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We derive a Gaussian approximation result for the maximum of a sum of
high-dimensional random vectors. Specifically, we establish conditions un-
der which the distribution of the maximum is approximated by that of the
maximum of a sum of the Gaussian random vectors with the same covariance
matrices as the original vectors. This result applies when the dimension of
random vectors (p) is large compared to the sample size (n); in fact, p can
be much larger than #, without restricting correlations of the coordinates of
these vectors. We also show that the distribution of the maximum of a sum
of the random vectors with unknown covariance matrices can be consistently
estimated by the distribution of the maximum of a sum of the conditional
Gaussian random vectors obtained by multiplying the original vectors with
i.i.d. Gaussian multipliers. This is the Gaussian multiplier (or wild) bootstrap
procedure. Here too, p can be large or even much larger than n. These dis-
tributional approximations, either Gaussian or conditional Gaussian, yield a
high-quality approximation to the distribution of the original maximum, of-
ten with approximation error decreasing polynomially in the sample size, and
hence are of interest in many applications. We demonstrate how our Gaussian
approximations and the multiplier bootstrap can be used for modern high-
dimensional estimation, multiple hypothesis testing, and adaptive specifica-
tion testing. All these results contain nonasymptotic bounds on approxima-
tion errors.

1. Introduction. Let x1,...,x, be independent random vectors in R”, with

each x; having coordinates denoted by x;;, that is, x; = (x;1, ..

., Xip)". Suppose

that each x; is centered, namely E[x;] = 0, and has a finite covariance matrix

E[x,-xi’ ]. Consider the rescaled sum

1 n
(1) X=X ....,Xp) :=ﬁ2xi.
i=1
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Our goal is to obtain a distributional approximation for the statistic 7y defined as
the maximum coordinate of vector X:
Tp := max X;.
I<j=p

The distribution of Tp is of interest in many applications. When p is fixed, this
distribution can be approximated by the classical Central limit theorem (CLT) ap-
plied to X. However, in modern applications (cf. [8]), p is often comparable or
even larger than n, and the classical CLT does not apply in such cases. This paper
provides a tractable approximation to the distribution of 7Ty when p can be large
and possibly much larger than n.

The first main result of the paper is the Gaussian approximation result (GAR),
which bounds the Kolmogorov distance between the distributions of 7p and its
Gaussian analog Z. Specifically, let y1, ..., y, be independent centered Gaussian
random vectors in R” such that each y; has the same covariance matrix as x;:
vi ~ N(O, E[x,-xl( ]). Consider the rescaled sum of these vectors:

1 n
(2) Y::(Yl,...,Yp)’::%Zyi.
i=1

Vector Y is the Gaussian analog of X in the sense of sharing the same mean
and covariance matrix, namely E[X] = E[Y] = 0 and E[XX'] = E[YY'] =
n! T E[x,-xlf ]. We then define the Gaussian analog Zg of Ty as the maximum
coordinate of vector Y':
(3) Zp:= max Y;.

I<j=p
We show that, under suitable moment assumptions, as 7 — oo and possibly p =
pl’l - OO,

4) p:=sup|P(Tp <t) —P(Zp<1)| <Cn~°—0,
teR
where constants ¢ > 0 and C > 0 are independent of n.

Importantly, in (4), p can be large in comparison to n and be as large as e
for some ¢ > 0. For example, if x;; are uniformly bounded (namely, |x;;| < C;
for some constant C; > 0 for all i and j) the Kolmogorov distance p converges
to zero at a polynomial rate whenever (log p)’/n — 0 at a polynomial rate. We
obtain similar results when x;; are sub-exponential and even non-sub-exponential
under suitable moment assumptions. Figure 1 illustrates the result (4) in a non-sub-
exponential example, which is motivated by the analysis of the Dantzig selector of
[9] in non-Gaussian settings (see Section 4).

The proof of the Gaussian approximation result (4) builds on a number of tech-
nical tools such as Slepian’s smart path interpolation [which is related to the solu-
tion of Stein’s partial differential equation; see Appendix H of the supplementary

o(n®)
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FI1G. 1. P-P plots comparing distributions of Ty and Z in the example motivated by the problem
of selecting the penalty level of the Dantzig selector. Here x;; are generated as x;j = z;j&; with
& ~ t(4), (a t-distribution with four degrees of freedom), and z;j are nonstochastic (simulated once
using U[0, 1] distribution independently across i and j). The dashed line is 45°. The distributions
of Ty and Z are close, as (qualitatively) predicted by the GAR derived in the paper. The quality of
the Gaussian approximation is particularly good for the tail probabilities, which is most relevant for
practical applications.

material (SM; [16])], Stein’s leave-one-out method, approximation of maxima by
the smooth potentials (related to “free energy” in spin glasses) and using some
fine or subtle properties of such approximation, and exponential inequalities for
self-normalized sums. See, for example, [11, 12, 19, 20, 33, 37, 39-41] for intro-
duction and prior uses of some of these tools. The proof also critically relies on the
anti-concentration and comparison bounds of maxima of Gaussian vectors derived
in [15] and restated in this paper as Lemmas 2.1 and 3.1.

Our new Gaussian approximation theorem has the following innovative fea-
tures. First, we provide a general result that establishes that maxima of sums of
random vectors can be approximated in distribution by the maxima of sums of
Gaussian random vectors when p >> n and especially when p is of order ¢"**) for
some ¢ > 0. The existing techniques can also lead to results of the form (4) when
p = pn — 00, but under much stronger conditions on p requiring p¢/n — 0; see
Example 17 (Section 10) in [34]. Some high-dimensional cases where p can be
of order ¢°”"*) can also be handled via Hungarian couplings, extreme value theory
or other methods, though special structure is required (for a detailed review, see
Appendix L of the SM [16]). Second, our Gaussian approximation theorem covers
cases where Ty does not have a limit distribution as n — oo and p = p, — oo. In
some cases, after a suitable normalization, 7y could have an extreme value distri-
bution as a limit distribution, but the approximation to an extreme value distribu-
tion requires some restrictions on the dependency structure among the coordinates
in x;. Our result does not limit the dependency structure. We also emphasize that
our theorem specifically covers cases where the process {} 7| x;j/+/n, 1 < j < p}
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is not asymptotically Donsker (i.e., cannot be embedded into a path of an empir-
ical process that is Donsker). Otherwise, our result would follow from the classi-
cal functional central limit theorems for empirical processes, as in [20]. Third, the
quality of approximation in (4) is of polynomial order in n, which is better than the
logarithmic in n quality that we could obtain in some (though not all) applications
using the approximation of the distribution of Ty by an extreme value distribution
(see [31]).

Note that the result (4) is immediately useful for inference with statistic Ty, even
though P(Zy < t) needs not converge itself to a well-behaved distribution function.
Indeed, if the covariance matrix n~! Ll E[xixlf] is known, then cz,(1 — a) :=
(1 — a)-quantile of Zg, can be computed numerically, and we have

35) [P(Ty <cz,(1—a))— (1 —a)|<Cn~“—0.

The second main result of the paper establishes validity of the multiplier
(or Wild) bootstrap for estimating quantiles of Zy when the covariance matrix
n~! _1 Elxix[] is unknown. Specifically, we define the Gaussian-symmetrized
version Wy of Ty by multiplying x; with i.i.d. standard Gaussian random variables

€l,...,epn:

1 n
(6) Wo : 1?]?15)(,; NG ;x, j€i.
We show that the conditional quantiles of Wy given data (x;)?_, are able to con-
sistently estimate the quantiles of Zg and hence those of Ty (where the notion of
consistency used is the one that guarantees asymptotically valid inference). Here
the primary factor driving the bootstrap estimation error is the maximum differ-
ence between the empirical and population covariance matrices:
1 n
A= (ax ;(xijxik —Elxijxit]) |,
which can converge to zero even when p is much larger than n. For example,
when x;; are uniformly bounded, the multiplier bootstrap is valid for inference if
(log p)7 /n — 0. Earlier related results on bootstrap in the “p — oo but p/n — 0”
regime were obtained in [32]; interesting results on inference on the mean vector
of high-dimensional random vectors when p >> n based on concentration inequal-
ities and symmetrization are obtained in [3, 4], albeit the approach and results are
quite different from those given here. In particular, in [3], either Gaussianity or
symmetry in distribution is imposed on the data.

The key motivating example of our analysis is the analysis of construction of
one-sided or two-sided uniform confidence band for high-dimensional means un-
der non-Gaussian assumptions. This requires estimation of a high quantile of the
maximum of sample means. We give two concrete applications. One application
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deals with high-dimensional sparse regression model. In this model, [9] and [6] as-
sume Gaussian errors to analyze the Dantzig selector, where the high-dimensional
means enter the constraint in the problem. Our results show that Gaussianity is not
necessary and the sharp, Gaussian-like, conclusions hold approximately, with just
the fourth moment of the regression errors being bounded. Moreover, our approxi-
mation allows to take into account correlations among the regressors. This leads to
a better choice of the penalty level and tighter bounds on performance than those
that had been available previously. In another example, we apply our results in
the multiple hypothesis testing via the step-down method of [38]. In the SM [16],
we also provide an application to adaptive specification testing. In either case, the
number of hypotheses to be tested or the number of moment restrictions to be
tested can be much larger than the sample size. Lastly, in a companion work [14],
we derive the strong coupling for suprema of general empirical processes based
on the methods developed here and maximal inequalities. These results represent
a useful complement to the results based on the Hungarian coupling developed by
[7, 29, 30, 36] for the entire empirical process and have applications to inference
in nonparametric problems such as construction of uniform confidence bands and
testing qualitative hypotheses (see, e.g., [21, 25] and [18]).

