Since the oracle BH procedure is often considered to be
better than the original BH procedure, it is thus tempting to exclude the BH proce-
dure when studying an FDP control of type (28). Lemma 4.1 shows that, perhaps
surprisingly, this is a mistake: BH procedure is interesting when providing (28)
and does not suffer from the same drawback as the oracle BH procedure.

By contrast, if the dependence is not weak, the BH procedure can fail to control
the FDP as m is tending to infinity. Under (Gauss-ρ-equi) and when the p-values
under the alternative are zero (Dirac uniform configuration), this fact has been
formally established in Theorem 2.1 of Finner, Dickhaus and Roters (2007), by
showing that the limit of the FDP of the BH procedure is not deterministic anymore
and hence can exceed α with a positive probability, which is obviously not related
to ζ (because BH critical values do not depend on ζ ).

4.3. RW’s heuristic under weak dependence. The two results provided in this
section both validate the use of RW’s heuristic under weak dependence. Since
the BH procedure is valid in this case, they are of limited interest in practice.
Nevertheless, we believe that they suitably complement our overview on RW’s
heuristic. The first result is proved in Section 8.2 via technics similar to those used
for proving Lemma 4.1.

THEOREM 4.2. Consider the one-sided location model (3) with the full null
process V ′

m(·) being defined by (17). Assume that the (nonadaptive) exact bounding
device is such that for all t, k B̄m(t, k) = Pθ (V

′
m(t) ≥ k) for the parameter θ =

θ(m) at hand. Consider the critical values τ̄�, 1 ≤ � ≤ m, derived from B̄m as in (8),
and consider the corresponding step-up procedure (SU). Assume that (θ(m),m ≥
1) satisfies (29), (weakdep), (weakdep0), (Exists) and that V ′

m(t)/m converges in
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probability to t for any t ∈ [0,1] (i.e., weak dependence for the full null process).
Then we have Pθ(m)(FDPm(τ̄

�̂
) > α) → 0.

The above result shows that RW’s procedure used with the exact bounding de-
vice turns out to have an asymptotic exceedance probability of zero under weak
dependence, likewise the BH procedure. Again, this is due to the convergence of
the FDP toward π0α < α. Hence, perhaps disappointingly, ζ plays no role in the
limit, which indicates that using the simpler BH procedure seems more appropriate
in this case.

Nevertheless, when m0 is known, an interesting point is that, while the oracle
BH procedure fails to control the FDP (as discussed in the above section), or-
acle RW’s method maintains the FDP control. To show this, we need to slightly
strengthen the assumption (weakdep0) by assuming that the following central limit
theorem holds for the (rescaled) process Vm(·):⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

There is a rate rm → ∞ such that the process Zm(t) =
rm
(
Vm(t)/m − (

m0(m)/m
)
t
)

satisfies, for any K = [a, b] ⊂
(0,1), the convergence

(
Zm(t)

)
t∈K �

(
Z(t)

)
t∈K (for the Sko-

rokhod topology), for a process
(
Z(t)

)
t∈K with continuous paths

and such that the random variable Z(t) has a continuous increas-
ing c.d.f. for all t ∈ K .

(FLT)

For instance, under (29), assumption (FLT) holds when the p-values (pi,Hi =
0) are i.i.d. by Donsker’s theorem. More generally, dependencies satisfying “mix-
ing” conditions can also lead to (FLT); see, for example, Dedecker and Prieur
(2007), Doukhan et al. (2010) or Farcomeni (2007). Recently, some efforts have
been undertaken to consider other types of dependence, not necessarily locally
structured; see Bardet and Surgailis (2013), Soulier (2001). In the case of a Gaus-
sian multivariate structure, explicit sufficient conditions on � are provided in
Delattre and Roquain (2015a). The following result is proved in Section 8.3.

THEOREM 4.3. Assume that the exact oracle bounding device is such that for
all t, k B0

m(t, k,m0) = Pθ (Vm(t) ≥ k) for the parameter θ = θ(m) at hand. Con-
sider the critical values τ 0

� , 1 ≤ � ≤ m, derived from B0
m as in (10), and consider

the corresponding step-up procedure (SU). Assume that (θ(m),m ≥ 1) satisfies
(29) with π0 > α, (weakdep), (FLT) and further assume that G satisfies the fol-
lowing property:

G(t) = π0t/α has at most one solution on (0,1);(Unique)

lim
t→0+ G(t)/t ∈ (π0/α,+∞].(NonCritical)

Then we have Pθ(m)(FDPm(τ 0
�̂
) > α) → ζ .
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Roughly speaking, the essence of the argumentation is as follows: when t̂ con-
verges in probability to some deterministic quantities, then the fluctuations of �̂/m

asymptotically disappear in probability (7), and thus the latter is equal to ζ by def-
inition of the oracle exact bounding device. Note that a similar reasoning has been
made at the end of Section 7 in Genovese and Wasserman (2006). Here, we derive
sufficient conditions that make this informal argument rigorous.

