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MODERATE DEVIATIONS FOR A NONPARAMETRIC ESTIMATOR
OF SAMPLE COVERAGE

BY FUQING Gao!

Wuhan University

In this paper, we consider moderate deviations for Good’s coverage es-
timator. The moderate deviation principle and the self-normalized moderate
deviation principle for Good’s coverage estimator are established. The results
are also applied to the hypothesis testing problem and the confidence interval
for the coverage.

1. Introduction. Let Xj;(n) be the frequency of the kth species in a ran-
dom sample of size n from a multinomial population with a perhaps countably
infinite number of species and let P, be probability measures under which the
kth species has probability pg, of being sampled, where p, = (pin; k > 1) with
Yl Pkn=1.Let Q, and F i (n) denote the sum of the probabilities of the unob-
served species, and the total number of species represented j times in the sample,
respectively, that is,

o o0
(1.1) 0n =Y pudrom),  Fin)=>Y_ &;n),

k=1 k=1
where 8y (n) = I{x,(n)=j}- Then 1 — O, is called the sample coverage which is
the sum of the probabilities of the observed species. Good (1953) proposed the
estimator

(12) 0, =1

for Q,.

The Good estimator Q,, has many applications such as Shakespeare’s general
vocabulary and authorship of a poem [Efron and Thisted (1976), Thisted and Efron
(1987)], genom [Mao and Lindsay (2002)], the probability of discovering new
species in a population [Good and Toulmin (1956), Chao (1981)], network species
and data confidentiality [Zhang (2005)]. Lladser, Gouet and Reeder (2011) con-
sidered the problem of predicting Q,. They studied prediction and prediction in-
tervals, and gave a real-data example.
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On the theoretical aspects, many authors studied the asymptotic properties [cf.
Esty (1982, 1983), Orlitsky, Santhanam and Zhang (2003), and Zhang and Zhang
(2009) and references therein]. Esty (1983) proved the following asymptotic nor-
mality:

. n(én_ On) [ L —u?/2
(1.3) nlgIgoPn(im §x> _/_Oo me du, x € R,

under the condition

(1.4) nll)r&@ 1€(0,1) and nl;ng()@ = € [0, 00),
where
(15) b(n) = Ex(Fi(m)(1 — Eq(F1())/n) +2E, (F2(n)).

Recently, Zhang and Zhang (2009) found a necessary and sufficient condition for
the asymptotic normality (1.3) under the condition

E,(F
(1.6) limsupM <1,
n—o0 n
that is, under condition (1.6), (1.3) holds if and only if both
(1.7) Tim (Eq(Fi (1) + En(Fa(n)) =
and for any ¢ > 0,
; | ¢ 2 o= "Pkn |
(1.8) nll>nc}o _2 Z(”Pk )e " {npk,,>evn} =0,
Sn k=1
where for any A > 0,
(o]
(1.9) s%n = Z(kpkne_kp"" + ()»pkn)ze_kpk”) and s, = Sun.
k=1

In this paper, we consider the moderate deviation problem for the Good estima-
tor. It is known that the moderate deviation principle is a basic problem. It provides
us with rates of convergence and a useful method for constructing asymptotic con-
fidence intervals. The moderate deviations can be applied to the following nonpa-
rameter hypothesis testing problem:

Hy:P,=PY and H;:P, =P,

where P,EO) and P,gl) are two probability measures under which the kth species has,
respectively, probability p,(( and p Dot being sampled, where p =( p,((’n); k>1)
with Y72, p(l) =1,i =0, 1. We can define a rejection region of the hypothesis

testing by the moderate deviation principle such that the probabilities of type I and
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type II errors tend to O with an exponential speed. The asymptotic normality pro-
vides +/b(n) as the asymptotic variance and approximate confidence statements,
but it does not prove that the probabilities of type I and type II errors tend to O
with an exponential speed. The moderate deviations can be applied to a hypothesis
testing problem for the expected coverage of the sample.

Gao and Zhao (2011) have established a general delta method on the moderate
deviations for estimators. But the method cannot be applied to the Good estima-
tor. In order to study the moderate deviation problem for the Good estimator, we
need refined asymptotic analysis techniques and tail probability estimates. The ex-
ponential moments inequalities, the truncation method, asymptotic analysis tech-
niques and the Poisson approximation in Zhang and Zhang (2009) play important
roles. Our main results are a moderate deviation principle and a self-normalized
moderate deviation principle for the Good estimator.

The rest of this paper is organized as follows. The main results are stated in
Section 2. Some examples and applications to the hypothesis testing problem and
the confidence interval are also given in Section 2. The proofs of the main results
are given in Section 3. Some basic concepts for large deviations and the proofs of
several technique lemmas are given in the Appendix.

2. Main results and their applications. In this section, we state the main
results and give some examples and applications.

2.1. Main results. Leta(t),t > 0, be a function taking values in [1, +00) such
that

2.1) lim & = 00, lim @ =0.

t—00 \/; t—oo t

We introduce the following Lindeberg-type condition: for any positive sequence
{Ap,n > 1} with A,,/n — 1 and any ¢ > O,

: 1 - 2 —X
(2.2) nll>nolo S_2 Z()\npkn) e~ Pk I{)»nPkn>8S,%/a(S,%)} =0.
n k=1

REMARK 2.1. Forany L > 1,

0
Y Capra)’e P I pr 1)
k=1

o0
L2/ exp{—L27} )" AnPrknl{127 <p, prn<L2i+1)
0 k=1

A Lexp{—L}.

IA
M2

00 ~.
I

=
2

LI(V,Z,T’I()W/TE) = 0Q, then (22) holds.

2
£8,

a(s?)’

In particular, take L = If lim,, s o
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THEOREM 2.1 (Moderate deviation principle). Suppose that the conditions

(1.6), (1.7) and (2.2) hold. Then { %, n > 1} satisfies a large deviation prin-
ciple with speed a(b(m) and with rate function I(x) = % In particular, for any

b(n)
r>0,

A 2
im0 jogp, (@200 Y
n—00 q2(b(n)) a(b(n))

R
THEOREM 2.2 (Self-normalized moderate deviation principle). Suppose that
conditions (1.6), (1.7) and (2.2) hold. Then

{ Vbmn(Qn = On) . 1}
a(bm)V/Fi(m)(T = Fi(n)/n) +2F(n)" ~
a*(b(m)

satisfies a large deviation principle with speed b and with rate function

2
.
I(x)=7=.
REMARK 2.2. Lett,, n > 1 be a sequence of positive numbers such that

0.

