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Many algorithms for inferring causality rely heavily on the faithfulness
assumption. The main justification for imposing this assumption is that the set
of unfaithful distributions has Lebesgue measure zero, since it can be seen as
a collection of hypersurfaces in a hypercube. However, due to sampling er-
ror the faithfulness condition alone is not sufficient for statistical estimation,
and strong-faithfulness has been proposed and assumed to achieve uniform
or high-dimensional consistency. In contrast to the plain faithfulness assump-
tion, the set of distributions that is not strong-faithful has nonzero Lebesgue
measure and in fact, can be surprisingly large as we show in this paper. We
study the strong-faithfulness condition from a geometric and combinatorial
point of view and give upper and lower bounds on the Lebesgue measure of
strong-faithful distributions for various classes of directed acyclic graphs. Our
results imply fundamental limitations for the PC-algorithm and potentially
also for other algorithms based on partial correlation testing in the Gaussian
case.

1. Introduction. Determining causal structure among variables based on ob-
servational data is of great interest in many areas of science. While quantifying as-
sociations among variables is well-developed, inferring causal relations is a much
more challenging task. A popular approach to make the causal inference problem
more tractable is given by directed acyclic graph (DAG) models, which describe
conditional dependence information and causal structure.

A DAG G = (V ,E) consists of a set of vertices V and a set of directed edges
E such that there is no directed cycle. We index V = {1,2, . . . , p} and consider
random variables {Xi | i = 1, . . . , p} associated to the nodes V . We denote a di-
rected edge from vertex i to vertex j by (i, j) or i → j . In this case, i is called
a parent of j and j is called a child of i. If there is a directed path i → ·· · → j ,
then j is called a descendent of i and i an ancestor of j . The skeleton of a DAG
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G is the undirected graph obtained from G by substituting directed edges by undi-
rected edges. Two nodes which are connected by an edge in the skeleton of G are
called adjacent, and a triple of nodes (i, j, k) is an unshielded triple if i and j are
adjacent to k but i and j are not adjacent. An unshielded triple (i, j, k) is called a
v-structure if i → k and j → k. In this case, k is called a collider.

The problem of estimating a DAG from the observational distribution is ill-
posed due to nonidentifiability: in general, several DAGs encode the same condi-
tional independence (CI) relations and therefore, the true underlying DAG cannot
be identified from the observational distribution. However, assuming faithfulness
(see Definition 1.1), the Markov equivalence class, that is, the skeleton and the
set of v-structures of a DAG, is identifiable (cf. [9], Theorem 5.2.6), making it
possible to infer some bounds on causal effects [8]. We focus here on the prob-
lem of estimating the Markov equivalence class of a DAG and argue that, even in
the Gaussian case, severe complications arise for data of finite (or asymptotically
increasing) sample size.

There has been a substantial amount of work on estimating the Markov equiv-
alence class in the Gaussian case [3, 5, 11, 12]. Algorithms which are based on
testing CI relations usually must require the faithfulness assumption (cf. [12]):

DEFINITION 1.1. A distribution P is faithful to a DAG G if no CI relations
other than the ones entailed by the Markov property are present.

This means that if a distribution P is faithful to a DAG G, all conditional (in-)
dependences can be read-off from the DAG G using the so-called d-separation
rule (cf. [12]). Two nodes i, j are d-separated given S if every path between i and
j contains a noncollider that is in S or a collider that is neither in S nor an ancestor
of a node in S. For Gaussian models, the faithfulness assumption can be expressed
in terms of the d-separation rule and conditional correlations as follows.

DEFINITION 1.2. A multivariate Gaussian distribution P is said to be faithful
to a DAG G = (V ,E) if for any i, j ∈ V and any S ⊂ V \ {i, j}:

j is d-separated from i | S ⇐⇒ corr(Xi,Xj | XS) = 0.

The main justification for imposing the faithfulness assumption is that the set
of unfaithful distributions to a graph G has measure zero. However, for data of
finite sample size estimation error issues come into play. Robins et al. [11] showed
that many causal discovery algorithms, and the PC-algorithm [12] in particular,
are pointwise but not uniformly consistent under the faithfulness assumption. This
is because it is possible to create a sequence of distributions that is faithful but
arbitrarily close to an unfaithful distribution. As a result, Zhang and Spirtes [16]
defined the strong-faithfulness assumption for the Gaussian case, which requires
sufficiently large nonzero partial correlations.
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DEFINITION 1.3. Given λ ∈ (0,1), a multivariate Gaussian distribution P is
said to be λ-strong-faithful to a DAG G = (V ,E) if for any i, j,∈ V and any
S ⊂ V \ {i, j}:

j is d-separated from i | S ⇐⇒ ∣∣corr(Xi,Xj | XS)
∣∣ ≤ λ.

The assumption of λ-strong-faithfulness is equivalent to requiring

min
{∣∣corr(Xi,Xj | XS)

∣∣, j not d-separated from i | S,∀i, j, S
}
> λ.

This motivates our next definition which is weaker than strong-faithfulness.

DEFINITION 1.4. Given λ ∈ (0,1), a multivariate Gaussian distribution P is
said to be restricted λ-strong-faithful to a DAG G = (V ,E) if both of the following
hold:

(i) min{| corr(Xi,Xj | XS)|, (i, j) ∈ E,S ⊂ V \ {i, j} such that |S| ≤
deg(G)} > λ, where here and in the sequel, deg(G) denotes the maximal degree
(i.e., sum of indegree and outdegree) of nodes in G;

(ii) min{| corr(Xi,Xj | XS)|, (i, j, S) ∈ NG} > λ, where NG is the set of triples
(i, j, S) such that i, j are not adjacent but there exists k ∈ V making (i, j, k) an
unshielded triple, and i, j are not d-separated given S.

The first condition (i) is called adjacency-faithfulness in [17], the second condi-
tion (ii) is called orientation-faithfulness. If a multivariate Gaussian distribution P

satisfies adjacency-faithfulness with respect to a DAG G, we call the distribution
λ-adjacency-faithful to G. Obviously, restricted λ-strong faithfulness is a weaker
assumption than λ-strong-faithfulness.

We now briefly discuss the relevance of these conditions and their use in
previous work. Zhang and Spirtes [16] proved uniform consistency of the PC-
algorithm under the strong-faithfulness assumption with λ 	 1/

√
n, for the low-

dimensional case where the number of nodes p = |V | is fixed and sample size
n → ∞. In a high-dimensional and sparse setting, Kalisch and Bühlmann [5]
require strong-faithfulness with λn 	 √

deg(G) log(p)/n (the assumption in [5]
is slightly stronger, but can be relaxed as indicated here). Importantly, since
corr(Xi,Xj | XS) is required to be bounded away from 0 by λ for vertices that
are not d-separated, the set of distributions that is not λ-strong-faithful no longer
has measure 0.