Markedly, in Theorem 4.3, the limit of the probability is exactly ζ ; hence there
is no loss in the level of RW’s method. However, since m0 is often unknown (and
seems hard to estimate at a rate faster than rm), the interest of this result remains
mainly theoretical. Finally note that (Unique) and (NonCritical) are classical con-
ditions when studying asymptotic properties of step-up procedures; see, for exam-
ple, Chi (2007), Genovese and Wasserman (2002), Neuvial (2008).

4.4. RW’s heuristic under strong dependence. Here, we study the asymptotic
properties of RW’s method under strong dependence by focusing on models of the
type (facmod). A crucial assumption is as follows:

for any t ∈ (0,1), the function w 
→ F0(t,w) is increasing,(Posdep-facmod)

where F0 is given by (F0-facmod). The latter assumption is a form of positive
dependence which is specific to (facmod): it roughly means that the variable W

disturbs each p-value distribution in an “unidirectional” manner. For instance,
(Posdep-facmod) is satisfied if P(c1 ≥ 0) = 1, P(c1 > 0) > 0 and ξ1 has a distri-
bution function which is continuous increasing on R. As an illustration, (Posdep-
facmod) is satisfied under (Gauss-ρ-equi) (ρ > 0) but not necessarily under (alt-
ρ-equi).

Asymptotic view of RW’s heuristic. Under appropriate assumptions, the exact
device (16) is such that, for a sequence km with km/m → κ ,

B̄m(t, km) = P(Nm/m ≥ km/m) → PW

(
F0(t,W) ≥ κ

)
,(30)

where F0 is defined by (F0-facmod), and Nm follows a binomial distribution of
parameters m and F0(t,W), conditionally on W . By taking κ = F0(t, qζ ) where
qζ is such that P(W ≥ qζ ) ≤ ζ , the probability on the RHS of (30) is smaller than
or equal to PW(F0(t,W) ≥ F0(t, qζ )) ≤ PW(W ≥ qζ ) ≤ ζ , provided that (Posdep-
facmod) holds. Now, RW’s heuristic (taken in an asymptotic sense) leads to the
following equation for the critical values:

F0(τ�, qζ ) = α�/m, 1 ≤ � ≤ m.(31)

Under independence, this gives the BH critical values. In the equi-correlated case
(Gauss-ρ-equi) (with ρ ≥ 0), this yields the critical values (2) mentioned in the
Introduction of the paper.

A modification based on DKW’s concentration inequality. The following result
shows that a simple modification of (31) provides FDP control (see Section 8.4 for
a proof).
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THEOREM 4.4. Let λ ∈ (0,1). In a model (facmod) satisfying (Posdep-
facmod), consider any critical values τ�, 1 ≤ � ≤ m, satisfying

F0(τ�, qζ(1−λ)) ≤
(

α�

m
−
(− log(λζ/2)

2m

)1/2)
+
, 1 ≤ � ≤ m,(32)

where for any x ∈ (0,1), qx ∈ R is such that P(W ≥ qx) ≤ x and F0 is defined
by (F0-facmod). Consider the step-up procedure (SU) associated to the critical
values τ�, � = 1, . . . ,m. Then it controls the FDP; that is, (6) holds with t̂ = τ

�̂
.

While this result is nonasymptotic, it is intended to be used for large values of
m in order to reduce the influence of the remainder terms. However, even for large
values of m, (32) imposes to set the first critical values to zero, which may be
undesirable. The next section presents conditions allowing to drop these annoying
remainder terms.

An asymptotic validation of RW’s heuristic. Here, we present situations for
which the raw critical values (31) can be used to get an asymptotic FDP control.
We consider the following additional distribution assumptions on c1, W and ξ1 in
(facmod):

(i) c1 is a random variable with a finite support in R
+;

(ii) the distribution function of W is continuous;
(iii) the function x ∈ R 
→ F̄ξ (x) = P(ξ1 ≥ x) is continuous increasing and is

such that, for all y ∈ R, as x → +∞,

F̄ξ (x − y)

F̄ξ (x)
→

{+∞, if y > 0,

0, if y < 0.
(33)

When ξ1 has a log-concave density, condition (33) can be reformulated in terms
of a density ratio; see, for example, the relations in Section S-5 of Neuvial and
Roquain (2012). For instance, a simple class of distributions satisfying (33) are the
so-called Subbotin distributions, for which the density of ξ1 is given by e−|x|γ /γ

(up to a constant), for some parameter γ > 1; see Section 5 of Neuvial (2013) for
more details on this.

The following result is proved in Section 8.5.

THEOREM 4.5. Consider the one-sided testing problem (3) with all alterna-
tive means equal to some β > 0, and assume that θ(m) satisfies (29). Consider
(facmod) satisfying the assumptions (i), (ii) and (iii) above. Consider the step-up
procedure (SU) associated to the critical values τ�, � = 1, . . . ,m satisfying (31).
Then the asymptotic FDP control (28) holds with t̂m = τ

�̂
.