In
Vb(n)

Then Theorems 2.1 and 2.2 give the following estimates which are much easier to
understand and apply:

(2.3) t, 1 oo and

n(Qn — Qn) _

T 2 t,,) = exp{—(l +0(1))§}

P2

and

n(Qn — Qn) B i
b <i¢Fl W Fr/m T 250 - t”> - CXP{_(I +0(1))5}'

Set u, = Ey(Qn) = > 52 Pkn(1 — prn)". Then 1 — u, is called the ex-
pected coverage of the sample in the literature. By Theorems 2.1 and 2.2, and
Lemma 3.10, O, as an estimator of u, also satisfies moderate deviation princi-
ples.

COROLLARY 2.1. Suppose that conditions (1.6), (1.7) and (2.2) hold. Then

n(Qn—uty) Vo (Qp—uy) - )
{ atbay 1= 1} and {a(b(n))JFl(n)(l—Fl(n)/n)+2F2(n)’n > 1} satisfy the large de
2 2
viation principle with speed * lg?}g;‘)) and with rate function I (x) = %-.

REMARK 2.3. Lladser, Gouet and Reeder (2011) considered the problem of
predicting Q,, and obtained conditionally unbiased predictors and exact prediction
intervals based on a Poissonization argument. The moderate deviations for the
predictors are also interesting problems.
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2.2. Application to hypothesis testing and confidence interval. In this subsec-
tion, we apply the moderate deviations to hypothesis testing problems and confi-
dence interval. Let O, be the unknown total probability unobserved species, and
let Qn be the estimator defined by (1.2).

First, let us consider a nonparametric hypothesis testing problem. Let Pn(o)

and P,l(l) be two probability measures under which the kth species has, respec-
tively, probability p,, O and p,&) of being sampled, where p,(, =( pkn ; k> 1) with
dre lp(l) =1,i =0, 1. Denote by

(’)—Zp(l)l—p,(j; , i=0,1,

and
b )= ED(Fi)(1 — ED(Fi(n))/n) +2EP (F2(n)),  i=0,1.
Suppose that the conditions (1.6), (1.7) and (2.2) hold for P,fi), i =0, 1, and that
liminfluy” — uV] #0.
Consider the nonparameter hypothesis testing
Hy:P,=P® and Hy:P,=PD.

We take the statistic T, := 0, — u,(l ) as test statistic. Suppose that the rejection
region for testing the null hypothesis Hy against Hj is {a SO0 |T,| > c}, where ¢
is a positive constant. The probability «;, of type I error and the probability 8, of

type II error are

_ p(0) n _pf__"T
o, =P, (a(b(o)(n)) |T,| > c), Bn=P, (a(b(o)(n)) |Tn| < c),

respectively. It follows

0
B < P(l)(—|Qn —u| > <|u(0) ud| - a(d' )(n))c> n )
" \a®Mn) n a D (n))
Therefore, Corollary 2.1 implies that
fim 2O ¢ fim 200 s~ o
— g loga, = ——, A o
n—00 q2(b (n)) g ) =00 a2(b(D (n)) g

The above result tells us that if the rejection region for the test is {m |T,| >
c}, then the probability of type I error tends to O with exponential decay speed
exp{—c 2620 n)) / b (n))}, and the probability of type II error tends to O
with exponential decay speed exp{— —ra*(bM (n)) /b(l)(n)} for all » > 0. But the
asymptotic normality does not prove that the probabilities of type I and type 11

errors tend to O with an exponential speed.
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We also consider a hypothesis testing problem for the expected coverage of the
sample. We denote by P," the probability measures under which the expected
coverage of the sample is 1 — u,, and set

by, (n) := E;"(Fi(n))(1 — Ei*(Fi(n))/n) + 2E;" (F2(n)).

Suppose that the conditions (1.6), (1.7) and (2.2) hold for P, for each u,, > 0. Let

0< u,go) < ufll) be two real numbers preassigned. Consider the hypothesis testing

Hy:u, < uf,o) and Hj:u, > uf,l).

We also take the rejection region D, := {m(én — u,(lo)) > c}, where ¢ is a

positive constant. When u,, < u’(10)’

log P! (D,) < log P} ( (On—un) 2 ) a* by )
0 " ogP/n| ———— —u clr———-—
e S PTORTC)) R 2by, (1)
and when u,, > u,(f),
by, (n)
—————1log P'*(D¢) — —oo0.
b,y 2 (O)
Next, we apply the moderate estimates to confidence intervals. For given con-

fidence level 1 — «, set ¢y = _a2[Zl(7rér)l)) log . Then by Theorem 2.1, the 1 — «

confidence interval for Q,, is (Qn — @ca, Qn + @ca), that is,

(Qn — % —b(n)loga, Oy + %,/—b(n)logoz).

But the confidence interval contains unknown b(n). We use Theorem 2.2 to obtain
another confidence interval with confidence level 1 — « for Q, which does not
contain unknown b(n),

( A V=)A= Fi(n)/n) +2F (1)) loga

On — )

n

O+ V=(Fi(n)(1 — Fl(nn)/n) +2F2(n))10g0!)'

2.3. Examples. Let us check that some examples in Zhang and Zhang (2009)
also satisfy moderate deviation principles if a(n) =n?, where y € (1/2, 1). For a
given decreasing density function p,(x) on [0, 00). Define p;, = z, pn (i), where
In = (2?21 p,-,,)_l. Two concrete examples are as follows:

Let p,(x) = p(x) = a/(x + 1)?, where a > 0 and b > 1. By Example 1 in
Zhang and Zhang (2009), E, (F1(n)) < n'/? and log s,% = logn, where

.. Cp . Cn
¢n < b, means 0 < liminf — <limsup — < oo.
n—oo p, n— 00 "
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Thus (1.6) and (1.7) hold. By Remark 2.1, (2.2) also holds. Therefore, Theorems
2.1 and 2.2 hold.

Let p,(x) = px) = r;le*x/’", where r,/n < ¢ for some constant ¢ <
oo. Then by Example 2 in Zhang and Zhang (2009), limsup,,_, ., EBm) —

n
limsup,,_, o fol e M dy < fol e ¥/¢dy <1 and s%n” X Iy fo"/r”(l +t)e tdt <
r, when A, /n — 1. Thus, (2.2) is equivalent to

1
o(l)=— /
'n Jnp,(x)>ery/a(ry)
which holds if and only if r, — oco. Therefore, (1.6), (1.7) and (2.2) hold if and
only if r,, — 0.

