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Modern construction of uniform confidence bands for nonparametric
densities (and other functions) often relies on the classical Smirnov–Bickel–
Rosenblatt (SBR) condition; see, for example, Giné and Nickl [Probab.
Theory Related Fields 143 (2009) 569–596]. This condition requires the ex-
istence of a limit distribution of an extreme value type for the supremum of a
studentized empirical process (equivalently, for the supremum of a Gaussian
process with the same covariance function as that of the studentized empiri-
cal process). The principal contribution of this paper is to remove the need for
this classical condition. We show that a considerably weaker sufficient con-
dition is derived from an anti-concentration property of the supremum of the
approximating Gaussian process, and we derive an inequality leading to such
a property for separable Gaussian processes. We refer to the new condition as
a generalized SBR condition. Our new result shows that the supremum does
not concentrate too fast around any value.

We then apply this result to derive a Gaussian multiplier bootstrap proce-
dure for constructing honest confidence bands for nonparametric density es-
timators (this result can be applied in other nonparametric problems as well).
An essential advantage of our approach is that it applies generically even in
those cases where the limit distribution of the supremum of the studentized
empirical process does not exist (or is unknown). This is of particular im-
portance in problems where resolution levels or other tuning parameters have
been chosen in a data-driven fashion, which is needed for adaptive construc-
tions of the confidence bands. Finally, of independent interest is our intro-
duction of a new, practical version of Lepski’s method, which computes the
optimal, nonconservative resolution levels via a Gaussian multiplier bootstrap
method.

1. Introduction. Let X1, . . . ,Xn be i.i.d. random vectors with common un-
known density f on R

d . We are interested in constructing confidence bands for f

on a subset X ⊂ R
d that are honest to a given class F of densities on R

d . Typ-
ically, X is a compact set on which f is bounded away from zero, and F is a

Received December 2013; revised April 2014.
1Supported by a National Science Foundation grant.
2Supported by the Grant-in-Aid for Young Scientists (B) (25780152), the Japan Society for the

Promotion of Science.
MSC2010 subject classifications. 62G07, 62G15.
Key words and phrases. Anti-concentration of separable Gaussian processes, honest confidence

bands, Lepski’s method, multiplier method, non-Donsker empirical processes.

1787

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/14-AOS1235
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


1788 V. CHERNOZHUKOV, D. CHETVERIKOV AND K. KATO

class of smooth densities such as a subset of a Hölder ball. A confidence band
Cn = Cn(X1, . . . ,Xn) is a family of random intervals

Cn := {
Cn(x) = [

cL(x), cU (x)
]
:x ∈ X

}
that contains the graph of f on X with a guaranteed probability. Following [31], a
band Cn is said to be asymptotically honest with level α ∈ (0,1) for the class F if

lim inf
n→∞ inf

f ∈F Pf

(
f (x) ∈ Cn(x), ∀x ∈X

) ≥ 1 − α.

Also, we say that a band Cn is asymptotically honest at a polynomial rate with level
α ∈ (0,1) for the class F if

inf
f ∈F Pf

(
f (x) ∈ Cn(x), ∀x ∈X

) ≥ 1 − α − Cn−c(1)

for some constants c,C > 0.
Let f̂n(·, l) be a generic estimator of f with a smoothing parameter l, say

bandwidth or resolution level, where l is chosen from a candidate set Ln; see
[26, 42, 44] for a textbook level introduction to the theory of density estima-
tion. Let l̂n = l̂n(X1, . . . ,Xn) be a possibly data-dependent choice of l in Ln.
Denote by σn,f (x, l) the standard deviation of

√
nf̂n(x, l), that is, σn,f (x, l) :=

(nVarf (f̂n(x, l)))1/2. Then we consider a confidence band of the form

Cn(x) =
[
f̂n(x, l̂n) − c(α)σn,f (x, l̂n)√

n
, f̂n(x, l̂n) + c(α)σn,f (x, l̂n)√

n

]
,(2)

where c(α) is a (possibly data-dependent) critical value determined to make the
confidence band to have level α. Generally, σn,f (x, l) is unknown and has to be
replaced by an estimator.

A crucial point in construction of confidence bands is the computation of the
critical value c(α). Assuming that σn,f (x, l) is positive on X × Ln, define the
stochastic process

Zn,f (v) := Zn,f (x, l) :=
√

n(f̂n(x, l) − Ef [f̂n(x, l)])
σn,f (x, l)

,(3)

where v = (x, l) ∈ X ×Ln =: Vn. We refer to Zn,f as a “studentized process.” If,

for the sake of simplicity, the bias |f (x) − Ef [f̂n(x, l)]
l=l̂n

| is sufficiently small

compared to σn,f (x, l̂n), then

Pf

(
f (x) ∈ Cn(x), ∀x ∈ X

) ≈ Pf

(
sup
x∈X

∣∣Zn,f (x, l̂n)
∣∣ ≤ c(α)

)
≥ Pf

(
sup
v∈Vn

∣∣Zn,f (v)
∣∣ ≤ c(α)

)
,
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so that band (2) will be of level α ∈ (0,1) by taking

c(α) = (1 − α)-quantile of ‖Zn,f ‖Vn := sup
v∈Vn

∣∣Zn,f (v)
∣∣.(4)

The critical value c(α), however, is infeasible since the finite sample distribu-
tion of the process Zn,f is unknown. Instead, we estimate the (1 − α)-quantile
of ‖Zn,f ‖Vn .

Suppose that one can find an appropriate centered Gaussian process Gn,f in-
dexed by Vn with known or estimable covariance structure such that ‖Zn,f ‖Vn is
close to ‖Gn,f ‖Vn . Then we may approximate the (1 − α)-quantile of ‖Zn,f ‖Vn

by

cn,f (α) := (1 − α)-quantile of ‖Gn,f ‖Vn.

Typically, one computes or approximates cn,f (α) by one of the following two
methods:

(1) Analytical method: derive analytically an approximated value of cn,f (α),
by using an explicit limit distribution or large deviation inequalities.

(2) Simulation method: simulate the Gaussian process Gn,f to compute
cn,f (α) numerically, by using, for example, a multiplier method.

The main purpose of this paper is to introduce a general approach to establishing
the validity of the so-constructed confidence band. Importantly, our analysis does
not rely on the existence of an explicit (continuous) limit distribution of any kind,
which is a major difference from the previous literature. For the density estimation
problem, if Ln is a singleton, that is, the smoothing parameter is chosen determin-
istically, the existence of such a continuous limit distribution, which is typically a
Gumbel distribution, has been established for convolution kernel density estima-
tors and some wavelet projection kernel density estimators; see [1, 4, 5, 17, 18,
20, 40]. We refer to the existence of the limit distribution as the Smirnov–Bickel–
Rosenblatt (SBR) condition. However, the SBR condition has not been obtained
for other density estimators such as nonwavelet projection kernel estimators based,
for example, on Legendre polynomials or Fourier series. In addition, to guarantee
the existence of a continuous limit distribution often requires more stringent reg-
ularity conditions than a Gaussian approximation itself. More importantly, if Ln

is not a singleton, which is typically the case when l̂n is data-dependent, and so
the randomness of l̂n has to be taken into account, it is often hard to determine an
exact limit behavior of ‖Gn,f ‖Vn .

We thus take a different route and significantly generalize the SBR condition.
Our key ingredient is the anti-concentration property of suprema of Gaussian
processes that shows that suprema of Gaussian processes do not concentrate too
fast. To some extent, this is a reverse of numerous concentration inequalities for
Gaussian processes. In studying the effect of approximation and estimation er-
rors on the coverage probability, it is required to know how the random variable
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‖Gn,f ‖Vn := supv∈Vn
|Gn,f (v)| concentrates or “anti-concentrates” around, say,

its (1 − α)-quantile. It is not difficult to see that ‖Gn,f ‖Vn itself has a continuous
distribution, so that with keeping n fixed, the probability that ‖Gn,f ‖Vn falls into
the interval with center cn,f (α) and radius ε goes to 0 as ε → 0. However, what
we need to know is the behavior of those probabilities when ε depends on n and
ε = εn → 0. In other words, bounding explicitly “anti-concentration” probabili-
ties for suprema of Gaussian processes is desirable. We will first establish bounds
on the Lévy concentration function (see Definition 2.1) for suprema of Gaussian
processes and then use these bounds to quantify the effect of approximation and
estimation errors on the finite sample coverage probability. We say that a general-
ized SBR condition or simply an anti-concentration condition holds if ‖Gn,f ‖Vn

concentrates sufficiently slowly, so that this effect is sufficiently small to yield
asymptotically honest confidence bands.

As a substantive application of our results, we consider the problem of con-
structing honest adaptive confidence bands based on either convolution or wavelet
projection kernel density estimators in Hölder classes F ⊂ ⋃

t∈[t,t̄] �(t,L) for
some 0 < t < t̄ < ∞ where �(t,L) is the Hölder ball of densities with radius L

and smoothness level t . Following [6], we say the confidence band Cn is adaptive
if for every t, ε > 0 there exists C > 0 such that for all n ≥ 1,

sup
f ∈F∩�(t,L)

Pf

(
sup
x∈X

λ
(
Cn(x)

)
> Crn(t)

)
≤ ε,

where λ denotes the Lebesgue measure on R and rn(t) := (logn/n)t/(2t+d), the
minimax optimal rate of convergence for estimating a density f in the function
class �(t,L) in the sup-metric d∞(f̂ , f ) = supx∈X |f̂ (x) − f (x)|. We use Lep-
ski’s method [2, 30] to find an adaptive value of the smoothing parameter. Here
our contribution is to introduce a Gaussian multiplier bootstrap implementation
of Lepski’s method. This is a practical proposal since previous implementations
relied on conservative (one-sided) maximal inequalities and are not necessarily
recommended for practice; see, for example, [19] for a discussion.

