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EXACT AND ASYMPTOTICALLY ROBUST PERMUTATION TESTS1

BY EUNYI CHUNG AND JOSEPH P. ROMANO

Stanford University

Given independent samples from P and Q, two-sample permutation tests
allow one to construct exact level tests when the null hypothesis is P = Q.
On the other hand, when comparing or testing particular parameters θ of P

and Q, such as their means or medians, permutation tests need not be level α,
or even approximately level α in large samples. Under very weak assump-
tions for comparing estimators, we provide a general test procedure whereby
the asymptotic validity of the permutation test holds while retaining the exact
rejection probability α in finite samples when the underlying distributions are
identical. The ideas are broadly applicable and special attention is given to the
k-sample problem of comparing general parameters, whereby a permutation
test is constructed which is exact level α under the hypothesis of identical dis-
tributions, but has asymptotic rejection probability α under the more general
null hypothesis of equality of parameters. A Monte Carlo simulation study
is performed as well. A quite general theory is possible based on a coupling
construction, as well as a key contiguity argument for the multinomial and
multivariate hypergeometric distributions.

1. Introduction. In this article, we consider the behavior of two-sample (and
later also k-sample) permutation tests for testing problems when the fundamen-
tal assumption of identical distributions need not hold. Assume X1, . . . ,Xm are
i.i.d. according to a probability distribution P , and independently, Y1, . . . , Yn are
i.i.d. Q. The underlying model specifies a family of pairs of distributions (P,Q)

in some space �. For the problems considered here, � specifies a nonparametric
model, such as the set of all pairs of distributions. Let N = m + n, and write

Z = (Z1, . . . ,ZN) = (X1, . . . ,Xm,Y1, . . . , Yn).(1.1)

Let �̄ = {(P,Q) :P = Q}. Under the assumption (P,Q) ∈ �̄, the joint distribu-
tion of (Z1, . . . ,ZN) is the same as (Zπ(1), . . . ,Zπ(N)), where (π(1), . . . , π(N))

is any permutation of {1, . . . ,N}. It follows that, when testing any null hypothesis
H0 : (P,Q) ∈ �0, where �0 ⊂ �̄, then an exact level α test can be constructed
by a permutation test. To review how, let GN denote the set of all permutations
π of {1, . . . ,N}. Then, given any test statistic Tm,n = Tm,n(Z1, . . . ,ZN), recom-
pute Tm,n for all permutations π ; that is, compute Tm,n(Zπ(1), . . . ,Zπ(N)) for all
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π ∈ GN , and let their ordered values be

T (1)
m,n ≤ T (2)

m,n ≤ · · · ≤ T (N !)
m,n .

Fix a nominal level α, 0 < α < 1, and let k be defined by k = N ! − [αN !], where
[αN !] denotes the largest integer less than or equal to αN !. Let M+(z) and M0(z)

be the number of values T
(j)
m,n(z) (j = 1, . . . ,N !) which are greater than T (k)(z)

and equal to T (k)(z), respectively. Set

a(z) = αN ! − M+(z)

M0(z)
.

Define the randomization test function φ(Z) to be equal to 1, a(Z) or 0 accord-
ing to whether Tm,n(Z) > T

(k)
m,n(Z), Tm,n(X) = T (k)(Z) or Tm,n(Z) < T (k)(Z),

respectively. Then, under any (P,Q) ∈ �̄,

EP,Q

[
φ(X1, . . . ,Xm,Y1, . . . , Yn)

] = α.

Also, define the permutation distribution as

R̂T
m,n(t) = 1

N !
∑

π∈GN

I
{
Tm,n(Zπ(1), . . . ,Zπ(N)) ≤ t

}
.(1.2)

Roughly speaking (after accounting for discreteness), the permutation test rejects
H0 if the test statistic Tm,n exceeds T

(k)
m,n, or a 1 − α quantile of this permutation

distribution.
It may be helpful to consider an alternative description of the permuta-

tion distribution given in (1.2). As a shorthand, for any π ∈ GN , let Zπ =
(Zπ(1), . . . ,Zπ(N)). Let � denote a random permutation, uniformly distributed
over GN . Then, Tm,n(Z�) denotes the random variable that evaluates the test
statistic, not at the original data Z, but at a randomly permuted data set Z�. The
permutation distribution R̂T

m,n(·) given in (1.2) is evidently the conditional dis-
tribution of Tm,n(Z�) given Z, because conditional on the data Z, Tm,n(Z�) is
equally likely to be any of Tm,n(Zπ) among π ∈ GN . The asymptotic behavior of
this (conditional) distribution R̂T

m,n(·) is the key to establishing properties of the
permutation test.

Although the rejection probability of the permutation test is exactly α when
P = Q, problems arise if �0 is strictly bigger than �̄. Since a transformed per-
muted data set no longer has the same distribution as the original data set, the
argument leading to the construction of an α level test fails, and faulty inferences
can occur.

To be concrete, if we are interested in testing equality of means, for example,
then �0 = {(P,Q) :μ(P ) = μ(Q)} which, of course, is strictly bigger than �̄. So,
consider constructing a permutation test based on the difference of sample means

Tm,n = √
N(X̄m − Ȳn).(1.3)
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Note that we are not taking the absolute difference, so that the test is one-sided,
as we are rejecting for large positive values of the difference. First of all, we are
not concerned about testing �̄ = {(P,Q) :P = Q}, but something bigger than �̄.
However, we underscore the point that a test statistic (1.3) is not appropriate for
testing �̄ without further assumptions because the test clearly will not have any
power against distributions P and Q whose means are identical but P �= Q.

The permutation test based on the difference of sample means is only appro-
priate as a test of equality of population means. However, the permutation test no
longer controls the level of the test, even in large samples. As is well known (Ro-
mano [23]), the permutation test possesses a certain asymptotic robustness as a test
of difference in means if m/n → 1 as n → ∞, or the underlying variances of P

and Q are equal, in the sense that the rejection probability under the null hypothesis
of equal means tends to the nominal level. Without equal variances or comparable
sample sizes, the rejection probability can be much larger than the nominal level,
which is a concern. Because of the lack of robustness and the increased probability
of a type 1 error, rejection of the null may incorrectly be interpreted as rejection of
equal means, when in fact it is caused by unequal variances and unequal sample
sizes. Even more alarming is the possibility of rejecting a two-sided null hypoth-
esis when observing a positive large difference with the accompanying inference
that mean difference is positive when in fact the difference in means is negative,
a type 3 error or directional error. Indeed, if for some P and Q with equal means
the rejection probability is, say, γ 	 α, then it follows by continuity that the rejec-
tion probability under some P and Q with negative mean difference will be nearly
γ as well, where one would conclude that the mean difference is actually positive.
Further note that there is also the possibility that the rejection probability can be
much less than the nominal level, which by continuity implies the test is biased
and has little power of detecting a true difference in means, or large type 2 error.

The situation is even worse when basing a test on a difference in sample me-
dians, in the sense that regardless of sample sizes, the asymptotic rejection prob-
ability of the permutation test will be α under very stringent conditions, which
essentially means only in the case where the underlying distributions are the same.