(Anpn (X))ze**"””(x) dx = / te~! dt,

erpfa(ry) <t<ip/rp

3. Proofs of main results. In this section we give proofs of the main results.
Let us explain the idea of the proof of Theorem 2.1. First, we divide the proof into
two cases: case I and case II, according to the limit lim,,—, ~ E,(F1(n))/n € (0, 1)
and 0. For case I, by the truncation method and the exponential equivalent method,
we simplify our problems to the case which {np,r,k > 1,n > 1} is uniformly
bounded. For case II, by the Poisson approximation and the exponential equivalent
method, we simplify our problems to the case of independent sums satisfying an
analogous Lindeberg condition. For the two cases simplified, we establish moder-
ate deviation principles by the method of the Laplace asymptotic integral (Lemmas
3.7 and 3.8). The exponential moment estimate (Lemma 3.5) plays an important
role in the proofs of some exponential equivalence (Lemmas 3.6 and 3.9). The
main technique in the estimate of the Laplace asymptotic integral Lemma 3.7 is
asymptotic analysis. In particular, we emphasis a transformation defined below
(B.3) which plays a crucial role in the proof of Lemma 3.7.

We can assume that the population is sampled sequentially, so that X(m) —
X(m — 1), m > 1, are i.i.d. multinomial(1, p,) under P,, where X(n) = (X (n);
k > 1) can be viewed as a multinomial (n; p,) vector under P,, that is, for all
integers m > 1,

(1 — m_ n—X|——Xpy m_ Xk
n—x1— - —xp)xg!xp!
It is obvious that E,(F1(n))/n < 1. Since for any 1 < L < n,
2E,(F>(n))

1 =L Y Pl = pra)" 2 + sup np(1— p)" 2

NPkn <L nsz

2
<L L), Le—L(l = 5) :
1—L/n n n

we have that

2E, (F E,(F _
@3.1) lirnsupM < limsupM +e <2
n n

— 00 n n—o00
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and if limsup,,_, o, W =0, then limsup,,_, o, %2(")) = (. Without loss of
generality, we can assume that

E,(F
(32)  lim M:cle[o, 1) and lim
n— n n

— 00

E,(F
w = [0, 1].

Otherwise, we consider subsequence. The proof of Theorem 2.1 will be divided
into two cases,

casel: ¢; €(0,1); caseII: ¢1=0.

Now let us introduce the structrue of the proofs of main results. In Section 3.1,
we give several moment estimates and exponential moment inequalities which are
basic for studying the moderate deviations for the Good estimator. A truncation
method and some related estimates are also presented in the subsection. The proofs
of cases I and II of Theorem 2.1 are given, respectively, in Sections 3.2 and 3.3. In
Section 3.4, we prove Theorem 2.2. The proofs of several technique lemmas are
postponed to the Appendix.

3.1. Several moment estimates and inequalities. Forany L > 1 and o > 0, set
My ={k=linpr <L),  M;°={k=1npg>L)
and

My = {k > 15 npin < 0b(n)/a(b(n)},
MG, = (k= 1 npiu > 0b(n) /a(b()).

LEMMA 3.1. If c1 € (0, 1), then for any positive sequence {A,,n > 1} with
An/n— 1,

1
(3.3) lim limsup — Z (Anpikn + ()ank,,)z)e_}‘"pk" =0.

L n
o0 nmeo keMLe
In particular, condition (2.2) is valid.

PROOF. Similarly to Remark 2.1, for any L > 1,

Z An Pine Pl < Ane_L/(l — e_L),
keMEe

> (Auprn)*e *rPin < LA, exp{—L}.
keMEL¢

Therefore, (3.3) holds. [
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REMARK 3.1. From Lemma 1 in Zhang and Zhang (2009), under conditions
(1.6) and (1.7),
E,(Fi1(n)) +2E,(F2(n))

2
Sn

— 1, b(n)xs,%,

2
and if ¢1 € (0, 1), then lim,,_, 5o ;i =c]+2c > 0.

LEMMA 3.2. Assume that (2.2) holds. If 0 < A, <n and

n—»Ai,
limsup ——————— < o0,
n—oo na(b(n))/bn)
then
(3.4) St = (1 +0(D)sy

PROOF. Set r :=limsup,,_, o, WS%("). Then for any ¢ > 0, for n large
enough,
oo
S7on <€D (npkn + (nprn)*)e P
k=1

0
+ > (A Prn + Con Pkn) )P Ly = eb(n)/ 2ratbn)))) -
k=1

52
Ann

Therefore, by (2.2), the above inequality implies that limsup,,_, . <ef > 1

as ¢ — 0. On the other hand, it is clear that for any ¢ > 0, when n is lérge enough,

= Z()\npkn + ()"npkn)z)e_npkn > (1 - 8)25}%

2
which yields that liminf,,_, sig" > 1. Thus (3.4) is valid. [
LEMMA 3.3. Forany o >0,

1

1 .
E, (8kj(n)) — F(”pkn)Je_npk"

PROOF.  Since (1 — py,)"~/ = e™"Pkn (14 O (b(n)/a*(b(n)))) holds uniformly
on M,,Q for j = 1,2, we obtain that

pznu — pin)" ™ = (npn) e Pk

MkeM ‘(

n!

m —(1+ O(b(n)/az(b(n)))) =o(1).

J ,—NDkn
= b )ke% (npin)’ e
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That is, (3.5) holds. [

In order to obtain the exponential moment inequalities, we need some concepts
of negative dependence; cf. Joag-Dev and Proschan (1983), Dubhashi and Ranjan
(1998). Let 11, 12, . . . be real random variables. iy, 12, ... are said to be negatively
associated if for every two disjoint index finite sets A1, Ay C {1,2,...},

E(f(m, ke A)gi, k€ A2)) < E(f (k. k € A1))E(g(nk. k € Ay))

for all nonnegative functions f:R”! — R and g:R"2 — R that are both nonde-
creasing or both nonincreasing.

LEMMA 3.4. {Xy(n), k > 1} is a sequences of negatively associated random
variables, and for each 0 < j < n {Sko(n) + 81 (n) + -+ + 8j(n), k > 1} is also
negatively associated.