It is easy to see, for example, from the proof in [5] that restricted λ-strong-
faithfulness is a sufficient condition for consistency of the PC-algorithm in the
high-dimensional scenario [with λ 	 √

deg(G) log(p)/n] and that the condition
is also sufficient and essentially necessary for consistency of the PC-algorithm.
Furthermore, part (i) of the restricted strong-faithfulness condition is sufficient
and essentially necessary for correctness of the conservative PC-algorithm [17],
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where correctness refers to the property that an oriented edge is correctly ori-
ented but there might be some nonoriented edges which could be oriented (i.e.,
the conservative PC-algorithm may not be fully informative). The word “essen-
tially” above means that we may consider too many possible separation sets S

where |S| ≤ deg(G), while the necessary collection of separating sets S which
the (conservative) PC-algorithm has to consider might be a little bit smaller. Nev-
ertheless, these differences are minor and we should think of part (i) of the re-
stricted strong-faithfulness assumption as a necessary condition for consistency of
the conservative PC-algorithm and both parts (i) and (ii) as a necessary condition
for consistency of the PC-algorithm.

There are no known upper and lower bounds for the Lebesgue measure of
λ-strong-unfaithful distributions or of restricted λ-strong-unfaithful distributions.
Since these assumptions are so crucial to inferring structure in causal networks it
is vital to understand if restricted and plain λ-strong-faithfulness are likely to be
satisfied.

In this paper, we address the question of how restrictive the (restricted) strong-
faithfulness assumption is using geometric and combinatorial arguments. In par-
ticular, we develop upper and lower bounds on the Lebesgue measure of Gaussian
distributions that are not λ-strong-faithful for various graph structures. By noting
that each CI relation can be written as a polynomial equation and the unfaithful
distributions correspond to a collection of real algebraic hypersurfaces, we exploit
results from real algebraic geometry to bound the measure of the set of strong-
unfaithful distributions. As we demonstrate in this paper, the strong-faithfulness
assumption is restrictive for various reasons. First, the number of hypersurfaces
corresponding to unfaithful distributions may be quite large depending on the
graph structure, and each hypersurface fills up space in the hypercube. Secondly,
the hypersurfaces may be defined by polynomials of high degrees depending on
the graph structure. The higher the degree, the greater the curvature and there-
fore the surface area of the corresponding hypersurface. Finally, to get the set of
λ-strong-unfaithful distributions, these hypersurfaces get fattened up by a factor
which depends on the size of λ.

Our results show that the set of distributions that do not satisfy strong-
faithfulness can be surprisingly large even for small and sparse graphs [e.g.,
10 nodes and an expected neighborhood (adjacency) size of 2] and small values
of λ such as λ = 0.01. This implies fundamental limitations for the PC-algorithm
[12] and possibly also for other algorithms based on partial correlations. Other
inference methods, which are not based on conditional independence testing (or
partial correlation testing), have been described. The penalized maximum likeli-
hood estimator [3] is an example of such a method and consistency results without
requiring strong-faithfulness have been given for the high-dimensional and sparse
setting [15]. This method requires, however, a different and so-called permutation
beta-min condition, and it is nontrivial to understand how the strong-faithfulness
condition and this new condition interact or relate to each other.
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The remainder of this paper is organized as follows: Section 2 presents a simple
example of a 3-node fully connected DAG, where we explicitly list the polyno-
mial equations defining the hypersurfaces and plot the parameters corresponding
to unfaithful distributions. In Section 3, we define the general model for a DAG
on p nodes and give a precise description of the problem of bounding the mea-
sure of distributions that do not satisfy strong-faithfulness for general DAGs. In
Section 4, we provide an algebraic description of the unfaithful distributions as a
collection of hypersurfaces and give a combinatorial description of the defining
polynomials in terms of paths along the graph. Section 5 provides a general upper
bound on the measure of λ-strong-unfaithful distributions and lower bounds for
various classes of DAGs, namely DAGs whose skeletons are trees, cycles or bipar-
tite graphs K2,p−2. Finally, in Section 6, we provide simulation results to validate
our theoretical bounds.

2. Example: 3-node fully-connected DAG. In this section, we motivate the
analysis in this paper using a simple example involving a 3-node fully-connected
DAG. The graph is shown in Figure 1. We demonstrate that even in the 3-node case,
the strong-faithfulness condition may be quite restrictive. We consider a Gaussian
distribution which satisfies the directed Markov property with respect to the 3-node
fully-connected DAG. An equivalent model formulation in terms of a Gaussian
structural equation model is given as follows:

X1 = ε1,

X2 = a12X1 + ε2,

X3 = a13X1 + a23X2 + ε3,

where (ε1, ε2, ε3) ∼ N (0, I ).2 The parameters a12, a13 and a23 reflect the causal
structure of the graph. Whether the parameters are zero or nonzero determines the
absence or presence of a directed edge.

FIG. 1. Motivating example: 3-node graph.

2The assumption of var(εj ) ≡ 1 is obviously restricting the class of Gaussian DAG models. We
refer to the more general discussion on this issue in Section 7.
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It is well known that through observing only covariance information it is not
always possible to infer causal structure. In this example, the pairwise marginal
and the conditional covariances are as follows:

cov(X1,X2) = a12,(1)

cov(X1,X3) = a13 + a12a23,(2)

cov(X2,X3) = a2
12a23 + a12a13 + a23,(3)

cov(X1,X2 | X3) = a13a23 − a12,(4)

cov(X1,X3 | X2) = −a13,(5)

cov(X2,X3 | X1) = −a23.(6)

If it were known a priori that the temporal ordering of the DAG is (X1,X2,X3),
the problem of inferring the DAG-structure would reduce to a simple estimation
problem. We would only need information about the (non-) zeroes of cov(X1,X2),
cov(X1,X3 | X2) and cov(X2,X3 | X1), that is, information whether the single
edge weights a12, a13 and a23 are zero or not, which is a standard hypothesis test-
ing problem. In particular, issues around (strong-) faithfulness would not arise.
However, since the causal ordering of the DAG is unknown, algorithms based
on conditional independence testing, which amount to testing partial correlations
or conditional covariances, require that we check all partial correlations between
two nodes given any subset of remaining nodes: a prominent example is the PC-
algorithm [12]. For instance for the 3-node case, the PC-algorithm would infer
that there is an edge between nodes 1 and 2 if and only if cov(X1,X2) �= 0 and
cov(X1,X2 | X3) �= 0. The issue of faithfulness comes into play, because it is pos-
sible that all causal parameters a12, a13 and a23 are nonzero while cov(X1,X2 |
X3) = 0, simply setting a12 = a13a23 in (4).

Since in this example no CI relations are imposed by the Markov property, a dis-
tribution P is unfaithful to G if any of the polynomials in (1)–(6) [corresponding
to (conditional) covariances] are zero. Therefore, the set of unfaithful distributions
for the 3-node example is the union of 6 real algebraic varieties, namely the three
coordinate hyperplanes given by (1), (5) and (6), two real algebraic hypersurfaces
of degree 2 given by (2) and (4), and one real algebraic hypersurface of degree 3
given by (3).

Assuming that the causal parameters lie in the cube (a12, a13, a23) ∈ [−1,1]3,
we use surfex, a software for visualizing algebraic surfaces, to generate a plot of
the set of parameters leading to unfaithful distributions. Figure 2(a)–(c) shows the
nontrivial hypersurfaces corresponding to cov(X1,X3) = 0, cov(X1,X2 | X3) = 0
and cov(X2,X3) = 0. Figure 2(d) shows a plot of the union of all six hypersur-
faces.

It is clear that the set of unfaithful distributions has measure zero. However,
due to the curvature of the varieties and the fact that we are taking a union of



442 UHLER, RASKUTTI, BÜHLMANN AND YU

FIG. 2. Parameter values corresponding to unfaithful distributions in the 3-node case.