As a first illustration, conditions (i), (ii) and (iii) of Theorem 4.5 are satisfied in
the case (Gauss-ρ-equi) for some ρ ∈ [0,1). Hence, a direct corollary is that the
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step-up procedure with the critical values given by (2) controls the FDP asymptoti-
cally. Furthermore, in Section S-2 of the Supplementary Material, we complement
this result by proving that this FDP control is maintained if the value of ρ in (2) is
replaced by any estimator ρ̂m provided that

(logm)(ρ̂m − ρ)2 = oP (1).(34)

As a second illustration, consider a model (facmod) where c1 is uniform on
{k/r,0 ≤ k ≤ r}, and ξ1 is γ -Subbotin (for some γ > 1). Here, W can be any ran-
dom variable with continuous distribution function. For this particular dependence
structure, Theorem 4.5 establishes the asymptotic FDP control of the step-up pro-
cedure with critical values τ� given by the equation

(r + 1)−1
r∑

k=0

D̄γ

(
F̄−1(τ�) − qζ k/r

)= α�/m, 1 ≤ � ≤ m,

where D̄γ denotes the upper-tail function of a γ -Subbotin distribution.

5. Numerical experiments. This section evaluates the power of the proce-
dures considered in Section 3 with a proven FDP control. The power is evaluated
by using the standard false nondiscovery rate (FNR), defined as the expected ra-
tio of errors among the accepted null hypotheses. Table 1 summarizes the proce-
dures that have been considered. The simulation are made in model (Gauss-ρ-equi)
where the alternative means μi are all equal to some parameter β .

TABLE 1
Procedures used in Figures 4 and 5; see Sections 3.2 and 3.3 for more details. All the procedures

are step-up; “e.b.d.” means “exact bounding device”

Procedures not using the value of ρ

[Bonf] the raw Bonferroni procedure
[LR] Lehmann Romano’s procedure (13)
[AugBonf] augmentation with τ1 = ζ/m

[SimLR] simultaneous k-FWE with (13)
[DimMarkovLR] diminution with (21) and c�(x) = xτ̃ � coming from (13)

Procedures incorporating the value of ρ

[AugEx] augmentation with τ1 coming from e.b.d.
[SimEx] simultaneous k-FWE with τ̃ � coming from e.b.d.
[Split1/2] new procedure (26) with λ = 1/2 and K = 2
[Split0.95] new procedure (26) with λ = 0.95 and K = 2
[RWExact] nonmodified k-FWE with τ̃ � coming from e.b.d.
[DimExEx] new diminution with (25) and c�(x) = xτ̃ � coming from e.b.d.
[DimGuoLR] diminution following Theorem 3.8 of Guo, He and Sarkar (2014)

with c�(x) = xτ̃ � coming from (13)
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FIG. 4. Relative FNR to the Lehmann–Romano procedure in function of β; see text and Table 1.
Procedures not using the value of ρ.

Figure 4 displays the power of procedures that do not incorporate the value
of ρ; see Table 1. Note that, according to Proposition 3.1(ii), [LR] controls the
FDP because Simes’s inequality is valid here. Hence it does not use the true value
of ρ but uses nevertheless an assumption on the dependence structure. This is not
the case of [AugBonf], [SimLR], [DimMarkovLR] and [Bonf] that control the FDP
for any dependence structure. As one can expect, [LR] essentially dominates the
other procedures. Also, while [AugBonf] comes in second position, [SimLR] is
even worst than [Bonf] and should be avoided here.

Now, while incorporating the value of ρ, we will loosely say that a procedure
is admissible if it performs better than [LR] at least for a reasonable amount of
parameter configurations. Figure 5 displays the power of procedures incorporating
the value of ρ (except [LR] and [Bonf] that we have added only for comparison);
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FIG. 5. Relative FNR to the Lehmann–Romano procedure in function of β; see text and Table 1.
Procedures using the value of ρ (except [LR] and [Bonf]).

see Table 1. Note that, except [RWExact], all the procedures have a proven FDP
control, so that the power comparison is fair. First, [DimGuoLR] is not admissible,
which indicates that the interest of the bounds found in Guo, He and Sarkar (2014)
are mainly theoretical in our setting. Second, [AugEx] only improves [LR] in a
very small region, which shows that, as one can expect, providing 1-FWE control
for controlling the FDP is too conservative in general. As for [SimEx], things are
more balanced: when ρ = 0, it improves [LR] when many rejections are possible
(π0 not large or β large) but does worst otherwise. We think that this is due to
the nature of the [LR] critical values, which are design to perform well when only
few nulls are expected to be rejected. When ρ is larger, however, [SimEx] quickly
deteriorates. An explanation is that the simultaneity in [SimEx] is obtained via an
union bound, which is conservative when the dependence is strong. Finally, our
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new procedures [Split1/2], [Split0.95] and [DimExEx] seem to be all admissible
in these simulations and substantially outperform the other procedures. Also, none
of the three procedures uniformly dominates the others. For instance, taking λ =
1/2 rather than λ = 0.95 is better when less rejections are expected, but worst
otherwise, while [DimExEx] seems often better than [Split1/2].

Let us mention that additional simulations have been done in Section S-5 of the
Supplementary Material. We briefly report some comments here. First, the large
value ρ = 0.5 has been tried. This deteriorates the relative performance of all the
procedures (except maybe [AugEx]), and in particular of the K-Markov based pro-
cedure because the distribution of the maximum between null p-values get closer
to the uniform. Second, simulations have been performed in model (alt-ρ-equi)
for a = 0.5. In this model, the positive dependence property is lost. Hence while
[DimExEx] still provably controls the FDP, this is not anymore the case of [LR],
[Split1/2] and [Split0.95]. However, it is interesting to note that the FDP control
seems to be maintained in the simulations; see Figure S-4 in the Supplementary
Material. As for the power, the conclusions are qualitatively the same as in model
(Gauss-ρ-equi).