However, in a very insightful paper in the context of random censoring mod-
els, Neuhaus [18] realized that by proper studentization of a test statistic, the per-
mutation test can result in asymptotically valid inference even when the underly-
ing distributions are not the same. This result has been extended to other specific
problems, such as comparing means by Janssen [9] and certain linear statistics in
Janssen [10] (including the Wilcoxon statistic without ties), variances by Pauly
[20] and the two-sample Wilcoxon test by Neubert and Brunner [17] (where ties
are allowed). Other results on permutation tests are presented in Janssen [11],
Janssen and Pauls [12], Janssen and Pauls [13] and Janssen and Pauly [14]. The re-
cent paper by Omelka and Pauly [19] compares correlations by permutation tests,
which is a special case of our general results. Note that the importance of studen-
tization when bootstrapping is well known; see Hall and Wilson [7] and Delaigle
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et al. [3] (though its role for bootstrap is to obtain higher order accuracy while in
the context here first order accuracy can fail without studentization).

The goal of this paper is to obtain a quite general result of the same phe-
nomenon. That is, when basing a permutation test using some test statistic as a
test of a parameter (usually a difference of parameters associated with marginal
distributions), we would like to retain the exactness property when P = Q, and
also have the asymptotic rejection probability be α for the more general null hy-
pothesis specifying the parameter (such as the difference being zero). Of course,
there are many alternatives to getting asymptotic tests, such as the bootstrap or
subsampling. However, we do not wish to give up the exactness property under
P = Q, and resampling methods do not have such finite sample guarantees. The
main problem becomes: what is the asymptotic behavior of R̂T

m,n(·) defined in (1.2)
for general test statistic sequences Tm,n when the underlying distributions differ.
Only for suitable test statistics is it possible to achieve both finite sample exactness
when the underlying distributions are equal, but also maintain a large sample re-
jection probability near the nominal level when the underlying distributions need
not be equal. In this sense, our results are both exact and asymptotically robust for
heterogeneous populations.

This paper provides a framework for testing a parameter that depends on P

and Q (and later on k underlying distributions Pi for i = 1, . . . , k). We construct a
general test procedure where the asymptotic validity of the permutation test holds
in a general setting. Assuming that estimators are asymptotically linear and con-
sistent estimators are available for their asymptotic variance, we provide a test that
has asymptotic rejection probability equal to the nominal level α, but still retains
the exact rejection probability of α in finite samples if P = Q in Section 2. It is not
even required that the estimators are based on differentiable functionals, and some
methods like the bootstrap would not necessarily be even asymptotically valid un-
der such conditions, let alone retain the finite sample exactness property when
P = Q. In Section 3, generalizations of the results are discussed with a special
attention to the more general k-sample problem of comparing general parameters.
Furthermore, Monte Carlo simulation studies illustrating our results are presented
in Section 4. The arguments of the paper are quite different from Janssen and previ-
ous authors, and hold under great generality. For example, they immediately apply
to comparing means, variances or medians. The key idea is to show that the per-
mutation distribution behaves like the unconditional distribution of the test statistic
when all N observations are i.i.d. from the mixture distribution pP + (1 − p)Q,
where p is such that m/N → p. This seems intuitive because the permutation
distribution permutes the observations so that a permuted sample is almost like a
sample from the mixture distribution. In order to make this idea precise, a coupling
argument is given in Section 5.3. Of course, the permutation distribution depends
on all permuted samples (for a given original data set). But even for one permuted
data set, it cannot exactly be viewed as a sample from pP + (1 − p)Q. Indeed,
the first m observations from the mixture would include Bm observations from P
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and the rest from Q, where Bm has the binomial distribution based on m trials and
success probability p. On the other hand, for a permuted sample, if Hm denotes
the number of observations from P , then Hm has the hypergeometric distribution
with mean mp. The key argument that allows for such a general result concerns the
contiguity of the distributions of Bm and Hm. Section 5 highlights the main tech-
nical ideas required for the proofs. All proofs are deferred to the supplementary
appendix [2].

2. Robust studentized two-sample test. In this section, we consider the gen-
eral problem of inference from the permutation distribution when comparing pa-
rameters from two populations. Specifically, assume X1, . . . ,Xm are i.i.d. P and,
independently, Y1, . . . , Yn are i.i.d. Q. Let θ(·) be a real-valued parameter, defined
on some space of distributions P . The problem is to test the null hypothesis

H0 : θ(P ) = θ(Q).(2.1)

Of course, when P = Q, one can construct permutation tests with exact level α.
Unfortunately, if P �= Q, the test need not be valid in the sense that the probability
of a type 1 error need not be α even asymptotically. Thus, our goal is to construct a
procedure that has asymptotic rejection probability equal to α quite generally, but
also retains the exactness property in finite samples when P = Q.

We will assume that estimators are available that are asymptotically linear.
Specifically, assume that, under P , there exists an estimator θ̂m = θ̂m(X1, . . . ,Xm)

which satisfies

m1/2[
θ̂m − θ(P )

] = 1√
m

m∑
i=1

fP (Xi) + oP (1).(2.2)

Similarly, we assume that, based on the Yj (under Q),

n1/2[
θ̂n − θ(Q)

] = 1√
n

n∑
j=1

fQ(Yj ) + oQ(1).(2.3)

The functions determining the linear approximation fP and fQ can of course de-
pend on the underlying distributions. Different forms of differentiability guarantee
such linear expansions in the special case when θ̂m takes the form of an empirical
estimate θ(P̂m), where P̂m is the empirical measure constructed from X1, . . . ,Xm,
but we will not need to assume such stronger conditions. We will argue that our
assumptions of asymptotic linearity already imply a result about the permutation
distribution corresponding to the statistic N1/2[θ̂m(X1, . . . ,Xm)− θ̂n(Y1, . . . , Yn)],
without having to impose any differentiability assumptions. However, we will as-
sume the expansion (2.2) holds not just for i.i.d. samples under P , and also un-
der Q, but also when sampling i.i.d. observations from the mixture distribution
P̄ = pP +qQ. This is a weak assumption and replaces having to study the permu-
tation distribution based on variables that are no longer independent nor identically
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distributed with a simple assumption about the behavior under an i.i.d. sequence.
Indeed, we will argue that in all cases, the permutation distribution behaves asymp-
totically like the unconditional limiting sampling distribution of the studied statis-
tic sequence when sampling i.i.d. observations from P̄ .

In the next two theorems, the behavior of the permutation distribution is ob-
tained. Note that it is not assumed that the null hypothesis θ(P ) = θ(Q) nec-
essarily holds. Indeed, the asymptotic behavior of the permutation test under P

and Q is the same as when all observations are from the mixture distribution
P̄ = pP + (1 − p)Q, where p = lim m

N
. Proofs of all the results in Section 2

are presented along with proofs of the results in Section 5 in the supplementary
appendix [2].

