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AN ALGORITHM TO COMPUTE THE POWER OF MONTE
CARLO TESTS WITH GUARANTEED PRECISION1

BY AXEL GANDY AND PATRICK RUBIN-DELANCHY

Imperial College London and University of Bristol

This article presents an algorithm that generates a conservative confi-
dence interval of a specified length and coverage probability for the power
of a Monte Carlo test (such as a bootstrap or permutation test). It is the first
method that achieves this aim for almost any Monte Carlo test. Previous re-
search has focused on obtaining as accurate a result as possible for a fixed
computational effort, without providing a guaranteed precision in the above
sense. The algorithm we propose does not have a fixed effort and runs until
a confidence interval with a user-specified length and coverage probability
can be constructed. We show that the expected effort required by the algo-
rithm is finite in most cases of practical interest, including situations where
the distribution of the p-value is absolutely continuous or discrete with finite
support. The algorithm is implemented in the R-package simctest, available
on CRAN.

1. Introduction. Let p be a random variable taking values in [0,1] with un-
known cumulative distribution function (CDF) F . For some α ∈ (0,1), we want to
approximate β = F(α) by Monte Carlo simulation. Assume that we cannot sam-
ple from F directly, but that it is possible to generate a collection of random vari-
ables (Xi

j : i ∈ N, j ∈ N), where Xi
1,X

i
2, . . . ∼ Bernoulli(pi) independently and

p1,p2, . . . are unobserved independent copies of p, that is, p1,p2, . . . ∼ F inde-
pendently.

This problem comes about when computing the power or level of a Monte Carlo
test, such as a bootstrap or permutation test, or in general a test that rejects on the
basis of simulations under the (potentially estimated) null hypothesis. In this con-
text, p is the (random) p-value, α the nominal level of the test and β its power. In
this situation Xi

1,X
i
2, . . . are generated as follows: simulate a dataset (thus implic-

itly generating pi), compute the observed test statistic and then, for j = 1,2, . . . ,

use a sampling technique (such as bootstrapping or permutation) on the observed
dataset to get a (re)sampled realization of the test statistic under the null hypoth-
esis. Define Xi

j as the indicator that the (re)sampled test statistic is at least as
extreme as the observed test statistic.
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A typical approach is to choose N,M ∈ N = {1,2, . . .} and estimate β by

β̂naïve = 1

N

N∑
i=1

I

[(
1

M

M∑
j=1

Xi
j

)
≤ α

]
,

where I is the indicator function. A problem of this approach is that the bias of
β̂naïve is unknown. For example, using [1], equation (2), it can be shown that no
matter how large N and M are chosen,

sup
P∈P

|Eβ̂naïve − β| ≥ 0.5,

where P is the set of all probability distributions on [0,1]. Better bounds are avail-
able under the assumption that Eβ̂naïve is concave in α, see [3], Section 4.2.5.
However, this would usually not be known in a given application.

More advanced estimation methods have been proposed. For instance,
Oden [10] has investigated how to choose the relative sizes of N (controlling
the variance) and M (controlling the bias), to minimize the total estimation error
for certain distributions of p. [1] partially correct the bias by extrapolation.

However, existing procedures do not provide a formal, finite-sample guarantee
on the accuracy of β̂ for a general test. This is partly because the problem has
always been approached with the principle of finding as accurate an estimate as
possible for a fixed computational effort.

We approach the problem with the priorities reversed: we make an exact proba-
bilistic statement about the result, allowing the computational effort to be random.

The algorithm that we propose is guaranteed to provide a conservative confi-
dence interval (CI) for β of a given coverage probability. This interval will, after
a finite expected number of samples, reach any desired length, provided that F is
Hölder continuous in a neighborhood of α with exponent ξ > 0. This is satisfied
if, for example, in a neighborhood of α, p is absolutely continuous with respect to
Lebesgue measure with bounded density. In this case ξ = 1.

For practical use, the inner workings of the algorithm can be ignored. Users
only need to provide the required precision (maximum CI length and minimum
coverage probability) and a mechanism for generating the Xi

j . The algorithm is
implemented in the R-package simctest, available on CRAN.