1.1. Organization of the paper. In Section 2, we give the results on Gaussian
approximation, and in Section 3 on the multiplier bootstrap. In Sections 4 and 5, we
develop applications to the Dantzig selector and multiple testing. Appendices A—C
contain proofs for each of these sections, with Appendix A stating auxiliary tools
and lemmas. Due to the space limitation, we put additional results and proofs into
the SM [16]. In particular, Appendix M of the SM provides additional application
to adaptive specification testing. Results of Monte Carlo simulations are presented
in Appendix G of the SM.

1.2. Notation. In what follows, unless otherwise stated, we will assume that
p > 3. In making asymptotic statements, we assume that n — oo with un-
derstanding that p depends on n and possibly p — oo as n — oo. Constants
c,C,c1,C1,c2,Ca, ... are understood to be independent of n. Throughout the pa-
per, E,[-] denotes the average over index 1 <i < n, that is, it simply abbrevi-
ates the notation n~! *_1[-]. For example, E, [xizj] =n"! 1 xlzj In addition,
E[-] =E,[E[-]]. For example, E[x/;] =n"" >/_, E[x};]. For z € R”, 2’ denotes the
transpose of z. For a function f:R — R, we write 3 f (x) = 8% £ (x)/dx* for non-
negative integer k; for a function f:R?” — R, we write 9; f(x) = df(x)/dx; for
j=1,..., p, where x = (x, .. .,xp)’. We denote by Ck(]R) the class of k times
continuously differentiable functions from R to itself, and denote by C’g (R) the
class of all functions f € C¥(R) such that Sup,cr 187 f(z)| < oo for j =0,...,k.
We write a < b if a is smaller than or equal to b up to a universal positive constant.
For a, b € R, we write a V b = max{a, b}. For two sets A and B, A & B denotes
their symmetric difference, thatis, A©@ B=(A\ B)U(B\ A).
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2. Gaussian approximations for maxima of non-Gaussian sums. The pur-
pose of this section is to compare and bound the difference between the expecta-
tions and distribution functions of the non-Gaussian to Gaussian maxima:

Tp:= max X; and Zp:= max Y;,

I<j=p I<j=p
where vector X is defined in equation (1) and Y in equation (2). Here and in what
follows, without loss of generality, we will assume that (x;)!_; and (y;)?_, are
independent. In order to derive the main result of this section, we shall employ
Slepian interpolation, Stein’s leave-one-out method, a truncation method com-
bined with self-normalization, as well as some fine properties of the smooth max
function (such as “stability”). (The relative complexity of the approach is justified
in Comment 2.5 below.)

The following bounds on moments will be used in stating the bounds in Gaus-
sian approximations:

7 My := max (E[lxljlk])l/k.
l<j<p

The problem of comparing distributions of maxima is of intrinsic difficulty since
the maximum function z = (zy,...,2 p)’ > maxi<;<p z; is nondifferentiable. To
circumvent the problem, we use a smooth approximation of the maximum func-
tion. For z = (z1, ..., zp)/ € R?, consider the function

P
Fg(z) := ﬂ_l log(z exp(ﬂq)),
j=1
where 8 > 0 is the smoothing parameter that controls the level of approxima-
tion (we call this function the “smooth max function”). An elementary calculation
shows that for all z € R”,

®) 0= Fp(x) — max z; < B~ og p.
=J=p

This smooth max function arises in the definition of “free energy” in spin glasses;
see, for example, [41]. Some important properties of this function, such as stability,
are derived in the Appendix.

Given a threshold level u > 0, we define a truncated version of x;; by

~ = 1/2 = 1/2

©) &y =i {lxijl < w(E[xE]) ") = Elxi 1 {1x] < w(E[E]) )]
Let ¢y (1) be the infimum, which is attained, over all numbers ¢ > 0 such that
(10) E[x7 1 Ixij] > u(E[x2])"?}] < E[x7].
Note that the function ¢y () is right-continuous; it measures the impact of trun-
cation on second moments. Define u,(y) as the infimum over all numbers u > 0
such that

P(lxijl <uE[Z)* 1<isnl<j<p)zl-y.
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Also define ¢y (u) and uy(y) by the corresponding quantities for the analogue
Gaussian case, namely with (x;)7_, replaced by (y;)?_, in the above definitions.
Throughout the paper, we use the following quantities:

) =@y (u) V @y (u), u(y) =ux(y) Vuy(y).
Also, in what follows, for a smooth function g : R — R, write

Gi=sup|d*g(x)|.  k=0.
zeR

The following theorem is the main building block toward deriving a result of the
form (4).

THEOREM 2.1 (Comparison of Gaussian to non-Gaussian maxima). Let 8 >
0,u>0and y € (0,1) be such that 2+/2uM>B//n < 1 and u > u(y). Then for
every g € C)(R), [E[g(F5(X)) — g(Fs(Y)]| S Du(g, B, u, ), so that

[E[g(T0) — 8(Z0)]| < Du(g, B, u, v) + B~ G log p,

where
Du(g, B,u,y) :=n"V3(G3 + Gaf + G 1 B*)M3 + (G2 + BG 1) M3 ¢ (u)

+ G1Map(u)y/log(p/y) + Goy.
We will also invoke the following lemma, which is proved in [15].

LEMMA 2.1 (Anti-concentration). (a) Let Y1, ..., Y, be jointly Gaussian ran-
dom variables with E[Y;] = 0 and o7 := E[Y}] > 0 for all 1 < j < p, and let
ap :=E[max|<j<,(Y;/0;)]. Let 0 =min|<j<,0; and 6 = maxi<;<p0;. Then
for every ¢ >0,

supP( 1rsnjanij —z‘ < g) <Cgslap+,/1Vlog(a/s)},

zeR

where C > 0 is a constant depending only on o and 6. When o are all equal,
log(a/¢) on the right-hand side can be replaced by 1. (b) Furthermore, the worst
case bound is obtained by bounding a, by \/21og p.

By Theorem 2.1 and Lemma 2.1, we can obtain a bound on the Kolmogorov
distance, p, between the distribution functions of Ty and Z, which is the main
theorem of this section.

THEOREM 2.2 (Main result 1: Gaussian approximation). ~Suppose that there
are some constants 0 < c; < C| such that ¢ < E[xizj] <Ciforall<j<p.
Then for every y € (0, 1),

p < Cln= ¥ (M3 v My?) log(pn/y))"® + 0= (log(pn/v))uy) + v},

where C > 0 is a constant that depends on c| and C1 only.



GAUSSIAN APPROXIMATIONS AND MULTIPLIER BOOTSTRAP 2793

COMMENT 2.1 (Removing lower bounds on the variance). The condition that
E[xl-zj] > ¢y forall 1 < j < p cannot be removed in general. However, this condi-
tion becomes redundant, if there is at least a nontrivial fraction of components x;;’s
of vector x; with variance bounded away from zero and all pairwise correlations
bounded away from 1: for some J C {1, ..., p},

[J1=vp,  E[x7]=zel,

|E[x;xik]|

Elx} 1/ Elx;]

where v > 0 and v’ > 0 are some constants independent of n or p. Appendix J of
the SM [16] contains formal results under this condition.

<1—v Yk jeJxJ:k#],

In applications, it is useful to have explicit bounds on the upper function u(y).
To this end, let 4 :[0, co) — [0, 00) be a Young—Orlicz modulus, that is, a con-
vex and strictly increasing function with 4 (0) = 0. Denote by ~~! the inverse
function of . Standard examples include the power function A (v) = v? with in-
verse h_l(y) = yl/ 9 and the exponential function i(v) = exp(v) — 1 with in-
verse h~! (y) =log(y + 1). These functions describe how many moments the ran-
dom variables have; for example, a random variable £ has finite gth moment if
E[|£]9] < o0, and is sub-exponential if E[exp(|&|/C)] < oo for some C > 0. We
refer to [42], Chapter 2.2, for further details.

LEMMA 2.2 [Bounds on the upper function u(y)]. Let h:[0, co) — [0, co)
be a Young—Orlicz modulus, and let B > 0 and D > 0 be constants such that
(Ex;D'* < B forall 1 <i <n,1 < j < p and E[h(maxi<j<p |x;j|/D)] < 1.
Then under the condition of Theorem 2.2,

u(y) < Cmax{Dh~"(n/y), B\/log(pn/y)},

where C > 0 is a constant that depends on c| and C only.