6 varieties, the chance of being “close” to an unfaithful distribution is quite large.
As discussed earlier, being close to an unfaithful distribution is of great concern
due to sampling error. Hence, the set of distributions that does not satisfy λ-strong-
faithfulness is of interest. As a direct consequence of Definition 1.3, this set of
distributions corresponds to the set of parameters satisfying at least one of the
following inequalities:∣∣cov(X1,X2)

∣∣ ≤ λ
√

var(X1)var(X2),∣∣cov(X1,X3)
∣∣ ≤ λ

√
var(X1)var(X3),∣∣cov(X2,X3)

∣∣ ≤ λ
√

var(X2)var(X3),∣∣cov(X1,X2 | X3)
∣∣ ≤ λ

√
var(X1 | X3)var(X2 | X3),∣∣cov(X1,X3 | X2)

∣∣ ≤ λ
√

var(X1 | X2)var(X3 | X2),∣∣cov(X2,X3 | X1)
∣∣ ≤ λ

√
var(X2 | X1)var(X3 | X1).

The set of parameters (a12, a13, a23) satisfying any of the above relations for
λ ∈ (0,1) has nontrivial volume. As we show in this paper, the volume of the
distributions that are not λ-strong-faithful grows as the number of nodes and the
graph density grow since both the number of varieties and the curvature of the
varieties increase.

3. General problem setup. Consider a DAG G. Without loss of generality,
we assume that the vertices of G are topologically ordered, meaning that i < j for
all (i, j) ∈ E. Each node i in the graph is associated with a random variable Xi .
Given a DAG G, the random variables Xi are related to each other by the following
structural equations:

Xj = ∑
i<j

aijXi + εj , j = 1,2, . . . , p,(7)

where ε = (ε1, ε2, . . . , εp) ∼ N (0, I ) (see footnote 2) and aij ∈ [−1,+1] are the
causal parameters with aij �= 0 if and only if (i, j) ∈ E. As we will see later, we
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can easily generalize our results to a rescaling of the parameter cube. In matrix
form, these equations can be expressed as

(I − A)T X = ε,

where X = (X1,X2, . . . ,Xp) and A ∈ Rp×p is an upper triangular matrix with
Aij = aij for i < j . Since ε ∼ N (0, I ),

X ∼ N
(
0,

[
(I − A)(I − A)T

]−1)
.(8)

We will exploit the distributional form (8) for bounding the volume of the sets
(aij )(i,j)∈E ∈ [−1,+1]|E| that correspond to Gaussian distributions that are not
(restricted) λ-strong-faithful.

Given (i, j) ∈ V × V with i �= j and S ⊂ V \ {i, j}, we define the set

P λ
ij |S := {

(au,v) ∈ [−1,+1]|E| | ∣∣cov(Xi,Xj | XS)
∣∣

≤ λ
√

var(Xi | XS)var(Xj | XS)
}
.

The set of parameters corresponding to distributions that are not λ-strong-faithful
is

MG,λ := ⋃
i,j∈V,S⊂V \{i,j}:

j not d-separated from i|S

P λ
ij |S.

The set of parameters corresponding to distributions that are not restricted λ-
strong-faithful is given by

N (1)
G,λ := ⋃

i,j∈V,S⊂V \{i,j}:
(i,j,S)∈N

(1)
G

P λ
ij |S,

where N
(1)
G denotes the set of triples (i, j, S), S ⊂ V \ {i, j} with |S| ≤ deg(G),

satisfying either (i, j) ∈ E or i, j are not d-separated given S and not adjacent
but there exists k ∈ V making (i, j, k) an unshielded triple. The set of parame-
ters corresponding to distributions that are not λ-adjacency-faithful [see part (i) of
Definition 1.4] is given by

N (2)
G,λ := ⋃

i,j∈V,S⊂V \{i,j}:
(i,j,S)∈N

(2)
G

P λ
ij |S,

where N
(2)
G denotes the set of triples (i, j, S), S ⊂ V \ {i, j} with |S| ≤ deg(G),

satisfying (i, j) ∈ E.
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Our goal is to provide upper and lower bounds on the volume of MG,λ, N (1)
G,λ

and N (2)
G,λ relative to the volume of [−1,1]|E|, that is, to provide upper and lower

bounds for

vol(MG,λ)

2|E| and
vol(N (1)

G,λ)

2|E| and
vol(N (2)

G,λ)

2|E| .

This is the probability mass of MG,λ, N (1)
G,λ and N (2)

G,λ if the parameters (aij )(i,j)∈E

are distributed uniformly in [−1,+1]|E|, which we will assume throughout the
paper.

4. Algebraic description of unfaithful distributions. In this section, we first
explain that the unfaithful distributions can always be described by polynomials in
the causal parameters (aij )(i,j)∈E and therefore correspond to a collection of hy-
persurfaces in the hypercube [−1,+1]|E|. We then give a combinatorial descrip-
tion of these defining polynomials in terms of paths in the underlying graph. The
proofs can be found in Section 8.

PROPOSITION 4.1. Let i, j ∈ V , S � V \ {i, j} and Q = S ∪ {i, j}. All CI
relations in model (7) can be formulated as polynomial equations in the entries of
the concentration matrix K = (I − A)(I − A)T , namely:

(i) Xi ⊥⊥ Xj ⇐⇒ (C(K))ij = 0,
(ii) Xi ⊥⊥ Xj | XV \{i,j} ⇐⇒ Kij = 0,

(iii) Xi ⊥⊥ Xj | XS ⇐⇒ det(KQcQc)Kij − KiQcC(KQcQc)KQcj = 0,

where C(B) denotes the cofactor matrix of B .3

We now give an interpretation of the polynomials defining the hypersurfaces
corresponding to unfaithful distributions in directed Gaussian graphical models
as paths in the skeleton of G. The concentration matrix K can be expanded as
follows:

K = (I − A)(I − A)T

= I − A − AT + AAT .

This decomposition shows that the entry Kij , i �= j , corresponds to the sum of all
paths from i to j which lead over a collider k minus the direct path from i to j if
j is a child of i, that is,

Kij = ∑
k:i→k←j

aikajk − aij .(9)

3The (i, j)th cofactor is defined as C(K)ij = (−1)i+jMij where Mij is the (i, j)th minor of K ,
that is, Mij = det(A(−i,−j)), where A(−i,−j) is the submatrix of A obtained by removing the ith
row and j th column of A.
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Note that aij is zero in the case that j is not a child of i.
For the covariance matrix � = K−1 the equivalent result describing the path

interpretation is given in [14], equation (1), namely

� =
2p−2∑
k=0

∑
r+s=k

r,s≤p−1

(
AT )r

As.(10)

We give a proof using Neumann power series in Section 8.
Equation (10) shows that the (i, j)th entry of � corresponds to all paths from

i to j , which first go backwards until they reach some vertex k and then forwards
to j . Such paths are called treks in [14]. In other words, �ij corresponds to all
collider-free paths from i to j .

We now understand the covariance between two variables Xi and Xj and the
conditional covariance when conditioning on all remaining variables in terms of
paths from i to j . In the following, we will extend these results to conditional
covariances between Xi and Xj when conditioning on a subset S � V \ {i, j}.
This means that we need to find a path description of

Pij |S := det(KQcQc)Kij − KiQcC(KQcQc)KQcj(11)

[see Proposition 4.1(iii)] and therefore of the determinant and the cofactors of
KQcQc .