The article is structured as follows. In Section 2 we describe the basic algorithm.
Theorem 2.1 demonstrates that, under very mild conditions, the algorithm termi-
nates in finite expected time. Sections 3 and 4 present additional methodology to
reduce the computational effort, some details of which are in supplementary mate-
rial [6]. Section 5 contains a simulation study. In Section 6, we suggest an adaptive
rule which ensures that the computational effort is only high if the estimate is
in a region of interest. In Section 7 we demonstrate the use of our algorithm on
a simple permutation test example. Proofs and auxiliary lemmas are in the Ap-
pendix. Within these, Lemma A.1 confirms an observation made in [5], main text
page 1507 and Figure 4, about the distance between certain stopping boundaries.
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2. The basic algorithm.

2.1. Description. We use the notation introduced in the first paragraph of the
Introduction. For every i ∈ N, we call the Bernoulli sequence (Xi

j )j∈N a stream.
The algorithm will use a fixed number N of these streams.

For each stream i, our algorithm aims to decide if pi ≤ α or if pi > α. We use
the sequential algorithm of [5] for this purpose.

To simplify notation, we often drop the stream index i when referring to a
generic stream; for example, we write Xj , p instead of Xi

j , pi . Furthermore, we
use a subscript to indicate the probability distribution of such a stream conditional
on a specific value of p, that is, Pq(·) = P(·|p = q) for some q ∈ [0,1].

The procedure in [5] defines two deterministic sequences, an upper boundary
(Ut : t ∈ N) and a lower boundary (Lt : t ∈ N). While the partial sum St = ∑t

j=1 Xj

has hit neither boundary, the stream is unresolved. The procedure terminates at the
hitting time

τ = inf{t :St ≥ Ut or St ≤ Lt }.
If the upper boundary is hit, we decide p > α and report a negative outcome (p is
not significant at level α). If the lower boundary is hit we decide p ≤ α and report
a positive outcome (p is significant at level α).

The boundaries are constructed to give a desired uniform bound ε > 0 on the
probability of a wrong decision, that is,

Pp(Sτ = Uτ ) ≤ ε for p ≤ α,
(2.1)

Pp(Sτ = Lτ ) ≤ ε for p > α.

Figure 1 shows an example of Ut and Lt with ε = 0.01 and α = 0.05.

FIG. 1. Confidence intervals generated by the algorithm using N = 4, ε = 0.01, α = 0.05,
εt = εt/(1000 + t) and γ = 0.05.
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To be more precise, the boundaries are constructed recursively using a spending
sequence (εt ) with 0 ≤ εt ↗ ε as t → ∞. The spending sequence governs how
quickly the error probability ε is spent, guaranteeing

Pp(Sτ = Uτ , τ ≤ t) ≤ εt for p ≤ α,

Pp(Sτ = Lτ , τ ≤ t) ≤ εt for p > α.

The precise recursive construction is given in (A.1), in the Appendix.
Our algorithm runs N streams in parallel until enough have been resolved to

meet the required precision. More formally, it operates as follows:

ALGORITHM 1 (Basic algorithm).
Let t = 0; R0 = 0; A0 = 0; U0 = {1, . . . ,N}, S1

0 = 0, . . . , SN
0 = 0

while |I (Rt ,At , |Ut |;γ )| > �

Let t = t + 1, Rt = Rt−1, At = At−1, Ut = Ut−1

for i ∈ Ut

Let Si
t = Si

t−1 + Xi
t

If Si
t ≥ Ut let At = At + 1, Ut = Ut \ {i}

If Si
t ≤ Lt let Rt = Rt + 1, Ut = Ut \ {i}

Report I (Rt ,At , |Ut |;γ ) as confidence interval for β .

Ut is a set containing the indices of unresolved streams at time t . | · | denotes the
size of finite sets as well as the length of intervals. Rt and At count, respectively,
the number of positive and negative outcomes.