THEOREM 2.1. Assume X1, . . . ,Xm are i.i.d. P and, independently, Y1, . . . ,

Yn are i.i.d. Q. Consider testing the null hypothesis (2.1) based on a test statistic
of the form

Tm,n = N1/2[
θ̂m(X1, . . . ,Xm) − θ̂n(Y1, . . . , Yn)

]
,

where the estimators satisfy (2.2) and (2.3). Further assume EP fP (Xi) = 0 and

0 < EP f 2
P (Xi) ≡ σ 2(P ) < ∞

and the same with P replaced by Q. Let m → ∞, n → ∞, with N = m + n,
pm = m/N , qm = n/N and pm → p ∈ (0,1) with

pm − p = O
(
N−1/2)

.(2.4)

Assume the estimator sequence also satisfies (2.2) with P replaced by P̄ = pP +
qQ with σ 2(P̄ ) < ∞.

Then the permutation distribution of Tm,n given by (1.2) satisfies

sup
t

∣∣R̂T
m,n(t) − 


(
t/τ (P̄ )

)∣∣ P→ 0,

where

τ 2(P̄ ) = 1

p(1 − p)
σ 2(P̄ ).(2.5)

REMARK 2.1. Under H0 given by (2.1), the true unconditional sampling dis-
tribution of Tm,n is asymptotically normal with mean 0 and variance

1

p
σ 2(P ) + 1

1 − p
σ 2(Q),(2.6)

which does not equal τ 2(P̄ ) defined by (2.5) in general.
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EXAMPLE 2.1 (Difference of means). As is well known, even for the case
of comparing population means by sample means, under the null hypothesis that
θ(P ) = θ(Q), equality of (2.5) and (2.6) holds if and only if p = 1/2 or σ 2(P ) =
σ 2(Q).

EXAMPLE 2.2 (Difference of medians). Let F and G denote the c.d.f.s cor-
responding to P and Q. Let θ(F ) denote the median of F , that is, θ(F ) =
inf{x :F(x) ≥ 1

2}. Then it is well known (Serfling [24]) that if F is continuously
differentiable at θ(P ) with derivative F ′ (and the same with F replaced by G),
then

m1/2[
θ(P̂m) − θ(P )

] = 1√
m

m∑
i=1

1/2 − I{Xi ≤ θ(P )}
F ′(θ(P ))

+ oP (1)

and similarly, with P and F replaced by Q and G. Thus, we can apply Theorem 2.1
and conclude that, when θ(P ) = θ(Q) = θ , the permutation distribution of Tm,n is
approximately a normal distribution with mean 0 and variance

1

4p(1 − p)[pF ′(θ) + (1 − p)G′(θ)]2

in large samples. On the other hand, the true sampling distribution is approximately
a normal distribution with mean 0 and variance

v2(P,Q) ≡ 1

p

1

4[F ′(θ)]2 + 1

1 − p

1

4[G′(θ)]2 .(2.7)

Thus the permutation distribution and the true unconditional sampling distribution
behave differently asymptotically unless F ′(θ) = G′(θ) is satisfied. Since we do
not assume P = Q, this condition is a strong assumption. Hence, the permutation
test for testing equality of medians is generally not valid in the sense that the
rejection probability tends to a value that is far from the nominal level α.

The main goal now is to show how studentizing the test statistic leads to a
general correction.

THEOREM 2.2. Assume the setup and conditions of Theorem 2.1. Further as-
sume that σ̂m(X1, . . . ,Xm) is a consistent estimator of σ(P ) when X1, . . . ,Xm are

i.i.d. P . Assume consistency also under Q and P̄ , so that σ̂n(V1, . . . , Vn)
P→ σ(P̄ )

as n → ∞ when the Vi are i.i.d. P̄ . Define the studentized test statistic

Sm,n = Tm,n

Vm,n

,(2.8)

where

Vm,n =
√

N

m
σ̂ 2

m(X1, . . . ,Xm) + N

n
σ̂ 2

n (Y1, . . . , Yn)
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and consider the permutation distribution defined in (1.2) with T replaced by S.
Then

sup
t

∣∣R̂S
m,n(t) − 
(t)

∣∣ P→ 0.(2.9)

Thus the permutation distribution is asymptotically standard normal, as is the
true unconditional limiting distribution of the test statistics Sm,n. Indeed, as men-
tioned in Remark 2.1, the true unconditional limiting distribution of Tm,n is normal
with mean 0 and variance given by (2.6). But, when sampling m observations from
P and n from Q, V 2

m,n tends in probability to (2.6), and hence the limiting distri-
bution of Tm,n is standard normal, the same as that of the permutation distribution.

REMARK 2.2. As previously noted, Theorems 2.1 and 2.2 are true even if
θ(P ) �= θ(Q). If θ(P ) = θ(Q), then the true sampling distribution of Sm,n and
the permutation test become approximately the same. However, if θ(P ) �= θ(Q),
then we get the power tending to 1. Indeed, the critical value from the permutation
distribution asymptotically tends to a finite value z1−α in probability, while the test
statistic tends to infinity in probability. Also, see Remark 2.3 for local power.

EXAMPLE 2.1 (Continued). As proved by Janssen [9], even when the under-
lying distributions may have different variances and different sample sizes, permu-
tation tests based on studentized statistics

Sm,n = N1/2(X̄m − Ȳn)√
NS2

X/m + NS2
Y /n

,

where S2
X = 1

m−1
∑m

i=1(Xi − X̄m)2 and S2
Y = 1

n−1
∑n

j=1(Yi − Ȳm)2, can allow one
to construct a test that attains asymptotic rejection probability α when P �= Q

while providing an additional advantage of maintaining exact level α when P = Q.

EXAMPLE 2.2 (Continued). Define the studentized median statistic

Sm,n = N1/2[θ(P̂m) − θ(Q̂n)]
v̂m,n

,

where v̂m,n is a consistent estimator of v(P,Q) defined in (2.7). There are several
choices for a consistent estimator of v(P,Q). Examples include the usual ker-
nel estimator (Devroye and Wagner [4]), bootstrap estimator (Efron [5]), and the
smoothed bootstrap (Hall, DiCiccio, and Romano [6]).

REMARK 2.3. Suppose that the true unconditional distribution of a test Tm,n

is, under the null hypothesis, asymptotically given by a distribution R(·). Typically
a test rejects when Tm,n > rm,n, where rm,n is nonrandom, as happens in many
classical settings. Then, we typically have rm,n → r(1−α) ≡ R−1(1−α). Assume
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that Tm,n converges to some limit law R′(·) under some sequence of alternatives
which are contiguous to some distribution satisfying the null. Then, the power
of the test against such a sequence would tend to 1 − R′(r(1 − α)). The point
here is that, under the conditions of Theorem 2.2, the permutation test based on
a random critical value r̂m,n obtained from the permutation distribution satisfies,

under the null, r̂m,n
P→ r(1 − α). But then, contiguity implies the same behavior

under a sequence of contiguous alternatives. Thus, the permutation test has the
same limiting local power as the “classical” test which uses the nonrandom critical
value. So, to first order, there is no loss in power in using a permutation critical
value. Of course, there are big gains because the permutation test applies much
more broadly than for usual parametric models, in that it retains the level exactly
across a broad class of distributions and is at least asymptotically justified for a
large nonparametric family.