In applications, parameters B and D (with M3 and M4 as well) are allowed to
increase with n. The size of these parameters and the choice of the Young—Orlicz
modulus are case-specific.

2.1. Examples. The purpose of this subsection is to obtain bounds on p for
various leading examples frequently encountered in applications. We are con-
cerned with simple conditions under which p decays polynomially in 7.

Let ¢; > 0 and C; > O be some constants, and let B, > 1 be a sequence of
constants. We allow for the case where B,, — 00 as n — 00. We shall first consider
applications where one of the following conditions is satisfied uniformly in 1 <i <
nand 1 < j < p:
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(E.1) ¢ <Elxjj] < Cr and maxg=1 2 Ellxi;|***/Bf] + Elexp(|xij1/By)] < 4;
(E2) ¢ < E[xizj] < Cy and maxg—1E[|x;;|*™*/BX] + El(maxi<;<, |xij|/
By <4.

COMMENT 2.2. As a rather special case, condition (E.1) covers vectors x;

made up from sub-exponential random variables, that is,
E[x}]>c1 and E[exp(|xij|/C1)] <2

(set B, = C1), which in turn includes, as a special case, vectors x; made up from
sub-Gaussian random variables. Condition (E.1) also covers the case when |x;;| <
B, for all i and j, where B,, may increase with n. Condition (E.2) is weaker than
(E.1) in that it restricts only the growth of the fourth moments but stronger than
(E.1) in that it restricts the growth of maxj<;<) [x;;|.

We shall also consider regression applications where one of the following con-
ditions is satisfied uniformlyin 1 <i <mnand 1 <j < p:

(E.3) x;j =zij&;j, where z;; are nonstochastic with |z;;| < By, E, [zl.zj] =1, and
Elsij]1=0, E[¢};] > c1, and E[exp(|s;;|/C1)] < 2; or

(E.4) x;j =zij€;j, where z;; are nonstochastic with |z;;| < By, E, [zl.zj] =1, and
Eleij] =0, B[e};] > ¢1, and E[max; <<, /] < C1.

COMMENT 2.3. Conditions (E.3) and (E.4) cover examples that arise in high-
dimensional regression, for example, [9], which we shall revisit later in the paper.
Typically, ¢;;’s are independent of j (i.e., &;; = ¢&;) and hence E[max <<, sfj] <
C| in condition (E.4) reduces to E[sl‘-‘] < C. Interestingly, these examples are also
connected to spin glasses, see, for example, [41] and [33] (z;; can be interpreted as
generalized products of “spins” and &; as their random “interactions”). Note that
conditions (E.3) and (E.4) are special cases of conditions (E.1) and (E.2) but we
state (E.3) and (E.4) explicitly because these conditions are useful in applications.

COROLLARY 2.1 (Gaussian approximation in leading examples). Suppose
that there exist constants ¢y > 0 and C> > 0 such that one of the following con-
ditions is satisfied: (i) (E.1) or (E.3) holds and B,%(log(pn))7/n < Con=°? or (ii)
(E.2) or (E.4) holds and Bf[(log(pn))7/n < Con=“2. Then there exist constants
¢ > 0and C > 0 depending only on c, Cy, c2, and Cy such that

p<Cn~°.
COMMENT 2.4. This corollary follows relatively directly from Theorem 2.2

with help of Lemma 2.2. Moreover, from Lemma 2.2, it is routine to find other
conditions that lead to the conclusion of Corollary 2.1.
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COMMENT 2.5 (The benefits from the overall proof strategy). We note in Ap-
pendix I of the SM [16], that it is possible to derive the following result by a much
simpler proof.

LEMMA 2.3 (A Simple GAR).  Suppose that there are some constants c¢i > 0
and Ci > 0 such that c; < E[xizj] < Cjp forall 1 < j < p. Then there exists a
constant C > 0 depending only on ¢\ and C1 such that

(11)  sup|P(To <1) —P(Zo < 1)| < C(n~" (log(pn))’) /¥ (E[S?])"/*,
teR

where S; 1= maxlgjfp(lxijl + |y,-j|).

This simple (though apparently new, at this level of generality) result follows
from the classical Lindeberg’s argument previously given in Chatterjee [10] [in the
special context of a spin-glass setting like (E.4) with €;; = ¢;] in combination with
Lemma 2.1 and standard kernel smoothing of indicator functions. In the SM [16],
we provide the proof using Slepian—Stein methods, which a reader wishing to see a
simple exposition (before reading a much more involved proof of the main results)
may find helpful. The bound here is only useful in some limited cases, for example,
in (E.3) or (E.4) when BS(log(pn))’/n — 0. When B®(log(pn))’/n — oo, the
simple methods fail, requiring a more delicate argument. Note that in applications
B, typically grows at a fractional power of n, see, for example, [14] and [17], and
so the limitation is rather major, and was the principal motivation for our whole

paper.
3. Gaussian multiplier bootstrap.

3.1. A Gaussian-to-Gaussian comparison lemma. The proofs of the main re-
sults in this section rely on the following lemma. Let V and Y be centered Gaus-
sian random vectors in R? with covariance matrices X" and XY, respectively.
The following lemma compares the distribution functions of maxj<;j<, V; and
maxj<;<p Y; in terms of p and

. Vv Y
Ag:= max |Z; — X5l
I<jk=<p

LEMMA 3.1 (Comparison of distributions of Gaussian maxima). Suppose that
there are some constants 0 < ¢1 < Cy such that ¢ < Zj)-/j <Cjiforalll <j<p.
Then there exists a constant C > 0 depending only on c| and Cy such that

sup‘P( max V; < t) - P( max Y; < r)‘ <CAYP(1viog(p/An)*?.

reR! M<j<p 1<j<p

COMMENT 3.1. The result is derived in [15], and extends that of [11] who
gave an explicit error in Sudakov—Fernique comparison of expectations of maxima
of Gaussian random vectors.
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3.2. Results on Gaussian multiplier bootstrap. Suppose that we have a dataset
(x;)?_, consisting of n independent centered random vectors x; in R”. In this
section, we are interested in approximating quantiles of

(12) To= max [lej

using the multiplier bootstrap method. Speciﬁcally, let (e;)!_, be a sequence of
i.id. N(0, 1) variables independent of (x;)}_,, and let

13 Wo— max ——S x e
(13) 0 lgaf)(pﬁ;x”el

Then we define the multiplier bootstrap estimator of the «-quantile of Ty as the
conditional a-quantile of Wy given (x;)!_,, that is,

cw, () :=inf{t e R:P,(Wp <1) > a},

where P, is the probability measure induced by the multiplier variables (e;)}_,
holding (x;)?_, fixed [i.e., P.(Wo <t) =P(Wo <t | (x;)7_,)]. The multiplier boot—
strap theorem below provides a nonasymptotic bound on the bootstrap estimation
error.

Before presenting the theorem, we first give a simple useful lemma that is help-
ful in the proof of the theorem and in power analysis in applications. Define

czy(e) :=inf{r e R:P(Zy <1) > a},
where Zo = maxi<j<p > i, yij/~/n and (y;)?_, is a sequence of independent

N(O, E[xl-xi/]) vectors. Recall that A = max|<; x<p [E,[x;jxix] — ]::[xijxik]l.

LEMMA 3.2 (Comparison of quantiles, I). Suppose that there are some con-
stants 0 < ¢; < Cq such that ¢; < E[xizj] <Cjiforall 1 <j < p.Then for every
ae(0,1),

P(ew, (@) <czy(la +7(3))) > 1 —P(A > ),
P(cz, (@) < cwy(x + () = 1 —P(A > ),
where, for C2 > 0 denoting a constant depending only on c1 and C1,

() = Cav' 3 (1 v log(p/9))*>.

Recall that p := sup, g [P(Ty < t) —P(Zp < t)|. We are now in position to state
the first main theorem of this section.
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THEOREM 3.1 (Main result 2: Validity of multiplier bootstrap for high-
dimensional means). Suppose that for some constants 0 < c¢; < Cy, we have
c1 < E[xizj] <Cjforall1 <j < p.Then forevery v >0,

poi= sup P({To<cw@)} & (T <ez@)) <2(p +7(2) +P(A > 7).

where 1 (-) is defined in Lemma 3.2. In addition,

sup |P(Tp < cwy (@) — | < pe + p.
ae(0,1)

Theorem 3.1 provides a useful result for the case where the statistics are maxima
of exact averages. There are many applications, however, where the relevant statis-
tics arise as maxima of approximate averages. The following result shows that the
theorem continues to apply if the approximation error of the relevant statistic by a
maximum of an exact average can be suitably controlled. Specifically, suppose that

a statistic of interest, say T = T (xy, ..., x,) which may not be of the form (12),
can be approximated by Ty of the form (12), and that the multiplier bootstrap is
performed on a statistic W = W(xy, ..., x,,e1,...,e,), which may be different

from (13) but still can be approximated by Wy of the form (13).
We require the approximation to hold in the following sense: there exist £; > 0
and ¢, > 0, depending on n (and typically ¢; — 0, {&» — 0 as n — 00), such that

(14) P(IT —Tol > ¢1) < &2,

(15) P(P.(IW — Wo| > ¢1) > &2) < 2.