I (Rt ,At , |Ut |;γ ) is a conservative confidence interval for β based on Rt , At

and |Ut |. It is constructed as follows. Because of (2.1), the probability that a stream
has a positive outcome is in the interval [(1 − ε)β, (1 − ε)β + ε]. Therefore, if all
streams were resolved, the following interval would be a conservative confidence
interval for β with coverage probability 1 − γ :

I∞ = I∞(R∞,A∞;γ ) =
[
β∗− − ε

1 − ε
,

β∗+
1 − ε

]
,

where R∞ (A∞) denotes the number of positive (negative) outcomes and [β∗−, β∗+]
is the Clopper–Pearson confidence interval [2] with coverage probability 1 − γ for
the success probability of a Binomial random variable observed to be R∞ after
R∞ + A∞ trials.

The subscript in I∞ represents that this is the interval that would be obtained
by our algorithm if it were run until all streams were resolved.

To obtain a conservative confidence interval It while there are unresolved
streams, we take the union of all confidence intervals that could be obtained
after observing the outcomes of the remaining streams, that is, we let It =
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I (Rt ,At , |Ut |;γ ) where

I (r, a, u;γ ) =
r+u⋃

r∞=r

I∞(r∞, r + a + u − r∞;γ ).(2.2)

By construction, I1 ⊇ I2 ⊇ · · · ⊇ I∞ and

P[β ∈ I1 ∩ · · · ∩ β ∈ It ∩ · · · ∩ β ∈ I∞] ≥ 1 − γ.

Figure 1 illustrates the algorithm in a toy example with only N = 4 streams.
The thin lines depict the 4 corresponding partial sum sequences, Si

t . When Si
t hits

one of the boundaries the stream is stopped, causing a retraction of the confidence
interval for β (annotated at the top of the graph).

2.2. Expected time. A simpler algorithm than Algorithm 1 would be to run N

streams until all are resolved. N can be chosen such that the CI length is at most �

for all outcomes. However, this algorithm is unusable in practice as it typically
requires an infinite expected effort. Indeed, from [5], page 1506, if the CDF F

of p has a nonzero derivative at α, a very common case, then E[τi] = ∞, where τi

denotes the hitting time of the ith stream. This makes the overall expected effort
infinite.

We now show that with our algorithm we can choose N and (εt ) such that the
expected effort is finite. The key is to make N large enough that not all streams
have to be resolved.

The effort of Algorithm 1, as measured by the number of Xi
t used, is

e =
N∑

i=1

min{τi, τ(N−k)},(2.3)

where k is the number of unresolved streams when the algorithm finishes and
τ(1) ≤ · · · ≤ τ(N) denote the order statistics of τ1, . . . , τN .

By choosing N large enough and ε small enough, we can ensure k ≥ κ for
any given κ ≥ 1. The effort is then bounded above by τ(N−κ)N . Thus to ensure
that E[e] is finite, it suffices to prove E[τ(N−κ)] < ∞ for some κ . The following
theorem shows that in many cases κ can be taken as small as 2.

THEOREM 2.1. Suppose that ε ≤ 1/4 and there exist constants λ > 0, q > 1
and T ∈ N such that εt − εt−1 ≥ λt−q for all t ≥ T . Further, suppose that in a
neighborhood of α the CDF F of p is Hölder continuous with exponent ξ . Then
E[τ(i)] < ∞ for i ≤ N − �2/ξ. In particular, if ξ = 1 (the CDF is Lipschitz con-
tinuous in a neighborhood of α), then E[τ(N−2)] < ∞.

F is Hölder continuous with exponent ξ in a neighborhood of α if there exists
an open interval U containing α for which there exists a c > 0 such that for all
x, y ∈ U , |F(x) − F(y)| ≤ c|x − y|ξ .
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The conditions on ε and (εt ) are, for example, satisfied by εt = εt/(1000 + t)

and any ε ≤ 1/4 with λ = 1 and q = 2. This spending sequence (εt ) is the default
spending sequence in the R-package simctest.

The conditions on F are mild. For example, if F has a bounded density in a
neighborhood of α, then ξ = 1. If the distribution of p is discrete and has finite
support (e.g., in a permutation test), then ξ = 1 if P[p = α] = 0. Otherwise, it is in
principle possible to find α′ > α such that

β = P[p ≤ α] = P
[
p ≤ α′], P

[
p = α′] = 0.