We should also emphasize that our techniques can also be used for constructing
honest and/or adaptive confidence bands in many other nonparametric problems,
but in this paper we focus on the density problem for the sake of clarity. Our tech-
niques [anti-concentration of separable Gaussian processes (Theorem 2.1), and
coupling inequalities (Theorems A.1 and A.2)] are of particular importance in non-
Donsker settings since they allow us to prove validity of the Gaussian multiplier
bootstrap for approximating distributions of suprema of sequences of empirical
processes of VC type function classes where the metric entropy of the process
may increase with n. Thus these techniques may be important in many nonpara-
metric problems. For example, applications of our anti-concentration bounds can
be found in [10] and [11], which consider the problems of nonparametric inference
on a minimum of a function and nonparametric testing of qualitative hypotheses
about functions, respectively.
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1.1. Related references. Confidence bands in nonparametric estimation have
been extensively studied in the literature. A classical approach, which goes back
to [40] and [1], is to use explicit limit distributions of normalized suprema of
studentized processes. A “Smirnov–Bickel–Rosenblatt type limit theorem” com-
bines Gaussian approximation techniques and extreme value theory for Gaussian
processes. It was argued that the convergence to normal extremes is rather slow
despite that the Gaussian approximation is relatively fast [24]. To improve the fi-
nite sample coverage, bootstrap is often used in construction of confidence bands;
see [3, 12]. However, to establish the validity of bootstrap confidence bands, re-
searchers relied on the existence of continuous limit distributions of normalized
suprema of original studentized processes. In the deconvolution density estimation
problem, Lounici and Nickl [32] considered confidence bands without using Gaus-
sian approximation. In the current density estimation problem, their idea reads
as bounding the deviation probability of ‖f̂n − E[f̂n(·)]‖∞ by using Talagrand’s
[41] inequality and replacing the expected supremum by the Rademacher average.
Such a construction is indeed general and applicable to many other problems, but
is likely to be more conservative than our construction.

1.2. Organization of the paper. In the next section, we give a new anti-
concentration inequality for suprema of Gaussian processes. Section 3 contains a
theory of generic confidence band construction under high-level conditions. These
conditions are easily satisfied both for convolution and projection kernel tech-
niques under mild primitive assumptions, which are also presented in Section 3.
Section 4 is devoted to constructing honest adaptive confidence bands in Hölder
classes. Finally, most proofs are contained in the Appendix, and some proofs and
discussions are put into the supplemental material [9].

1.3. Notation. In what follows, constants c,C, c1,C1, c2,C2, . . . are under-
stood to be positive and independent of n. The values of c and C may change
at each appearance but constants c1,C1, c2,C2, . . . are fixed. Throughout the pa-
per, En[·] denotes the average over index 1 ≤ i ≤ n, that is, it simply abbreviates
the notation n−1 ∑n

i=1[·]. For example, En[g(Xi)] = n−1 ∑n
i=1 g(Xi). For a set T ,

denote by �∞(T ) the set of all bounded functions, that is, all functions z :T → R

such that

‖z‖T := sup
t∈T

∣∣z(t)∣∣ < ∞.

Moreover, for a generic function g, we also use the notation ‖g‖∞ := supx |g(x)|
where the supremum is taken over the domain of g. For two random variables ξ

and η, we write ξ
d= η if they share the same distribution. The standard Euclidean

norm is denoted by | · |.
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2. Anti-concentration of suprema of Gaussian processes. The main pur-
pose of this section is to derive an upper bound on the Lévy concentration function
for suprema of separable Gaussian processes, where the terminology is adapted
from [39]. Let (
,A,P) be the underlying (complete) probability space.

DEFINITION 2.1 (Lévy concentration function). Let Y = (Yt )t∈T be a separa-
ble stochastic process indexed by a semimetric space T . For all x ∈ R and ε ≥ 0,
let

px,ε(Y ) := P
(∣∣∣sup

t∈T

Yt − x
∣∣∣ ≤ ε

)
.(5)

Then the Lévy concentration function of supt∈T Yt is defined for all ε ≥ 0 as

pε(Y ) := sup
x∈R

px,ε(Y ).(6)

Likewise, define px,ε(|Y |) by (5) with supt∈T Yt replaced by supt∈T |Yt |, and de-
fine pε(|Y |) by (6) with px,ε(Y ) replaced by px,ε(|Y |).

Let X = (Xt)t∈T be a separable Gaussian process indexed by a semimet-
ric space T such that E[Xt ] = 0 and E[X2

t ] = 1 for all t ∈ T . Assume that
supt∈T Xt < ∞ a.s. Our aim here is to obtain a qualitative bound on the concentra-
tion function pε(X). In a trivial example where T is a singleton, that is, X is a real
standard normal random variable, it is immediate to see that pε(X) 
 ε as ε → 0.
A nontrivial case is that when T is not a singleton, and both T and X are indexed
by n = 1,2, . . . , that is, T = Tn and X = Xn = (Xn,t )t∈Tn , and the complexity of
the set {Xn,t : t ∈ Tn} [in L2(
,A,P)] is increasing in n. In such a case, it is typ-
ically not known whether supt∈Tn

Xn,t has a limiting distribution as n → ∞, and
therefore it is not trivial at all whether, for any sequence εn → 0, pεn(X

n) → 0 as
n → ∞.

The following is the first main result of this paper.

THEOREM 2.1 (Anti-concentration for suprema of separable Gaussian pro-
cesses). Let X = (Xt)t∈T be a separable Gaussian process indexed by a semi-
metric space T such that E[Xt ] = 0 and E[X2

t ] = 1 for all t ∈ T . Assume that
supt∈T Xt < ∞ a.s. Then a(X) := E[supt∈T Xt ] ∈ [0,∞) and

pε(X) ≤ 4ε
(
a(X) + 1

)
,(7)

for all ε ≥ 0.

The similar conclusion holds for the concentration function of supt∈T |Xt |.
COROLLARY 2.1. Let X = (Xt)t∈T be a separable Gaussian process indexed

by a semimetric space T such that E[Xt ] = 0 and E[X2
t ] = 1 for all t ∈ T . Assume

that supt∈T Xt < ∞ a.s. Then a(|X|) := E[supt∈T |Xt |] ∈ [√2/π,∞) and

pε

(|X|) ≤ 4ε
(
a
(|X|) + 1

)
,(8)

for all ε ≥ 0.
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We refer to (7) and (8) as anti-concentration inequalities because they show that
suprema of separable Gaussian processes can not concentrate too fast. The proof
of Theorem 2.1 and Corollary 2.1 follows by extending the results in [8] where we
derived anti-concentration inequalities for maxima of Gaussian random vectors.
See the Appendix for a detailed exposition.

3. Generic construction of honest confidence bands. We go back to the
analysis of confidence bands. Recall that we consider the following setting. We
observe i.i.d. random vectors X1, . . . ,Xn with common unknown density f ∈ F
on R

d , where F is a nonempty subset of densities on R
d . We denote by Pf the

probability distribution corresponding to the density f . We first state the result on
the construction of honest confidence bands under certain high-level conditions
and then show that these conditions hold for most commonly used kernel density
estimators.

3.1. Main result. Let X ⊂ R
d be a set of interest. Let f̂n(·, l) be a generic

estimator of f with a smoothing parameter l ∈ Ln where Ln is the candidate
set. Denote by σn,f (x, l) the standard deviation of

√
nf̂n(x, l). We assume that

σn,f (x, l) is positive on Vn := X × Ln for all f ∈ F . Define the studentized pro-
cess Zn,f = {Zn,f (v) :v = (x, l) ∈ Vn} by (3). Let

Wn,f := ‖Zn,f ‖Vn

denote the supremum of the studentized process. We assume that Wn,f is a well-
defined random variable. Let c1,C1 be some positive constants. We will assume
the following high-level conditions.

CONDITION H1 (Gaussian approximation). For every f ∈ F , there exists (on
a possibly enriched probability space) a sequence of random variables W 0

n,f such

that (i) W 0
n,f

d= ‖Gn,f ‖Vn where Gn,f = {Gn,f (v) :v ∈ Vn} is a tight Gaussian

random element in �∞(Vn) with E[Gn,f (v)] = 0,E[Gn,f (v)2] = 1 for all v ∈ Vn,
and E[‖Gn,f ‖Vn] ≤ C1

√
logn; and moreover (ii)

sup
f ∈F

Pf

(∣∣Wn,f − W 0
n,f

∣∣ > ε1n

) ≤ δ1n,(9)

where ε1n and δ1n are some sequences of positive numbers bounded from above
by C1n

−c1 .

Analysis of uniform confidence bands often relies on the classical Smirnov–
Bickel–Rosenblatt (SBR) condition that states that for some sequences An and Bn,

An

(‖Gn,f ‖Vn − Bn

) d→ Z, as n → ∞,(10)
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where Z is a Gumbel random variable; see, for example, [20]. Here both An and Bn

are typically of order
√

logn. However, this condition is often difficult to verify.
Therefore, we propose to use a weaker condition (recall the definition of the Lévy
concentration function given in Definition 2.1):

CONDITION H2 (Anti-concentration or generalized SBR condition). For any
sequence εn of positive numbers, we have

(a) sup
f ∈F

pεn

(|Gn,f |) → 0 if εn

√
logn → 0 or

(b) sup
f ∈F

pεn

(|Gn,f |) ≤ C1εn

√
logn.

Note that Condition H2(a) follows trivially from Condition H2(b). In turn, under
Condition H1, Condition H2(b) is a simple consequence of Corollary 2.1. Condi-
tion H2(a) (along with Conditions H1 and H3–H6 below) is sufficient to show that
the confidence bands are asymptotically honest, but we will use Condition H2(b) to
show that the confidence bands are asymptotically honest at a polynomial rate. We
refer to Condition H2 as a generalized SBR condition because Condition H2(a)
holds if (10) holds with An of order

√
logn. An advantage of Condition H2 in

comparison with the classical condition (10) is that Condition H2 follows easily
from Corollary 2.1.

Let α ∈ (0,1) be a fixed constant (confidence level). Recall that cn,f (α) is the
(1 − α)-quantile of the random variable ‖Gn,f ‖Vn . If Gn,f is pivotal, that is, in-
dependent of f , cn,f (α) = cn(α) can be directly computed, at least numerically.
Otherwise, we have to approximate or estimate cn,f (α). Let ĉn(α) be an estima-
tor or approximated value of cn,f (α), where we assume that ĉn(α) is nonnegative
[which is reasonable since cn,f (α) is nonnegative]. The following is concerned
with a generic regularity condition on the accuracy of the estimator ĉn(α).