PROOF. Let §;" denote the frequency of the kth species in the mth sampling,
that is,
8 = I{Xe(m)~Xe(m—D)=1)-

Then 8;(”, k > 1 are zero-one random variables such that Z,‘?i 1 8;21 = 1. By
Lemma 8 in Dubhashi and Ranjan (1998), 8;", k > 1, are negative associated. Since
{6, k>1},m=1,...,n,areiid.under P,, 8",k > 1,m =1, ..., n, are negative
associated. Noting that Xy (n) =}, _, 6" and

Sko(n) + 81 (n) + - -+ + 8k (n) = ¥ (X (n)),

where ¥ (x) = I(_,jj(x) is a decreasing function, we obtain that {Xy(n), k >
1} and {8xo(n) + 8k1(n) + --- + 8k;(n), k > 1} are two sequences of negatively
associated random variables. [

LEMMA 3.5. Let M be a subset of the set N of positive integers. Then for any
rekR,

(3.6) E&thmmwﬂ%ﬂHMM—mhmﬂ+n

keM keM

and for any j > 1,

E, <exp{r Z (Bko(n) + k1 () + - - + 8 (”))}>

keM

J
_H@—12MZW%wme+q
l

3.7
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PROOF. For any r € R given, set ¢ (x) = e"P#*, x € R. Then, when r > 0,
all ¥, kK > 1 are nonnegative and increasing; when r < 0, all Y, kK > 1 are non-
negative and decreasing. Therefore, by Lemma 3.4,

E, <6XP{F > pkn5ko(n)}> < [T En(exp{rpindrom)})

keM keM

< [T = 1) = p)" +1).

keM

Similarly, we can obtain (3.7). [

As applications of Lemma 3.5, we have the following exponential moment es-
timates. Its proof is given in Appendix B.

LEMMA 3.6. (1) Forany j =0,1,2andr e R,
b(n)

lims
ol 22 (b(n))

2(b
xlogEn(ex (mbg(g» S S (ot - akmn))))) 0.

keM;, 1=0

(3.8)

) Ifc1 €(0,1), then forany j =0,1,2 andr e R,

limsup lim sup ———F— b(n)
L—>oo h—>00 a2(b(n))
3.9) j
xlogEn(ex (ra(b(l’l)) Z ZSkl(n)_ 3kl(”))))> <0
by Lo o
and
lim sup lim su b(n)
Lo nsee a2(b(n))
(3.10)

><logEn(exp(M )> pkn(ako(m—En(ako(n)))))so.

b(n) keMLe

3.2. The proof of Theorem 2.1: Case 1. In this subsection, we use the Gértner—
Ellis theorem to show Theorem 2.1 under c; € (0, 1). The Laplace asymptotic
integral plays a very important role.

By Lemma 3.1, if ¢ € (0, 1), when L is large enough,

@11 blm) = E (FEm)(1 — Eo(FEn))/n) 4+ 2E,(FF (n)) < n
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and

’

bk (n) 1‘

3.12 lim li —
( ) im limsup )

L—0o0 np—oo

where F].L (n) = ZkeMnL dkj(n), j = 1. In this subsection, We assume that L is large
enough such that bL(n) < n and a(bt (n)) < a(n).

The following Laplace asymptotic integral is a key lemma. It will be proved in
Appendix B.

LEMMA 3.7. Suppose that conditions (1.6) and (1.7) hold. If c¢1 € (0, 1), then
forany a e R,

bl
1% 2GL )
(3.13) (bL( ) )
x log E, (exp{% S (51 n) — npknsko(n))}) =2
keME

PROOF OF THEOREM 2.1 UNDER c¢; € (0,1). By the Girtner—Ellis the-
orem [cf. Theorem 2.3.6 in Dembo and Zeitouni (1998)] and Lemma 3.7,
{m ZkeMnL (6k1(n) — nprndro(n)), n > 1} satisfies a large deviation princi-

d Lolm)

L (n) and with rate function 7 (x) = % By Lemma 3.9, we only

ple with spee
need to check

, . b(n)
lim sup lim sup ————
L—oo n—>0 az(b(n))

A

_ n(Qn — On)

> (8k1(n) — npradro(n)) 26)

(3.14) x log P, (
keME

)

1
a(b*(n))
= —00.

It is obvious that

P”(

(3.15) < P,,(

A

a(b(n))

Z (8k1 (n) — npkn3ko(n)) -
keML
a(bt(n)) — a(b(n))
a(bt(n))a(b(n))

)

> (Bram) — ”Pkn3k0(n))‘ > s/2>

keMmk

a (bt (n))

1
+ Pn< > (npndro(n) — 8x1 (n))‘ > 8/2),

abm) | =
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From (3.12) and {m ZkeM,f (8k1(n) — nprndro(n)), n > 1} satisfies the large
deviation principle, we obtain that for any ¢ > 0,

i i bL(n)

Lo S a2 b (n))

a(bt(n)) — a(b(n))
a(bt(n))a(b(n))

(3.16) x log Pn<

S (81 () — npknako(m)‘ > e)

keM}
= —0OQ.

By Lemma 3.6 and Chebyshev’s inequality, we have that for any ¢ > 0,

| b(n) n
B SIS L2 by 1O "(a(b(n))‘k%upk" o) Eulo)| = )

= —00

and for j =0, 1,

J
Z 8kt (n) — En(8r1(n)))| =

limsuplimsup ————

b(n) " (
msup M 2w 2\ atw )|,

ey —OO’

eMEe

which implies that for any ¢ > 0,

limsuplimsup ———— b(n)
L—oco n—oo a (b( ))

(3.17) x log P ( (nprndio(n) — 8k (n))‘ > 8)

a(b(n))

ke MLc

= —0OQ.

Now, (3.14) follows from (3.16) and (3.17). Therefore, the conclusion of Theo-
rem 2.1 holds under c; € (0,1). [

3.3. The proof of Theorem 2.1: Case 1. In this subsection, we show Theo-
rem 2.1 under ¢; = 0. In this case, since {np;,,i > 1,n > 1} cannot be truncated
as a uniformly bounded sequence, the asymptotic analysis techniques in the first
case cannot be used. The proof of this case is based on the Poisson approximation
[cf. Zhang and Zhang (2009)] and the truncation method.

Let first us introduce the Poissonization defined by Zhang and Zhang (2009).
Define

e A
(3.18) =) (8k1(n) — npradro(n)) = n(Qpn — Q).

k=1
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Let N, be a Poisson process independent of {X(m), m > 1} with E,(N,) = A.
Define the Poissonization ¢, of &, as follows:

o
(3.19) On=)_Yin  where Yiu, =81 (Ny) — Aprndio(Ny).
k=1
Under probability P,, Xi(N,), k > 1 are independent Poisson variables with
means Apg,, so that Y, ,, kK > 1 are independent zero-mean variables with variance
akzM = Aprne Pk ()kan)ze_)‘f’k" . Then the Poissonization {¢,,, n > 1} satisfies
the following moderate deviation principle.

LEMMA 3.8. Let conditions (1.6), (1.7) and (2 2) hold. Then { {"’;), > 1}
2
satisfies a large deviation principle with speed S—z" and with rate function
Ix)=%.