Applying the algorithm to α′ instead of α, we again have ξ = 1.
Henceforward the conditions of Theorem 2.1 are assumed to be satisfied with

ξ = 1. The algorithm will meet the user-specified precision requirements with a
finite expected effort if it will terminate by time τ(N−2) with probability one, or
if P[|Iτ(N−2)

| > �] = 0. As can be verified, with N − 2 of N streams resolved the
largest possible CI length occurs when there are �(N − 2)/2 positive outcomes.
N must therefore satisfy |I (�(N − 2)/2, �(N − 2)/2�,2;γ )| ≤ �. We shall call
the minimal such N the blind minimal N , NB .

3. Choosing the number of streams. The computational effort of Algo-
rithm 1 can be large; see Section 5. In this section we introduce two improvements
concerning the choice of N : a pilot sample that can allow a smaller N than NB ,
NP , and an estimate of the optimal N ≥ NP , using information from the pilot.

3.1. Reducing the simple minimum N . Before running the main algorithm,
we propose to first obtain a pilot sample, where n streams are run and stopped
at a maximum number of steps tmax, obtaining a preliminary confidence interval
I P = I (RP ,AP , |UP |;γP ), where I is defined in (2.2), γP is some pre-specified
value (substantially) less than γ and RP , AP , |UP | are the number of positive
outcomes, negative outcomes and unresolved streams.

In the main run the following interval can then be reported

I (P)
t = I

(
Rt,At , |Ut |;γ − γP

) ∩ I P .(3.1)

This respects the coverage probability 1 − γ , since a Bonferroni correction was
used. We call the minimal N such that for all r ∈ {0,1, . . . ,N − 2} :∣∣I (r,N − 2 − r,2;γ − γP ) ∩ I P

∣∣ ≤ �

the pilot-based minimal N denoted by NP . Given I P it can be determined by a
computational search.

For N ≥ NP the confidence interval will always reach the desired length if at
most 2 streams are unresolved. NP can be much smaller than NB . Indeed, after
N − 2 of N streams in the main run are resolved, the maximum CI length achiev-
able is for a number of positive outcomes r that satisfies r/(N − 2) ∈ I P . As



COMPUTING THE POWER OF MONTE CARLO TESTS 131

FIG. 2. Ratio of the pilot-based minimum N , NP , over the blind version, NB as a function of
the rightmost point max IP of the pilot sample interval, with � = 0.01, ε = 0.0001, γ = 0.01,
γP = γ /10. Here, NB = 68,311.

demonstrated for pilot intervals I P to the left of 0.5 in Figure 2, the minimum
number of streams needed in the main run can be reduced substantially, in partic-
ular, if I P lies far to the left (or right) of 0.5.

Heuristically, the disadvantage of a small increase in the coverage probability
from 1 − γ to 1 − (γ − γP ) can be outweighed by being able to exclude large
intervals centered around 0.5.

3.2. Approximation of the optimal number of streams. In this section, we
choose N within the range of possible Ns (N ≥ NP ) in order to minimize E(e),
where e is defined in (2.3). We use a heuristic approach, which we only sketch
briefly. Details can be found in the supplementary material [6].

From the pilot sample, we obtain an estimate of the probability of a stream
stopping before tmax, its expected stopping time under this event, and a preliminary
estimate of β .

The expected stopping time of streams finishing after tmax is predicted on the
basis of the approximation P[τi > t |τi > tmax] ≈ c

√
log(t)/t . This appears to be

appropriate (for a large enough tmax) when the p-value distribution is sufficiently
“well behaved” around α.

Using these quantities we can approximate the expected effort for each N . The
optimum N , denoted by NO , is found by searching over a sensible range NP ≤
N ≤ Nmax.