CONDITION H3 [Estimation error of ĉn(α)]. For some sequences τn, ε2n, and
δ2n of positive numbers bounded from above by C1n

−c1 , we have

(a) sup
f ∈F

Pf

(
ĉn(α) < cn,f (α + τn) − ε2n

) ≤ δ2n and

(b) sup
f ∈F

Pf

(
ĉn(α) > cn,f (α − τn) + ε2n

) ≤ δ2n.

In the next subsection, we shall verify this condition for the estimator ĉn(α)

based upon the Gaussian multiplier bootstrap method. Importantly, in this con-
dition, we introduce the sequence τn and compare ĉn(α) with cn,f (α + τn) and
cn,f (α − τn) instead of directly comparing it with cn,f (α), which considerably
simplifies verification of this condition. With τn = 0 for all n, we would need to
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have an upper bound on cn,f (α)− cn,f (α + τn) and cn,f (α − τn)− cn,f (α), which
might be difficult to obtain in general.

The discussion in the Introduction presumes that σn,f (x, l) were known, but of
course it has to be replaced by a suitable estimator in practice. Let σ̂n(x, l) be a
generic estimator of σn,f (x, l). Without loss of generality, we may assume that
σ̂n(x, l) is nonnegative. Condition H4 below states a high-level assumption on the
estimation error of σ̂n(x, l). Verifying Condition H4 is rather standard for specific
examples.

CONDITION H4 [Estimation error of σ̂n(·)]. For some sequences ε3n and δ3n

of positive numbers bounded from above by C1n
−c1 ,

sup
f ∈F

Pf

(
sup
v∈Vn

∣∣∣∣ σ̂n(v)

σn,f (v)
− 1

∣∣∣∣ > ε3n

)
≤ δ3n.

We now consider strategies to deal with the bias term. We consider two possi-
bilities. The first possibility is to control the bias explicitly, so that the confidence
band contains the bias controlling term. This construction is inspired by [4]. The
advantage of this construction is that it yields the confidence band the length of
which shrinks at the minimax optimal rate with no additional inflating terms; see
Theorem 4.1 below. The disadvantage, however, is that this construction yields a
conservative confidence band in terms of coverage probability. We consider this
strategy in Conditions H5 and H6 and Theorem 3.1. The other possibility is to
undersmooth, so that the bias is asymptotically negligible, and hence the resulting
confidence band contains no bias controlling terms. This is an often used strat-
egy; see, for example, [20]. The advantage of this construction is that it sometimes
yields an exact (nonconservative) confidence band, so that the confidence band
covers the true function with probability 1 − α asymptotically exactly; see Corol-
lary 3.1 below. The disadvantages, however, are that this method yields the confi-
dence band that shrinks at the rate slightly slower than the minimax optimal rate,
and that is centered around a nonoptimal estimator. We consider the possibility of
undersmoothing in Corollary 3.1 below. Note that Conditions H5 and H6 below
are not assumed in Corollary 3.1.

We now consider the first possibility, that is, we assume that the smoothing
parameter l̂n := l̂n(X1, . . . ,Xn), which is allowed to depend on the data, is chosen
so that the bias can be controlled sufficiently well. Specifically, for all l ∈ Ln,
define

�n,f (l) := sup
x∈X

√
n|f (x) − Ef [f̂n(x, l)]|

σn(x, l)
.

We assume that there exists a sequence of random variables c′
n, which are known

or can be calculated via simulations, that control �n,f (l̂n). In particular, the theory
in the next subsection assumes that c′

n is chosen as a multiple of the estimated high
quantile of the supremum of certain Gaussian process.
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CONDITION H5 [Bound on �n,f (l̂n)]. For some sequence δ4n of positive
numbers bounded from above by C1n

−c1 ,

sup
f ∈F

Pf

(
�n,f (l̂n) > c′

n

) ≤ δ4n.

In turn, we assume that c′
n can be controlled by un

√
logn where un is a sequence

of nonnegative positive numbers. Typically, un is either a bounded or slowly grow-
ing sequence; see, for example, our construction under primitive conditions in the
next section.

CONDITION H6 (Bound on c′
n). For some sequences δ5n and un of positive

numbers where δ5n is bounded from above by C1n
−c1 ,

sup
f ∈F

Pf

(
c′
n > un

√
logn

) ≤ δ5n.

When Ln is a singleton, conditions like Conditions H5 and H6 have to be as-
sumed. When Ln contains more than one element, that is, we seek for an adaptive
procedure, verification of Conditions H5 and H6 is nontrivial. In Section 4, we
provide an example of such analysis.

We consider the confidence band Cn = {Cn(x) :x ∈ X } defined by

Cn(x) := [
f̂n(x, l̂n) − sn(x, l̂n), f̂n(x, l̂n) + sn(x, l̂n)

]
,(11)

where

sn(x, l̂n) := (
ĉn(α) + c′

n

)
σ̂n(x, l̂n)/

√
n.(12)

Define

ε̄n,f := ε1n + ε2n + ε3n

(
cn,f (α) + un

√
logn

)
,

δn := δ1n + δ2n + δ3n + δ4n + δ5n.

We are now in position to state the main result of this section. Recall the defini-
tion of Lévy concentration function (Definition 2.1).

THEOREM 3.1 (Honest generic confidence bands). Suppose that Condi-
tions H1 and H3–H6 are satisfied. Then

inf
f ∈F Pf (f ∈ Cn) ≥ (1 − α) − δn − τn − pε̄n,f

(|Gn,f |).(13)

If, in addition, Condition H2(a) is satisfied and ε3nun

√
logn ≤ C1n

−c1 , then

lim inf
n→∞ inf

f ∈F Pf (f ∈ Cn) ≥ 1 − α,(14)

and if, in addition, Condition H2(b) is satisfied, then

inf
f ∈F Pf (f ∈ Cn) ≥ 1 − α − Cn−c,(15)

where c and C are constants depending only on α, c1 and C1.
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COMMENT 3.1 (Honest confidence bands). Theorem 3.1 shows that the con-
fidence band defined in (11) and (12) is asymptotically honest with level α for the
class F . Moreover, under Condition H2(b), the coverage probability can be smaller
than 1 − α only by a polynomially small term Cn−c uniformly over the class F .
That is, in this case the confidence band is asymptotically honest at a polynomial
rate as defined in (1).

COMMENT 3.2 (Advantages of Theorem 3.1). An advantage of Theorem 3.1
is that it does not require the classical SBR condition that is often difficult to obtain.
Instead, it only requires a weaker generalized SBR Condition H2, which allows us
to control the effect of estimation and approximation errors on the coverage prob-
abilities. In the next subsection, we will show that as long as the bias �n,f (l̂n) can
be controlled, our theorem applies when f̂n(·) is defined using either convolution
or projection kernels under mild conditions, and, as far as projection kernels are
concerned, it covers estimators based on compactly supported wavelets, Battle–
Lemarié wavelets of any order as well as other nonwavelet projection kernels such
as those based on Legendre polynomials and Fourier series. When Ln is a sin-
gleton, the SBR condition for compactly supported wavelets was obtained in [5]
under certain assumptions that can be verified numerically for any given wavelet,
for Battle–Lemarié wavelets of degree up-to 4 in [20], and for Battle–Lemarié
wavelets of degree higher than 4 in [17]. To the best of our knowledge, the SBR
condition for nonwavelet projection kernel functions (such as those based on Leg-
endre polynomials and Fourier series) has not been obtained in the literature. In
addition, and perhaps most importantly, there are no results in the literature on
the SBR condition when Ln is not a singleton. Finally, the SBR condition, being
based on extreme value theory, yields only a logarithmic (in n) rate of approxi-
mation of coverage probability; that is, this approach is asymptotically honest at a
logarithmic rate. In contrast, our approach can lead to confidence bands that are
asymptotically honest at a polynomial rate; see (15). Note also that one can obtain
confidence bands that would be asymptotically honest at a polynomial rate with
level α by considering confidence bands that are asymptotically honest with level
α′ < α, but such confidence bands would in general be wider than those provided
by our approach.

COMMENT 3.3 [On dependence of constants c,C on α in (15)]. We note
that (15) is a nonasymptotic bound. In addition, it immediately follows from the
proof of Theorem 3.1 that the constants c and C in (15) can be chosen to be inde-
pendent of α (thus, they depend only on c1 and C1) as long as

| logα| ≤ C1 logn.(16)

Therefore, (15) can be applied with α = αn depending on n as long as (16) holds
(and Condition H3 is satisfied for the given sequence α = αn).
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COMMENT 3.4 (On the condition ε3nun

√
logn ≤ C1n

−c1 ). The second part of
Theorem 3.1 requires the condition that ε3nun

√
logn ≤ C1n

−c1 . This is a very mild
assumption. Indeed, under Condition H4, ε3n ≤ C1n

−c1 , so that the assumption
that ε3nun

√
logn ≤ C1n

−c1 is met (with possibly different constants c1 and C1)
as long as un is bounded from above by a slowly growing sequence, for example,
un ≤ C1 logn, which is typically the case; see, for example, our construction in
Section 4.

The confidence band defined in (11) and (12) is constructed so that the bias
�n,f (l̂n) is controlled explicitly via the random variable c′

n. Alternatively, one
can choose to undersmooth so that the bias is negligible asymptotically. To
cover this possibility, we note that it follows from the proof of Theorem 3.1
that if un logn → 0 or un logn ≤ C1n

−c1 , then conclusions (14) or (15) of
Theorem 3.1 continue to hold, respectively, with sn(x, l̂n) in (12) replaced by
ĉn(α)σ̂n(x, l̂n)/

√
n. Thus, obtaining the asymptotically honest at a polynomial rate

confidence band requires polynomial undersmoothing (un logn ≤ C1n
−c1 ), but on

the other hand, logarithmic undersmoothing (un logn → 0) suffices if polynomial
rate is not required. Moreover, if Ln is a singleton, it is possible to show that the
confidence band is asymptotically exact, with a polynomial convergence rate (21)
under the condition un logn ≤ C1n

−c1 . We collect these observations into the fol-
lowing corollary, the detailed proof of which can be found in the supplemental
material [9].