PROOF. For any @ € R,

2
b 22, )
2
A o2
aa(s,%)}

n
((1 —HNPkn — npine npkn) +npk e —NPkn exp{ 5
S

n
2
+ e~ "Pkn exp{ 7aa(s ) nPin })
Sn

For any ¢ € (0, 1/2] such that |x|e < 1/2, for n large enough, we can write

3

]
P
o

I ix, (N,)=1) — MPrknL{x, (N3, )= 0})}>
k

—_

[
18

k=1

1 — e_npkn _ npkne_npkn

2 2

aa(s —aaf(s

+ npgpe” P exp{ 7;2") } + ek exp{ 7S2( ”)npkn}
n n

1 faa(s2)\? a(s?)\?
=1+ —( (2”)> (nPkn + (npin)*)e ™"V +o<< (2”)) )npkne_””""
2\ sp S5

aa(s?) aa(s?)\?
+( SZ” nPkn —5( 2 ) (nPin) ) T L =52 /a(s2))

n n

23\ 3
a(s,) B
+ 0(( Szn ) )(npkn)3e NPkn I{”PknESS,%/a(sr%)}
n

_ aa(s?)
+ Pk (exp{is npkn} — l)l{npk,,>ss%/a(s,%)}'

n
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By (2.2),

1
a(sD) & Z”Pkne L > 52 fa ()

[~ )
<— Z i) €™ Ly e fa(s) = O
l’l k=1

and

—ua (sz)
2(s2) Ze e (eXP{ ”Pkn} - 1>I{npkn>ss,%/a(s3)}

o

2 _ 242
5 Z(npkn)Ze nprn (1=latla(sy) /sy )I{npk,,>852/a(32)} - 0.

Therefore, by a(;) L% (nprn)3e T i <es?ja(s2)y = € —> 0 as e > 0, we
have that
2

I log E, aa(s,%) _a2
”Lngoaz(s) og (exp 2 Snn =5

n

which implies the conclusion of the lemma by the Girtner—Ellis theorem; cf. The-
orem 2.3.6 in Dembo and Zeitouni (1998). [

By Lemmas 3.8 and A.1, we need the following exponential approximation: for
any € > 0,

) b(n)
(3.20) Jlim_ Wr(ln)) log P, (1€ — Zun| > a(b(n))) = —oo.

Let us first give a maximal exponential estimate. Its proof is postponed to Ap-
pendix B.

LEMMA 3.9. Let conditions (1.6), (1. 7) and (2.2) hold, and let c1 = 0. For

any M > 1 fixed, set A, =n — Ma(b(n)) b(n)’ A, =2Ma(b(n)) b(n Then for
any ¢ > 0,
(3.21) 1 im b(n) an< max  |&on — &l > sa(b(n))> = —00.

~00 a2(b(n)) 1€l hntAal " =

PROOF OF THEOREM 2.1 UNDER ¢; =0. By Lemmas 3.8 and A.1, we only
need to prove (3.20). Set #, = inf{A; N, = n}. Then ¢, has gamma(n, 1) distribu-
tion and &, — {0 = (8 — 1) Z,‘?il Pindro(n). Therefore, for any ¢ > 0 and any
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M=1,

<&Om—MEMWMmQ?Q+P(Xhmmmni% bw)
k=1

P ( ma | > w(b(”)))
n X n nl — — ~ .
teln—~An/2,n+A,/2] ¢ ¢ 2
By Lemma 3.9,
) b(n) Ea(b(n))>
3.22 1 ———log P, — > ——— ) =—
(3-22) lm 5 ) 08 <t€[n ATAX 1o T Sl =2 =5 o°

By Chebyshev’s inequality, it is easy to get that

(323)  lim timsup a;zl(?”(l))) 0g n<|¢n — | = Ma(b(n)) /b? )) — 00

Therefore, we only need to prove that

b o0 b
(3.24)  limsup a2(1(92)) log P, (Z Dindro(n) > ﬁ ﬂ) —

It is sufficient that for any r > 0,

b(n) ra?(b(n))
(325  lim % 20 gEn(exp< o) b Zpknéko(n)>>

In fact, by Lemma 3.5, we can get that for any r > 0,

2(b
log E,, <exp(m b((n()n)) Vb Z Panko(n)»
- 2ra>(b(n)) [ n
- b b(n)
X g(z?kne””"” ~+ Dkn exp{—n(l — mn;(g)) ,b?n)>pk”}>
_ ra*(b(n)) [ n <2ir%+5§nn)’
- b(n) b(n)\ n A

where A, =n(1 — mjlgl(’,g’)m b(n 5), which implies that (3.20) holds.  [J
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3.4. Proof of Theorem 2.2. By the comparison method in large deviations [cf.
Theorem 4.2.13 in Dembo and Zeitouni (1998)], in order to obtain Theorem 2.2,
we need the following lemma.

LEMMA 3.10. Foranye >0, for j =1,2,

(3.26) limsup 2(2())) log P,(|Fj(n) — E,(Fj(n))| > eb(n)) = —
PROOF. By (3.8), for j =1, 2, forany ¢ > 0 and ¢ > 0,

1
(3.27) llnnl)solép az(}i())) 0g ”<b( ) k% (5kj(”) — En(Skj(n)))‘ > 8) = —00.

Therefore, by Lemma 3.3, it suffices to show that

: b(n)
limsup limsup ————
o0—0 n—>oo a (b(l’l))

) ( ) — %(npkn)fe—"f’knﬂ > s)

(3.28) x log P, (
keMy,

b(n)
= —00.

Now, let us show (3.28). Using the partial inversion formula for characteristic
function due to Bartlett (1938) [see also Holst (1979), Esty (1983)], for any r € R,

E, (expi ry. (akj (n) - %(npknv e—"Pkﬂ) })
k=1 '

= Sante —nf l_[ E,(exp{iu(Ye(n) — npin)})

T keMg,

X 1_[ E,,(exp{iu(Yk(n)—npkn)
keMy,

+r<I{Yk(n)j —(nl?k )e "p"”)})du,

where Y (n), k > 1 are independent random variables and Y (n) is Poisson dis-
tributed with mean npin- Let yi(u) be defined as in the proof of Lemma 3.7, that
is, yx(u) = exp{npin(e'* — 1 —iu)}. Set

Uy (u, @)

2
= (exp{iju — npgn (€™ — 1)}(exp{%€g))} — 1)%(npkn)je—npkn + 1)

aa’(b(n)) 1 [—
. { Py 1P k}‘
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Then for any o € R,

(o0 5 (o0 o))

keM,,

n! T iu_1_;
7/ et i) l_[ H(u, ) du.