4. Stopping based on joint information. We now describe a testing proce-
dure that analyzes the current set of unresolved streams as a whole and allows the
algorithm to stop with more unresolved streams. It reports a lower bound rt (at )
on the number of positive (negative) outcomes from the remaining streams if both
of the following hypotheses are rejected,

H+
0 :

∣∣{i ∈ Ut :pi ≤ α}∣∣ < rt , H−
0 :

∣∣{i ∈ Ut :pi > α}∣∣ < at ,

where rt , at ≥ 0 and rt + at ≤ |Ut |. The choice of rt and at is discussed later.
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The hypotheses will be rejected for large values of the test statistics,

T + =
|Ut |∑
i=rt

I
[
Gα

t

(
S

(i)
t

) ≤ η
]
, T − =

|Ut |−at+1∑
i=1

I
[
Gα

t

(
S

(i)
t

) ≥ 1 − η
]
,

where S
(1)
t ≤ · · · ≤ S

(|Ut |)
t are the ordered partial sums corresponding to the unre-

solved streams, η is a chosen (small) positive value and

Gα
t (x) = Pα[St ≤ x|τ > t],

that is, Gα
t is the CDF of a cumulative sum of t Bernoulli variables with success

probability α, conditional on not having hit either boundary by time t . This func-
tion is computed recursively.

The random variable X is said to be stochastically smaller than the random
variable Y , denoted X ≤st Y , if P(X ≤ x) ≥ P(Y ≤ x) for all x ∈ R.

THEOREM 4.1. Under H+
0 , T + ≤st B+ and under H−

0 , T − ≤st B−, where
B+ and B− are Binomial variables with success probability η and size |Ut |−rt +1
and |Ut | − at + 1, respectively.

H+
0 and H−

0 can therefore be rejected conservatively when T + and T − are
significantly large for the corresponding Binomial variables.

Using Bonferroni correction, a minimum coverage probability of 1 − γ is guar-
anteed if for all t we compute a confidence interval

I J
t = I

(
R̃t , Ãt , |Ũt |;γ − γP − γJ

) ∩ I P ,

where (R̃t , Ãt , |Ũt |) = (Rt + rt ,At + at , |Ut | − rt − at ) if the test rejects,
(Rt ,At , |Ut |) otherwise, and γJ < γ − γP is an upper bound on the overall proba-
bility of wrongly rejecting either hypothesis at any point in time. To guarantee this
bound, at each time t , each hypothesis is tested at level ξt/2, where ξ1, ξ2, . . . ≥ 0
are constants satisfying

∑∞
i=1 ξi = γJ .

rt and at are chosen such that |I J
t | ≤ � if both tests reject, so that the algorithm

can stop immediately if this occurs.
The procedure is mostly useful when the number of resolutions required, rt +

at , is small compared to the number of remaining streams |Ut |. As an extreme
example, suppose that rt = 1, at = 0 and |Ut | = 100. In this case, it can be possible
to conclude with virtual certainty that at least 1 of the 100 streams has a p-value
less than α, when concluding the same about any individual stream could require
many more samples.

In this procedure there are a number of free parameters that we set somewhat
heuristically. From a small simulation study we established that choosing η = 0.05
gave good results. As for rt and at , they are chosen to be equal and then as small
as possible subject to the algorithm terminating if the hypotheses can be rejected,
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TABLE 1
Average effort (in millions) of our adaptive methods (“No test” and “With test”) compared with the

minimum N and the optimal N

β = 0.05 β = 0.7 β = 0.9 β = 0.99

Av. (S.E.) Av. (S.E.) Av. (S.E.) Av. (S.E.)

Optimal N 12.3 (0.14) 3329 (35) 539 (8.4) 16.2 (0.08)
Min. N 12.5 (0.16) 8498 (296) 548 (9.2) 16.1 (0.08)
No test 10.5 (0.22) 3324 (41) 568 (7.9) 10.4 (0.10)
With test 8.0 (0.19) 1541 (18) 317 (5.2) 10.4 (0.09)

since for simple p-value distributions it is likely that the unresolved p-values
would be roughly evenly distributed around α.

In the simulation studies that follow and in the R-implementation, γJ = γ /10,
ξt is only positive when t = ti = 2i ×105 for i ∈ N and

∑ti
1 ξt = γJ ×20/(20+ i).