We use the a-quantile of W = W (xy, ..., x,, e1, ..., e,), computed conditional on
(xi)?:13

cw (@) :=inf{r e R:P.(W < 1) > a}

as an estimate of the «-quantile of 7.

LEMMA 3.3 (Comparison of quantiles, Il). Suppose that condition (15) is sat-
isfied. Then for every a € (0, 1),

P(ew (@) <cwy(a+ )+ 4)>1—10,
Pew, (@) <cw(a+ ) +41) > 1— 8.

The next result provides a bound on the bootstrap estimation error.

THEOREM 3.2 (Main result 3: Validity of multiplier bootstrap for approximate
high-dimensional means). Suppose that, for some constants 0 < c¢; < C1, we
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have ¢ < E[xl.zj] < Cp forall 1 < j < p. Moreover, suppose that (14) and (15)
hold. Then for every v > 0,

Po = Sl(,:)pl)P({T < CW(O[)} S {TO =< CZ()(a)})

< 2(p+ () +P(A >9)) + C3¢1/1 Vlog(p/¢1) + 5¢2,

where m(-) is defined in Lemma 3.2, and C3 > O depends only on c1 and C1. In
addition, supy¢ o 1) IP(T < cw(a)) —a| < pg + p.

COMMENT 3.2 (On empirical and other bootstraps). In this paper, we fo-
cus on the Gaussian multiplier bootstrap (which is a form of wild bootstrap).
This is because other exchangeable bootstrap methods are asymptotically equiv-
alent to this bootstrap. For example, consider the empirical (or Efron’s) boot-
strap which approximates the distribution of Ty by the conditional distribution of
Ty =maxi<j<p i_) (x;kj — E,[xij1)/+/n where xi, ..., x; are ii.d. draws from
the empirical distribution of xi, ..., x,;. We show in Appendix K of the SM [16],
that the empirical bootstrap is asymptotically equivalent to the Gaussian multi-
plier bootstrap, by virtue of Theorem 2.2 (applied conditionally on the data). The
validity of the empirical bootstrap then follows from the validity of the Gaussian
multiplier method. The result is demonstrated under a simplified condition. A de-
tailed analysis of more sophisticated conditions, and the validity of more general
exchangeably weighted bootstraps (see [35]) in the current setting, will be pursued
in future work.

3.3. Examples revisited. Here we revisit the examples in Section 2.1 and see
how the multiplier bootstrap works for these leading examples. Let, as before,
¢2 > 0 and C> > 0 be some constants, and let B,, > 1 be a sequence of constants.
Recall conditions (E.1)-(E.4) in Section 2.1. The next corollary shows that the
multiplier bootstrap is valid with a polynomial rate of accuracy for the significance
level under weak conditions.

COROLLARY 3.1 (Multiplier bootstrap in leading examples). Suppose that
conditions (14) and (15) hold with {14/log p + ¢2 < Can™2. Moreover, suppose
that one of the following conditions is satisfied: (1) (E.1) or (E.3) holds and
B2(log(pn))’/n < Con=< or (i) (E.2) or (E.4) holds and B:(log(pn))’/n <
Con=2. Then there exist constants ¢ > 0 and C > 0 depending only on c1, Cq, ¢
and C» such that

pe = sup P({T <cw(@)} ©{To <cz(@)}) =Cn™".
ae(0,1)

c

In addition, supye(o,1) IP(T <cw(a) —af < pg+p <Cn~°.
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4. Application: Dantzig selector in the non-Gaussian model. The purpose
of this section is to demonstrate the case with which the GAR and the multiplier
bootstrap theorem given in Corollaries 2.1 and 3.1 can be applied in important
problems, dealing with a high-dimensional inference and estimation. We consider
the Dantzig selector previously studied in the path-breaking works of [6, 9, 43] in
the Gaussian setting and of [28] in a sub-exponential setting. Here we consider the
non-Gaussian case, where the errors have only four bounded moments, and derive
the performance bounds that are approximately as sharp as in the Gaussian model.
We consider both homoscedastic and heteroscedastic models.

4.1. Homoscedastic case. Let (z;,y;)]_; be a sample of independent obser-
vations where z; € R” is a nonstochastic vector of regressors. We consider the
model

yi:Z:ﬂ+8i7 E[gi]:O7 i:]‘!"”n’
2 .
Eulzi;]=1, j=1,...,p,
where y; is a random scalar dependent variable, and the regressors are normalized
in such a way that E, [zizj] = 1. Here we consider the homoscedastic case:

E[s7] =07, i=1,...,n,

where o2 is assumed to be known (for simplicity). We allow p to be substantially

larger than n. It is well known that a condition that gives a good performance
for the Dantzig selector is that g is sparse, namely ||B|lo < s < n (although this
assumption will not be invoked below explicitly).

The aim is to estimate the vector § in some semi-norms of interest: || - || ;, where
the label [ is the name of a norm of interest. For example, given an estimator B the
prediction semi-norm for § = E —Bis

1811pe := v Ea[(2}6)].

or the jth component seminorm for 8 is [|8||jc :=[§;[, and so on.
The Dantzig selector is the estimator defined by

-~ . . /
Ay — 7 <
(16) B carg min [[b]lr, subject to ‘/ﬁfél,agxpm”[z” (yi —zib)]| < A,
where ||Bll¢, = 25?:1 |8l is the £1-norm. An ideal choice of the penalty level A is
meant to ensure that
To:=~/n max }En[Zijc‘?[]’ <A
l<j=<p
with a prescribed confidence level 1 — o (where « is a number close to zero).
Hence, we would like to set penalty level A equal to

¢y (I — o) := (1 — a)-quantile of Ty,
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(note that z; are treated as fixed). Indeed, this penalty would take into account
the correlation amongst the regressors, thereby adapting the performance of the
estimator to the design condition.

We can approximate this quantity using the Gaussian approximations derived in
Section 2. Specifically, let

Zo:= o/ max [E,(zije;]]

where ¢; are i.i.d. N(0, 1) random variables independent of the data. We then esti-
mate c7, (1 — ) by

cz,(1 —a) := (1 — a)-quantile of Z.

Note that we can calculate cz,(1 — «) numerically with any specified precision
by the simulation. (In a Gaussian model, design-adaptive penalty level cz,(1 — a)
was proposed in [5], but its extension to non-Gaussian cases was not available up
to now.)

An alternative choice of the penalty level is given by

co(l —a):=a® (1 —a/2p)),

which is the canonical choice; see [9] and [6]. Note that canonical choice co(1 — «)
disregards the correlation amongst the regressors, and is therefore more conserva-
tive than ¢z, (1 — «). Indeed, by the union bound, we see that

czo(I —a) <co(1 — ).

Our first result below shows that the either of the two penalty choices, A =
cz,(1 —a) or A = co(1 — «), are approximately valid under non-Gaussian noise—
under the mild moment assumption E[el‘-‘] < const. replacing the canonical Gaus-
sian noise assumption. To derive this result, we apply our GAR to Ty to establish
that the difference between distribution functions of Tp and Zy approaches zero
at polynomial speed. Indeed T can be represented as a maximum of averages,
To = max|<k<2p n=1/2 St Zikei, for Z; = (2, —z;)" where z denotes the trans-
pose of z;.

To derive the bound on estimation error ||8]|; in a seminorm of interest, we
employ the following identifiability factor:

. (Ealzi; 8)])
= inf —_—
“1(p) S&Jkﬂp 181

where R(B) :=1{8 e R” :||B 4+ 5ll¢, < l|Bll¢,} is the restricted set; «;(B) is defined
as oo if R(B) = {0} (this happens if 8 = 0). The factors summarize the impact of
sparsity of true parameter value 8 and the design on the identifiability of 8 with
respect to the norm || - ||;.

ﬁeR@»MM#OL
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COMMENT 4.1 [A comment on the identifiability factor k;(8)]. The identifi-
ability factors «;(8) depend on the true parameter value . These factors represent
a modest generalization of the cone invertibility factors and sensitivity characteris-
tics defined in [43] and [24], which are known to be quite general. The difference
is the use of a norm of interest || - ||; instead of the £, norms and the use of smaller
(nonconic) restricted set R(B) in the definition. It is useful to note for later com-
parisons that in the case of prediction norm || - ||; = || - [|pr and under the exact
sparsity assumption || 8]lo < s, we have

(17) Kpr(B) = 27 s 2k (s, 1),

where « (s, 1) is the restricted eigenvalue defined in [6].

Next, we state bounds on the estimation error for the Dantzig selector B O with
canonical penalty level A = (9 := ¢o(1 — @) and the Dantzig selector BV with
design-adaptive penalty level A = A(D := cz,(1 —a).