3. Generalizations.

3.1. Wilcoxon statistic and general U -statistics. So far, we considered two-
sample problems where the statistic is based on the difference of estimators that are
asymptotically linear. Although this class of estimators includes many interesting
cases such as testing equality of means, medians, and variances, it does not include
other important statistics like the Wilcoxon statistic or some rank statistics where
the parameter of interest is a function of the joint distribution θ(P,Q) and not just
a simple difference θ(P ) − θ(Q).

In our companion paper (Chung and Romano [1]), however, we consider these
statistics in a more general U -statistic framework. More specifically, assume that
X1, . . . ,Xm are i.i.d. P , and independently, Y1, . . . , Yn are i.i.d. Q. The problem
studied is to test the null hypothesis

H0 : EP,Q

(
ϕ(X1, . . . ,Xr, Y1, . . . , Yr)

) = 0,

which can be estimated by its corresponding two-sample U -statistic of the form

Um,n(Z) = 1(m
r

)(n
r

) ∑
α

∑
β

ϕ(Xα1, . . . ,Xαr , Yβ1, . . . , Yβr ),

where α and β range over the sets of all unordered subsets of r different elements
chosen from {1, . . . ,m} and of r different elements chosen from {1, . . . , n}, re-
spectively.

This general class of U -statistics covers, for example, Lehmann’s two-sample
U -statistic to test H0 :P(|Y ′ − Y | > |X′ − X|) = 1/2, the two-sample Wilcoxon
statistic to test H0 :P(X ≤ Y) = P(Y ≤ X), and some other interesting rank statis-
tics. Under quite weak assumptions, we provide a general theory whereby one
can construct a permutation test of a parameter θ(P,Q) = θ0 which controls the
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asymptotic probability of a type 1 error in large samples while retaining the ex-
actness property in finite samples when the underlying distributions are identical.
The technical arguments involved in this U -statistic problem are different from
Section 2, but the mathematics and statistical foundations to be laid out in Sec-
tion 5 provide fundamental ingredients that aid our asymptotic derivations.

3.2. Robust k-sample test. From our general considerations, we are now
guided by the principle that the large sample distribution of the test statistic should
not depend on the underlying distributions; that is, it should be asymptotically
pivotal under the null. Of course, it can be something other than normal, and we
next consider the important problem of testing equality of parameters of k-samples
(where a limiting Chi-squared distribution is obtained).

Assume we observe k independent samples of i.i.d. observations. Specifi-
cally, assume Xi,1, . . . ,Xi,ni

are i.i.d. Pi . Some of our results will hold for
fixed n1, . . . , nk , but we also have asymptotic results as N ≡ ∑

i ni → ∞. Let
n = (n1, . . . , nk), and the notation n → ∞ will mean mini ni → ∞. Let θ(·) be a
real-valued parameter, defined on some space of distributions P . The problem of
interest is to test the null hypothesis

H0 : θ(P1) = · · · = θ(Pk)(3.1)

against the alternative

H1 : θ(Pi) �= θ(Pj ) for some i, j.

When P1 = · · · = Pk holds, one can construct permutation tests with exact level α.
However, if Pi �= Pj for some i, j , then the test may fail to achieve the rejection
probability equal to α even asymptotically.

We will assume that asymptotically linear estimators are available, that is, (2.2)
holds for i.i.d. samples under Pi for i = 1, . . . , k, where fPi

can depend on the un-
derlying distribution Pi . Further assume that the expansion also holds for i.i.d. ob-
servations Z̄i,1, . . . , Z̄i,ni

sampled from the mixture distribution P̄ = ∑k
i=1 piPi ,

where ni/N → pi . Note that the asymptotic linearity conditions need not require
any form of differentiability (though of course, some form of differentiability is a
sufficient condition). We will argue that the asymptotic linearity conditions under
Pi for i = 1, . . . , k and P̄ , are sufficient to derive the asymptotic behavior of the
k-sample permutation distribution based on Tn,1 (defined below), without having
to impose any differentiability conditions.

The goal here is to construct a method that retains the exact control of the prob-
ability of a type 1 error when the observations are i.i.d., but also asymptotically
controls the probability of a type 1 error under very weak assumptions, specifi-
cally finite nonzero variances of the influence functions.
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LEMMA 3.1. Consider the above set-up. Assume (2.2) holds for P1, . . . ,Pk

with 0 < σ 2
i = σ 2

i (fPi
) = EPi

f 2
Pi

(Xi,j ) < ∞. Assume ni → ∞ with ni/N → pi >

0 for i = 1, . . . , k. Let

Tn,0 =
k∑

i=1

ni

σ 2
i

[
θ̂n,i −

∑k
i=1 niθ̂n,i/σ

2
i∑k

i=1 ni/σ
2
i

]2

,(3.2)

where θ̂n,i = θ̂n,i(Xi,1, . . . ,Xi,ni
) and σ 2

i = σ 2
i (fPi

) = EPi
f 2

Pi
(Xi,j ). Further as-

sume that σ̂n,i ≡ σ̂n,i(Xi,1, . . . ,Xi,ni
) is a consistent estimator of σi = σi(fPi

)

when Xi,1, . . . ,Xi,ni
are i.i.d. Pi , for i = 1, . . . , k. Define

Tn,1 =
k∑

i=1

ni

σ̂ 2
n,i

[
θ̂n,i −

∑k
i=1 niθ̂n,i/σ̂

2
n,i∑k

i=1 ni/σ̂
2
n,i

]2

.(3.3)

Then, under H0, both Tn,0 and Tn,1 converge in distribution to the Chi-squared
distribution with k − 1 degrees of freedom.

Let R̂n,1(·) denote the permutation distribution corresponding to Tn,1. In words,
Tn,1 is recomputed over all permutations of the data. Specifically, if we let

(Z1, . . . ,ZN) = (X1,1, . . . ,X1,n1,X2,1, . . . ,X2,n2, . . . ,Xk,1, . . . ,Xk,nk
),

then, R̂n,1(t) is formally equal to the right-hand side of (1.2), with Tm,n replaced
by Tn,1.

THEOREM 3.1. Assume the same setup and conditions of Lemma 3.1 with
0 < σ 2

i = σ 2
i (fPi

) = EPi
f 2

Pi
(Xi,j ) < ∞. Assume ni → ∞ with ni/N → pi > 0.

Further assume that the consistency of σ̂n,i of σi under Pi also holds under P̄ as
well so that, when the Z̄i are i.i.d. P̄ ,

σ̂n,i(Z̄1, . . . , Z̄ni
)

P→ σ(fP̄ ) as n → ∞
with 0 < σ 2(fP̄ ) < ∞.

Then, under H0,

R̂n,1(t)
P→ Gk−1(t),(3.4)

where Gd denotes the Chi-squared distribution with d degrees of freedom. More-
over, if P1, . . . ,Pk satisfy H0, then the probability that the permutation test rejects
H0 tends to the nominal level α.