6. Conclusion and discussion. This paper investigated the FDP control in the
case where the dependence is partly/fully incorporated, by using an extension of
RW’s heuristic. We provided two new approaches that offer finite sample control:
the first one (Theorem 3.5) followed the diminution principle and can be used as
soon as the joint distribution of the null p-values can be computed. The second
one (Theorem 3.6) offered a finite sample control under a particular type of posi-
tive dependence (Posdep) and exchangeability. Next, an important part of our work
concerned the asymptotic FDP control: while we established that RW’s heuristic
is valid under weak dependence (Theorems 4.3 and 4.2), we noticed that the in-
terest of the latter has to be balanced with the fact that the simple BH procedure
can be used in this case (Lemma 4.1). Then, still based on RW’s heuristic, we pro-
posed new critical values that provide asymptotic control under model (facmod)
(Theorems 4.4 and 4.5). Markedly, while it still relies on a positive dependence as-
sumption (Posdep-facmod), this condition has a much simpler form than (Posdep).

Our leading example is related to one-sided testing, so we can legitimately
ask whether our results can be extended to two-sided testing, that is, when
pi = 2�̄(|Xi |) (by using the notation of Section 1.3). In the model (facmod)
with ξ1 ∼ −ξ1, the bounding device calculations done in Section 2.3 can be
clearly generalized to the two-sided case by replacing F0(t,w) by F

(2)
0 (t,w) =

F0(t/2,w) + F0(t/2,−w). Hence we can define new critical values coming from
the corresponding exact bounding device and combine it with the diminution prin-
ciple presented in Theorem 3.5. However, the other results of the paper cannot be
directly generalized to the two-sided case because F

(2)
0 (t,w) may be not increas-

ing w.r.t. w.
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While this paper solved some issues, it opened several directions of research.
For instance, is the asymptotic FDP control of Theorem 4.5 still true when us-
ing the original critical values of RW’s method rather than their asymptotic coun-
terpart? We believe that this issue intrinsically relies on the Poisson asymptotic
regime, which was (essentially) not considered here in our asymptotic FDP con-
trolling results. Finally, a crucial, but probably very challenging issue is the validity
of RW’s approach in the case of permutation tests with an arbitrary and unknown
dependence structure.

7. Proofs for finite sample results.

7.1. An unifying bound.

PROPOSITION 7.1. For any critical values (τ�)1≤�≤m, consider either the cor-
responding step-down (SD) or step-up (SU) procedure, with rejection number �̂.
Then the following holds, both in the fixed model (
 = 
F ) and the uniform model
(
 = 
U ): for all θ ∈ 
,

Pθ

(
FDPm(τ

�̂
) > α

)≤
bα(m0)∑
�=1

Pθ

(
Vm(τ�) ≥ d(�,m,m0), �̃ = �

)
,(35)

where bα(m0), d(�,m,m0) are defined in (22) and (23), respectively, and �̃ is taken
as follows:

(i) Step-down case: �̃ = �̂
(1)

, where �̂
(1) = min{� ∈ {1, . . . ,m} :Sm(τ�) < (1 −

α)�} (with the convention min∅ = m+1) and by denoting Sm(t) = Rm(t)−Vm(t)

the number of true discoveries at threshold t .
(ii) Step-up case: �̃ = �̂.

Moreover, in the step-up case, (35) is an equality.

Proposition 7.1(i) is a reformulation of Theorem 5.2 in Roquain (2011) in
our framework and is based on ideas presented in the proofs of Lehmann
and Romano (2005), Romano and Wolf (2007). Proposition 7.1(ii) is essen-
tially based on Romano and Shaikh (2006b), and we provide a short proof be-
low.

PROOF OF PROPOSITION 7.1. Since FDPm(τ
�̂
) > α implies �α�̂� + 1 ≤ m0,

we have �̂ ≤ bα(m0). Also, �̂ = Rm(τ
�̂
) ≤ m1 + Vm(τ

�̂
), which implies Vm(τ

�̂
) ≥

�̂ − m1. This implies (35) in case (ii). �
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7.2. A new bound.

PROPOSITION 7.2. In the setting of Proposition 7.1, assume moreover that
there exists a family of random variables (Z�,�′)1≤�,�′≤m satisfying: for all �, �′,

1
{
Vm(τ�) ≥ d

(
�′,m,m0

)}≤ Z�,�′ a.s.(36)

and, a.s., Z�,�′ is nondecreasing in � and nonincreasing in �′. Then for all θ ∈ 
,

Pθ

(
FDPm(τ

�̂
) > α

)
(37)

≤
bα(m0)∑
�=1

(
Eθ (Z�,�−1) −Eθ (Z�−1,�−1)

)∧ (
Eθ (Z�,�) −Eθ (Z�−1,�)

)
,

by letting Z0,�′ = 0 and Z�,0 = 1 for �′ ≥ 0, � ≥ 1.