Ponstein [10] gave a beautiful path description of det(λI −M) and the cofactors
of λI − M , where M denotes a variable adjacency matrix of a not necessarily
acyclic directed graph. By replacing M by A+AT −AAT , that is by symmetrizing
the graph and reweighting the directed edges, we can apply Ponstein’s theorem.

PONSTEIN’S THEOREM. Let i, j ∈ V , S � V \ {i, j} and Q = S ∪ {i, j} and
let Ĝ denote the weighted directed graph corresponding to the adjacency matrix
A + AT − AAT and ĜQc the subgraph resulting from restricting Ĝ to the vertices
in Qc. Then:

(i) det(KQcQc) = 1 + ∑|Qc|
k=1

∑
m1+···+ms=k(−1)sμ(cm1) · · ·μ(cms ),

(ii) (C(KQcQc))ij = ∑|Qc|
k=2

∑
m0+···+ms=k−1(−1)sμ(dm0)μ(cm1) · · ·μ(cms ),

for i �= j ,

where μ(dm0) denotes the product of the edge weights along a self-avoiding path
from i to j in ĜQc of length m0, μ(cm1), . . . ,μ(cms ) denote the product of the edge
weights along self-avoiding cycles in ĜQc of lengths m1, . . . ,ms , respectively, and
dm0, cm1, . . . , cms are disjoint paths.

Putting together the various pieces in (11), namely equation (9) for describing
KQQ, KQQc and KQcQ, and Ponstein’s theorem for det(KQcQc) and C(KQcQc),
we get a path interpretation of all partial correlations.
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FIG. 3. Directed tree, cycle and bipartite graph.

EXAMPLE 4.2. For the special case where the underlying DAG is fully con-
nected and we condition on all but one variable, that is, S = V \ {i, j, s}, the repre-
sentation of the conditional correlation between Xi and Xj when conditioning on
XS in terms of paths in G is given by(

1 + ∑
k:s→k

a2
sk

)( ∑
k:i→k←j

aikajk − aij

)

−
( ∑

t :i→t←s

aitast − ais

)( ∑
t :j→t←s

ajtast − ajs

)
.

In the following, we apply equations (9), (10) and Ponstein’s theorem to de-
scribe the structure of the polynomials corresponding to unfaithful distributions
for various classes of DAGs, namely DAGs whose skeletons are trees, cycles and
bipartite graphs. We denote by Tp a directed connected rooted tree on p nodes,
where all edges are directed away from the root as shown in Figure 3(a). Let Cp

denote a DAG whose skeleton is a cycle, and K2,p−2 a DAG whose skeleton is a
bipartite graph, where the edges are directed as shown in Figure 3(b) and (c).

We denote by SOS(a) a sum of squares polynomial in the variables (aij )(i,j)∈E ,
meaning

SOS(a) = ∑
k

f 2
k (a),

where each fk(a) is a polynomial in (aij )(i,j)∈E . The polynomials corresponding
to unfaithful distributions for the graphs described in Figure 3 are given in the
following result.

COROLLARY 4.3. Let i, j ∈ V and S ⊂ V \ {i, j} such that i, j are not d-
separated given S. Then the polynomials Pij |S defined in (11) corresponding to
the CI relation Xi ⊥⊥ Xj | XS in model (7) are of the following form:

(a) for G = Tp:

ai→j · (
1 + SOS(a)

)
,

where ai→j is a monomial and denotes the value of the unique path from i to j ;
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(b) for G = Cp:

ai→j · (
1 + SOS(a)

)
if p /∈ S,

f (ā)ai,i+1 − g(ā)aj,j+1 if S = {p},
where ai→j denotes the value of a path from i to j and f (ā), g(ā) are polynomials
in the variables ā = {ast | (s, t) /∈ {(i, i + 1), (j, j + 1)}};

(c) for G = K2,p−2:

ai→j · (
1 + SOS(a)

)
if p /∈ S,

f (ā)a1,j − g(ā)aj,p if i = 1 and p ∈ S.

5. Bounds on the volume of unfaithful distributions. Based on the path
interpretation of the partial covariances explained in the previous section, we
derive upper and lower bounds on the volume of the parameters that lead to
λ-strong-unfaithful distributions. We also provide bounds on the proportion of re-
stricted λ-strong-unfaithful distributions. These are distributions which do not sat-
isfy the necessary conditions for uniform or high-dimensional consistency of the
PC-algorithm. Our first result makes use of Crofton’s formula for real algebraic
hypersurfaces and the Lojasiewicz inequality to provide a general upper bound on
the measure of strong-unfaithful distributions.

Crofton’s formula gives an upper bound on the surface area of a real algebraic
hypersurface defined by a degree d polynomial, namely:

CROFTON’S FORMULA. The volume of a degree d real algebraic hypersur-
face in the unit m-ball is bounded above by C(m)d , where C(m) satisfies(

m + d

d

)
− 1 ≤ C(m)dm.

For more details on Crofton’s formula for real algebraic hypersurfaces see, for
example, [2] or [4], pages 45 and 46.

The Lojasiewicz inequality gives an upper bound for the distance of a point to
the nearest zero of a given real analytic function. This is used as an upper bound
for the thickness of the fattened hypersurface.

LOJASIEWICZ INEQUALITY. Let f : Rp → R be a real-analytic function and
K ⊂ Rp compact. Let Vf ⊂ Rp denote the real zero locus of f , which is assumed
to be nonempty. Then there exist positive constants c, k such that for all x ∈ K :

dist(x,Vf ) ≤ c
∣∣f (x)

∣∣k.
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THEOREM 5.1 (General upper bound). Let G = (V ,E) be a DAG on p nodes.
Then

vol(N (2)
G,λ)

2|E| ≤ vol(N (1)
G,λ)

2|E| ≤ vol(MG,λ)

2|E|

≤ C(|E|)cκkλk

2|E|/2

∑
i,j∈V

∑
S⊂V \{i,j}

deg
(
cov(Xi,Xj | XS)

)
,

where C(|E|) is a positive constant coming from Crofton’s formula, c, k are pos-
itive constants, depending on the polynomials characterizing exact unfaithfulness
(for an exact definition, see the proof), and κ denotes the maximal partial variance
over all possible parameter values (ast ) ∈ [−1,1]|E|, that is,

κ = max
i,j∈V,S⊂V \{i,j} max

(ast )∈[−1,1]|E|
var(Xi | XS).

Theorem 5.1 shows that the volume of (restricted) λ-strong-unfaithful distri-
butions may be large for two reasons. First, the number of polynomials grows
quickly as the size and density of the graph increases, and secondly the degree of
the polynomials grows as the number of nodes and density of the graph increases.
The higher the degree, the greater the curvature of the variety and hence the larger
the volume that is filled according to Crofton’s formula. Unfortunately, the upper
bound cannot be computed explicitly, since we do not have bounds on the constants
in the Lojasiewicz inequality.

PROOF OF THEOREM 5.1. It is clear that

vol
(

N (2)
G,λ

) ≤ vol
(

N (1)
G,λ

) ≤ vol(MG,λ).

Using the standard union bound, we get that

vol(MG,λ) ≤ ∑
i,j∈V,S⊂V \{i,j}:

j not d-separated from i|S

vol
(

P λ
ij |S

)
.