EXAMPLE 3.1 (Nonparametric k-sample Behrens–Fisher problem). Consider
the special case where θi(P ) = μi(P ) is the population mean. Also, let θ̂n,i be the
sample mean of the ith sample. When the populations are assumed normal with
possibly different unknown variances, this is the classical Behrens–Fisher prob-
lem. Here, we do not assume normality and provide a general solution for testing
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the equality of parameters of several distributions. Indeed, we have exact finite
sample type 1 error control when all the populations are the same, and asymp-
totically type 1 error control when the populations are possibly distinct. (Some
relatively recent large sample approaches which do not retain our finite sample
exactness property to this specific problem are given in Rice and Gaines [21] and
Krishnamoorthy, Lu and Mathew [15].)

4. Simulation results. Monte Carlo simulation studies illustrating our results
are presented in this section. Table 1 tabulates the rejection probabilities of one-
sided tests for the studentized permutation median test where the nominal level
considered is α = 0.05. The simulation results confirm that the studentized permu-
tation median test is valid in the sense that it approximately attains level α in large
samples.

In the simulation, odd numbers of sample sizes are selected in the Monte Carlo
simulation for simplicity. We consider several pairs of distinct sample distribu-
tions that share the same median as listed in the first column of Table 1. For each
situation, 10,000 simulations were performed. Within a given simulation, the per-
mutation test was calculated by randomly sampling 999 permutations. Note that
neither the exactness properties nor the asymptotic properties are changed at all
(as long as the number of permutations sampled tends to infinity). For a discussion
on stochastic approximations to the permutation distribution, see the end of Sec-
tion 15.2.1 in Lehmann and Romano [16] and Section 4 in Romano [22]. As is well
known, when the underlying distributions of two distinct independent samples are
not identical, the permutation median test is not valid in the sense that the rejection
probability is far from the nominal level α = 0.05. For example, although a logistic
distribution with location parameter 0 and scale parameter 1 and a continuous uni-
form distribution with the support ranging from −10 to 10 have the same median
of 0, the rejection probability for the sample sizes examined is between 0.0991 and

TABLE 1
Monte Carlo simulation results for studentized permutation median test (one-sided, α = 0.05)

m: 5 13 51 101 101 201 401
Distributions n: 5 21 101 101 201 201 401

N(0,1) Not studentized 0.1079 0.1524 0.1324 0.2309 0.2266 0.2266 0.2249
N(0,5) Studentized 0.0802 0.1458 0.095 0.0615 0.0517 0.0517 0.0531

N(0,1) Not studentized 0.0646 0.1871 0.2411 0.1769 0.1849 0.1849 0.1853
T (5) Studentized 0.0707 0.1556 0.0904 0.0776 0.0661 0.0661 0.0611

Logistic(0,1) Not studentized 0.0991 0.1413 0.1237 0.2258 0.2233 0.2233 0.2261
U(−10,10) Studentized 0.0771 0.1249 0.0923 0.0686 0.0574 0.0574 0.0574

Laplace(ln 2,1) Not studentized 0.0420 0.0462 0.0477 0.048 0.0493 0.0461 0.0501
exp(1) Studentized 0.0386 0.0422 0.0444 0.0502 0.0485 0.0505 0.0531
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0.2261 and moves further away from the nominal level α = 0.05 as sample sizes
increase.

In contrast, the studentized permutation test results in rejection probability
that tends to the nominal level α asymptotically. We apply the bootstrap method
(Efron [5]) to estimate the variance for the median 1

4f 2
P (θ)

in the simulation given

by

m

m∑
l=1

[
X(l) − θ(P̂m)

]2 · P
(
θ
(
P̂ ∗

m

) = X(l)

)
,

where for an odd number m,

P
(
θ
(
P̂ ∗

m

) = X(l)

) = P
(

Binomial
(
m,

l − 1

m

)
≤ m − 1

2

)

− P
(

Binomial
(
m,

l

m

)
≤ m − 1

2

)
.

As noted earlier, there exist other choices such as the kernel estimator and the
smoothed bootstrap estimator. We emphasize, however, that using the bootstrap to
obtain an estimate of standard error does not destroy the exactness of permutation
tests under identical distributions.

5. Four technical ingredients. In this section, we discuss four separate ingre-
dients, from which the main results flow. These results are separated out so they
can easily be applied to other problems and so that the main technical arguments
are highlighted. The first two apply more generally to randomization tests, not just
permutation tests, and are stated as such.

5.1. Hoeffding’s condition. Suppose data Xn has distribution Pn in Xn, and
Gn is a finite group of transformations g of Xn onto itself. For a given statistic
Tn = Tn(X

n), let R̂T
n (·) denote the randomization distribution of Tn, defined by

R̂T
n (t) = 1

|Gn|
∑

g∈Gn

I
{
Tn

(
gXn) ≤ t

}
,(5.1)

where |Gn| denotes the cardinality of Gn. Hoeffding [8] gave a sufficient condition
to derive the limiting behavior of R̂T

n (·). This condition is verified repeatedly in the
proofs, but we add the result that the condition is also necessary.

THEOREM 5.1. Let Gn and G′
n be independent and uniformly distributed

over Gn (and independent of Xn). Suppose, under Pn,

(
Tn

(
GnX

n)
, Tn

(
G′

nX
n)) d→ (

T ,T ′),(5.2)
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where T and T ′ are independent, each with common c.d.f. RT (·). Then, for all
continuity points t of RT (·),

R̂T
n (t)

P→ RT (t).(5.3)

Conversely, if (5.3) holds for some limiting c.d.f. RT (·) whenever t is a continuity
point, then (5.2) holds.

The reason we think it is important to add the necessity part of the result is that
our methodology is somewhat different than that of other authors mentioned in
the Introduction, who take a more conditional approach to proving limit theorems.
After all, the permutation distribution is indeed a distribution conditional on the
observed set of observations (without regard to ordering). However, the theorem
shows that a sufficient condition is obtained by verifying an unconditional weak
convergence property. Nevertheless, simple arguments (see the supplementary ap-
pendix [2]) show the condition is indeed necessary and so taking such an approach
is not fanciful.

5.2. Slutsky’s theorem for randomization distributions. Consider the general
setup of Section 5.1. The result below describes Slutsky’s theorem in the context
of randomization distributions. In this context, the randomization distributions are
random themselves, and therefore the usual Slutsky’s theorem does not quite apply.
Because of its utility in the proofs of our main results, we highlight the statement.
Given sequences of statistics Tn, An and Bn, let R̂AT +B

n (·) denote the randomiza-
tion distribution corresponding to the statistic sequence AnTn +Bn; that is, replace
Tn in (5.1) by AnTn + Bn, so

R̂AT +B
n (t) ≡ 1

|Gn|
∑

g∈Gn

I
{
An

(
gXn)

Tn

(
gXn) + Bn

(
gXn) ≤ t

}
.(5.4)

THEOREM 5.2. Let Gn and G′
n be independent and uniformly distributed

over Gn (and independent of Xn). Assume Tn satisfies (5.2). Also, assume

An

(
GnX

n) P→ a(5.5)

and

Bn

(
GnX

n) P→ b(5.6)

for constants a and b. Let RaT +b(·) denote the distribution of aT + b, where T is
the limiting random variable assumed in (5.2). Then

R̂AT +B
n (t)

P→ RaT +b(t),

if the distribution RaT +b(·) of aT + b is continuous at t . [Of course, RaT +b(t) =
RT ( t−b

a
) if a �= 0.]
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5.3. A coupling construction. Consider the general situation where k samples
are observed from possibly different distributions. Specifically, assume for i =
1, . . . , k that Xi,1, . . . ,Xi,ni

is a sample of ni i.i.d. observations from Pi . All N ≡∑
i ni observations are mutually independent. Put all the observations together in

one vector

Z = (X1,1, . . . ,X1,n1,X2,1, . . . ,X2,n2, . . . ,Xk,1, . . . ,Xk,nk
).