Applied with Z�,�′ = Vm(τ�)/d(�′,m,m0), Proposition 7.2 establishes the
Romano–Shaikh bound (21). Applied with Z�,�′ = 1{Vm(τ�) ≥ d(�′,m,m0)},
Proposition 7.2 entails Theorem 3.5.

PROOF OF PROPOSITION 7.2. From (35), we derive

Pθ

(
FDPm(τ

�̂
) > α

)≤
bα(m0)∑
�=1

Pθ

(
Vm(τ�) ≥ d(�,m,m0), �̃ = �

)

≤
bα(m0)∑
�=1

Eθ

(
Z�,�1{�̃ = �}).

Now, the RHS of the previous display is equal to

bα(m0)∑
�=1

Eθ

(
Z�,�1{�̃ ≥ �})−

bα(m0)−1∑
�=1

Eθ

(
Z�,�1{�̃ ≥ � + 1})

=
bα(m0)∑
�=1

Eθ

(
Z�,�1{�̃ ≥ �})−

bα(m0)∑
�=1

Eθ

(
Z�−1,�−11{�̃ ≥ �})

=
bα(m0)∑
�=1

Eθ

(
(Z�,� − Z�−1,�−1)1{�̃ ≥ �}).

Now, since Z�,�′ is nonincreasing w.r.t. �′, the quantity Z�,� − Z�−1,�−1 is below
(Z�,�−1 − Z�−1,�−1) ∧ (Z�,� − Z�−1,�), and the latter is nonnegative because Z�,�′
is nondecreasing w.r.t. �. This entails the result. �
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7.3. Proof of Proposition 3.2. Let k̂ = Vm(τ
�̂
), and note that k̂ ≤ m0 and

{FDPm(τ
�̂
) > α} = {k̂ ≥ �α�̂� + 1}. First, in the nonadaptive case, we have by

definition of B̄m, for all t and k ≤ m0,

B̄m(t, k) = sup
0≤u≤m

{
B0

m(t, k, u)
}≥ B0

m(t, k,m0).

Hence, we have by definition of the (nonadaptive) critical values,

ζ ≥ B̄m

(
τ
�̂
, �α�̂� + 1

)≥ B0
m

(
τ
�̂
, �α�̂� + 1,m0

)
,

which is larger than or equal to B0
m(τ

�̂
, k̂,m0) whenever k̂ ≥ �α�̂� + 1. Hence we

obtain {
FDPm(τ

�̂
) > α

}⊂ {
B0

m(τ
�̂
, k̂,m0) ≤ ζ, k̂ ≥ 1

}⊂ {
τ
�̂
≤ ν0

k̂
, k̂ ≥ 1

}
,

and thus (19) holds. Second, in the adaptive case, we use that m0 ≤ m − Rm(τ
�̂
) +

Vm(τ
�̂
) = m − �̂ + k̂. Thus whenever k̂ ≥ �α�̂� + 1, we have for all t ,

ζ ≥ B̃m

(
τ
�̂
, �α�̂� + 1, �̂

)= sup
�α�̂�+1≤k′≤�̂

{
sup

0≤u≤m−�̂+k′
B0

m

(
τ
�̂
, k′, u

)}
(38)

≥ sup
0≤u≤m−�̂+k̂

B0
m(τ

�̂
, k̂, u) ≥ B0

m(τ
�̂
, k̂,m0).

Hence, this implies τ
�̂
≤ ν0

k̂
and k̂ ≥ 1, and the proof is complete.

7.4. Proof of Theorem 3.6. First observe that the critical values (26) can be
obtained by modifying the K-Markov Bounding device B0

m(t, k, u) defined by (15)
as follows:

(
B0

m

)′
(t, k, u) =

⎧⎨⎩
B0

m(t, k, u)/λ, if k ≥ K,
ut

(1 − λ)k
∨ (

B0
m(t,K,m)/λ

)
, if k < K,

(the second bounding value being infinite when λ = 1). Note that the associated
adaptive bounding device (Bound-adapt) is equal to (B0

m)′(t, k,m − � + k) and
thus gives rise to the adaptive critical values (26). By using Proposition 3.2 and by
letting k̂ = Vm(τ new

�̂
), we get

Pθ

(
FDPm

(
τ new
�̂

)
> α

)=
m0∑
k=1

Pθ

(
Vm

(
ν0
k

)≥ k, k̂ = k
)
,

where ν0
k = max{t ∈ [0,1] :B0

m(t, k,m0) ≤ λζ } for all k ≥ K and where ν0
k =

max{t ∈ [0,1] : (B0
m(t,K,m)/λ) ∨ (m0t/(k(1 − λ))) ≤ λζ } for all k < K . It fol-

lows that the above display is smaller than or equal to T1 + T2, where we let

T1 =
m0∑

k=K

Pθ

(
Vm

(
ν0
k

)≥ k, k̂ = k
); T2 =

(K−1)∧m0∑
k=1

Pθ

(
Vm

(
ν0
k

)≥ k, k̂ = k
)
,
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with by convention T1 = 0 when K > m0. By (14), (Exch-H0), and since k̂ is
permutation invariant (as a function of the p-values), we obtain