THEOREM 4.1 (Performance of Dantzig selector in non-Gaussian model).
Suppose that there are some constants ¢y > 0, C1 > 0 and 02>0,anda sequence
B, > 1 of constants such that for all 1 <i <n and 1 < j < p: (i) |zij| < By;
(i) Eqlz};] = 1; (iii) Ele]] = 0?; (iv) El¢f] < C1; and (v) B;(log(pn))’ /n <
Cin=°1. Then there exist constants ¢ > 0 and C > 0 depending only on cy, Cy
and o such that, with probability at least | —a — Cn™¢, for either k =0 or 1,

~ 2.0
(O S
7 =Pl = ey

The most important feature of this result is that it provides Gaussian-like con-
clusions (as explained below) in a model with non-Gaussian noise, having only
four bounded moments. However, the probabilistic guarantee is not 1 — « as, for
example, in [6], but rather 1 —a — Cn ™, which reflects the cost of non-Gaussianity
(along with more stringent side conditions). In what follows, we discuss details of
this result. Note that the bound above holds for any semi-norm of interest || - ||7.

COMMENT 4.2 (Improved performance from design-adaptive penalty level).
The use of the design-adaptive penalty level implies a better performance guaran-
tee for ,8(1) over 8 ) Indeed, we have

2cz,(1 — @) - 2¢o(1 — @)
Vki(B) T nki(B)

For example, in some designs, we can have \/ﬁmaxlsjip IEnlzijei]ll = Op(1),
so that cz,(1 —a) = O(1), whereas co(1 — o)  /log p. Thus, the performance
guarantee provided by B can be much better than that of 8.
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COMMENT 4.3 (Relation to the previous results under Gaussianity). To com-
pare to the previous results obtained for the Gaussian settings, let us focus on the
prediction norm and on estimator B () with penalty level A = cz,(1 —a). Suppose
that the true value B is sparse, namely ||8|lo < s. In this case, with probability at
least ] —a — Cn™¢,

2ezy(1—a) _ 450l =) _ 45/2Tog@/2p))
JieB) © JakGs, D) Jak D

where the last bound is the same as in [6], Theorem 7.1, obtained for the Gaussian
case. We recover the same (or tighter) upper bound without making the Gaussianity
assumption on the errors. However, the probabilistic guarantee is not 1 — « as
in [6], but rather 1 —a — Cn™¢, which together with side conditions is the cost of
non-Gaussianity.

18 BV g, <

COMMENT 4.4 (Other refinements). Unrelated to the main theme of this pa-
per, we can see from (18) that there is some tightening of the performance bound
due to the use of the identifiability factor «p(B8) in place of the restricted eigen-
value x (s, 1); for example, if p =2 and s = 1 and the two regressors are identical,
then kpr(B) > 0, whereas « (1, 1) = 0. There is also some tightening due to the use
of ¢z, (1 — «) instead of co(1 — o) as penalty level, as mentioned above.

4.2. Heteroscedastic case. We consider the same model as above, except now
the assumption on the error becomes

oi2:=E[ei2]§02, i=1,...,n,

that is, o2 is the upper bound on the conditional variance, and we assume that this
bound is known (for simplicity). As before, ideally we would like to set penalty
level A equal to

¢ty (1 — o) := (1 — a)-quantile of Ty,

(where Ty is defined above, and we note that z; are treated as fixed). The GAR
applies as before, namely the difference of the distribution functions of Ty and its
Gaussian analogue Zg converges to zero. In this case, the Gaussian analogue can
be represented as

Zo:=+/n max |E,[z;joie]|.
I<j<p

Unlike in the homoscedastic case, the covariance structure is no longer known,
since o; are unknown and we can no longer calculate the quantiles of Zy. However,
we can estimate them using the following multiplier bootstrap procedure.

First, we estimate the residuals &; = y; — zfﬁ ©) obtained from a preliminary
Dantzig selector BO with the conservative penalty level 1 = 1D := ¢o(1 —
1/n) :=o® (1 —1/(2pn)), where o2 is the upper bound on the error variance
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assumed to be known. Let (¢;)
variables, and let

| be a sequence of i.i.d. standard Gaussian random

W :=/n max |E,[z;jEe]|.
I<j=<p
Then we estimate cz,(1 — «) by
cw(l —a) := (1 — a)-quantile of W,

defined conditional on data (z;, y;)7_,. Note that cy (1 — &) can be calculated nu-
merically with any specified precision by the simulation. Then we apply program
(16) with . = AV = ¢y (1 — @) to obtain B,

THEOREM 4.2 (Performance of Dantzig in non-Gaussian model with bootstrap
penalty level). Suppose that there are some constants c1 > 0,Cy; > 0, 62>0
and o* > 0, and a sequence B, > 1 of constants such that for all 1 <i <n and
1< j < p: () lzij| < Bus (i) Eulzf;] = 1; (iii) o* < Elef] < 0% (iv) Elg;] <
C1; (v) By (log(pn))’ /n < Cin™1; and (vi) (log p) Buco(1 — 1/n) / (/nipe(B)) <
Cn~ 1. Then there exist constants ¢ > 0 and C > 0 depending only on c1, C1, g2
and o? such that, with probability at least 1 — a — v, where v, = Cn~¢, we have

2D

19 G _ 2

Moreover, with probability at least 1 — vy,
WV = (1 —a) ez (1 — o+ ),

where cz,(1 — a) := (1 — a)-quantile of Zy; where cz,(1 —a) < co(1 — a).

COMMENT 4.5 (A portmanteu significance test). The result above contains a
practical test of joint significance of all regressors, that is, a test of the hypothesis
that Bp = 0, with the exact asymptotic size «.

COROLLARY 4.1. Under conditions of the either of preceding two theorems,
the test, that rejects the null hypothesis By = 0 if BV £ 0, has size equal to o +
Cn™°.

To see this note that under the null hypothesis of By = 0, B satisfies the con-
straint in (16) with probability (1 — a« — Cn™°), by construction of A; hence
1BD < 1Boll = 0 with exactly this probability. Appendix M of the SM [16] gen-
eralizes this to a more general test, which tests fgp = 0 in the regression model
Vi = dl.’ Yo + x{ Bo + i, where d;’s are a small set of variables, whose coefficients
are not known and need to be estimated. The test orthogonalizes each x;; with re-
spect to d; by partialling out linearly the effect of d; on x;;. The result similar to
that in the corollary continues to hold.
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COMMENT 4.6 (Confidence bands). Following Gautier and Tsybakov [24],
the bounds given in the preceding theorems can be used for Scheffe-type (simulta-
neous) inference on all components of By.

COROLLARY 4.2. Under the conditions of either of the two preceding theo-
rems, a (1 —a — Cn~°)-confidence rectangle for By is given by the region X?:l I;,
where I; = [B}" £ 2.1/ (nkic(B)].

We note that kjc(8) = 1 if I, [z;jz;x] = O for all k # j. Therefore, in the orthog-
onal model of Donoho and Johnstone, where [E,,[z;;z;x] = O for all pairs j # k, we

have that «jc(B) = 1 forall 1 < j < p,sothat [; = [,B\j-l) i2A(1)/ﬁ], which gives
a practical simultaneous (1 —a — Cn~°¢) confidence rectangle for 8. In nonorthog-
onal designs, we can rely on [24]’s tractable linear programming algorithms for
computing lower bounds on «(8) for various norms / of interest; see also [27].

COMMENT 4.7 (Generalization of Dantzig selector). There are many inter-
esting applications where the results given above apply. There are, for example,
interesting works by [1] and [23] that consider related estimators that minimize a
convex penalty subject to the multiresolution screening constraints. In the context
of the regression problem studied above, such estimators may be defined as:

B € arg min J(b)  subject to «/ﬁlgljagpmn [zij(yi —z;b)]| <2,

where J is a convex penalty, and the constraint is used for multiresolution screen-
ing. For example, the Lasso estimator is nested by the above formulation by using
J(D) = ||b|lpr, and the previous Dantzig selector by using J(b) = ||b||¢,; the es-
timators can be interpreted as a point in confidence set for 8, which lies closest
to zero under J-discrepancy (see references cited above for both of these points).
Our results on choosing A apply to this class of estimators, and the previous anal-
ysis also applies by redefining the identifiability factor x;(8) relative to the new
restricted set R(B) :={6 e R?: J(B+ ) < J(B)}; where «(B) is defined as oo if
R(B) ={0}.

5. Application: Multiple hypothesis testing via the stepdown method. In
this section, we study the problem of multiple hypothesis testing in the framework
of multiple means or, more generally, approximate means. The latter possibility
allows us to cover the case of testing multiple coefficients in multiple regressions,
which is often required in empirical studies; see, for example, [2]. We combine a
general stepdown procedure described in [38] with the multiplier bootstrap devel-
oped in this paper. In contrast with [38], our results do not require weak conver-
gence arguments, and, thus, can be applied to models with an increasing number of
means. Notably, the number of means can be large in comparison with the sample
size.
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Let B :=(B1,...,8 p)/ € R? be a vector of parameters of interest. We are in-
terested in simultaneously testing the set of null hypotheses H; : B; < Bo; against
the alternatives H]/. :Bj > Poj for j=1,..., p where By := (Bo1, ..., Pop) € RP.
Suppose that the estimator B = (31, . 3 ») € R? is available that has an approx-
imately linear form:

(20) ﬁ(ﬁ—m:%&m,

i=1

where x1, ..., x, are independent zero-mean random vectors in R”, the influence
functions, and r,;, := (ry1, .. ., r,,p)/ € R? are linearization errors that are small in
the sense required by condition (M) below. Vectors x, ..., x, need not be directly
observable. Instead, some estimators Xy, ..., x, of influence functions xi, ..., x,
are available, which will be used in the bootstrap simulations.