The basic intuition driving the results concerning the behavior of the per-
mutation distribution stems from the following. Since the permutation distribu-
tion considers the empirical distribution of a statistic evaluated at all permuta-
tions of the data, it clearly does not depend on the ordering of the observa-
tions. Let ni/N denote the proportion of observations in the ith sample, and let
pi = limni→∞ ni/N ∈ (0,1). Assume that ni → ∞ in such a way that

pi − ni

N
= O

(
N−1/2)

.(5.7)

Then the behavior of the permutation distribution based on Z should behave ap-
proximately like the behavior of the permutation distribution based on a sam-
ple of N i.i.d. observations Z̄ = (Z̄1, . . . , Z̄N) from the mixture distribution
P̄ ≡ p1P1 + · · · + pkPk . Of course, we can think of the N observations generated
from P̄ arising out of a two-stage process: for i = 1, . . . ,N , first draw an index j

at random with probability pj ; then, conditional on the outcome being j , sample
Z̄i from Pj . However, aside from the fact that the ordering of the observations in Z

is clearly that of n1 observations from P1, following by n2 observations from P2,
etc., the original sampling scheme is still only approximately like that of sampling
from P̄ . For example, the number of observations Z̄i out of the N which are from
P1 is binomial with parameters N and p1 (and so has mean equal to p1N ≈ n1),
while the number of observations from P1 in the original sample Z is exactly n1.

Along the same lines, let π = (π(1), . . . , π(N)) denote a random permutation
of {1, . . . ,N}. Then, if we consider a random permutation of both Z and Z̄, then
the number of observations in the first n1 coordinates of Z which were X1’s has
the hypergeometric distribution, while the number of observations in the first n1
coordinates of Z̄ which were X1’s is still binomial.

We can make a more precise statement by constructing a certain coupling of
Z and Z̄. That is, except for ordering, we can construct Z̄ to include almost the
same set of observations as in Z. The simple idea goes as follows. Given Z, we
will construct observations Z̄1, . . . , Z̄N via the two-stage process as above, using
the observations drawn to make up the Zi as much as possible. First, draw an
index j among {1, . . . , k} at random with probability pj ; then, conditionally on the
outcome being j , set Z̄1 = Xj,1. Next, if the next index i drawn among {1, . . . , k}
at random with probability pi is different from j from which Z̄1 was sampled, then
Z̄2 = Xi,1; otherwise, if i = j as in the first step, set Z̄2 = Xj,2. In other words,
we are going to continue to use the Zi to fill in the observations Z̄i . However, after
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a certain point, we will get stuck because we will have already exhausted all the nj

observations from the j th population governed by Pj . If this happens and an index
j was drawn again, then just sample a new observation Xj,nj+1 from Pj . Continue
in this manner so that as many as possible of the original Zi observations are used
in the construction of Z̄. Now, we have both Z̄ and Z. At this point, Z̄ and Z have
many of the same observations in common. The number of observations which
differ, say D, is the (random) number of added observations required to fill up Z̄.
(Note that we are obviously using the word “differ” here to mean the observations
are generated from different mechanisms, though in fact there may be a positive
probability that the observations still are equal if the underlying distributions have
atoms. Still, we count such observations as differing.)

Moreover, we can reorder the observations in Z̄ by a permutation π0 so that Zi

and Z̄π0(i) agree for all i except for some hopefully small (random) number D. To
do this, recall that Z has the observations in order, that is, the first n1 observations
arose from P1 and the next set of n2 observations came from P2, etc. Thus, to
couple Z and Z̄, simply put all the observations in Z̄ which came from P1 first up
to n1. That is, if the number of observations in Z̄ from P1 is greater than or equal
to n1, then Z̄π(i) for i = 1, . . . , n1 are filled with the observations in Z̄ which came
from P1, and if the number was strictly greater than n1, put them aside for now.
On the other hand, if the number of observations in Z̄ which came from P1 is less
than n1, fill up as many of Z̄ from P1 as possible, and leave the rest of the slots
among the first n1 spots blank for now. Next, move onto the observations in Z̄

which came from P2 and repeat the above procedure for n1 +1, . . . , n1 +n2 spots;
that is, we start filling up the spots from n1 + 1 as many of Z̄ which came from P2
as possible up to n2 of them. After going though all the distributions Pi from which
each of observations in Z̄ came, one must then complete the observations in Z̄π0;
simply “fill up” the empty spots with the remaining observations that have been put
aside. (At this point, it does not matter where each of the remaining observations
gets inserted; but, to be concrete, fill the empty slots by inserting the observations
which came from the index Pi in chronological order from when constructed.)
This permuting of observations in Z̄ corresponds to a permutation π0 and satisfies
Zi = Z̄π0(i) for indices i except for D of them.

For example, suppose there are k = 2 populations. Suppose that N1 of the Z̄

observations came from P1 and so N − N1 from P2. Of course, N1 is random
and has the binomial distribution with parameters N and p1. If N1 ≥ n1, then
the above construction yields the first n1 observations in Z and Z̄π0 completely
agree. Furthermore, if N1 > n1, then the number of observations in Z̄ from P2 is
N − N1 < N − n1 = n2, and N − N1 of the last n2 indices in Z match those of
Z̄π0 , with the remaining differ. In this situation, we have

Z = (X1, . . . ,Xn1, Y1, . . . , Yn2)

and

Z̄π0 = (X1, . . . ,Xn1, Y1, . . . , YN−N1,Xn1+1, . . . ,XN1),
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so that Z and Z̄π0 differ only in the last N1 − n1 places. In the opposite situation
where N1 < n1, Z and Z̄π are equal in the first N1 and last n2 places, only differing
in spots N1 + 1, . . . , n1.