T1 ≤
m0∑

k=K

1( k
K

) ∑
X⊂H0 : |X|=K

Pθ

(
k̂ = k,max

i∈X
{pi} ≤ ν0

k

)

=
m0∑

k=K

m0(m0 − 1) · · · (m0 − K + 1)

k(k − 1) · · · (k − K + 1)
Pθ

(
k̂ = k, max

1≤i≤K
{qi} ≤ ν0

k

)
,

where q1, . . . , qm0 denotes the p-values under the null, that is, the p-values of the
set {pi, i ∈ H0}. Next, by using that B0

m(ν0
k , k,m0) ≤ λζ for k ≥ K and (15), we

get

T1 ≤ λζ

m0∑
k=K

Pθ

(
k̂ = k| max

1≤i≤K
{qi} ≤ ν0

k

)

≤ λζ

m0∑
k=K

{
Pθ

(
k̂ ≤ k| max

1≤i≤K
{qi} ≤ ν0

k

)
− Pθ

(
k̂ ≤ k − 1| max

1≤i≤K
{qi} ≤ ν0

k

)}
.

Now, since the p-value subset of [0,1]m defined by the relation k̂ ≤ k − 1 is non-
decreasing, assumption (Posdep) ensures

T1 ≤ λζ

m0∑
k=K

{
Pθ

(
k̂ ≤ k| max

1≤i≤K
{qi} ≤ ν0

k

)
− Pθ

(
k̂ ≤ k − 1| max

1≤i≤K
{qi} ≤ ν0

k−1

)}
,

which is below λζ because the sum is telescopic.
Now, for T2, we use the same type of reasoning with 1{Vm(ν0

k ) ≥ k} ≤
1
k

∑m0
i=1 1{qi ≤ ν0

k } and m0ν
0
k ≤ (1 − λ)ζk for k < K ,

T2 ≤
m0∑
i=1

(K−1)∧m0∑
k=1

1

k
Pθ

(
k̂ = k, qi ≤ ν0

k

)

≤ (1 − λ)ζm−1
0

m0∑
i=1

(K−1)∧m0∑
k=1

Pθ

(
k̂ = k|qi ≤ ν0

k

)

≤ (1 − λ)ζm−1
0

m0∑
i=1

(K−1)∧m0∑
k=1

Pθ

(
k̂ ≤ k|qi ≤ ν0

k

)− Pθ

(
k̂ ≤ k − 1|qi ≤ ν0

k

)

≤ (1 − λ)ζm−1
0

m0∑
i=1

(K−1)∧m0∑
k=1

{
Pθ

(
k̂ ≤ k|qi ≤ ν0

k

)− Pθ

(
k̂ ≤ k − 1|qi ≤ ν0

k−1
)}

,

by using again assumption (Posdep). Finally, the last display is below (1 − λ)ζ ,
because the sum is telescopic. This completes the proof.
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8. Proofs for asymptotic results. In this section, the following well-known
lemma will be extensively used.

LEMMA 8.1. Let �̂ be the number of rejections of the step-up (SU) algorithm
associated to some critical values (τ�)1≤�≤m. Consider the function fm defined by

fm(t) = m−1 × min
{
� ∈ {0, . . . ,m + 1} : τ� ≥ t

}
,(39)

with the conventions τ0 = 0, τm+1 = 1. Let t̂ be defined by

t̂ = sup
{
t ∈ [0,1] : Ĝm(t) ≥ fm(t)

}
.(40)

Then the supremum into (40) is a maximum, that is, Ĝm(t̂) ≥ fm(t̂). Furthermore,
t̂ = τ

�̂
.

8.1. Proof of Lemma 4.1. Actually, we prove the result for a more general
class of procedures, where t̂ = τ

�̂
is obtained by (40) for a sequence of functions

fm = f̂ m (possibly random) which is uniformly close to f∞(t) = t/α on every
compact of (0, α], that is,

sup
b≤t≤α

∣∣f̂ m(t) − t/α
∣∣→ 0 a.s. for all b ∈ (0, α).(41)

Note that f̂ m = f∞ gives the BH procedure by Lemma 8.1. Next, since Rm(t̂) ≥
mf̂ m(t̂),

P
(
FDPm(t̂) > α

)
≤ P

(
Vm(t̂)/m > αf̂ m(t̂)

)
= P

(
(m0/m)

(
Ĝ0,m(t̂) − t̂

)− α
(
f̂ m(t̂) − t̂/α

)
> (1 − m0/m)t̂

)
≤ P

(
(m0/m)‖Ĝ0,m − I‖∞ + α sup

t�≤t≤α

∣∣f̂ m(t) − t/α
∣∣> (1 − m0/m)t�

)
+ P

(
t̂ ≤ t�

)
,

for some t� > 0 satisfying G(t�) > t�/α [which exists by (Exists)]. By (29) and
(weakdep0), it is sufficient to check that P(t̂ ≤ t�) tends to zero. For this, we use
(weakdep) that ensures

P
(
t̂ > t�

)≥ P
(
Ĝm

(
t�
)
> f̂ m

(
t�
))

≥ P
(
G
(
t�
)
> f∞

(
t�
)+ ∣∣G(

t�
)− Ĝm

(
t�
)∣∣+ ∣∣f̂ m

(
t�
)− f∞

(
t�
)∣∣)→ 1,

which completes the proof.