COROLLARY 3.1 (Honest generic confidence bands with undersmoothing).
Consider the confidence band C̃n = {C̃n(x) :x ∈X } defined by

C̃n(x) := [
f̂n(x, l̂n) − s̃n(x, l̂n), f̂n(x, l̂n) + s̃n(x, l̂n)

]
,

where

s̃n(x, l̂n) := ĉn(α)σ̂n(x, l̂n)/
√

n.

Suppose that Conditions H1, H3 and H4 are satisfied. In addition, assume that for
some sequences δ6n and un of positive numbers,

sup
f ∈F

Pf

(
�n,f (l̂n) > un

√
logn

) ≤ δ6n,(17)

where δ6n is bounded from above by C1n
−c1 . If Condition H2(a) holds and

un logn → 0, then

lim inf
n→∞ inf

f ∈F Pf (f ∈ C̃n) ≥ 1 − α.(18)

If Condition H2(b) holds and un logn ≤ C1n
−c1 , then

inf
f ∈F Pf (f ∈ C̃n) ≥ 1 − α − Cn−c.(19)



ANTI-CONCENTRATION AND CONFIDENCE BANDS 1799

Moreover, assume in addition that Ln is a singleton. If Condition H2(a) holds and
un logn → 0, then

lim
n→∞ sup

f ∈F
∣∣Pf (f ∈ C̃n) − (1 − α)

∣∣ = 0.(20)

If Condition H2(b) and un logn ≤ C1n
−c1 , then

sup
f ∈F

∣∣Pf (f ∈ C̃n) − (1 − α)
∣∣ ≤ Cn−c.(21)

Here c and C are constants depending only on α, c1 and C1.

COMMENT 3.5 (Other methods for controlling bias term). In practice, there
can be other methods for controlling the bias term. For example, an alternative
approach is to estimate the bias function in a pointwise manner and construct bias
corrected confidence bands; see, for example, [45] in the nonparametric regres-
sion case. A yet alternative approach to controlling the bias based upon bootstrap
in construction of confidence bands is proposed and studied by the recent paper
of [25].

COMMENT 3.6 [On dependence of constants c,C on α in (19) and (21)]. Sim-
ilar to Comment 3.3, we note that (19) and (21) are nonasymptotic bounds, and it
immediately follows from the proof of Corollary 3.1 that these bounds apply with
α = αn depending on n and constants c and C depending only on c1 and C1 as
long as | logα| ≤ C1 logn [in case of (19)] and | log(α − τn)| ≤ C1 logn [in case
of (21)].

3.2. Verifying Conditions H1–H4 for confidence bands constructed using com-
mon density estimators via Gaussian multiplier bootstrap. We now argue that
when ĉn(α) is constructed via Gaussian multiplier bootstrap, Conditions H1–H4
hold for common density estimators—specifically, both for convolution and for
projection kernel density estimators under mild assumptions on the kernel func-
tion.

Let {Kl}l∈Ln be a family of kernel functions where Kl :Rd × R
d → R and l is

a smoothing parameter. We consider kernel density estimators of the form

f̂n(x, l) := En

[
Kl(Xi, x)

] = 1

n

n∑
i=1

Kl(Xi, x),(22)

where x ∈ X and l ∈ Ln. The variance of
√

nf̂n(x, l) is given by

σ 2
n,f (x, l) := Ef

[
Kl(X1, x)2] − (

Ef

[
Kl(X1, x)

])2
.

We estimate σ 2
n,f (x, l) by

σ̂ 2
n (x, l) := 1

n

n∑
i=1

Kl(Xi, x)2 − f̂n(x, l)2.(23)

This is a sample analogue estimator.
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Examples. Our general theory covers a wide class of kernel functions, such as
convolution, wavelet projection and nonwavelet projection kernels.

(i) Convolution kernel. Consider a function K :R → R. Let Ln ⊂ (0,∞).
Then for x = (x1, . . . , xd)′ ∈ R

d , y = (y1, . . . , yd)′ ∈ R
d and l ∈ Ln, the convo-

lution kernel function is defined by

Kl(y, x) := 2ld
∏

1≤m≤d

K
(
2l(ym − xm)

)
.(24)

Here 2−l is the bandwidth parameter.
(ii) Wavelet projection kernel. Consider a father wavelet φ, that is, a function φ

such that: (a) {φ(· − k) :k ∈ Z} is an orthonormal system in L2(R), (b) the spaces
Vj = {∑k ckφ(2j x − k) :

∑
k c2

k < ∞}, j = 0,1,2, . . . , are nested in the sense that
Vj ⊂ Vj ′ whenever j ≤ j ′ and (c)

⋃
j≥0 Vj is dense in L2(R). Let Ln ⊂ N. Then

for x = (x1, . . . , xd)′ ∈ R
d , y = (y1, . . . , yd)′ ∈ R

d , and l ∈ Ln, the wavelet pro-
jection kernel function is defined by

Kl(y, x) := 2ld
∑

k1,...,kd∈Z

∏
1≤m≤d

φ
(
2lym − km

) ∏
1≤m≤d

φ
(
2lxm − km

)
.(25)

Here l is the resolution level. We refer to [13] and [26] as basic references on
wavelet theory.

(iii) Nonwavelet projection kernel. Let {ϕj : j = 1, . . . ,∞} be an orthonor-
mal basis of L2(X ), the space of square integrable (with respect to Lebesgue
measure) functions on X . Let Ln ⊂ (0,∞). Then for x = (x1, . . . , xd)′ ∈ R

d ,
y = (y1, . . . , yd)′ ∈ R

d and l ∈ Ln, the nonwavelet projection kernel function is
defined by

Kl(y, x) :=
�2ld�∑
j=1

ϕj (y)ϕj (x),(26)

where �a� is the largest integer that is smaller than or equal to a. Here �2ld� is
the number of series (basis) terms used in the estimation. When d = 1 and X =
[−1,1], examples of orthonormal bases are Fourier basis{

1, cos(πx), cos(2πx), . . .
}

(27)

and Legendre polynomial basis{
1, (3/2)1/2x, (5/8)1/2(

3x2 − 1
)
, . . .

}
.(28)

When d > 1 and X = [−1,1]d , one can take tensor products of bases for d = 1.

We assume that the critical value ĉn(α) is obtained via the multiplier bootstrap
method:
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ALGORITHM 1 (Gaussian multiplier bootstrap). Let ξ1, . . . , ξn be independent
N(0,1) random variables that are independent of the data Xn

1 := {X1, . . . ,Xn}.
Let ξn

1 := {ξ1, . . . , ξn}. For all x ∈ X and l ∈ Ln, define a Gaussian multiplier
process

Ĝn(x, l) := Ĝn

(
Xn

1 , ξn
1
)
(x, l) := 1√

n

n∑
i=1

ξi

Kl(Xi, x) − f̂n(x, l)

σ̂n(x, l)
.(29)

Then the estimated critical value ĉn(α) is defined as

ĉn(α) = conditional (1 − α)-quantile of ‖Ĝn‖Vn given Xn
1 .

Gaussian multiplier bootstrap is a special case of a more general exchangeable
bootstrap; see, for example, [37]. We refer the reader to [22] for the first systematic
use of the Gaussian multipliers and to [29] and [23] for conditional multiplier
central limit theorems in the Donsker setting.

Let

Kn,f :=
{

Kl(·, x)

σn,f (x, l)
: (x, l) ∈ X ×Ln

}
denote the class of studentized kernel functions, and define

σn = sup
f ∈F

sup
g∈Kn,f

(
Ef

[
g(X1)

2])1/2
.

Note that σn ≥ 1.
For a given class G of measurable functions on a probability space (S,S,Q)

and ε > 0, the ε-covering number of G with respect to the L2(Q)-semimetric is
denoted by N(G,L2(Q), ε); see Chapter 2 of [43] on details of covering numbers.
We will use the following definition of VC type classes:

DEFINITION 3.1 (VC type class). Let G be a class of measurable functions on
a measurable space (S,S), and let b > 0, a ≥ e and v ≥ 1 be some constants. Then
the class G is called VC(b, a, v) type class if it is uniformly bounded in absolute
value by b (i.e., supg∈G ‖g‖∞ ≤ b), and the covering numbers of G satisfy

sup
Q

N
(
G,L2(Q), bτ

) ≤ (a/τ)v, 0 < τ < 1,

where the supremum is taken over all finitely discrete probability measures Q

on (S,S).

Then we will assume the following condition.

CONDITION VC. There exist sequences bn > 0, an ≥ e and vn ≥ 1 such that
for every f ∈ F , the class Kn,f is VC(bn, an, vn) type and pointwise measurable.
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We refer to Chapter 2.3 of [43] for the definition of pointwise measurable classes
of functions. We note that Condition VC is a mild assumption, which we verify
for common constructions in Appendix F (as a part of proving results for the next
section; see Comment 3.5 below); see also Appendix I (supplemental material [9]).

For some sufficiently large absolute constant A, take

Kn := Avn

(
logn ∨ log(anbn/σn)

)
.

We will assume without loss of generality that Kn ≥ 1 for all n. The following
theorem verifies Conditions H1–H4 with so defined σ̂ 2

n (x, l) and ĉn(α) under Con-
dition VC, using the critical values constructed via Algorithm 1.

THEOREM 3.2 (Conditions H1–H4 hold for our construction). Suppose
that Condition VC is satisfied and there exist constants c2,C2 > 0 such that
b2
nσ

4
nK4

n/n ≤ C2n
−c2 . Then Conditions H1–H4, including both Conditions H2(a)

and H2(b), hold with some constants c1,C1 > 0 that depend only on c2,C2.