The number of observations D where Z and Z̄π0 differ is random and it can be
shown that

E(D/N) ≤ N−1/2;(5.8)

see supplementary appendix [2]. In summary, the coupling construction shows
that only a fraction of the N observations in Z and Z̄π0 differ with high probabil-
ity. Therefore, if the randomization distribution is based on a statistic TN(Z) such
that the difference TN(Z) − TN(Z̄π0) is small in some sense whenever Z and Z̄π0

mostly agree, then one should be able to deduce the behavior of the permutation
distribution under samples from P1, . . . ,Pk from the behavior of the permutation
distribution when all N observations come from the same distribution P̄ . Whether
or not this can be done requires some knowledge of the form of the statistic, but
intuitively it should hold if the statistic cannot strongly be affected by a change
in a small proportion of the observations; its validity though must be established
on a case by case basis. Although the assessment of the validity needs to be taken
on a case by case basis, it readily extends to a broader class of statistics such as
“mean-like” statistics. (However, this coupling argument and the contiguity results
in Section 5.4 together allow us to prove quite general results.) The point is that it
is a worthwhile and beneficial route to pursue because the behavior of the permu-
tation distribution under N i.i.d. observations is typically much easier to analyze
than under the more general setting when observations have possibly different dis-
tributions. Furthermore, the behavior under i.i.d. observations seems fundamental
as this is the requirement for the “randomization hypothesis” to hold, that is, the
requirement to yield exact finite sample inference.

To be more specific, suppose π and π ′ are independent random permutations,
and independent of the Zi and Z̄i . Suppose we can show that

(
TN(Z̄π), TN(Z̄π ′)

) d→ (
T ,T ′),(5.9)

where T and T are independent with common c.d.f. R(·). Then, by Theorem 5.1,
the randomization distribution based on TN converges in probability to R(·) when
all observations are i.i.d. according to P̄ . But since ππ0 (meaning π composed
with π0 so π0 is applied first) and π ′π0 are also independent random permutations,
(5.9) also implies

(
TN(Z̄ππ0), TN(Z̄π ′π0)

) d→ (
T ,T ′).

Using the coupling construction to construct Z, suppose it can be shown that

TN(Z̄ππ0) − TN(Zπ)
P→ 0.(5.10)
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Then, it also follows that

TN(Z̄π ′π0) − TN(Zπ ′)
P→ 0,

and so by Slutsky’s theorem, it follows that(
TN(Zπ), TN(Zπ ′)

) d→ (
T ,T ′).(5.11)

Therefore, again by Theorem 5.1, the randomization distribution also converges
in probability to R(·) under the original model of k samples from possibly dif-
ferent distributions. In summary, the coupling construction of Z̄, Z and π0 and
the one added requirement (5.10) allow us to reduce the study of the permutation
distribution under possibly k different distributions to the i.i.d. case when all N

observations are i.i.d. according to P̄ . We summarize this as follows.

LEMMA 5.1. Assume (5.9) and (5.10). Then (5.11) holds, and so the permuta-
tion distribution based on k samples from possibly different distributions behaves
asymptotically as if all observations are i.i.d. from the mixture distribution P̄ and
satisfies

R̂T
m,n(t)

P→ R(t),

if t is a continuity point of the distribution R of T in (5.9).

EXAMPLE 5.1 (Difference of sample means). To appreciate what is involved
in the verification of (5.10), consider the two-sample problem considered in The-
orem 2.1, in the special case of testing equality of means. The unknown variances
may differ and are assumed finite. Consider the test statistic Tm,n = N1/2[X̄m −
Ȳn]. By the coupling construction, Z̄ππ0 and Zπ have the same components except
for at most D places. Now,

Tm,n(Z̄ππ0) − Tm,n(Zπ) = N1/2

[
1

m

m∑
i=1

(Z̄ππ0(i) − Zπ(i))

]

− N1/2

[
1

n

N∑
j=m+1

(Z̄ππ0(j) − Zπ(j))

]
.

All of the terms in the above two sums are zero except for at most D of them. But
any nonzero term like Z̄ππ0(i) − Zπ(i) has variance bounded above by

2 max
(
Var(X1),Var(Y1)

)
< ∞.

Note the above random variable has mean zero under the null hypothesis that
E(Xi) = E(Yj ). To bound its variance, condition on D and π , and note it has
conditional mean 0 and conditional variance bounded above by

N
1

min(m2, n2)
2 max

(
Var(X1),Var(Y1)

)
D
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and hence unconditional variance bounded above by

N
1

min(m2, n2)
2 max

(
Var(X1),Var(Y1)

)
O

(
N1/2) = O

(
N−1/2) = o(1),

implying (5.10). In words, we have shown that the behavior of the permutation
distribution can be deduced from the behavior of the permutation distribution when
all observations are i.i.d. with mixture distribution P̄ .

Two final points are relevant. First, the limiting distribution R is typically the
same as the limiting distribution of the true unconditional distribution of TN un-
der P̄ . This is intuitively the case because the permutation distribution is invariant
under any permutation of the combined data, and so the set of N observations with
exactly ni observations sampled from Pi and then randomly permuting them be-
haves very nearly the same as a sample of N observations from P̄ . On the other
hand, the true limiting distribution of the test statistic under (P1, . . . ,Pk) need not
be the same as under P̄ as it will in general depend on the underlying distribu-
tions P1, . . . ,Pk . However, suppose the choice of test statistic TN is such that it
is an asymptotic pivot in the sense that its limiting distribution does not depend
on the underlying probability distributions. Then, the limiting distribution of the
test statistic will be the same whether sampling from (P1, . . . ,Pk) or (P̄ , . . . , P̄ ).
In such cases, the randomization or permutation distribution under (P1, . . . ,Pk)

will asymptotically reflect the true unconditional distribution of TN , resulting in
asymptotically valid inference. Indeed, the general results in Section 2 yield many
examples of this phenomenon. However, that these statements need qualification
is made clear by the following two (somewhat contrived) examples.

EXAMPLE 5.2. Here, we illustrate a situation where coupling works, but the
true sampling distribution does not behave like the permutation distribution under
the mixture model P̄ . In the two-sample setup with m = n, suppose X1, . . . ,Xn

are i.i.d. according to uniformity on the set of x where |x| < 1, and Y1, . . . , Yn are
i.i.d. uniform on the set of y with 2 < |y| < 3. So, E(Xi) = E(Yj ) = 0. Consider
a test statistic Tn,n defined as

Tn,n(X1, . . . ,Xn,Y1, . . . , Yn) = N−1/2

[
n∑

i=1

I
{|Yi | > 2

} − I
{|Xi | < 2

}]
.

Under the true sampling scheme, Tn,n is zero with probability one. However, if all
2n observations are sampled from the mixture model, it is easy to see that Tn,n

is asymptotically normal N(0,1/4), which is the same limit for the permutation
distribution (in probability). So here, the permutation distribution under the given
distributions is the same as under P̄ , though it does not reflect the actual true
unconditional sampling distribution.
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EXAMPLE 5.3. Here, we consider a situation where both populations are in-
deed identical, so there is no need for a coupling argument. However, the point is
that the permutation distribution does not behave like the true unconditional sam-
pling distribution. Assume X1, . . . ,Xn and Y1, . . . , Yn are all i.i.d. N(0,1) and
consider the test statistic

Tn,n(X1, . . . ,Xn,Y1, . . . , Yn) = N−1/2
n∑

i=1

(Xi + Yi).

Unconditionally, Tn,n converges in distribution to N(0,1). However, the permu-
tation distribution places mass one at n√

N
(X̄n + Ȳn) because the statistic Tn,n is

permutation invariant.