Let Vij |S denote the real algebraic hypersurface defined by cov(Xi,Xj | XS), that
is, the set of all parameter values (ast ) ∈ [−1,+1]|E| which vanish on cov(Xi,Xj |
XS). Hence,

vol
(

P λ
ij |S

) ≤ vol
({

(ast ) ∈ [−1,+1]|E| | ∣∣cov(Xi,Xj | XS)
∣∣ ≤ λκ

})
≤ vol

({
(ast ) ∈ [−1,+1]|E| | dist

(
(ast ),Vij |S

) ≤ cij |Sλkij |S κkij |S })
,

where cij |S, kij |S are positive constants and the second inequality follows from the
Lojasiewicz inequality.
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We apply Crofton’s formula on an |E|-dimensional ball of radius
√

2 to get an
upper bound on the surface area of a real algebraic hypersurface in the hypercube
[−1,1]|E|:

vol
(

P λ
ij |S

) ≤ cij |Sλkij |S κkij |S 2|E|/2C
(|E|) deg

(
cov(Xi,Xj | XS)

)
.

The claim follows by setting

c = max
i,j∈V,S⊂V \{i,j} cij |S and k = min

i,j∈V,S⊂V \{i,j} kij |S. �

The PC-algorithm in practice only requires λ-strong-faithfulness for all subsets
S ⊂ V \ {i, j} for which |S| is at most the maximal degree of the graph. This could
lead to a tighter upper bound, since we have fewer summands. We will analyze in
Section 6 how helpful this is in practice. In addition, note that we can easily get
upper bounds for a general parameter cube of size [−r, r]|E| by applying Crofton’s
formula to a sphere of radius

√
2r .

Since the main goal of this paper is to show how restrictive the (restricted)
strong-faithfulness assumption is, lower bounds on the proportion of (restricted)
λ-strong-unfaithful distributions are necessary. However, nontrivial lower bounds
for general graphs cannot be found using tools from real algebraic geometry, since
in the worst case the surface area of a real algebraic hypersurface is zero. This is
the case when the polynomial defining the hypersurface has no real roots. In that
case, the corresponding real algebraic hypersurface is empty. As a consequence,
we need to analyze different classes of graphs separately, understand the defin-
ing polynomials, and find lower bounds for these classes of graphs. In Section 4,
we discussed the structure of the defining polynomials for DAGs whose skeleton
are trees, cycles or bipartite graphs, respectively. In the following, we use these
results to find lower bounds on the proportion of (restricted) λ-strong-unfaithful
distributions for these classes of graphs.

THEOREM 5.2 (Lower bound for trees). Let Tp be a connected directed tree
on p nodes with edge set E as shown in Figure 3(a). Then:

(i)
vol(MTp,λ)

2|E| ≥ 1 − (1 − λ)p−1,

(ii)
vol(N (1)

Tp,λ)

2|E| ≥ 1 − (1 − λ)p−1,

(iii)
vol(N (2)

Tp,λ)

2|E| ≥ 1 − (1 − λ)p−1.

Theorem 5.2 shows that the measure of restricted and ordinary λ-strong-
unfaithful distributions converges to 1 exponentially in the number p of nodes
for fixed λ ∈ (0,1). Hence, even for trees the strong-faithfulness assumption is re-
strictive and the use of the PC-algorithm problematic when the number of nodes is
large.
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PROOF OF THEOREM 5.2. (i) For a given pair of nodes i, j ∈ V , i �= j , and
subset S ⊂ V \ {i, j} we want to lower bound the volume of parameters (ast ) ∈
[−1,1]|E| (in this example |E| = p − 1) for which∣∣cov(Xi,Xj | XS)

∣∣ ≤ λ
√

var(Xi | XS)var(Xj | XS)

or equivalently

|Pij |S | ≤ λ
√

Pii|SPjj |S.

From Corollary 4.3, we know that the defining polynomials Pij |S for Tp are of the
form

ai→j · (
1 + SOS(a)

)
.

Similarly as in Corollary 4.3, one can prove that the polynomials Pii|S are of the
form 1 + SOS(a) and can therefore be lower bounded by 1.

So the hypersurfaces representing the unfaithful distributions are the coordinate
planes corresponding to the p − 1 edges in the tree Tp . A distribution is strong-
unfaithful if it is near to any one of the hypersurfaces (worst case). Since there is
a defining polynomial Pij |S without the factor consisting of the sum of squares,
the λ-strong-unfaithful distributions correspond to the parameter values (ast ) ∈
[−1,1]p−1 satisfying

|ai→j | ≤ λ

for at least one pair of i, j ∈ V . Since we are seeking a lower bound, we set all
parameter values to 1 except for one. As a result, a lower bound on the proportion
of λ-strong-unfaithful distributions is given by the union of all parameter values
(ast ) ∈ [−1,1]p−1 such that

|ast | ≤ λ.

We get a lower bound on the volume by an inclusion-exclusion argument. We
first sum over the volume of all by 2λ thickened coordinate hyperplanes, subtract
all pairwise intersections, add all three-wise intersections, and so on. This results
in the following lower bound:

vol(MTp,λ)

2|E| ≥ (p − 1)
2λ2p−2

2p−1 −
(

p − 1
2

)
(2λ)22p−3

2p−1 − · · ·

=
p−1∑
k=1

(−1)k+1
(

p − 1
k

)
λk

= 1 −
p−1∑
k=0

(
p − 1

k

)
(−λ)k

= 1 − (1 − λ)p−1.
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The proof of (ii) and (iii) is similar. The monomials ai→j reduce to single pa-
rameters aij , since the necessary conditions only involve (i, j) ∈ E. �

This theorem is in line with the results in [1], where they show that for trees
checking if a Gaussian distribution satisfies all conditional independence relations
imposed by the Markov property only requires testing if the causal parameters
corresponding to the edges in the tree are nonzero.

Note that the behavior stated in Theorem 5.2 is qualitatively the same as for a
linear model Y = Xβ + ε with active set S = {j | βj �= 0}. To get consistent esti-
mation of S, a “beta-min” condition is required, namely that for some suitable λ,

min
j∈S

|βj | > λ,

meaning that the volume of the problematic set of parameter values β ∈ [−1,1]p
is given by

1 − (1 − 2λ)|S|.

The cardinality |S| is the analogue of the number of edges in a DAG; for trees,
the number of edges is p − 1 	 p and hence, the comparable behavior for strong-
faithfulness of trees and the volume of coefficients where the “beta-min” condition
holds.

Using the lower bound computed in Theorem 5.2, we can also analyze some
scaling of n, p = pn and deg(G) = deg(Gn) as a function of n, such that λ = λn-
strong-faithfulness holds. This is discussed in Section 5.1.

We now provide a lower bound for DAGs where the skeleton is a cycle on p

nodes.

THEOREM 5.3 (Lower bound for cycles). Let Cp be a directed cycle on p

nodes with edge set E as shown in Figure 3(b). Then:

(i)
vol(MCp,λ)

2|E| ≥ 1 − (1 − λ)p+(p−1
2 ),

(ii)
vol(N (1)

Cp,λ)

2|E| ≥ 1 − (1 − λ)3p−2,

(iii)
vol(N (2)

Cp,λ)

2|E| ≥ 1 − (1 − λ)2p−1.