COMMENT 3.7 (Convolution and wavelet projection kernels). The assump-
tion of Theorem 3.2 holds for convolution and wavelet projection kernels under
mild conditions on the resolution level l. It follows from Lemma F.2 in Appendix F
(supplemental material [9]) that, under mild regularity conditions, for convolution
and wavelet projection kernel functions, σn ≤ C and Condition VC holds with
bn ≤ C2lmax,nd/2, an ≤ C, and vn ≤ C for some C > 0 where lmax,n = sup{Ln}.
Hence, for these kernel functions, the assumption that b2

nσ
4
nK4

n/n ≤ C2n
−c2 re-

duces to

2lmax,nd(
log4 n

)
/n ≤ C2n

−c2

(with possibly different constants c2,C2), which is a mild requirement on the band-
width value or resolution level. This is a very mild assumption on the possible
resolution levels. Similar comments apply to nonwavelet projection kernels with
Fourier and Legendre polynomial bases. See Appendix I in the supplemental ma-
terial [9].

COMMENT 3.8 (On Condition H3). We note that under conditions of Theo-
rem 3.2, Condition H3 remains true with the same constants c1 and C1 even if
α = αn depends on n [if we define cn,f (β) = 0 for β ≥ 1 and cn,f (β) = ∞ for
β ≤ 0]. To see this, note that according to Theorem 3.2, constants c1 and C1 in
Condition H3 depend only on constants c2 and C2, and do not depend on α.

4. Honest and adaptive confidence bands in Hölder classes. In this sec-
tion, we study the problem of constructing honest adaptive confidence bands in



ANTI-CONCENTRATION AND CONFIDENCE BANDS 1803

Hölder smoothness classes. Recall that for t,L > 0, the Hölder ball of densities
with radius L and smoothness level t is defined by

�(t,L) :=
{
f :Rd →R :f is a �t�-times continuously differentiable density,

∥∥Dαf
∥∥∞ ≤ L, ∀|α| ≤ �t�, sup

x �=y

|Dαf (x) − Dαf (y)|
|x − y|t−�t� ≤ L,

∀|α| = �t�
}
,

where �t� denotes the largest integer smaller than t , and for a multi-index α =
(α1, . . . , αd) with |α| = α1 + · · · + αd , Dαf (x) := ∂ |α|f (x)/∂x

α1
1 · · · ∂x

αd

d ; see,
for example, [42]. We assume that for some 0 < t ≤ t̄ < ∞ and L ≥ 1,

F ⊂ ⋃
t∈[t,t̄]

�(t,L),(30)

and consider the confidence band Cn = {Cn(x) :x ∈ X } of the form (11) and (12),
where X is a (suitable) compact set in R

d .
We begin by stating our assumptions. First, we restrict attention to kernel den-

sity estimators f̂n based on either convolution or wavelet projection kernel func-
tions. Let r be an integer such that r ≥ 2 and r > t̄ .

CONDITION L1 (Density estimator). The density estimator f̂n is either
a convolution or wavelet projection kernel density estimator defined in (22),
(24) and (25). For convolution kernels, the function K :R → R has compact sup-
port and is of bounded variation, and moreover is such that

∫
K(s) ds = 1 and∫

sjK(s) dx = 0 for j = 1, . . . , r − 1. For wavelet projection kernels, the function
φ :R → R is either a compactly supported father wavelet of regularity r − 1 [i.e.,
φ is (r − 1)-times continuously differentiable], or a Battle–Lemarié wavelet of
regularity r − 1.

The assumptions stated in Condition L1 are commonly used in the literature.
See [16] for a more general class of convolution kernel functions that would suffice
for our results. Details on compactly supported and Battle–Lemarié wavelets can
be found in Chapters 6 and 5.4 of [13], respectively.

It is known that if the function class F is sufficiently large [e.g., if F =
�(t,L)∪�(t ′,L) for t ′ > t], the construction of honest adaptive confidence bands
is not possible; see [33]. Therefore, following [20], we will restrict the function
class F ⊂ ⋃

t∈[t,t̄] �(t,L) in a suitable way, as follows:

CONDITION L2 (Bias bounds). There exist constants l0, c3,C3 > 0 such that
for every f ∈ F ⊂ ⋃

t∈[t,t̄] �(t,L), there exists t ∈ [t, t̄] with

c32−lt ≤ sup
x∈X

∣∣Ef

[
f̂n(x, l)

] − f (x)
∣∣ ≤ C32−lt ,(31)

for all l ≥ l0.
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This condition is inspired by the path-breaking work of [20]; see also [36].
It can be interpreted as the requirement that the functions f in the class F are
“self-similar” in the sense that their regularity remains the same at large and small
scales; see also [4]. To put it differently, “self-similarity” could be understood as
the requirement that the bias of the kernel approximation to f with bandwidth 2−l

remains approximately proportional to (2−l)t—that is, not much smaller or not
much bigger—for all small values of the bandwidth 2−l .

It is useful to note that the upper bound in (31) holds for all f ∈ �(t,L) (for
sufficiently large C3) under Condition L1; see, for example, Theorem 9.3 in [26].
In addition, Giné and Nickl [20] showed that under Condition L1, the restriction
due to the lower bound in (31) is weak in the sense that the set of elements of
�(t,L) for which the lower bound in (31) does not hold is “topologically small.”
Moreover, they showed that the minimax optimal rate of convergence in the sup-
norm over �(t,L) coincides with that over the set of elements of �(t,L) for which
Condition L2 holds. We refer to [20] for a detailed and deep discussion of these
conditions and results.

We also note that, depending on the problem, construction of honest adaptive
confidence bands is often possible under somewhat weaker conditions than that
in Condition L2. For example, if we are interested in the function class �(t,L) ∪
�(t ′,L) for some t ′ > t , Hoffman and Nickl [27] showed that it is necessary and
sufficient to exclude functions �(t,L) \ �(t,L,ρn) where �(t,L,ρn) = {f ∈
�(t,L) : infg∈�(t ′,L) ‖g − f ‖∞ ≥ ρn} and where ρn > 0 is allowed to converge
to zero as n increases but sufficiently slowly. If we are interested in the function
class

⋃
t∈[t,t̄] �(t,L), Bull [4] showed that (essentially) necessary and sufficient

condition can be written in the form of the bound from below on the rate with
which wavelet coefficients of the density f are allowed to decrease. Here we prefer
to work with Condition L2 directly because it is directly related to the properties
of the estimator f̂n and does not require any further specifications of the function
class F .

In order to introduce the next condition, we need to observe that under Condi-
tion L2, for every f ∈ F , there exists a unique t ∈ [t, t̄] satisfying (31); indeed, if
t1 < t2, then for any c,C > 0, there exists l̄ such that C2−lt2 < c2−lt1 for all l ≥ l̄,
so that for each f ∈ F condition (31) can hold for all l ≥ l0 for at most one value
of t . This defines the map

t :F → [t, t̄], f �→ t (f ).(32)

The next condition states our assumptions on the candidate set Ln of the values of
the smoothing parameter:

CONDITION L3 (Candidate set). There exist constants c4,C4 > 0 such that
for every f ∈ F , there exists l ∈ Ln with(

c4 logn

n

)1/(2t (f )+d)

≤ 2−l ≤
(

C4 logn

n

)1/(2t (f )+d)

,(33)
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for the map t :f �→ t (f ) defined in (32). In addition, the candidate set is Ln =
[lmin,n, lmax,n] ∩N.

This condition thus ensures via (33) that the candidate set Ln contains an ap-
propriate value of the smoothing parameter that leads to the optimal rate of con-
vergence for every density f ∈ F .

Finally, we will make the following mild condition:

CONDITION L4 (Density bounds). There exist constants δ, f , f̄ > 0 such that
for all f ∈ F ,

f (x) ≥ f for all x ∈ X δ and f (x) ≤ f̄ for all x ∈ R
d,(34)

where X δ is the δ-enlargement of X , that is, X δ = {x ∈ R
d : infy∈X |x − y| ≤ δ}.

We now discuss how we choose various parameters in the confidence band Cn.
In the previous section, we have shown how to obtain honest confidence bands
as long as we can control the bias �n,f (l̂n) appropriately. So to construct honest
adaptive confidence bands, we seek a method to choose the smoothing parameter
l̂n ∈ Ln so that the bias �n,f (l̂n) can be controlled, and at the same time, the
confidence band Cn is adaptive.

Let �Vn := {(x, l, l′) :x ∈ X , l, l′ ∈ Ln, l < l′}, and for (x, l, l′) ∈ �Vn, denote

σ̃n

(
x, l, l′

) :=
(

1

n

n∑
i=1

(
Kl(Xi, x) − Kl′(Xi, x)

)2 − (
f̂n(x, l) − f̂n

(
x, l′

))2
)1/2

.

Also, for some small cσ > 0, let

σ̂n

(
x, l, l′

) := (
cσ σ̂n

(
x, l′

)) ∨ σ̃n

(
x, l, l′

)
denote the truncated version of σ̃n(x, l, l′). In practice, we suggest setting cσ =
0.5(1−2−d/2) (the constant cσ is chosen so that with probability approaching one,
σ̂n(x, l, l′) = σ̃n(x, l, l′) for all (x, l, l′) ∈ �Vn for convolution kernel estimators, and
for all (x, l, l′) ∈ �Vn with l ≤ l′−s for wavelet projection kernel estimators where s

is some constant; see Lemmas F.2 and F.4 in the supplemental material [9]).
There exist several techniques in the literature to construct l̂n so that �n,f (l̂n)

can be controlled and the confidence band Cn is adaptive; see, for example, [35] for
a thorough introduction. One of the most important such techniques is the Lepski
method; see [30] for a detailed explanation of the method. In this paper, we intro-
duce a new implementation of the Lepski method, which we refer to as a multiplier
bootstrap implementation of the Lepski method.