Examples 5.2 and 5.3 show that the intuition provided in the paragraph before
Example 5.2 does not always work. However, in the two examples, the test statistic
does not reflect an actual comparison between P and Q. Of course, our theorems
apply to tests of equality of parameters, and therefore the test statistics are based
on appropriate differences.

5.4. An auxiliary contiguity result. Consider the general situation involving k

(possibly distinct) populations for i = 1, . . . , k with ni observations from pop-
ulation i. Set N = ∑k

i=1 ni and n = (n1, . . . , nk)
′, where the notation n → ∞

means mini ni → ∞. Assume all N observations are mutually independent. De-
fine pn,i = ni/N → pi ∈ (0,1) as ni → ∞ for i = 1, . . . , k. Let Pn be the multi-
nomial distribution based on parameters s = s(n) and pn = (pn,1, . . . , pn,k). So,
under Pn, let Mn,j be the number of observations of type i when s observations
are taken with replacement from a population with ni observations of type i. So,
Mn ≡ (Mn,1, . . . ,Mn,k) ∼ Pn. Also, let Qn be the multivariate hypergeometric
distribution. Under Qn, let Hn,i be the number of observations of type i when s

observations are taken without replacement. So, Hn ≡ (Hn,1, . . . ,Hn,k) ∼ Qn.
We shall show that the multinomial distribution Pn and the multivariate hy-

pergeometric distribution Qm are mutually contiguous, which will allow us to
obtain the limiting behavior of a statistic under the given samples from k prob-
ability distributions Pi for i = 1, . . . , k, by instead calculating the limiting behav-
ior of the statistic when all N observations are i.i.d. from the mixture distribution
P̄ = ∑k

i=1 piPi , which is relatively easier to obtain. For basic details on contiguity,
see Section 12.3 in Lehmann and Romano [16].

LEMMA 5.2. Assume the above setup with s/N → θ ∈ [0,1) as n → ∞. Con-
sider the likelihood ratio Ln(x) = dQn(x)/dPn(x).

(i) The limiting distribution of Ln(Mn) satisfies

Ln(Mn)
L→ (1 − θ)−(k−1)/2 exp

{
− θ

2(1 − θ)
χ2

k−1

}
,(5.12)
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where χ2
k−1 denotes the Chi-squared distribution with k − 1 degrees of freedom.

(ii) Qn and Pn are mutually contiguous.

REMARK 5.1. With Mn ≡ (Mn,1, . . . ,Mn,k) having the multinomial distri-
bution with parameters s and pn = (pn,1, . . . , pn,k) as in Lemma 5.2, also let
M̄n ≡ (M̄n,1, . . . , M̄n,k) have the multinomial distribution with parameters s and
p = (p1, . . . , pk). Then, the distributions of Mn and M̄n are contiguous if and only
if pn,i − pi = O(n

−1/2
i ), not just pn,i → pi for all i = 1, . . . , k.

LEMMA 5.3. Suppose V1, . . . , Vs are i.i.d. according to the mixture distribu-
tion

P̄ ≡
k∑

i=1

piPi,

where pi ∈ (0,1),
∑k

i=1 pi = 1 and Pi ’s are probability distributions on some gen-
eral space. Assume, for some sequence Wn of statistics,

Wn(V1, . . . , Vs)
P→ t(5.13)

for some constant t (which can depend on the Pi ’s and pi ’s). Let ni → ∞,
s(n) → ∞, with s/N → θ ∈ [0,1), N = ∑k

i=1 ni , pn,i = ni/N , and pn,i → pi ∈
(0,1) with

pn,i − pi = O
(
n

−1/2
i

)
.(5.14)

Further, let Xi,1, . . . ,Xi,ni
be i.i.d. Pi for i = 1, . . . , k. Let

(Z1, . . . ,ZN) = (X1,1, . . . ,X1,n1, . . . ,Xk,1, . . . ,Xk,nk
).

Let (π(1), . . . , π(N)) denote a random permutation of {1, . . . ,N} (and indepen-
dent of all other variables). Then,

Wn(Zπ(1), . . . ,Zπ(s))
P→ t.(5.15)

REMARK 5.2. The importance of Lemma 5.3 is that is allows us to deduce
the behavior of the statistic Wn under the randomization or permutation distribu-
tion from the basic assumption of how Wn behaves under i.i.d. observations from
the mixture distribution P̄ . Note that in (5.13), the convergence in probability as-
sumption is required when the Vi are P̄ (so the P over the arrow is just a generic
symbol for convergence in probability).
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6. Conclusion. When the fundamental assumption of identical distributions
need not hold, two-sample permutation tests are invalid unless quite stringent con-
ditions are satisfied depending on the precise nature of the problem. For exam-
ple, the two-sample permutation test based on the difference of sample means is
asymptotically valid only when either the distributions have the same variance or
they are comparable in sample size. Thus, a careful interpretation of rejecting the
null is necessary; rejecting the null based on the permutation tests does not neces-
sarily imply a valid rejection of the null that some real-valued parameter θ(F,G) is
some specified value θ0. We provide a framework that allows one to obtain asymp-
totic rejection probability α in two-sample permutation tests. One great advantage
of utilizing the proposed test is that it retains the exactness property in finite sam-
ples when P = Q, a desirable property that bootstrap and subsampling methods
fail to possess.

To summarize, if the true goal is to test whether the parameter of interest θ is
some specified value θ0, permutation tests based on correctly studentized statistic
is an attractive choice. When testing the equality of means, for example, the per-
mutation t-test based on a studentized statistic obtains asymptotic rejection prob-
ability α in general while attaining exact rejection probability equal to α when
P = Q. In the case of testing the equality of medians, the studentized permu-
tation median test yields the same desirable property. Moreover, the results ex-
tend to quite general settings based on asymptotically linear estimators. The re-
sults extend to k-sample problems as well, and analogous results hold in k-sample
problem of comparing general parameters, which includes the nonparametric k-
sample Behrens–Fisher problem. The guiding principle is to use a test statistic that
is asymptotically distribution-free or pivotal. Then, the technical arguments devel-
oped in this paper can be shown that the permutation test behaves asymptotically
the same as when all observations share a common distribution. Consequently,
if the permutation distribution reflects the true underlying sampling distribution,
asymptotic justification is achieved.

As mentioned in the Introduction, proper implementation of a permutation test
is vital if one cares about confirmatory inference through hypothesis testing; in-
deed, proper error control of types 1, 2 and 3 errors can be obtained for test of
parameters by basing inference on test statistics which are asymptotically pivotal.
Thus, the foundations are laid for considering more complex problems in modern
data analysis, such as two-sample microarray genomics problems, where a very
large number of tests are performed simultaneously. (Indeed, there are many mi-
croarray analyses which have begun by performing a permutation test for each
gene, without proper studentization.) The role of permutations in multiple testing
cannot be properly understood without a firm basis for single testing. Thus, future
work will further develop the ideas presented here so that permutation tests can
be applied to other measures of error control in multiple testing such as the false
discovery rate.
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SUPPLEMENTARY MATERIAL

Supplement to “Exact and asymptotically robust permutation tests” (DOI:
10.1214/13-AOS1090SUPP; .pdf). Contains proofs of all the results in the paper.
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