For cycles, the measure of λ-strong-unfaithful distributions converges to 1 expo-
nentially in p2. The addition of a single cycle significantly increases the volume of
strong-unfaithful distributions. The measure of restricted λ-strong-unfaithful dis-
tributions, however, converges to 1 exponentially in 3p and hence shows a similar
behavior as for trees. The scaling for achieving strong-faithfulness for cycles is
discussed in Section 5.1.
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PROOF OF THEOREM 5.3. Similar as for trees, all coordinate hyperplanes cor-
respond to unfaithful distributions. The corresponding volume of strong-unfaithful
distributions is 2p−1 · (2λ) and there are p such fattened hyperplanes. In addi-
tion, there are

(p−1
2

)
hypersurfaces in the case of (i), 2(p − 1) hypersurfaces

for (ii), and p − 1 hypersurfaces for (iii) defined by polynomials of the form
f (ā)ai,i+1 − g(ā)aj,j+1, where ā = {ast | (s, t) /∈ {(i, i + 1), (j, j + 1)}}. Such
hypersurfaces are equivalently defined by

ai,i+1 = g(ā)

f (ā)
aj,j+1.

Since for any fixed ā ∈ [−1,1]p−2 this is the parametrization of a line, we can
lower bound the surface area of this hypersurface by 2p−2 · 2, which is the same
lower bound as for a coordinate hyperplane. Similarly as in the proof for trees, an
inclusion-exclusion argument over all hyperplanes yields the proof. �

Our simulations in Section 6 show that by increasing the number of cycles in
the skeleton, the volume of strong-unfaithful distributions increases significantly.
We now provide a lower bound for DAGs where the skeleton is a bipartite graph
K2,p−2 and therefore consists of many 4-cycles. The corresponding scaling for
strong-faithfulness is discussed in Section 5.1.

THEOREM 5.4 (Lower bound for bipartite graphs). Let K2,p−2 be a directed
bipartite graph on p nodes with edge set E as shown in Figure 3(c). Then:

(i)
vol(MK2,p−2,λ)

2|E| ≥ 1 − (1 − λ)(p−2)(2p−3+1),

(ii)
vol(N (1)

K2,p−2,λ)

2|E| ≥ 1 − (1 − λ)(p−2)(2p−3+1),

(iii)
vol(N (2)

K2,p−2,λ)

2|E| ≥ 1 − (1 − λ)(p−2)(2p−3+1).

PROOF. The graph K2,p−2 has 2(p−2) edges leading to 2(p−2) hyperplanes
of surface area 22(p−2)−1. In addition, there are (p − 2)(2p−3 − 1) distinct hyper-
surfaces defined by polynomials of the form f (ā)a1,j − g(ā)aj,p . Their surface
area can be lower bounded as well by 22(p−2)−1 as seen in the proof of Theo-
rem 5.3. Hence, the volume of restricted and ordinary λ-strong-unfaithful distribu-
tions on K2,p−2 is bounded below by

1 − (1 − λ)2(p−2)+(p−2)(2p−3−1). �

We remark that we can generalize the lower bounds to a rescaled parameter cube
[−r, r]|E| by replacing λ by λ

r
. Notice that as r increases the lower bounds decrease

but a very large value of r (i.e., very large absolute values of causal parameters)



GEOMETRY OF FAITHFULNESS ASSUMPTION IN CAUSAL INFERENCE 453

would be needed to achieve sufficiently small lower bounds. Furthermore, as dis-
cussed in [7], other factors such as singularities on the partial correlation hyper-
surfaces may significantly increase the volume and can occur anywhere on the
hypersurface depending on the structure of the DAG. Therefore, the lower bound
may not be tight.

5.1. Scaling and strong-faithfulness. We here consider the setting where the
DAG G = Gn and hence the number of nodes p = pn and the degree of the DAG
deg(G) = deg(Gn) depend on n, and we take an asymptotic view point where
n → ∞. In such a setting, we focus on λ = λn 	 √

deg(Gn) log(pn)/n (see [5]).
We now briefly discuss when (restricted) λn-strong-faithfulness will asymptot-
ically hold. For the latter, we must have that the lower bounds (see Theorems
5.2–5.4) on failure of (restricted) λn-strong-faithfulness tend to zero.

Case I: lower bound 	 1− (1−λn)
pn . Such lower bounds appear for trees (The-

orem 5.2) as well as for restricted strong-faithfulness for cycles (Theorem 5.3). The
lower bound 1 − (1 − λn)

pn tends to zero as n → ∞ if

pn = o

(√
n

deg(Gn) log(n)

)
(n → ∞).

Thus, we have pn = o(
√

n/ log(n)) for λn-strong-faithfulness for bounded de-
gree trees and for restricted λn-strong faithfulness for cycles, and we have pn =
o((n/ log(n))1/3) for star-shaped graphs.

Case II: lower bound 	 1 − (1 −λn)
p2

n . Such a lower bound appears for strong-
faithfulness for cycles (Theorem 5.3). The lower bound 1 − (1 − λn)

p2
n tends to

zero as n → ∞ if

pn = o

((
n

deg(Gn) log(n)

)1/4)
(n → ∞).

Therefore, we have pn = o((n/ log(n))1/4) for λn-strong-faithfulness for cycles.
Case III: lower bound 	 1 − (1 − λn)

2pn . This lower bound appears for strong-
faithfulness for bipartite graphs (Theorem 5.4). This bound tends to zero as n → ∞
if

pn = o
(
log(n)

)
(n → ∞),

regardless of deg(Gn) ≤ pn. Thus, for bipartite graphs with deg(Gn) = pn − 2 we
have pn = o(log(n)) for λn-strong-faithfulness.

In summary, even for trees, we cannot have pn � n, and high-dimensional con-
sistency of the PC-algorithm seems rather unrealistic (unless, e.g., the causal pa-
rameters have a distribution which is very different from uniform).
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6. Simulation results. In this section, we describe various simulation results
to validate the theoretical bounds described in the previous section. For our simu-
lations, we used the R library pcalg [6].

In a first set of simulations, we generated random DAGs with a given expected
neighborhood size (i.e., expected degree of each vertex in the DAG) and edge
weights sampled uniformly in [−1,1]. We then analyzed how the proportion of λ-
strong-unfaithful distributions depends on the number of nodes p and the expected
neighborhood size of the graph. Depending on the number of nodes in a graph,
we analyzed 5–10 different expected neighborhood sizes and generated 10,000
random DAGs for each expected neighborhood size.

Using pcalg we computed all partial correlations. Since this computation re-
quires multiple matrix inversions, numerical imprecision has to be expected. We
assumed that all partial correlations smaller than 10−12 were actual zeroes and
counted the number of simulations, for which the minimal partial correlation (af-
ter excluding the ones with partial correlation < 10−12) was smaller than λ. The
resulting plots of the proportion of λ-strong-unfaithful distributions for three dif-
ferent values of λ, namely λ = 0.1,0.01,0.001 are given in Figure 4(a) for p = 3
nodes, in Figure 4(b) for p = 5 nodes and in Figure 4(c) for p = 10 nodes.

It appears that already for very sparse graphs (i.e., expected neighborhood
size of 2) and relatively small graphs (i.e., 10 nodes) the proportion of λ-strong-
unfaithful distributions is nearly 1 for λ = 0.1, about 0.9 for λ = 0.01 and about 0.7
for λ = 0.001. In addition, the proportion of λ-strong-unfaithful distributions in-
creases with graph density and with the number of nodes (even for a fixed expected
neighborhood size). The general upper bound derived in Theorem 5.1 shows simi-
lar behaviors. The number of summands and the degrees of the hypersurfaces grow
with the number of nodes and graph density.