8.2. Proof of Theorem 4.2. By the proof of Lemma 4.1, it is sufficient to show
that fm(t) defined by (39) is such that fm(t) → t/α for all t ∈ [0,1]. This is an easy
consequence of the fact that, since V ′

m(t)/m converges in probability to t , for any
sequence (�m)m with �m/m converging to some u, B̄m(t, �α�m� + 1) converges
to 1 if t > αu and 0 if t < αu.
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8.3. Proof of Theorem 4.3. First, by assumption (weakdep), we can assume
that the convergence supt∈[0,1] |Ĝm(t) − G(t)| → 0 is almost sure. Next, let us
prove

t̂ converges a.s. to t� ∈ (0,1),(42)

where t� = sup{t ∈ [0,1] :G(t) ≥ π0t/α}. First, t� lies in (0,1) by (NonCritical)
and because π0 > α. Then, by Lemma 8.1, we have t̂ = sup{t ∈ [0,1] : Ĝm(t) ≥
fm(t)} where fm(t) is given (39). As in proof of Theorem 4.2, we easily check that
for all t ∈ [0,1], fm(t) converges to π0t/α. As a result, since fm is a nondecreasing
function, the convergence of fm(t) to π0t/α is uniform on [0,1]. Now, to estab-
lish (42), it is sufficient to show that if t̂ converges to some t ∈ [0,1] along a sub-
sequence, then we have t = t�. First, since Ĝm(t̂) ≥ fm(t̂), we have G(t) ≥ π0t/α

and thus t ≤ t�. Let us prove t ≥ t�. We have by (Unique) and (NonCritical) that
G(up) > f∞(up) for all p, for some up ↑ t�. This yields, for all p and m large
enough, Ĝm(up) > fm(up) and thus t ≥ up . Hence, t ≥ t� by making p tends to
infinity. This proves (42).

Now, we have P(FDPm(t̂) > α) = P(Vm(t̂) > α�̂) = P(Zm(t̂) > ϒm), by letting
ϒm = rm(α�̂/m− τ 0

�̂
m0/m). By assumption (FLT), we have that Zm(t̂) converges

in distribution to Z(t�). Let qm(t) denotes the (1 − ζ )-quantile of Zm(t). From
Lemma S-3.2, we have that the function sequence qm(t) converges uniformly to
qζ (t) for t in any compact of (0,1), where qζ (t) denotes the (1 − ζ )-quantile of
Z(t). From above, the proof is complete if we show

ϒm converges a.s. to qζ

(
t�
)
.(43)

Let us prove (43). By definition of B0
m, we have P(Vm(τ 0

� ) > α�) ≤ ζ <

P(Vm((τ 0
� + ε/rm)∧1) > α�), for all ε > 0. Note that the latter uses that m0 > αm

(for m large enough). This shows that for all � ∈ {1, . . . ,m}, qm(τ 0
� ) ≤ rm(α�/m−

τ 0
� m0/m) ≤ qm((τ 0

� +ε/rm)∧1)+ε. Hence, applying this relation to � = �̂, we get
that for all ε > 0, a.s., qζ (t

�) ≤ lim infm ϒm ≤ lim supm ϒm ≤ qζ (t
�)+ε. Then (43)

is derived by making ε tend to zero.

8.4. Proof of Theorem 4.4. We have

P
(
FDPm(t̂) > α

)≤ P
(
(m0/m)Ĝ0,m(t̂) > α�̂/m, t̂ > 0

)
≤ P

(∥∥Ĝ0,m(·) − F0(·,W)
∥∥∞ >

(− log(λζ/2)

2m0

)1/2)
(44)

+ P
(
F0(t̂ ,W) > F0(t̂ , qζ(1−λ)), t̂ ∈ (0,1)

)
.

Now, conditionally on W , the pi ’s are i.i.d. of distribution function F0(·,W).
Hence, by applying the Dvoretzky–Kiefer–Wolfowitz inequality with the tight
constant [see Massart (1990)], we get that the first term in the previous display
is smaller than λζ , which in turn implies that (44) is smaller than λζ + P(W ≥
qζ(1−λ)) ≤ ζ by (Posdep-facmod).
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8.5. Proof of Theorem 4.5. First note that since F̄ξ is continuous and increas-
ing, so is F̄ and t ∈ [0,1] 
→ F0(t,w), for all w. Hence (31) defines the τ�’s in an
unique manner. Next, if P(c1 > 0) = 0, then F0(t,w) = t for all w, and thus the
considered procedure is the BH procedure, which controls the FDP asymptotically
by Lemma 4.1. Hence we can assume that P(c1 > 0) > 0. Let us denote the sup-
port of c1 by {v1, . . . , vr}, for r ≥ 1, vi ≥ 0, vi 	= vj for i 	= j . We thus have that at
least one vi is positive. In particular, assumption (Posdep-facmod) holds.