We refer to this framework as testing multiple approximate means. This frame-
work covers the case of testing multiple means with r, = 0. More generally, this
framework also covers the case of multiple linear and nonlinear m-regressions;
see, for example, [26] for explicit conditions giving rise to linearizaton (20). The
detailed exposition of how the case of multiple linear regressions fits into this
framework can be found in [13]. Note also that this framework implicitly covers
the case of testing equalities (H; : 8; = Bp;) because equalities can be rewritten as
pairs of inequalities.

We are interested in a procedure with the strong control of the family-wise error
rate. In other words, we seek a procedure that would reject at least one true null
hypothesis with probability not greater than o 4 o(1) uniformly over a large class
of data-generating processes and, in particular, uniformly over the set of true null
hypotheses. More formally, let €2 be a set of all data generating processes, and
o be the true process. Each null hypothesis H; is equivalent to w € £2; for some
subset €2; of Q. Let W:={l,..., p} and for w C W denote Q" := (¢, ;) N
(Mjgw Q;) where Qj :=Q\ ;. The strong control of the family-wise error rate
means

(21) sup sup P,f{reject at least one hypothesis among H;, j € w} < o +o(1),
WCW weQW

where P, denotes the probability distribution under the data-generating process w.

This setting is clearly of interest in many empirical studies.

For j=1,..., p,denote t; := ﬁ(@ — Boj). The stepdown procedure of [38]
is described as follows. For a subset w C W, let ¢j—_q 4 be some estimator of
the (1 — a)-quantile of max;c, ;. On the first step, let w(1) = W. Reject all
hypotheses H; satisfying f; > ¢1_q,(1)- If no null hypothesis is rejected, then
stop. If some H; are rejected, let w(2) be the set of all null hypotheses that were
not rejected on the first step. On step [/ > 2, let w(l) C W be the subset of null
hypotheses that were not rejected up to step /. Reject all hypotheses H;, j € w(l),
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satisfying #; > ¢1—q,w()- If no null hypothesis is rejected, then stop. If some H;
are rejected, let w(/ 4 1) be the subset of all null hypotheses among j € w(/) that
were not rejected. Proceed in this way until the algorithm stops.

Romano and Wolf [38] proved the following result. Suppose that ¢ 4, satisfy

(22) Clegw < Cl—g.uw” whenever w’ C w”,

(23) sup sup Pw(.

axtj > Cl—oe,w) <a+o(l),
wCW weQW? JEW

then inequality (21) holds if the stepdown procedure is used. Indeed, let w be the
set of true null hypotheses. Suppose that the procedure rejects at least one of these
hypotheses. Let [ be the step when the procedure rejected a true null hypothesis
for the first time, and let Hj, be this hypothesis. Clearly, we have w(/) D w. So,
maxt; =t > Cl—q,w(l) = Cl—a,w-
jew
Combining this chain of inequalities with (23) yields (21).

To obtain suitable c¢1_ 4, that satisfy inequalities (22) and (23) above, we can
use the multiplier bootstrap method. Let (¢;)?_; be an i.i.d. sequence of N (0, 1)
random variables that are independent of the data. Let ¢;_qo ,, be the conditional
(1 — a)-quantile of Y7_, X;je; //n given (X;)1_,.

To prove that so defined critical values cj—q 4, satisfy inequalities (22) and (23),
the following two quantities play a key role:

Ay:= max |rp;| and A,:= max E,[& —x;1)?].
1 1§j§p| ”]| 2 1<j<p n[( ij l]) ]

We will assume the following regularity condition:

(M) There are positive constants ¢y and Co: (i) P(y/log pA1 > Con™2?) <
Con™2 and (ii) P((log(pn))? Ay > Con~¢?) < Con~°2. In addition, one of the fol-
lowing conditions is satisfied: (iii) (E.1) or (E.3) holds and B,%(log(pn))7 /n <
Can~? or (iv) (E.2) or (E.4) holds and B2 (log(pn))’/n < Can=<2.

THEOREM 5.1 (Strong control of family-wise error rate). Suppose that (M) is
satisfied uniformly over a class of data-generating processes Q2. Then the stepdown
procedure with the multiplier bootstrap critical values c1—q,,, given above satisfy
(21) for this Q2 with o(1) strengthened to Cn™° for some constants ¢ > 0 and C > 0
depending only on c1, C1, c3 and Cj.

COMMENT 5.1 (The case of sample means). Let us consider the simple case
of testing multiple means. In this case, 8; = E[z;;] and ,B\J = [E,[z;;], where
Zi = (Zij)j-’zl are 1.1.d. vectors, so that the influence functions are x;; = z;; — E[z;;],
and the remainder is zero, r;, = 0. The influence functions x; are not directly
observable, though easily estimable by demeaning, X;; = z;; — E,[z;;] for all
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i and j. It is instructive to see the implications of Theorem 5.1 in this sim-
ple setting. Condition (i) of assumption (M) holds trivially in this case. Con-
dition (ii) of assumption (M) follows from Lemma A.l under conditions (iii)
or (iv) of assumption (M). Therefore, Theorem 5.1 applies provided that o? <
E[xizj] <52, (log p)7 < Cznl_c2 for arbitrarily small ¢, and, for example, either
(a) E[exp(]x;;j|/C1)] < 2 [condition (E.1)] or (b) E[max;<;<, x;‘j] < Cj [condi-
tion (E.2)]. Hence, the theorem implies that the Gaussian multiplier bootstrap as
described above leads to a testing procedure with the strong control of the family-
wise error rate for the multiple hypothesis testing problem of which the logarithm
of the number of hypotheses is nearly of order n!/7. Note here that no assump-
tion that limits the dependence between x;i, ..., x;, or the distribution of x; is
made. Previously, [4] proved strong control of the family-wise error rate for the
Rademacher multiplier bootstrap with some adjustment factors assuming that x;’s
are Gaussian with unknown covariance structure.

COMMENT 5.2 (Relation to simultaneous testing). The question on how large
p can be was studied in [22] but from a conservative perspective. The motivation
there is to know how fast p can grow to maintain the size of the simultaneous
test when we calculate critical values (conservatively) ignoring the dependency
among ¢-statistics #; and assuming that 7; were distributed as, say, N (0, 1). This
framework is conservative in that correlation amongst statistics is dealt away by
independence, namely by Sidak procedures. In contrast, our approach takes into
account the correlation amongst statistics and hence is asymptotically exact, that
is, asymptotically nonconservative.

APPENDIX A: PRELIMINARIES

A.1. A useful maximal inequality. The following lemma, which is derived
in [15], is a useful variation of standard maximal inequalities.

LEMMA A.1 (Maximal inequality). Let xi,...,x, be independent ran-
dom vectors in RP with p > 2. Let M = max|<;<, MaxX|<;<p |x;j| and o2 =
maxi<;<p E[xl-zj]. Then

[ max [EnLxis1 — Blvi || < 0/ oz p)/n 4 E[M2]dog p)/n.

PROOF. See[15], Lemma 8. [J

A.2. Properties of the smooth max function. We will use the following
properties of the smooth max function.
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LEMMA A.2 (Properties of Fg). Foreveryl < j, k,l <p,

0jFg(z) =m;(2), 0j0r Fp(z) = Bwjk(2), 8j3k31Fﬂ(Z)=/32q]‘k1(z),
where, for § j .= 1{j = k},

p
mj(z) = eﬂzf'/ Z ePom Wk (2) = (jdjk — mwjmp)(2),
m=1

qjk1(2) == (818 jk — w8 jk — 7 jm (81 + Spr) + 27 jrp7y) (2).

Moreover,
P 14 14
i) =0, Y mi@=1 > |lwik]<2, |gjx(2)] <6.
Jj=1 j.k=1 Jok, =1

PROOF. The first property was noted in [11]. The other properties follow from
repeated application of the chain rule. [J

LEMMA A.3 (Lipschitz property of Fg). For every x € RP and z € R, we
have |Fg(x) — Fg(z)| <maxj<j<p|x; —z;l.

PROOF. The proof follows from the fact that 3; Fg(z) = ;(z) with 7;(z) > 0
and Zﬁ.):l wi(z)=1. 0

We will also use the following properties of m = g o Fg. We assume g € Cg R)
in Lemmas A.4-A.6 below.