ALGORITHM 2 (Multiplier bootstrap implementation of the Lepski method).
Let γn be a sequence of positive numbers converging to zero. Let ξ1, . . . , ξn be
independent N(0,1) random variables that are independent of the data Xn

1 :=
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{X1, . . . ,Xn}. Let ξn
1 := (ξ1, . . . , ξn). For all (x, l, l′) ∈ �Vn, define a Gaussian mul-

tiplier process

G̃n

(
x, l, l′

) := G̃n

(
Xn

1 , ξn
1
)(

x, l, l′
)

:= 1√
n

n∑
i=1

ξi

(Kl(Xi, x) − Kl′(Xi, x)) − (f̂n(x, l) − f̂n(x, l′))
σ̂n(x, l, l′)

.

Also, define

c̃n(γn) = conditional (1 − γn)-quantile of ‖G̃n‖�Vn
given Xn

1 .

Morever, for all l ∈ Ln, let

Ln,l := {
l′ ∈ Ln : l′ > l

}
.

Finally, for some constant q > 1, which is independent of n, define a Lepski-type
estimator

l̂n := inf
{
l ∈ Ln : sup

l′∈Ln,l

sup
x∈X

√
n|f̂n(x, l) − f̂n(x, l′)|

σ̂n(x, l, l′)
≤ qc̃n(γn)

}
.(35)

COMMENT 4.1 (On our implementation of Lepski’s method). We refer to (35)
as a (Gaussian) multiplier bootstrap implementation of the Lepski method because
c̃n(γn) is obtained as the conditional (1 − γn)-quantile of ‖G̃‖�Vn

given Xn
1 . Pre-

vious literature on the Lepski method used Talagrand’s inequality combined with
some bounds on expected suprema of certain empirical processes (obtained via
symmetrization and entropy methods) to choose the threshold level for the esti-
mator [the right-hand side of the inequality in (35)]; see [19] and [21]. Because
of the one-sided nature of the aforementioned inequalities, however, it was argued
that the resulting threshold turned out to be too high leading to limited applicabil-
ity of the estimator in small and moderate samples. In contrast, an advantage of
our construction is that we use qc̃n(γn) as a threshold level, which is essentially
the minimal possible value of the threshold that suffices for good properties of the
estimator.

Once we have l̂n, to define the confidence band Cn, we need to specify σ̂n(x, l),
ĉn(α) and c′

n. We assume that σ̂n(x, l) is obtained via (23) and ĉn(α) via Algo-
rithm 1. To specify c′

n, let u′
n be a sequence of positive numbers such that u′

n is
sufficiently large for large n. Specifically, for large n, u′

n is assumed to be larger
than some constant C(F) depending only on the function class F . Set

c′
n := u′

nc̃n(γn).

COMMENT 4.2 (On the choice of γn, q and u′
n). As follows from Lem-

mas F.7 and F.8 (supplemental material [9]), the parameter γn appearing in (35)
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determines the probability that the estimator l̂n fails to select an appropriate value
of the smoothing parameter. Thus, in practice γn should be chosen small relative to
the nominal coverage level α. Also, for fixed n and γn, the choice of the parame-
ters q and u′

n depends on the trade-off between the error in the coverage probability
and length of the confidence bands: smaller values of q yield higher values of l̂n
leading to undersmoothing and good control of the coverage probability; larger
values of q yield lower values of l̂n leading to oversmoothing and narrow confi-
dence bands; similarly, larger values of u′

n yield wider confidence bands but better
control of the coverage probability. Finding the optimal value of q is a difficult
theoretical problem and is beyond the scope of the paper. Also, in principle, it is
possible to trace out the value C(F) from the proof of the theorem below and set
u′

n = C(F). However, since the function class F is typically unknown in practice,
u′

n can be set as a slowly growing sequence of positive numbers. In our small-
scale simulation study presented in Section J of the supplemental material [9], we
find that the values q = 1.1 and u′

n = 0.5 strike a good balance between cover-
age probability control and the length of the confidence bands in one-dimensional
examples. We should note, however, that the empirical researchers should always
test out different values of q and u′

n in Monte Carlo examples that mimic the data
at hand.

The following theorem shows that the confidence band Cn defined in this way is
honest and adaptive for F :

THEOREM 4.1 (Honest and adaptive confidence bands via our method). Sup-
pose that Conditions L1–L4 are satisfied. In addition, suppose that there exist con-
stants c5,C5 > 0 such that: (i) 2lmax,nd(log4 n)/n ≤ C5n

−c5 , (ii) lmin,n ≥ c5 logn,
(iii) γn ≤ C5n

−c5 , (iv) | logγn| ≤ C5 logn, (v) u′
n ≥ C(F) and (vi) u′

n ≤ C5 logn.
Then Conditions H1–H6 in Section 3 and (15) in Theorem 3.1 hold and

sup
f ∈F

Pf

(
sup
x∈X

λ
(
Cn(x)

)
> C

(
1 + u′

n

)
rn

(
t (f )

)) ≤ Cn−c,(36)

where λ(·) denotes the Lebesgue measure on R and rn(t) := (logn/n)t/(2t+d).
Here the constants c,C > 0 depend only on c5,C5, the constants that appear in
Conditions L1–L4, cσ , α and the function K (when convolution kernels are used)
or the father wavelet φ (when wavelet projection kernels are used). Moreover,

sup
f ∈F∩�(t,L)

Pf

(
sup
x∈X

λ
(
Cn(x)

)
> C

(
1 + u′

n

)
rn(t)

)
≤ Cn−c,(37)

with the same constants c,C as those in (36).

COMMENT 4.3 (Honest and adaptive confidence bands). Equation (15) im-
plies that the confidence band Cn constructed above is asymptotically honest at a
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polynomial rate for the class F . In addition, recall that rn(t) is the minimax op-
timal rate of convergence in the sup-metric for the class F ∩ �(t,L); see [20].
Therefore, (37) implies that the confidence band Cn is adaptive whenever u′

n is
bounded or almost adaptive if u′

n is slowly growing; see the discussion in front of
Theorem 4.1 on selecting u′

n.

COMMENT 4.4 (On inflating terms). When u′
n is bounded, the rate of conver-

gence of the length of the confidence band to zero (1 +u′
n)rn(t) coincides with the

minimax optimal rate of estimation of over �(t,L) with no additional inflating
terms. This shows an advantage of the method of constructing confidence bands
based on the explicit control of the bias term in comparison with the method based
on undersmoothing where inflating terms seem to be necessary. This type of con-
struction is inspired by the interesting ideas in [4].

COMMENT 4.5 (Extensions). Finally, we note that the proof of (15) and (36)
in Theorem 4.1 did not use (30) directly. The proof only relies on Condi-
tions L1–L4 whereas (30) served to motivate these conditions. Therefore, results
(15) and (36) of Theorem 4.1 apply more generally as long as Conditions L1–L4
hold, not just for Hölder smoothness classes.

APPENDIX A: COUPLING INEQUALITIES FOR SUPREMA OF
EMPIRICAL AND RELATED PROCESSES

The purpose of this section is to provide two coupling inequalities based on
Slepian–Stein methods that are useful for the analysis of uniform confidence
bands. The first inequality is concerned with suprema of empirical processes and
is proven in Corollary 2.2 in [7]. The second inequality is new, is concerned with
suprema of Gaussian multiplier processes, and will be obtained from a Gaussian
comparison theorem derived in [8].

Let X1, . . . ,Xn be i.i.d. random variables taking values in a measurable space
(S,S). Let G be a pointwise-measurable VC(b, a, v) type function class for some
b > 0, a ≥ e, and v ≥ 1 (the definition of VC type classes is given in Section 3).
Let σ 2 > 0 be any constant such that supg∈G E[g(X1)

2] ≤ σ 2 ≤ b2. Define the
empirical process

Gn(g) := 1√
n

n∑
i=1

(
g(Xi) − E

[
g(X1)

])
, g ∈ G,

and let

Wn := ‖Gn‖G := sup
g∈G

∣∣Gn(g)
∣∣

denote the supremum of the empirical process. Note that Wn is a well-defined ran-
dom variable since G is assumed to be pointwise-measurable. Let B = {B(g) :g ∈
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G} be a tight Gaussian random element in �∞(F) with mean zero and covariance
function

E
[
B(g1)B(g2)

] = E
[
g1(X1)g2(X1)

] − E
[
g1(X1)

]
E

[
g2(X1)

]
,

for all g1, g2 ∈ G. It is well known that such a process exists under the VC type
assumption; see [43], pages 100–101. Finally, for some sufficiently large absolute
constant A, let

Kn := Av
(
logn ∨ log(ab/σ)

)
.

In particular, we will assume that Kn ≥ 1. The following theorem shows that Wn

can be well approximated by the supremum of the corresponding Gaussian pro-
cess B under mild conditions on b, σ and Kn. The proof of this theorem can be
found in Corollary 2.2 in [7].

THEOREM A.1 (Slepian–Stein type coupling for suprema of empirical pro-
cesses). Consider the setting specified above. Then for every γ ∈ (0,1) one
can construct on an enriched probability space a random variable W 0 such that:

(i) W 0 d= ‖B‖G and (ii)

P
(∣∣Wn − W 0∣∣ >

bKn

(γ n)1/2 + (bσ )1/2K
3/4
n

γ 1/2n1/4 + b1/3σ 2/3K
2/3
n

γ 1/3n1/6

)

≤ A′
(
γ + logn

n

)
,

where A′ is an absolute constant.

COMMENT A.1 (Comparison with the Hungarian couplings). The main ad-
vantage of the coupling provided in this theorem in comparison with, say, Hungar-
ian coupling [28], which can be used to derive a similar result, is that our coupling
does not depend on total variation norm of functions g ∈ G leading to sharper in-
equalities than those obtained via Hungarian coupling when the function class G
consists, for example, of Fourier series or Legendre polynomials; see [7]. In addi-
tion, our coupling does not impose any side restrictions. In particular, it does not
require bounded support of X and allows for point masses on the support. In ad-
dition, if the density of X exists, our coupling does not assume that this density is
bounded away from zero on the support. See, for example, [38] for the construction
of the Hungarian coupling and the use of aforementioned conditions.