Then, by using the Skorokhod representation theorem, up to consider a subse-
quence, we can assume that (t̂ ,W) is almost surely converging to some (T ,W)

(on appropriate subspaces). Denote κζ = max1≤i≤r{viqζ }, κW = max1≤i≤r{viW },
and let us establish

T > 0 a.s. if κW + β > κζ .(45)

For this, note that by Lemma 8.1, t̂ is obtained by (40) with fm(t) = F0(t, qζ )/α,
which gives F0(t̂ , qζ ) = max{t ′ ∈ [0,1]|Ĝ′

m(t ′) ≥ t ′/α}, where Ĝ
′
m(t ′) =

m−1∑m
i=1 1{F0(pi, qζ ) ≤ t ′}. Now observe that there exists a constant D ∈ (0,1)

such that for all u,

DF̄ξ

(
F̄−1(u) − κζ

)≤ F0(u, qζ ) ≤ F̄ξ

(
F̄−1(u) − κζ

)
.(46)

It follows that Ĝ′
m(t ′) is lower-bounded by m−1∑m

i=1 Hi1{F̄ξ (F̄
−1(pi) − κζ ) ≤

t ′}, which by the law of large numbers [because (ci, ξi) are i.i.d.] converges a.s.
toward

π1P
(
F̄ξ

(
F̄−1

ξ

(
t ′
)+ κζ − c1W − β

)|W )≥ D′F̄ξ

(
F̄−1

ξ

(
t ′
)+ κζ − κW − β

)
,

where D′ is some positive constant. Assume now κW + β > κζ . By (33), the slope
of F̄ξ (F̄

−1
ξ (t ′) + κζ − κW − β) is infinite in 0. Hence, for m large enough we have

F0(t̂ , qζ ) > t ′0, where t ′0 denotes any t ′ ∈ (0,1) such that D′F̄ξ (F̄
−1
ξ (t ′) + κζ −

κW − β) > t ′/α. As a result, T > 0 and (45) is proved.
Now, we establish

For all ε > 0,∃tε(W) ∈ (0,1), s.t. P
(
�̂ ≥ 1, t̂ ≤ tε(W)|W )≤ εα/D

(47)
if κW + β < κζ .

By the LHS of (46), we obtain that Ĝ′
m(t ′) is upper-bounded by

m−1
m∑

i=1

1
{
F̄ξ (β + ciW + ξi − κζ ) ≤ t ′/D

}

≤ m−1
m∑

i=1

1
{
qi ≤ F̄ξ

(
F̄−1

ξ

(
t ′/D

)+ κζ − κW − β
)}

,

where we let qi = F̄ξ (ξi), for 1 ≤ i ≤ m, which are i.i.d. uniform. Now assume
κζ − κW − β > 0, and take any ε > 0. By (33), there exists t ′ε(W) ∈ (0,1) such
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that ∀t ′ ∈ (0, t ′ε(W)], we have F̄ξ (F̄
−1
ξ (t ′/D) + κζ − κW − β) ≤ εt ′/D. Then we

have

P
(
�̂ ≥ 1, α�̂/m ≤ t ′ε(W)|W )≤ P

(∃� ∈ {1, . . . ,m} :q(�) ≤ εD−1α�/m|W )
,

which is below εD−1α by using Simes’s inequality; see, for example, (18). This
provides (47) by taking tε(W) ∈ (0,1) such that F0(tε(W), qζ ) = t ′ε(W).

The last argument is that when T > 0 a.s., we have F0(T , qζ ) > 0 a.s. and thus

FDP(t̂) = m0

m

Ĝ0,m(t̂)

Ĝm(t̂)
= m0

m
α
Ĝ0,m(t̂)

F0(t̂ , qζ )
→ π0α

F0(T ,W)

F0(T , qζ )
.(48)

Now, by combining (45), (47) and (48), we obtain

lim sup
m

P
(
FDPm(t̂) > α

)
≤ E

(
lim sup

m
1
{
FDPm(t̂) > α,κW + β > κζ

})
+ lim sup

m
P
(
FDPm(t̂) > α,κW + β < κζ , t̂ ≤ tε(W)

)
+E

(
lim sup

m
1
{
FDPm(t̂) > α,κW + β < κζ , t̂ > tε(W)

})
≤ P

(
π0α

F0(T ,W)

F0(T , qζ )
≥ α,κW + β > κζ , T > 0

)
+ εαD−1

+ P

(
π0α

F0(T ,W)

F0(T , qζ )
≥ α,κW + β < κζ , T ≥ tε(W)

)
.

Also note that T < 1 a.s. on the two above events, because π0α < α. Hence we get

lim sup
m

P
(
FDPm(t̂) > α

)≤ P
(
F0(T ,W) > F0(T , qζ ), T ∈ (0,1)

)+ εαD−1,

and the result comes from (Posdep-facmod) and by letting ε tends to zero.
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SUPPLEMENTARY MATERIAL

Supplement to “New procedures controlling the false discovery proportion
via Romano–Wolf’s heuristic” (DOI: 10.1214/14-AOS1302SUPP; .pdf). The
supplement presents additional materials for the paper; see Delattre and Roquain
(2015b).
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