6.1. Bounding the causal parameters away from zero. In the following, we
analyze how the proportion of λ-strong-unfaithful distributions changes when re-
stricting the parameter space. The motivation behind this experiment is that un-
faithfulness would not be too serious of an issue if the PC-algorithm only fails

FIG. 4. Proportion of λ-strong-unfaithful distributions for 3 values of λ.
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FIG. 5. Proportion of λ-strong-unfaithful distributions for 10-node DAGs when restricting the pa-
rameter space.

to recover very small causal effects but does well when the causal parameters are
large. We repeated the experiments when restricting the parameter space to

[−1,−c] ∪ [c,1]
for c = 0.25,0.5 and 0.75. The results for 10-node DAGs are shown in Figure 5.
Restricting the parameter space seems to help for sparse graphs but does not seem
to play a role for dense graphs. We now analyze various classes of graphs and their
behavior when restricting the parameter space.

6.1.1. Trees. We generated connected trees where all edges are directed away
from the root by first sampling the number of levels uniformly from {2, . . . , p}
(a tree with 2 levels is a star graph, a tree with p levels is a line), then distributing
the p nodes on these levels such that there is at least one node on each level,
and finally assigning a unique parent to each node uniformly from all nodes on the
previous level. The resulting plots for the whole parameter space [−1,1] are shown
in Figure 6(a). The plots when restricting the parameter space for c = 0.25,0.5 and
0.75 are shown in Figure 7. As before, each proportion is computed from 10,000
simulations.

For trees restricting the parameter space reduces the proportion of λ-strong-
unfaithful distributions by a large amount. This can be explained by the special
structure of the defining polynomials (given in Corollary 4.3). Since the defining
polynomials of the partial correlation hypersurfaces are of the form ai→j · (1 +
SOS(a)), the minimal possible value of these polynomials when restricting the
parameter space is

cpath length from i to j .

6.1.2. Cycles. We generated DAGs where the skeleton is a cycle and the
edges are directed as shown in Figure 3(b). The edge weights were sampled
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FIG. 6. Proportion of λ-strong-unfaithful distributions when the skeleton is a tree, a cycle or a
bipartite graph.

uniformly from [−1,−c] ∪ [c,1]. The resulting plots for the whole parameter
space are shown in Figure 6(b). The plots for the restricted parameter space with
c = 0.25,0.5 and 0.75 are shown in Figure 8. Again, each point corresponds to
10,000 DAGs.

For cycles restricting the parameter space also reduces the proportion of λ-
strong-unfaithful distributions, however not as drastically as for trees. This can
again be explained by the special structure of the defining polynomials (given
in Corollary 4.3). When the defining polynomials are of the form f (ā)ai,i+1 −
g(ā)aj,j+1, they might evaluate to a very small number even when the parameters
themselves are large.

6.1.3. Bipartite graphs. We generated DAGs where the skeleton is a bipartite
graph K2,p−2 and the edges are directed as shown in Figure 3(c). Bipartite graphs
K2,p−2 consist of many 4-cycles. For such graphs there are many paths from one
vertex to another and therefore many ways for a polynomial to cancel out, even

FIG. 7. Proportion of λ-strong-unfaithful distributions for trees when restricting the parameter
space.
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FIG. 8. Proportion of λ-strong-unfaithful distributions for cycles when restricting the parameter
space.

when the parameter values are large. As a consequence, for such graphs restricting
the parameter space makes hardly no difference on the proportion of λ-strong-
unfaithful distributions. This becomes apparent in Figures 6(c) and 9.

6.1.4. Lower bounds. We compare the theoretical lower bounds derived in
Section 5 to the simulation results in this section for DAGs where the skeleton
is a tree, a cycle or a bipartite graph when c = 0. We present our lower bounds
together with the simulation results in Figure 10. The black lines correspond to the
lower bounds, the solid line to λ = 0.1, the dashed line to λ = 0.01 and the dotted
line to λ = 0.001. In particular for bipartite graphs our lower bounds approximate
the simulation results very well.

6.2. Restricted λ-strong-faithfulness. As already discussed earlier, the PC-
algorithm only requires the computation of all partial correlations over edges in
the graph G and conditioning sets S of size at most deg(G). In order to ana-
lyze when the (conservative) PC-algorithm works, we repeated all our simulations

FIG. 9. Proportion of λ-strong-unfaithful distributions for bipartite graphs K2,p−2 when restrict-
ing the parameter space.
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FIG. 10. Comparison of theoretical lower bounds and approximated proportion of
λ-strong-unfaithful distributions for trees, cycles and bipartite graphs K2,p−2.

when restricting the partial correlations to edges in the graph G and conditioning
sets S of size at most deg(G), that is, part (i) of the restricted strong-faithfulness
assumption in Definition 1.4, called the adjacency-faithfulness assumption. The
results for general 10-node DAGs are shown in Figure 11. We see that the pro-
portion of λ-adjacency-unfaithful distributions is slightly reduced compared to the
proportion of λ-strong-unfaithful distributions shown in Figure 5, in particular for
sparse graphs. For trees and bipartite graphs the proportion of restricted λ-strong-
unfaithful distributions is similar to the proportion of λ-strong-unfaithful distri-
butions shown in Figures 6, 7 and 9, whereas the behavior for cycles regarding
the proportion of restricted λ-strong-unfaithful distributions is similar to trees. We
omit these plots here, but remark that they nicely agree with the theoretical bounds
for restricted λ-strong-faithfulness and λ-adjacency-faithfulness derived in Sec-
tion 5.

7. Discussion. In this paper, we have shown that the (restricted) strong-
faithfulness assumption is very restrictive, even for relatively small and sparse

FIG. 11. Proportion of λ-adjacency-unfaithful distributions for 10-node DAGs.
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graphs. Furthermore, the proportion of strong-unfaithful distributions grows with
the number of nodes and the number of edges. We have also analyzed the restricted
strong-faithfulness assumption introduced by Spirtes and Zhang [17], a weaker
condition than strong-faithfulness, which is essentially a necessary condition for
uniform or high-dimensional consistency of the popular PC-algorithm and of the
conservative PC-algorithm. As seen in this paper, our lower bounds on restricted
strong-unfaithful distributions are similar to our bounds for strong faithfulness,
implying inconsistent estimation with the PC-algorithm for a relatively large class
of DAGs.

For trees, due to the special structure of the polynomials defining the hyper-
surfaces of unfaithful distributions, if the causal parameters are large, the partial
correlations tend to stay away from these hypersurfaces and strong-faithfulness
holds for a large proportion of distributions. However, as soon as there are cy-
cles in the graph (even for sparse graphs), the polynomials can cancel out also
for large causal parameters, and the strong-faithfulness assumption does not hold.
More precisely, if the skeleton is a single cycle, our lower bounds on the propor-
tion of restricted strong-unfaithful distributions is of the same order of magnitude
as for trees. However, if the skeleton consists of multiple cycles as, for example,
for bipartite graphs, the lower bounds for restricted strong-unfaithful distributions
are as bad as for plain strong-unfaithful distributions.