LEMMA A .4 (Three derivatives of m = g o Fg). Forevery 1< j, k,l < p,
djm(z) = (3g(Fp)m;)(2),
0;0km(2) = (9°g(Fp)mjmi + 08 (Fp) Bwjn) (),
0j0roym(z) = (838(F5)7Tj7Tk7T1 + 328(F5),3(wjkm + wjmE + wiT;)
+3g(Fp)Bqju) (2),

where 7wj, w i and q ji are defined in Lemma A.2, and (z) denotes evaluation at z,
including evaluation of Fg at z.

PROOF. The proof follows from repeated application of the chain rule and by
the properties noted in Lemma A.2. [

LEMMA A.5 (Bounds on derivatives of m = go Fg). Foreveryl < j, k,l <p,

|0;0km(2)| < Uj(2), |00k 0ym(2)| < Ujn(2),
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where
Uji(z) := (Gamjmp + G1BWjr)(2), Wik(z) = (w0 jk + 7 jm)(2),
Uk (2) := (Gamjmpm; + Gaf(Wjgmmy + Wim + Wir ) + G182 Q i) (2),
Qjki(2) = (818 jk + 78 ji + 7 jk (8 j1 + Spr) + 27 jrm;) (2).

Moreover,
p p
Y Ujk(2) < (G2 +2G1B), Y Uju(2) < (G3 + 6G2B + 6G152).
j,k:l j,k,l:l

PROOF. The lemma follows from a direct calculation. [J
The following lemma plays a critical role.

LEMMA A.6 (Stability properties of bounds over large regions). For every
zeRP, weRP withmaxj<p, |wj|B <1,7t€[0,1],and every 1 < j, k,I < p, we
have

Ujk(z) SUjk(z + tw) S Ujk(2), Uii(2) SUjk(z 4+ tw) SUju(2).

PROOF. Observe that
eliBrTw;p e%ib eTMmaxj<pw;l|p

< 627'[]' ().

wi(z+Tw) = < . . = =
f T v e e

Similarly, 7 (z + Tw) > e‘zrrj (2). Since U ji and U jy; are finite sums of products
of terms such as 7, g, 77, 6 i, the claim of the lemma follows. [

A.3. Lemma on truncation. The proof of Theorem 2.1 uses the follow-
ing properties of the truncation operation. Define x; = (%; j)le and X =n~1/2
Y7, Xi, where “tilde” denotes the truncation operation defined in Section 2. The
following lemma also covers the special case where (x;)?_; = (y;)7_,. The prop-
erty (d) is a consequence of sub-Gaussian inequality of [19], Theorem 2.16, for
self-normalized sums.

LE_MMA A7 (Tmngation impact). F_or every 1 < j,k <p and_q > 1,
(a) (EII%;17D" < 2(Ellxi; D" (b) Ell%ij%ik — xijxixl] < (3/2)(Elx];] +
E[x De@); () Exl(Elxij1{|xij| > u(ELxD 2] < Elx; 19> w). Moreover,

for a given y € (0, 1), let u > u(y) where u(y) is defined in Section 2. Then:
(d) with probability at least 1 — 5y, forall 1 < j < p,

X — X1 < 5\/E[x}Je) |/ 210g(p/y).
PROOF. See Appendix D of SM [16]. [
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APPENDIX B: PROOFS FOR SECTION 2

B.1. Proof of Theorem 2.1. The second claim of the theorem follows from
property (8) of the smooth max function. Hence, we shall prove the first claim. The
proof strategy is similar to the proof of Lemma I.1. However, to control effectively
the third order terms in the leave-one-out expansions we shall use truncation and
replace X and Y by their truncated versions X and Y, defined as follows: let %; =
(x; j)le, where X;; was defined before the statement of the theorem, and define

the truncated version of X as X = n~1/2 _1 Xi. Also let
12 -1
i == Gip)ioys Fij = yij {lyij| <u(E[y7])""}. Y=EZ%-

Note that by the symmetry of the distribution of y;;, E[y;;] = 0. Recall that we are
assuming that sequences (x;)?_; and (y;)?_, are independent.

The proof consists of four steps. Step 1 will show that we can replace X by X
and Y by Y. Step 2 will bound the difference of the expectations of the relevant
functions of X and Y. This is the main step of the proof. Steps 3 and 4 will carry out
supporting calculations. The steps of the proof will also call on various technical
lemmas collected in Appendix A.

Step 1. Let m := g o Fg. The main goal is to bound E[m (X) — m(Y)]. Define

I:l{max 1X; — X1 < Ay, w and max |Y; — ¥ <A@y, u)}
1<]<P

where A(y,u) := 5SMrp(u)/2log(p/y). By Lemma A.7, we have E[Z] > 1 —
10y . Observe that by Lemma A.3,

Im(x) —m(y)| < G1|Fg(x) — Fg(y)| < Gi max |x; — yjl,
I<j=<p

so that
[E[m(X) —m(X)]| < [E[(m(X) — m(X))Z]| + |E[(m(X) — m(X))(1 — T)]|
S GiA(y,u) + Goy,
[E[m(Y) —m(V)]| < |E[(m(Y) — m(¥))Z]| + [E[(m(Y) — m(¥))(1 — T)]|
S GiA(y,u) + Goy,
hence
[E[m(X) —m(Y)]| < [E[m(X) —m(Y)]| + G1A(y, u) + Goy.
Step 2 (Main step). The purpose of this step is to establish the bound:

[E[m(X) —m(¥)]| Sn~2(G3 + G2 + G1B*)M3 + (Ga + BG1)M3p(u).
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We define the Slepian interpolation Z(r) between Y and Z, Stein’s leave-one-
out version Z¥(z) of Z(t), and other useful terms:

L (i VT

Z(t) :=1X + l—t?:nzit, Zi(t) =
(t) v ; (t) (t) 7

and
1) == z i ’ ij \/_ \/— ,] —F—Vij

We have by Taylor’s theorem

P n 1
E[m(X) —m(¥)] = EZZ/ E[9;m(Z(1))Zi;(t)]dt 1(1 + 111+ 1),
2]=ll=1 0 2
where
Xp: n /1 0
E[9;m(Z2" (1)) Zi; ()] dt
j=1i=1"9 !
p n 1 '

=3 f E[8;0km (27 (1) Zij (1) Zix(1)]

jk=1i=1"9

x E[8;0caym(Z V(1) +1Zi (1)) Zij (1) Zix (1) Zis (1) ] d T dt.

By independence of Z @ (1) and Z; (1) together with the fact that E[Z; i(]1=0
we have / = 0. Moreover, in steps 3 and 4 below, we will show that

1 < (Ga+ BGOM3@), || Sn~2(Gs + Gaf+ G182 M3.

The claim of this step now follows. ‘ )
Step 3 (Bound on II). By independence of ZO(¢) and Zij(t)Zik (1),

11| = Z Z/ [8;0km (2 (1)) ]E[Zi; (1) Zix (1)] dt
J.k=1i=1
-y Zf [10;96m (2O )] - [E[Ziy () Za ()]
jk=1li=1

-y Yy / (Ui (2D 0)] - [E[2i (0 Zi 0] dt,

jk=1i=1
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where the last step follows from Lemma A.5. Since |/7%;j + /1 —13ij] <
23/2uM,, so that |ﬂ(ﬁiij + Jl_—tiij)/ﬁl < 1 (which is satisfied by the as-
sumption $2+v/2uM,//n < 1), by Lemmas A.6 and A.5, the last expression is
bounded up to an absolute constant by

Z Z/ Uj(Z0))]- [E[Zij () Zix(@)] | dt

Jj.k=1li=1

1 P n .
=/0 { Z E Jk Z(l) ]lfnj)’e}ép;|E[Zij(t)zik(t)]|dt

k=1

< (G2+G1,B)/ max Z|E Zii () Zix(1)]| dt.

Observe that since E[x,-jx,-k] = Elyijyik], we have that E[le N Zix ()] = n—!x
E[il]ilk )71])71/(] =n E[iljilk xl]xlk] + n- E[Yz]ytk yuyzk] so that
by Lemma A.7(b), Z =1 |E[ th O ZirD]| =< E[lejxlk - xl_/xlkl] + E[lyljylk
Viiyikll S (E[x 1+ E[xlk])w(u) < M22<p(u) Therefore, we conclude that |I7] <
(G2 + GlmM%co(u).

Step 4 (Bound on /I1). Observe that

m=y ¥ % / f (U (Z9() + 1 2:0)| 21 Zua () Zan ()] ] de i

jk=1i=1

e <o Y Y f [U5(ZD @) 25 (0 Ziae ) Zas () it

J.kiI=1i=1
o Y Y / (U (ZD0)] - E[| 24 () Zie () Z ()] it
J.k,iI=1i=1

where (1) follows from [0;0;dm(z)| < Ujx(z) (see Lemma A.5), (2) from
Lemma A.6, (3) from independence of Z @(t) and Z; () Zix(t)Z;;(t). Moreover,
the last expression is bounded as follows:

right—hand side of (24)

IS f Ujua(Z(0)] - E[| 24 (0) Zia () Zin ()| dt

J.k,iI=1i=1

—o [ EUZ@) 0B 250 Ze0 Zoo

J.k,=1
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Lk, [<p

p
<6 f ( Z E[U;u(Z(0) ])1 max_ nE[|Zi; (0 Zn(t) Za ()] dt

1
S0 (G3+Gap+Gi?) [ max nE[|Z1,0)Zu) Zu (o) dr

where (4) follows from Lemma A.6, (5) from definition of E, (6) from a trivial
inequality, (7) from Lemma A.5. We have to bound the integral on the last line.