5. Simulations. This simulation study illustrates the effort required by our al-
gorithm and the effect of the improvements in Sections 3 and 4. For all experiments
we set α = 0.05, � = 0.02, 1 − γ = 0.99, ε = 0.0001 and εt = ε1000/(1000 + t).
Four p-value distributions were considered, Beta(1, x) with x such that P[p ≤
α] = α,0.7,0.9,0.99, that is, x = 1 (a uniform distribution) and roughly x = 23.5,
x = 44.9 and x = 89.8, respectively. As before, the effort is measured by the total
number of samples generated.

Table 1 shows the average effort based on 100 replicated runs in the left sub-
columns. In the right subcolumns we report the estimated standard error of the
corresponding estimate, that is, the standard deviation of the sample divided by√

100.
The first two rows report the average effort for the optimal N (which would

not be available in practice) and the minimum N , NB , when using Algorithm 1
without any of the improvements suggested in Sections 3 and 4. These were com-
puted by resampling from 106 pre-simulated replicates of the tuple (stopping-time,
outcome), for each distribution, from which we emulated the operation of the al-
gorithm. (Finding the optimal N would otherwise have taken too much time.)

The third row illustrates the improvements of Section 3, which concern the
choice of N , setting γP = 0.1γ . In the fourth row we additionally implemented
the test on joint information, described in Section 4, with γJ = 0.1γ . In both of
these rows each value represents the average effort observed from actually running
the algorithm 100 times. Each run used its own pilot sample consisting of 1000
streams forced to terminate after 1000 steps. The effort of the pilot is included in
the average effort.

First consider the difference between the third and fourth rows of Table 1. The
testing procedure can reduce the effort substantially, namely by 24%, 54%, 44%
in the first three cases, although in the last case the reduction is not significant.
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For the Uniform and Beta distribution with power 0.99, the optimal N and NB
turn out to be equal. Hence, the reduction of the effort seen in the third row over
the first two rows is mostly due to the intersection method described in Section 3.1,
which has allowed a smaller choice of N , NP .

For the Beta distribution with power 70%, the effort for the minimal N , in the
second row, is over 2.5 times larger than for the optimal N , in the first row. As
result, in this example it was crucial to estimate this optimum, by the procedure
described in Section 3.2. The difference between the effort for the optimal N (un-
known in practice) and the adaptively chosen NO is not significant (although in
this example enough simulations would show that the optimal N still performed
better). As previously mentioned, introducing the testing procedure in this example
further reduces the effort by a considerable margin, as demonstrated in the fourth
row. It is of some comfort that the best improvements from the methodology of
Sections 3 and 4 were found in the computationally most demanding scenario.

In the third row, for the Beta distribution with power 90%, adaptively choosing
N actually increased the effort, although not substantially. The average NO chosen
is roughly 10,000, whereas NB in the second row is 17,055 (for this distribution it
is also the optimal N ). We would expect to reduce the effort on this basis. However,
this does not appear to completely compensate for the effort of the pilot and the
error in coverage probability lost in computing the pilot-based CI. However, with
the test we reduce the effort by 40% and improve on both efforts reported in the
first two rows for this distribution.

Overall, from these experiments it seems that our suggested improvements re-
duce the expected effort substantially, as is best summarized in the difference be-
tween the bottom row and either of the first two.

For future reference, the default settings of our algorithm are those of the bottom
row, namely: ε = �/200, εt = ε1000/(1000 + t), γP = γJ = 0.1γ and a pilot
sample of 1000 streams terminated at tmax = 1000.

6. Adaptive CI length. When one resampling step is computationally de-
manding, the expected efforts listed in Table 1 may appear prohibitive. In this
case, we recommend relaxing the fixed requirements on �, that is, allowing � to
depend on the “location” of the confidence interval. This can reduce the expected
effort of the algorithm substantially.

As a rule of thumb, the closer the power is to 0.5 the higher the expected effort
(compare, e.g., the efforts for β = 0.05 and β = 0.7 in Table 1): first, because the
p-value distribution tends to have more mass around α, meaning that each stream
in the algorithm has a higher expected running-time, and second because the length
of the confidence interval is largest when there are the same number of positive and
negative outcomes.