Assuming our framework and in view of the discussion above, in the presence of
cycles in the skeleton, the (conservative) PC-algorithm is not able to consistently
estimate the true underlying Markov equivalence class when p is large relative
to n, even for large causal parameters (large edge weights). Some special assump-
tions on the sparsity and causal parameters might help, but without making such as-
sumptions, the limitation is in the range where p = pn = o(

√
n/ log(n)). This con-

stitutes a severe limitation of the PC-algorithm. As an alternative method, the pe-
nalized maximum likelihood estimator (cf. [3]) does not require strong-faithfulness
but instead a stronger version of a beta-min condition (i.e., sufficiently large causal
parameters) [15]. This “permutation beta-min” condition has been shown to hold
for AR(1) models in [15], page 8. However, a thorough analysis of the “permu-
tation beta-min” condition and a comparison to the strong-faithfulness condition
more generally is quite challenging and remains an interesting open problem.

Throughout the paper, we have assumed that the causal parameters are uni-
formly distributed in the hypercube [−1,1]|E|. Since all hypersurfaces correspond-
ing to unfaithful distributions go through the origin, a prior distribution which puts
more mass around the origin (e.g., a Gaussian distribution) would lead to a higher
proportion of strong-unfaithful distributions, whereas a prior distribution which
puts more mass on the boundary of the hypercube [−1,1] would reduce the pro-
portion of strong-unfaithful distributions. Computing and comparing these mea-
sures for different priors would be an interesting extension of our work. Another
interesting problem would be to extend our results to the case of general error
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variances [i.e., var(εj ) = σ 2
j ]. Finally, very recently the k-triangle-faithfulness as-

sumption has been proposed [13] as a sufficient condition for uniform consistency
for inferring certain features of the causal structure. This assumption is less restric-
tive than strong-faithfulness, at the cost of decreasing identifiability, returning a
statement “undecidable” for some cases. Analyzing how restrictive the k-triangle-
faithfulness assumption is and what it means for the high-dimensional setting rep-
resents an interesting future direction.

8. Proofs.

PROOF OF PROPOSITION 4.1. Statement (i) follows from the matrix inversion
formula using the cofactor matrix, that is,

�ij = 1

det(K)
C(K)ij ,

and the fact that the concentration matrix K is positive definite and therefore
det(K) > 0. Statement (ii) is a well-known fact about the multivariate Gaussian
distribution.

Let A,B ⊂ V be two subsets of vertices. We denote by KAB the submatrix of
K consisting of the entries Kij , where (i, j) ∈ A × B . Let KA denote the concen-
tration matrix in the Gaussian model, where we marginalized over Ac = V \ A.
With these definitions, we have that

KA = �−1
AA.

The correlation between Xi and Xj conditioned on S corresponds to the (i, j)th
entry in the matrix KQ. Using the Schur complement formula, we get that

KQ = KQQ − KQQc(KQcQc)−1KQcQ.(12)

Since KQcQc is positive definite, we can rewrite equation (12) as

det(KQcQc)KQ = det(KQcQc)KQQ − KQQcC(KQcQc)KQcQ,

from which statement (iii) follows. �

PROOF OF (10). We first note that the (i, j)th element of As consists of the
sum of the weights of all paths p = (p0,p1, . . . , ps) with p0 = i and ps = j for
which (pk−1,pk) ∈ E for all k = 1, . . . , s. This means that (As)ij corresponds to
all “forward” paths from i to j of length s. Analogously, (AT )r corresponds to all
“backward” paths from i to j of length r .

We decompose the covariance matrix using the Neumann power series. We can
do this since all eigenvalues of the matrix A are zero (because A is upper triangu-
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lar).

� = (
(I − A)(I − A)T

)−1

=
∞∑

k=0

∑
r+s=k

(
AT )r

As

=
2p−2∑
k=0

∑
r+s=k,

r,s≤p−1

(
AT )r

As.

For the last inequality, we used the assumption that the underlying graph is acyclic.
Using the path interpretation it is clear that for acyclic graphs the matrix As is the
zero-matrix for all s ≥ p. �

PROOF OF COROLLARY 4.3. To prove (a), we first consider the special case
where G is a directed line on p nodes, where all edges point in the same direction,
that is, (i, i + 1) ∈ E for 1 ≤ i < p. The following argument can then easily be
generalized to directed trees Tp .

Let i, j ∈ V and without loss of generality we assume that i < j . Since there
are no colliders in G, it follows from (9) that

Kij =
{−aij , if j is a child of i,

0, otherwise,

�ij corresponds to all collider-free paths from i to j and therefore

�ij = (
1 + a2

i−1,i

(
1 + a2

i−2,i−1
(· · · (1 + a2

12
)))) j−1∏

k=i

ak,k+1.(13)

The first term corresponds to the value of all collider-free loops from i to i and the
second term to the value of the path from i to j .

Let S � V \ {i, j} and Q = S ∪ {i, j}. If there exists an element s ∈ S such that
i < s < j , then the CI relation Xi ⊥⊥ Xj | XS is already entailed by the Markov
condition. We can therefore assume without loss of generality that there is no s ∈ S

such that i < s < j . Since there are no colliders in G, it follows from Proposi-
tion 4.1(iii) that the corresponding polynomial is of the form⎧⎪⎨

⎪⎩
−det(KQcQc)aij , if j is a child of i,

− ∑
p,q∈Qc

aipC(KQcQc)pqaqj , otherwise.(14)

The corresponding symmetrized and reweighted graph Ĝ for p = 5 is shown
in Figure 12(a). Note that there is a unique self-avoiding path between any two
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FIG. 12. Subgraphs ĜPi
, where G is a directed line and Pi = {1,2, . . . ,5}.

vertices. As a consequence, the polynomial corresponding to the CI relation Xi ⊥⊥
Xj | XS in (14) can be written as

−
(

1 +
|P |∑
k=1

∑
m1+···+ms=k

(−1)sμ(cm1) · · ·μ(cms )

) j−1∏
k=i

ak,k+1,(15)

where P = Qc \ {i + 1, . . . , j − 1}.
We now analyze the cycles in P . We decompose P into intervals P = P1 ∪

· · · ∪ Ps , where Pi = {p−
i , p−

i + 1, . . . , p+
i }. We need to distinguish two cases. If

p+
i = p, then the subgraph ĜPi

is of the form as shown in Figure 12(a) (for p−
i = 1

and p+
i = 5). Otherwise the subgraph is of the form as shown in Figure 12(b) (for

p−
i = 1 and p+

i = 5).
We note that all cycles are either of length 1 (with value −a2

k,k+1) or of length 2
(with value a2

k,k+1). In the case where p+
i = p all cycles of length 1 cancel with

the cycles of length 2. In the case where p+
i < p, however, the cycle of length 1

with value −a2
p+

i ,p+
i +1

does not cancel and therefore neither does the combination

of k cycles
k−1∏
j=0

(−a2
p+

i −j,p+
i −j+1

)

for any k ∈ {1, . . . , p+
i −p−

i }. As a consequence, the polynomial corresponding to
the CI relation Xi ⊥⊥ Xj | XS in (15) can be written as

−
s∏

i=1

(
1 + a2

p+
i −1,p+

i

(
1 + a2

p+
i −2,p+

i −1

(· · · (1 + a2
p−

i ,p−
i +1

)))) j−1∏
k=i

ak,k+1.

The proofs for (b) and (c) are analogous and basically require understanding the
cycles in Ĝ. �
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