= npy—n
2nn'te - KMy,

Set t(n) = /a(b(n)/b(n). Then nlfzg(':l) = izi()bl&%;l < Vb(”}i logn . (), and noting

that ZkeMnQ npin <N, ZkeMnQ (npn)? < onb(n)/a(b(n)), we obtain that for o

small enough,
e =1 T ﬁk(u’a))
2
< _b(n)nr (n) (1 0( logn

keM,,

bn) log<nl/2 sup
(b)) i) F0@) = =

a?(b(n)) lu|€lt(n), 7]
Since SUp, e[ ¢ (n),z(n)] SWPkeM,, MPkn(1 —cosu)| < g, on [—1(n), T(n)],

en(ei"—l—iu) 1_[ O (u, )

keMp,
o2a?(b(n))\\ a(b(n)) n
= 0 0 ——u*(14+ 0m)o(1))}.
x| (0@ +0(*5 ) )| el -5+ 0wt
Thus
b t(n) iu ;
limsuplimsupz(in)log‘/ nl/2en(e=1=iu) 1_[ Or(u,a)du| =0
0—0 n—o0 a (b(l’l)) —1(n) keM,,
and so
limsup limsup — logE, | expyr Z Skj(n) — — (npgp)’ e "Pkn <0.
0—0 n—oo a (b(n)) kM, Jj!

This yields that (3.28) holds. [J

PROOF OF THEOREM 2.2. By Lemma 3.10, for any & > 0,

lim sup b log P,,( b@) — 1‘ > 8) = —00.
n—oo a2(b(n)) Fi(m)(1 — Fi(n)/n) +2F(n) |~
Now, by
VB (Qn — On) (00— Q)
a(bm)/Fi) (I — Fi()/n) +2F2(n) ~ a(b(n))
n(On — On)

’

‘ \/ b(n) o
Fi(n)(1 = Fi(n)/n) +2F,(n)

a(b(n))
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and the elementary inequality |x — 1| = |x2 — 1|/|x + 1| < |x? — 1| for all x > 0,
we obtain that

VB (Qy — On)
a(b(n))/Fin)(1 — Fi(n)/n) + 2F>(n)
(O — Q)
a(b(n))

, b
hr?l)solép % log P, (

(3.29)

)

Therefore, the conclusion of the theorem follows from Lemma A.1 or Theo-
rem 4.2.13 in Dembo and Zeitouni (1998). [

= —0OQ.

APPENDIX A: SOME CONCEPTS OF LARGE DEVIATIONS

For the sake convenience, let us introduce some notions in large deviations
[Dembo and Zeitouni (1998)]. Let (X, p) be a metric space. Let (2, Fy, Py),
n > 1 be a sequence of probability spaces and let {n,,n > 1} be a sequence of
measurable maps from €, to X'. Let {1,,n > 1} be a sequence of positive num-
bers tending to +o00, and let I : X — [0, +00] be inf-compact; that is, [/ < L] is
compact for any L € R. Then {5,,n > 1} is said to satisfy a large deviation prin-
ciple (LDP) with speed A, and with rate function I, if for any open measurable
subset G of X,

N | :
(A.1) lkn_l)loléfﬁ log P,(n, € G) > —xnelg I(x)
and for any closed measurable subset F' of X,

1
(A.2) limsup — log P,,(n, € F) < — inf I (x).
A xeF

n—oo Ap

REMARK A.1. Assume that {n,,n > 1} satisfies , — w in law and a fluctua-
tion theorem such as central limit theorem, that is, there exists a sequence [, — 00
such that [,,(n, — ) — n in law, where p is a constant and 7 is a nontrivial ran-
dom variable. Usually, {n,,n > 1} is said to satisfy a moderate deviation principle
(MDP) if {r,(n, — n),n > 1} satisfies a large deviation principle, where r, is an
intermediate scale between 1 and [,, that is, r, — oo and r;,/[,, — 0.

In this paper, the following exponential approximation lemma is required. It is
slightly different from Theorem 4.2.16 in Dembo and Zeitouni (1998).

LEMMA A.1. Let{n,,n>1}and {77,%, n > 1}, L > 1 be sequences of measur-
able maps from 2, to X. Assume that for each L > 1, {n,f, n > 1} satisfies a LDP
with speed )»,f and with rate function 1. If
)\L
i 1‘ 0

n

(A.3) lim limsup

L—o0 n—soo
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and for any ¢ > 0,

1
(A4) hm hmsup —log Py (p(1n, 775) > ¢) = —00,

L—>00 n—soo Ap

the {n,, n > 1} satisfies a LDP with speed A, and with rate function I .

PROOF. Set I (A) =infyc4 I (x). For any closed subset F,
P(ny € F) < P(ny € F*)+ P(p(nn. n}) =€),
where F® ={y € X;infycr p(y,x) < ¢e}. By (A.4),
P(p(n.nf) = &) < e 2 FIHD
for large n and L. Therefore, for large n and L
P(U,f € F%) + P(p(1. ,75) >g) < e~ (F)Fo(D) 4 p=ra(I(F)+D)
and so
llmsup—logP(nn € F)<—I(F®)— — inf I(x).
n— 00 n xeF

The argument for open sets is similar and is omitted. [

APPENDIX B: PROOFS OF LEMMAS 3.6, 3.7 AND 3.9

In this Appendix, we give the proofs of several technique lemmas. The proofs
of Lemmas 3.6 and 3.9 are based some exponential moment inequalities for nega-
tively associated random variables and martingales. The refined asymptotic analy-

sis techniques play a basic role in the proof of Lemma 3.7.

PROOF OF LEMMA 3.6. (1) By Lemma 3.5, we have that for any r € R, and

j=0,1,2,

2(b(n)) /
log E,, (ex (rabz(n’; Z Z (81 (n) — 5k1(”)))>>

keM§, 1=0

2(b(n)) / ! e
< 3 (log{ (exn{ e} 1) 2 et = e

keMg, 1=0

ra2(b(n)) &~ n! .
TR Xy e

=0

_abm) r2a*(b(n))
b(n) b(n)

1 2
<§ npgné€ —HPkn Z

X —_—
b(m) keMg,

n!
)'l' pkne(nl)pkn> .
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Therefore, (3.8) holds.
(2) Similarly to the proof of (3.8) we also have that

logEn< (alfl(?(’;)) > Z3kl(n) 3kl(”)))>>

keMEc1=0

2a2(bn)) 1 2 !
< —NPkn - —(n=1) pn
= b b o \L *Z ~ i Pl

— 0.