Let ξ1, . . . , ξn be independent N(0,1) random variables independent of Xn
1 :=

{X1, . . . ,Xn}, and let ξn
1 := {ξ1, . . . , ξn}. We assume that random variables

X1, . . . ,Xn, ξ1, . . . , ξn are defined as coordinate projections from the product
probability space. Define the Gaussian multiplier process

G̃n(g) := G̃n

(
Xn

1 , ξn
1
)
(g) := 1√

n

n∑
i=1

ξi

(
g(Xi) −En

[
g(Xi)

])
, g ∈ G,
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and for xn
1 ∈ Sn, let W̃n(x

n
1 ) := ‖G̃n(x

n
1 , ξn

1 )‖G denote the supremum of this pro-
cess calculated for fixed Xn

1 = xn
1 . Note that W̃n(x

n
1 ) is a well-defined random

variable. In addition, let

ψn :=
√

σ 2Kn

n
+

(
b2σ 2K3

n

n

)1/4

and γn(δ) := 1

δ

(
b2σ 2K3

n

n

)1/4

+ 1

n
.

The following theorem shows that W̃n(X
n
1) can be well approximated with high

probability by the supremum of the Gaussian process B under mild conditions
on b, σ and Kn. The proof of this theorem can be found in the supplemental ma-
terial [9].

THEOREM A.2 (Slepian–Stein type coupling for suprema of conditional multi-
plier processes). Consider the setting specified above. Suppose that b2Kn ≤ nσ 2.
Then for every δ > 0, there exists a set Sn,0 ∈ Sn such that P(Xn

1 ∈ Sn,0) ≥ 1−3/n

and for every xn
1 ∈ Sn,0 one can construct on an enriched probability space a ran-

dom variable W 0 such that: (i) W 0 d= ‖B‖G and (ii)

P
(∣∣W̃n

(
xn

1
) − W 0∣∣ > (ψn + δ)

) ≤ A′′γn(δ),

where A′′ is an absolute constant.

COMMENT A.2 (On the use of Slepian–Stein couplings). Theorems A.1
and A.2 combined with anti-concentration inequalities (Theorem 2.1 and Corol-
lary 2.1) can be used to prove validity of Gaussian multiplier bootstrap for ap-
proximating distributions of suprema of empirical processes of VC type function
classes without weak convergence arguments. This allows us to cover cases where
complexity of the function class G is increasing with n, which is typically the case
in nonparametric problems in general and in confidence band construction in par-
ticular. Moreover, approximation error can be shown to be polynomially (in n)
small under mild conditions.

APPENDIX B: SOME TECHNICAL TOOLS

THEOREM B.1. Let ξ1, . . . , ξn be i.i.d. random variables taking values in a
measurable space (S,S). Suppose that G is a nonempty, pointwise measurable
class of functions on S uniformly bounded by a constant b such that there exist
constants a ≥ e and v > 1 with supQ N(G,L2(Q), bε) ≤ (a/ε)v for all 0 < ε ≤ 1.
Let σ 2 be a constant such that supg∈G Var(g) ≤ σ 2 ≤ b2. If b2v log(ab/σ) ≤ nσ 2,
then for all t ≤ nσ 2/b2,

P

[
sup
g∈G

∣∣∣∣∣
n∑

i=1

{
g(ξi) − E

[
g(ξ1)

]}∣∣∣∣∣ > A

√
nσ 2

{
t ∨

(
v log

ab

σ

)}]
≤ e−t ,

where A > 0 is an absolute constant.
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PROOF. This version of Talagrand’s inequality follows from Theorem 3
in [34] combined with a bound on expected values of suprema of empirical pro-
cesses derived in [15]. See also [41] for the original version of Talagrand’s inequal-
ity. �

Proofs of the following two lemmas can be found in the supplemental mate-
rial [9].

LEMMA B.1. Let Y := {Y(t) : t ∈ T } be a separable, centered Gaussian pro-
cess such that E[Y(t)2] ≤ 1 for all t ∈ T . Let c(α) denote the (1 − α)-quantile
of ‖Y‖T . Assume that E[‖Y‖T ] < ∞. Then c(α) ≤ E[‖Y‖T ] + √

2| logα| and
c(α) ≤ M(‖Y‖T ) + √

2| logα| for all α ∈ (0,1) where M(‖Y‖T ) is the median
of ‖Y‖T .

LEMMA B.2. Let G1 and G2 be VC(b1, a1, v1) and VC(b2, a2, v2) type
classes, respectively, on a measurable space (S,S). Let a = (a

v1
1 a

v2
2 )1/(v1+v2).

Then: (i) G1 · G2 = {g1 · g2 :g1 ∈ G1, g2 ∈ G2} is VC(b1b2,2a, v1 + v2) type class,
(ii) G1 −G2 = {g1 −g2 :g1 ∈ G1, g2 ∈ G2} is VC(b1 +b2, a, v1 +v2) type class and
(iii) G2

1 = {g2
1 :g1 ∈ G1} is VC(b2

1,2a1, v1) type class.

APPENDIX C: PROOFS FOR SECTION 2

PROOF OF THEOREM 2.1. The fact that a(X) < ∞ follows from Landau–
Shepp–Fernique theorem; see, for example, Lemma 2.2.5 in [14]. In addition, since
supt∈T Xt ≥ Xt0 for any fixed t0 ∈ T , a(X) ≥ E[Xt0] = 0. We now prove (7).

Since the Gaussian process X = (Xt)t∈T is separable, there exists a sequence
of finite subsets Tn ⊂ T such that Zn := maxt∈Tn Xt → supt∈T Xt =: Z a.s. as
n → ∞. Fix any x ∈ R. Since |Zn −x| → |Z−x| a.s. and a.s. convergence implies
weak convergence, there exists an at most countable subset Nx of R such that for
all ε ∈ R \Nx ,

lim
n→∞ P

(|Zn − x| ≤ ε
) = P

(|Z − x| ≤ ε
)
.

But by Theorem 3 in [8],

P
(|Zn − x| ≤ ε

) ≤ 4ε
(
E

[
max
t∈Tn

Xt

]
+ 1

)
≤ 4ε

(
a(X) + 1

)
,

for all ε ≥ 0. Therefore,

P
(|Z − x| ≤ ε

) ≤ 4ε
(
a(X) + 1

)
,(38)

for all ε ∈ R \Nx . By right continuity of P(|Z − x| ≤ ·), it follows that (38) holds
for all ε ≥ 0. Since x ∈R is arbitrary, we obtain (7). �
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PROOF OF COROLLARY 2.1. In view of the proof of Theorem 2.1, it suffices
to prove the corollary in the case where T is finite, but then the corollary follows
from Comment 5 in [8]. �

APPENDIX D: PROOFS FOR SECTION 3

PROOF OF THEOREM 3.1. Pick any f ∈ F . By the triangle inequality, we
have for any x ∈ X ,

√
n|f̂n(x, l̂n) − f (x)|

σ̂n(x, l̂n)
≤ (∣∣Zn,f (x, l̂n)

∣∣ + �n,f (l̂n)
)σn,f (x, l̂n)

σ̂n(x, l̂n)
,

by which we have

Pf

(
f (x) ∈ Cn(x), ∀x ∈ X

)
≥ Pf

(∣∣Zn,f (x, l̂n)
∣∣ + �n,f (l̂n) ≤ (

ĉn(α) + c′
n

)
σ̂n(x, l̂n)/σn,f (x, l̂n), ∀x ∈ X

)
≥ Pf

(
sup
x∈X

∣∣Zn,f (x, l̂n)
∣∣ + �n,f (l̂n) ≤ (

ĉn(α) + c′
n

)
(1 − ε3n)

)
− δ3n

≥ Pf

(
sup
x∈X

∣∣Zn,f (x, l̂n)
∣∣ ≤ ĉn(α)(1 − ε3n) − c′

nε3n

)
− δ3n − δ4n

≥ Pf

(‖Zn,f ‖Vn ≤ ĉn(α)(1 − ε3n) − c′
nε3n

) − δ3n − δ4n

≥ Pf

(‖Zn,f ‖Vn ≤ ĉn(α)(1 − ε3n) − unε3n

√
logn

) − δ3n − δ4n − δ5n,

where the third line follows from Condition H4, the fourth line from Condition H5,
the fifth line from the inequality supx∈X |Zn,f (x, l̂n)| ≤ ‖Zn,f ‖Vn and the sixth
line from Condition H6. Further, the probability in the last line above equals (recall
that Wn,f = ‖Zn,f ‖Vn)

Pf

(
Wn,f ≤ ĉn(α)(1 − ε3n) − unε3n

√
logn

)
≥ Pf

(
Wn,f ≤ cn,f (α + τn)(1 − ε3n) − ε2n − unε3n

√
logn

) − δ2n,(39)

where (39) follows from Condition H3. Now, the probability in (39) is bounded
from below by Condition H1 by

Pf

(
W 0

n,f ≤ cn,f (α + τn)(1 − ε3n) − ε1n − ε2n − unε3n

√
logn

) − δ1n

≥ Pf

(
W 0

n,f ≤ cn,f (α + τn)
) − pε̄n

(|Gn,f |) − δ1n(40)

≥ 1 − α − τn − pε̄n

(|Gn,f |) − δ1n,(41)

where (40) follows from the definition of the Lévy concentration function
pε̄n(|Gn,f |) given that ε̄n = ε1n +ε2n +ε3n(cn,f (α)+un

√
logn), and (41) follows
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since cn,f (·) is the quantile function of W 0
n,f . Combining these inequalities leads

to (13).
To prove (14) and (15), note that δn ≤ Cn−c and τn ≤ Cn−c by Conditions H1

and H3–H6. Further, it follows from Lemma B.1 that cn,f (α) ≤ E[‖Gn,f ‖Vn] +
(2| logα|)1/2 ≤ C

√
logn, and so ε3nun

√
logn ≤ C1n

−c1 implies that ε̄n,f ≤
Cn−c. Therefore, (14) and (15) follow from (13) and Condition H2. �

PROOF OF COROLLARY 3.1. The proof is similar to that of Theorem 3.1. The
details are provided in the supplemental material [9]. �

PROOF OF THEOREM 3.2. In this proof, c,C > 0 are constants that depend
only on c2,C2, but their values can change at each appearance.