Let w(t) = 1/(x/t A+/1 —1), and observe that

1
/0 max (|20 Zix (0 Zu (0] dr

= / () max nE[|(Zij (0)/w () Zik () Zi(1)|] dt

f o) max (B [1Zi; ) /0@ E[| Zi ) JE[| Za ) []) / at,

where the last inequality is by Holder. The last term is further bounded as

1 — ~ ~
<) n”z{/o w(t)dt} max E[(15;1+1551)’]

Sy n~ Y max (E[1%;;1°] + E[15;°])
I<j<p

Sen % max (E[|xi;1°] + E[|yi;1*])
1<j<p

Swy n1/2 lrgai(pEUX,ﬂ ]
where (1) follows from the fact that: |Zij(t)/w(t)| < (Zij |+ 13D/ | Zim (1)] <
(IZim| + |$im|)/+/n, and the product of terms E[(|%;;] + |5:;)1/3, E[(IXil +
15:xD31Y/3 and E[(|%i| + |5:11)?1'/? is trivially bounded by max;<;<, E[(|%;;] +
|§l~j|)3]; (2) follows from fol w(t)dt < 1, (3) from Lemma A.7(a), and (4) from
the normality of y;; with E[y}] = E[x}], so that E[|y;]’] < (BLy;D¥* =
(E[lxizj 132 < E[|x;; 1*]. This completes the overall proof.

B.2. Proof of Theorem 2.2. See Appendix D.2 of the SM [16].

B.3. Proof of Lemma 2.2. Since E[xl-zj] > ¢; by assumption, we have

Hlxij| > uE2 D2} < 1{lxij| > ¢)u}. By Markov’s inequality and the con-
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dition of the lemma, we have

P(|xij| > M(E[xl]])l/ for some (i, j))

< ZP( max |x;j| > ¢, 2u)

<j<p
111]

<ZP( (max |x,]|/D) > h(c 1/2Lt/D))

§n/h(c1 u/D).

This implies u,(y) < ¢; />Dh="(n/y). For uy(y). by yi; ~ N(0,E[x}]) with
E[x};] < B?, we have E[exp(y7;/(4B?))] < 1. Hence,

P(lyij| > u(]::[yl-zj])l/z, for some (i, j))

n p
<22 Pllyil > )

i=1j=1

n )4
<> P(lyijI/2B) > ¢,”*u/(2B))

i=1j=1
Snpexp(—ciu®/(4B?)).

Therefore, uy(y) < CB+/log(pn/y) where C > 0 depends only on c;.

B.4. Proof of Corollary 2.1. Since conditions (E.3) and (E.4) are special
cases of (E.1) and (E.2), it suffices to prove the result under conditions (E.1) and
(E.2) only. The proof consists of two steps.

Step 1. In this step, in each case of conditions (E.1) and (E.2), we shall compute
the following bounds on moments M3 and M4 and parameters B and D in Lem-
ma 2.2 with specific choice of h:

(E.1) BV M35V M2} <CB,,D<CB,logp, h(v)=e"—1;
(E2) BVDV M;V M2 <CB,, h(v) =v*

Here C > 0 is a (sufficiently large) constant that depends only on ¢ and Cp. The
bounds on B, M3 and M4 follow from elementary computations using Holder’s in-
equality. The bounds on D follow from an elementary application of Lemma 2.2.2
in [42]. For brevity, we omit the detail.

Step 2. In all cases, there are sufficiently small constants c3 > 0 and ¢4 > 0, and
a sufficiently large constant C3 > 0, depending only on ¢y, C1, ¢z, C2 such that,
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with £, :=log(pn!te3),
n=V2032 max{BeL/?, DR (')} < C3n,
n V(M3 v M) 8 < Canes,
Hence taking y = n~“, we conclude from Theorem 2.2 and Lemma 2.2 that p <
Cn—min{es.c4} where C > 0 depends only on ¢y, Cq, 2, C3.
APPENDIX C: PROOFS FOR SECTION 3

_ C.1. Proof of Lemma 3.2. Recall that A = maxj<;ji<p [En[xijxix] —
E[x;;jxir]l. By Lemma 3.1, on the event {(x;)!_;:A < ¢}, we have [P(Zp <
t) —P.(Wy <t)| <m (%) for all r € R, and so on this event

P.(Wo <cz,(a +7(9))) =P(Zo < czy(e + 7())) — 7 (P)
>a+n() —n(¥) =«,
implying the first claim. The second claim follows similarly.
C.2. Proof of Lemma 3.3. By equation (15), the probability of the event
{7 :Pe(|W — Wo| > ¢1) < &2} is at least 1 — &3. On this event,
P(W<cwy@+20)+2)=P-Wo<cwy(a+ ) —>a+H - =a,
implying that P(cw () < cw, (o + &) + ¢1) > 1 — &». The second claim of the

lemma follows similarly.

C.3. Proof of Theorem 3.1. For 9 > 0, let 7 (¢) := C,9'/3(1 vlog(p/9))*/3
as defined in Lemma 3.2. To prove the first inequality, note that

P({To < cwy (@)} © {To < cz,(@)})
<) Plezy(@ = (9)) < To < czy(a + () + 2P(A > 9)
<@ P(ezy(@ = (9)) < Zo < czy(a + 7(9))) + 2P(A > ) + 2p
<@) 27 (V) +2P(A > 9) + 2p,

where (1) follows from Lemma 3.2, (2) follows from the definition of p, and (3)
follows from the fact that Z has no point masses. The first inequality follows. The
second inequality follows from the first inequality and the definition of p.

C.4. Proof of Theorem 3.2. For ¢ > 0, let 7(¥) := C29/3(1 \/10g(p/19))2/3
with C2 > 0 as in Lemma 3.2. In addition, let «1 () := ¢z, (0 — {2 — 7 (¥)) and
k2(0) :=cz,(a + &2 + 7 ()). To prove the first inequality, note that

P({T < cw(a)} ©{Th < czy()})
<y P(k1(®) =281 < To < k2(9) +281) +2P(A > 9) + 34
<@ P(k1(9) — 281 < Zo < k2(9) +241) +2P(A > 9) +2p + 30

<@) 27 (P) +2P(A > ¥) +2p + C381,/1 Vlog(p/&1) + 582,
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where C3 > 0 depends on ¢ and C| only and where (1) follows from equation (14)
and Lemmas 3.2 and 3.3, (2) follows from the definition of p, and (3) follows from
Lemma 2.1 and the fact that Zp has no point masses. The first inequality follows.
The second inequality follows from the first inequality and the definition of p.

C.5. Proof of Corollary 3.1. Since conditions (E.3) and (E.4) are special
cases of (E.1) and (E.2), it suffices to prove the result under conditions (E.1) and
(E.2) only. The proof of this corollary relies on:

LEMMA C.1. Recall conditions (E.1)-(E.2) in Section 2.1. Then

| B21 B2(1 21
nlogp . (log(pn)) (ogp)’ under (E.1),
n n

Bilogp , Bj(logp)
n N

where C > 0 depends only on c| and C| that appear in (E.1)—(E.2).

E[A] <C x

, under (E.2),

PROOF. By Lemma A.1 and Hélder’s inequality, we have

EIA1 S M3 Gog p)/n -+ (E[max b ]) o p)/n.

The conclusion of the lemma follows from elementary calculations with help of
Lemma 2.2.2in[42]. O

PROOF OF COROLLARY 3.1. To prove the first inequality, we make use of
Theorem 3.2. Let ¢ > 0 and C > 0 denote generic constants depending only on
c1, C1, ¢z, C2, and their values may change from place to place. By Corollary 2.1,
in all cases, p < Cn~°. Moreover, ¢1/log p < Con™ 2 implies that ¢; < Con™?
(recall p > 3), and hence ¢1+/Tog(p/¢1) < Cn™¢. Also, £, < Cn™¢ by assumption.

Let ¥ =, := (E[A])!/?/log p. By Lemma C.1, E[A](log p)?> < Cn~°. There-
fore, m () < Cn~¢ (with possibly different ¢, C > 0). In addition, by Markov’s
inequality, P(A > ) < E[A]/¥ < Cn™°. Hence, by Theorem 3.2, the first in-
equality follows. The second inequality follows from the first inequality and the
fact that p < Cn™¢ as shown above. [
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Supplement to “Gaussian approximations and multiplier bootstrap for
maxima of sums of high-dimensional random vectors” (DOI: 10.1214/13-
AOS1161SUPP; .pdf). This supplemental file contains the additional technical
proofs, theoretical and simulation results.
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