Finally, let us prove (3.10). By Lemma 3.5, for any r # 0,

(b(n))
1ogEn<exp<% > pkn(5k0(n)—En(5k0(n)))))

keMEe
rna(b(n))
< > (10g<<eXP{7Pkn} - 1)(1 — Pkn)" +1>
. b(n)
keMye
rna(b(n)) )
1— pe)" ).
b( ) n( pkn)
Therefore
rna(b(n))
tog £, (exp( "5 S e brotn) — En 100 )
b(n) .
keM;<
rna(b(n))  \* _
<4 ) (7171«1) ™" I lna(bon)) e /b(m) <1)
A b))
keMLe
2|rlna(b(n)) _
+12 ) exp{ilﬂkn}e P L\ ina (b)) pin /b(m)=1)
: b(n)
keMy<
4r2a(b
L drrabw) 4 oaira,,
b(n)
where A, = YOS prye ™ PTG s b (rla(bmn) (1 —21rlatbn) /b))
Ao = n(l — %) and A, = ﬁZkeMnLc nzp,%ne_”pk". By the proof
of Lemma 3.1, A, < %20 eypr 60D __q _ 2rlabm)yy _, o By (3.3)
o) PV T ab(n) b(n) - BY 22)

limsup; _, ., limsup,,_, ., A,z = 0. Therefore, (3.10) holds. I

PROOF OF LEMMA 3.7. It is known that

Po(Xe(n) =xisk=1,...,m) = Pn<Yk(n) =x k=1, 'Z Yi(n) _n)
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where Yi(n), k > 1 are independent random variables, and Y (n) is Poisson dis-
tributed with mean npy,. Then, using the partial inversion formula for character-
istic function due to Bartlett (1938) [see also Holst (1979), Esty (1983)], for any
a eR,

bL
E, (exp[M 3 (1) —npknakom))})

bt () keML

n!

2mnte "

X f_ﬂ E, (exp{iu Z(Y[(n) — npin)

=1

aa(b*(n))
o) Z Ity (my=1y — MPrn Iy, (my=0y) { | du
keME
/ H,(u,a)du,
27rn” —n
where
Hyw,0)= [] Oc@,0)+yc@) [ m@,
keME keMLe
V() := Ep(exp{iu(Yx(n) — npin)}) = exp{npin (ei” —1—iu)}
and
. ana(b®(n))
0 (0, @) = ye () + exp{—zunpkn}(exp{—w ] = 1) expl=npia)
: aa(b*(n))
+exp{iu(l — npin)} (exp{ T(n)} - 1)”Pkn exp{—npin}.
It is obvious that H,(—u, «) = H,(u, o). By Stirling’s formula,
" ne " /n 1
im = ,
n— 00 n! \/ﬂ
it suffices to show that for any @ € R,
b (n) T o?
/2 —
(B.1) Jim 2GLo) log/_ﬂn H,(u,a)du = 5

Since npy, < L uniformly in k € MnL, we can write that for n large enough,

Hyw,0) = [T T (14 7@~ b, @) = €10 TT by, ),

k=1 keME keME
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where hp(u, @) : =1+ yk(u)_lek(u, o).
Choose a positive function « (¢) such that «(¢) — oo and a(t)x(t)/t — 0, and

12 . . 2
define 7(¢) =/ M, t > 1 and then lim;_, o 7(¢) = 0, lim,;_, oo Tagft = 00.
Noting that for n large enough, sup, ¢ () (1 — cosu) > t2(n)/4, we have that

bt (n) 12
oy e ue(sflf,g,n]m”(”’“)')
bt (n)logn bL(n)nrz(n) bL(n)
sup  |hg(u, )|

- 1
= 2a20Em) | 4aP () 2(bL<n))kXM:L %% ezl

- _%O - 0<n1:§(}2)) * 0<nZ§}ZI)1))> o

which implies that

Ll’l)

B.2 limsup ———— 1o f n'?H, u,a)du| =
B2 ISP 26t m) " herma” Y

Therefore, it suffices to show that

(B.3) limsupi)log nl/an(u,a)duz a_.
n—o00 Clz(bL(l’l)) —1(n) 2

In order to show (B.3), let us define a transformation as follows. For « € R
aa(b: (n)) En (F (n))
bL(n)

H,(2) = Hy(z +ip(n), ), zeC,

where C denotes the complex plane. The transformation plays an important role.
Let I' denote the closed path formed by the ordered points —t(n) — ip(n),
t(n) —ip(n), t(n), —t(n), —t(n) — ip(n) on the complex plane. Then by
Cauchy’s formula,

T(n) t(n)—ip(n) _
/ Hn(u,a)du:/ H,(z)dz
—1(n) —t(n)—ip(n)

—1(n) _ T(n) -
= —/ Hy(z)dz —/ H,(z)dz
7(n) T(n)—ip(n)

—t(n)—ip(n) _
- / ,(2) dz.
—1(n)

Noting that |fr((n")) ip(n) H,(z)dz| < |f0p(n) H,(t(n) —iu)dul, by

—0OQ.

, and define

given, set p(n) =

sup |exp{n(e™e'™™ — 1 —it(n) +u)}|
|ul<p(n)

< eXP{—n<T2in) (1=]pm]) - pz(n))}
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and Sup <, k(T () +iu, )] =1 + 0(@)npkne_”pk”, similarly to the
proof of (B.2), we have that
) S —oo.

bL T(n) -
() log<nl/2 / H,(z)dz
T
Similarly, b~ (n) log(n'/?| f__r(n))_ip(n) H,(z)dz|) — —oo. Therefore, it suffices

(m)—ip(n)

a®(bL(n))
2L (n) 7(n

to prove that

(B.4) y bL(n) | T(n) V2 o?
. msup ——— ———10 n u u=—.
n—>oop az(bL (I’l)) & —1(n) " 2

Let PRe(z) and Jm(z) denote the real part and the imaginary part of a complex
number z, respectively. Then

Re(hi(u+ipn), a))

— ] 4 Prn(1—e™"® C0”‘)<COS(i’u’7kne_p(”) sinu)
aa(bh(n)) } ) _
x |expl —————n — 1 )e Pkn
( P{ bL(I’l) Pkn
+ (cos(nprne ™ sinu)e ™™ cosu

+ sin(npgne "™ sinu)e =" sinu)

L
(ool | )

and
Jm(hg(u +ip(n), @)

— Pin(1—e? " cosu) <— sin(npkne_p(”) sinu)
aa (bt (n)) } ) _
x | expy —————n — 1 )e ""Pkn
( p{ bL(I’l) Pkn
+ (= sin(npgne "™ sinu)e "™ cos u
+ cos(npkne_"’(") sin u)e_p(”) sinu)
aa(b*(n)) _
X (eXp{ibL(n) } — l)np;me ”p’“').