Fix any f ∈ F . Let Gn,f = {Gn,f (v) :v ∈ Vn} be a tight Gaussian random
element in �∞(Vn) with mean zero and the same covariance function as that
of Zn,f . Since b2

nσ
4
nK4

n/n ≤ C2n
−c2 , it follows from Theorem A.1 that we can

construct a random variable W 0
n,f such that W 0

n,f

d= ‖Gn,f ‖Vn , and (9) holds
with some ε1n and δ1n bounded from above by Cn−c. In addition, inequality
E[‖Gn,f ‖Vn] ≤ C

√
logn follows from Corollary 2.2.8 in [43]. Condition H1 fol-

lows. Given Condition H1, Condition H2(b) follows from Corollary 2.1, and Con-
dition H2(a) follows from Condition H2(b).

Consider Condition H4. There exists n0 such that C2n
−c2
0 ≤ 1. It suffices to

verify the condition only for n ≥ n0. Note that∣∣∣∣ σ̂n(x, l)

σn,f (x, l)
− 1

∣∣∣∣ ≤
∣∣∣∣ σ̂ 2

n (x, l)

σ 2
n,f (x, l)

− 1
∣∣∣∣.(42)

Define K2
n,f := {g2 :g ∈ Kn,f }. Given the definition of σ̂n(x, l), the right-hand

side of (42) is bounded by

sup
g∈K2

n,f

∣∣En

[
g(Xi)

] − E
[
g(X1)

]∣∣ + sup
g∈Kn,f

∣∣En

[
g(Xi)

]2 − E
[
g(X1)

]2∣∣.(43)

It follows from Lemma B.2 that K2
n,f is VC(b2

n,2an, vn) type class. Moreover, for

all g ∈ K2
n,f ,

E
[
g(Xi)

2] ≤ b2
nE

[
g(Xi)

] ≤ b2
nσ

2
n .

Therefore, Talagrand’s inequality (Theorem B.1) with t = logn, which can be
applied because b2

nKn/(nσ 2
n ) ≤ b2

nσ
4
nK4

n/n ≤ C2n
−c2 ≤ 1 and b2

n logn/(nσ 2
n ) ≤

b2
nKn/(nσ 2

n ) ≤ 1 (recall that σn ≥ 1 and Kn ≥ 1), gives

P
(

sup
g∈K2

n,f

∣∣En

[
g(Xi)

] − E
[
g(X1)

]∣∣ >
1

2

√
b2
nσ

2
nKn

n

)
≤ 1

n
.(44)
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In addition,

sup
g∈Kn,f

∣∣En

[
g(Xi)

]2 − E
[
g(X1)

]2∣∣ ≤ 2bn sup
g∈Kn,f

∣∣En

[
g(Xi)

] − E
[
g(X1)

]∣∣,
so that another application of Talagrand’s inequality yields

P
(

sup
g∈Kn,f

∣∣En

[
g(Xi)

]2 − E
[
g(X1)

]2∣∣ >
1

2

√
b2
nσ

2
nKn

n

)
≤ 1

n
.(45)

Given that b2
nσ

2
nKn/n ≤ b2

nσ
4
nK4

n/n ≤ C2n
−c2 , combining (42)–(45) gives Condi-

tion H4 with ε3n := (b2
nσ

2
nKn/n)1/2 and δ3n := 2/n.

Finally, we verify Condition H3. There exists n1 such that ε3n1 ≤ 1/2. It suffices
to verify the condition only for n ≥ n1, so that ε3n ≤ 1/2. Define

G̃n(x, l) = G̃n

(
Xn

1 , ξn
1
)
(x, l) := 1√

n

n∑
i=1

ξi

Kl(Xi, x) − f̂n(x, l)

σn(x, l)

and

�Gn(x, l) = Ĝn(x, l) − G̃n(x, l).

In addition, define

Ŵn

(
xn

1
) := sup

(x,l)∈X×Ln

Ĝn

(
xn

1 , ξn
1
)
(x, l),

W̃n

(
xn

1
) := sup

(x,l)∈X×Ln

G̃n

(
xn

1 , ξn
1
)
(x, l).

Consider the set Sn,1 of values Xn
1 such that |σ̂n(x, l)/σn,f (x, l) − 1| ≤ ε3n for all

(x, l) ∈ X ×Ln whenever Xn
1 ∈ Sn,1. The previous calculations show that Pf (Xn

1 ∈
Sn,1) ≥ 1 − δ3n = 1 − 2/n. Pick and fix any xn

1 ∈ Sn,1. Then

�Gn

(
xn

1 , ξn
1
)
(x, l) = 1√

n

n∑
i=1

ξi

Kl(xi, x) − f̂n(x, l)

σn(x, l)

(
σn(x, l)

σ̂n(x, l)
− 1

)
is a Gaussian process with mean zero and

Var
(
�Gn

(
xn

1 , ξn
1
)
(x, l)

) = σ̂ 2
n (x, l)

σ 2
n (x, l)

(
σn(x, l)

σ̂n(x, l)
− 1

)2

≤ ε2
3n.

Further, the function class

K̃n,f :=
{
Kl(·, x)

σn(x, l)

(
σn(x, l)

σ̂n(x, l)
− 1

)
: (x, l) ∈ X ×Ln

}
is contained in the function class{

aKl(·, x)

σn(x, l)
: (x, l, a) ∈ X ×Ln × [−1,1]

}
,
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and hence is VC(bn,4an,1 + vn) type class by Lemma B.2. In addition,

E
[(

�Gn

(
xn

1 , ξn
1
)(

x′, l′
) − �Gn

(
xn

1 , ξn
1
)(

x′′, l′′
))2]

≤ En

[(
Kl(xi, x

′)
σn(x′, l′)

(
σn(x

′, l′)
σ̂n(x′, l′)

− 1
)

− Kl(xi, x
′′)

σn(x′′, l′′)

(
σn(x

′′, l′′)
σ̂n(x′′, l′′)

− 1
))2]

,

for all x′, x′′ ∈ X and l′, l′′ ∈ Ln, so that covering numbers for the index set
X ×Ln with respect to the intrinsic (standard deviation) semimetric induced from
the Gaussian process �Gn(x

n
1 , ξn

1 ) are bounded by uniform covering numbers for
the function class K̃n,f . Therefore, an application of Corollary 2.2.8 in [43] gives

E
[

sup
(x,l)∈X×Ln

∣∣�Gn

(
xn

1 , ξn
1
)
(x, l)

∣∣] ≤ Cε3n

√
(1 + vn) log

(
4anbn

ε3n

)
≤ Cn−c.

Here the second inequality follows from the definition of ε3n above and the fol-
lowing inequalities:√

(1 + vn) log
(

4anbn

ε3n

)
≤

√
(1 + vn)

(
log

(
4anbn

σn

)
+ log

(
σn

ε3n

))

≤ C
√

Kn

(
1 +

√
log

(
σn

ε3n

))

≤ C
√

Kn

(
1 +

√
log

(
n

b2
nKn

))
≤ C

√
Kn(1 +

√
logn) ≤ CKn,

where in the last line we used bn ≥ σn ≥ 1, and Kn ≥ vn logn ≥ logn. Combining
this bound with the Borell–Sudakov–Tsirel’son inequality, and using the inequality∣∣Ŵn

(
xn

1
) − W̃n

(
xn

1
)∣∣ ≤ sup

(x,l)∈X×Ln

∣∣�Gn

(
xn

1 , ξn
1
)
(x, l)

∣∣,
we see that there exists λ1n ≤ Cn−c such that

P
(∣∣Ŵn

(
xn

1
) − W̃n

(
xn

1
)∣∣ ≥ λ1n

) ≤ Cn−c,(46)

whenever xn
1 ∈ Sn,1. Further, since b2

nσ
4
nK4

n/n ≤ C2n
−c2 and bn ≥ σn ≥ 1, Theo-

rem A.2 shows that there exist λ2n ≤ Cn−c and a measurable set Sn,2 of values Xn
1

such that Pf (Xn
1 ∈ Sn,2) ≥ 1 − 3/n, and for every xn

1 ∈ Sn,2 one can construct a

random variable W 0 such that W 0 d= ‖Gn,f ‖Vn and

P
(∣∣W̃n

(
xn

1
) − W 0∣∣ ≥ λ2n

) ≤ Cn−c.(47)

Here W 0 may depend on xn
1 , but c,C can be chosen in such a way that they depend

only on c2,C2 (as noted in the beginning).
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Pick and fix any xn
1 ∈ Sn,0 := Sn,1 ∩ Sn,2, and construct a suitable W 0 d=

‖Gn,f ‖Vn for which (47) holds. Then by (46), we have

P
(∣∣Ŵn

(
xn

1
) − W 0∣∣ ≥ λn

) ≤ Cn−c,(48)

where λn := λ1n +λ2n. Denote by ĉn(α, xn
1 ) the (1 −α)-quantile of Ŵn(x

n
1 ). Then

we have

P
(‖Gn,f ‖Vn ≤ ĉn

(
α,xn

1
) + λn

) = P
(
W 0 ≤ ĉn

(
α,xn

1
) + λn

)
≥ P

(
Ŵn

(
xn

1
) ≤ ĉn

(
α,xn

1
)) − Cn−c

≥ 1 − α − Cn−c,

by which we have ĉn(α, xn
1 ) ≥ cn,f (α + Cn−c) − λn. Since xn

1 ∈ Sn,0 is arbi-
trary and ĉn(α) = ĉn(α,Xn

1), we see that whenever Xn
1 ∈ Sn,0, ĉn(α) ≥ cn,f (α +

Cn−c) − λn. Part (a) of Condition H3 follows from the fact that Pf (Xn
1 ∈ Sn,0) ≥

1 − 5/n and λn ≤ Cn−c. Part (b) follows similarly. �
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SUPPLEMENTARY MATERIAL

Supplement to “Anti-concentration and honest, adaptive confidence bands”
(DOI: 10.1214/14-AOS1235SUPP; .pdf). This supplemental file contains addi-
tional proofs omitted in the main text, some results regarding nonwavelet projec-
tion kernel estimators, and a small-scale simulation study.
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