For convenience, let Oj,(u), j > 1, denote uniformly bounded real functions
such that O;,(u) =0 for all |u| > 7(n), and lim,,_, o Sup, g |Ojn ()| = 0. Then
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for n large enough, for all u € [—t(n), T(n)],

Re(hx(u +ip(n), o))

= 1 4 ¢"Pn (1= cosm(l(M)Z
2\ bl ()

2E,(Ff
% <n2p£n + <1 _ n(nl (n)))npkn>€_npk"
2
+0<@> npk”e_npkn
n

+ MZOIH(M)O (a;—n))npkne_npkn)

and
Jm(hg(u +ip(n), @)
bL —p(n
- aab(L#enpkn(l_e : )COSM)ankne—npkn(l + u202n(u))'
Therefore
|Hy(u+ip(n), )
—pn 1
= (1= cosump(m) CXP{E > 10g|hk(u+i,0(n),06)|2}
keME
1 &2a? (bt n)) a?(n) n
:exp{i LG +0( p )}exp{—§u2(1+04n(u)0(1))}
and so
bE(n) T s~
1 2 H,(u)d
a2 (b" (n)) "g/m) ) du
2 L 2 203L
b t(m)/n 1 b N
:a—‘*‘# og/ eXp{——M}Hn(Mn—l/Z)du'
2 a(b*(n)) —t(m)A 2 bL(n)
Now, by

bt (n) /““W { La2d? (bt ()
a2(bL (n)) o8 —t(n)/n xp 2 bL (n)
bL(n) t(m)/n

1, —12 }
2L _t<n>ﬁe"p{ 24" (14 Oan(un™ 7)o (D)) du

}|P~In(un_l/2)|du

=o(1) +

— 0,

we obtain (B.4). The proof of Lemma 3.7 is complete. [
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PROOF OF LEMMA 3.9. For any ¢t > A,, we can write [cf. (A.1) in Zhang and
Zhang (2009)]
thn - Yk)\nn
(B.5) = = Yirn [ Xp (N> X (N3,))

+ 810 (N2, ) (8,1 (Ny) — (t — An) PrnSio(Ny)).
Therefore, it suffices to prove that

lim sup ﬂ
n—00 az(b(n))
o0
(B.6) x log Pn( SUD D Vi [Ny = Xe (V) = 8a(b(n))>
An<t<dn+An
= —00
and
lim sup ﬂ
n—o00 az(b(n))
o0
x log P, < sup Z 8k0(N,) (8k1 (Ny) — (¢t — )\n)PknskO(Nt))’
A<t <dn+An| =
(B.7)

> ea(b(n)))

= —00.

Let us first prove (B.6). Set Ty = min{t > 0; X (N;) > X (N,)} and Z,(") =
ZTkS, Yia,n- Since Yiy,n, k > 1 are independent variables with mean zero and
independent of G := o (X(N;) — X(N,,), 1 > 4,), {Z,("),t > An} is a martingale,
and by the maximal inequality for supermartingales, we have that for any & > 0,
for any r > 0,

Pn( sup }Z,(")| > 8a(b(n))>
M =t=<hn+Ap

<2¢7"%40M) max | E, (exp{rz§j>+An 1, E, (exp{_rzgjLAn H)

and
En(exp{rzy”, »,})
0
=E, (En (eXp<r Z Yioun L{Xy Ny 400> Xk (N3} } ‘g))
k=1

(((e_r)‘-npkn + Appine” — 1 — knpkn)e—knpkn(l _ e_Anpkn) +1)).

—18

k=1
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aa(b(n))

For any o # 0, take r = 10)

{_aa(b(n))

exp —b(n)

- 3a2a?(b(n))
b2(n)

n exp{ Ialzzzgn))

3a2a’(b(n))
b%(n)
Therefore, for n large enough,

o0 aa(b(n)) aa(b(n))
P e R b i R

. Then for n large enough,

aa(b(n))

b(n) } -1 _)\npkn

)\npkn} + )\npkn exp{
Ap2

1 PienLiala(bm)hn pra /b)Y <1}
Xnpkn}1{|oz|a(b(n))xnp;m/b<n>>1}

nPkn-

X e_)hnpkn(l _ e_AnPkn)

<3a2a2(b(n))B a2a2(b(n))B 3a2a?(b(n))

) 1n ) om o) B3,

where Biy := 5y 3021 A iy Llalatbm)in pra /bm <ty P4 (1 — e~ AnPin),

1 &, lala(b(n))
Bon :Zﬁzzkwkﬂexp - I_Tn) AnPin {10, pra>bn) /(lala(bn))))

and B3, = g5 Y02 Anpne*1Ph (1 — e AnPin) By (2.2), By, — 0. Then, by

S 2 2 2
r—> O under ¢y =0, s;;/b(n) — 1 and sxnn/sn — 1,

aM 1
Bln < —
le| '\ Anb(n)

o

2.2 —An Pkn
Z)‘npknI{|0!|a(b(n)))~nPkn/b(ﬂ)fl}e b
k=1

<—-=s —
= Jal Y Anb(n)
and

aM 1
B3n =—"

— e ¥ Anb(n)

—An Pkn

o0
> hnPinL{ala(bn)) hn pro /by <11€
k=1

o0
Z Anpne” P T {lela(b())2n pin /b(m)>1} = 0.

T 5
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Thus

) b(n) aa(b(n)) _m }) _
(B.8) ngngoaiz(b(n)) logEn<exp{7b(n) ZA,,—i—A,, =0.

This yields (B.6) by Chebyshev’s inequality. Next, we show (B.7). Noting that

sup  [8k0(N3,) (8k1 (N1) — (= An) PrnSko(N)) |
An=t=in+Ay,

< 8k0(Na, )X, (N3, 1 a)> Xk (N3, )} T An Pien)
it suffices to show that for any ¢ > 0,

) b(n) e
Jim 200 log P, (; 8k0(Na, ) I(X, (N3, 4a,)> Xk (N3,)) > € (b(n))>

(B.9)
= —00

and

(B.10)  lim 2(2())) gP( b Zko( xn)pkn>s) —00.

Since

aa(b(n)) o
Ey (eXP[ b Y So(Na,) Xk<Nx,1+An)>Xk(NM>}})
k=1

I ol =)
k=1

a similar argument to the proof of (B.8) gives

b(n) aa(b(n))
nlggomlogEnGXp{ ) kzl5ko(an)1{Xk<an+An>>Xk(NAn)}}) 0,

which implies (B.9). Similarly, we can obtain (B.10).
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