On the other hand, we anticipate that if the power is around 0.5 or for that
matter anywhere in the interval [0.1,0.9], say, the user will often only require a
small enough confidence interval to conclude that β is not close α or 1. Indeed,
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a typical reason why one needs the power of a test is to check that the probability
of rejection under the null hypothesis is close to α (which is typically small) or
that under an alternative hypothesis β is close to 1.

Let C = {β ∈ [0,1]2 :β1 ≤ β2} denote the set of all possible confidence inter-
vals for β . We allow the analyst to pre-specify a subset of C, A, say, such that if
the current confidence interval is an element of A the algorithm terminates imme-
diately.

It is reasonable to enforce that A satisfy the following three properties:

(i) A is closed.
(ii) {(β,β)T :β ∈ [0,1]} ⊆ A (CIs of length 0 are allowed).

(iii) ∀β ∈ A :∀α ∈ C :β1 ≤ α1 ≤ α2 ≤ β2 ⇒ α ∈ A (a subinterval of an allowed
CI is allowed).

The next result shows that specifying A is equivalent to specifying the maximum
CI length allowed as a function of the CI’s midpoint.

LEMMA 6.1. If A ⊆ C satisfies (i)–(iii), then there exists a function
� : [0,1] → [0,1] such that for all β ∈ C :β ∈ A ⇔ β2 − β1 ≤ �(

β1+β2
2 ).

All of the theory we have presented in Sections 2–4 can be incorporated unal-
tered into an algorithm with adaptive �, with the single exception that finding NP
requires a brute-force search—one must ensure that �(M) will be met after N − 2
streams have stopped, for any possible CI midpoint M arising from all the possible
outcomes of N − 2 streams.

The effort of our recommended method for fixed � is repeated from the fourth
row of Table 1 to the first row of Table 2. These results are equivalent to a case
where for all M ∈ [0,1], �(M) = 0.02 = �0(M). In the next rows of Table 2 we
present the average effort of the algorithm for three other functions of the midpoint,
all of which are illustrated in Figure 3. Depending on what is easiest to present,
the rule is described through � or by the equivalent A.

TABLE 2
Average effort (in millions) for different functions of the CI midpoint

β = 0.05 β = 0.7 β = 0.9 β = 0.99

Function Av. (S.E.) Av. (S.E.) Av. (S.E.) Av. (S.E.)

�0 8.0 (0.19) 1541 (18) 317 (5.2) 10.4 (0.09)
�1 7.8 (0.20) 185 (3.2) 131 (2.3) 26.2 (0.77)
�2 8.4 (0.46) 17.1 (0.46) 9.0 (0.06) 5.5 (0.08)
�3 8.4 (0.46) 0.7 (<0.01) 0.6 (<0.01) 0.5 (<0.01)
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FIG. 3. The four midpoint functions �i used in Table 2.

(1) �1(M) = 0.02
√

M(1 − M)/(
√

0.05 · 0.95). A function that allows roughly
the same number of streams to remain unresolved for any β . Because the CI mid-
point cannot be 0 or 1 exactly the fact that �(0) = �(1) = 0 is not problematic.

(2) A2 is the largest set of confidence intervals that satisfies (i)–(iii) and that
satisfies ∀β ∈ A2 :β2 − β1 ≤ 0.1 and ∀β ∈ A2 with (β1 ≤ 0.05 or β2 ≥ 0.95):
β2 − β1 ≤ 0.02—a CI length of 0.02 is needed for high or low powers, but a CI
length of 0.1 is admissible otherwise.

(3) A3 is the largest set of confidence intervals that satisfies (i)–(iii) and that
satisfies ∀β ∈ A3 with β1 ≤ 0.05: β2 − β1 ≤ 0.02. A precise estimate is only re-
quired if the confidence interval is at least partly to the left of α and any interval is
admissible otherwise.

For the Uniform distribution, since all rules have �(0.05) = 0.02, we would
expect the effort to be comparable, as is observed. On the other hand, we see a
dramatic reduction of the effort in other columns where the rule has allowed less
precision. Overall, if we consider for example the effort for �2, we hope that with
this compromise the algorithm can be used in practice for moderately complicated
tests.

7. Example: Permutation test. Using exactly the example of [1], we com-
puted the power of a permutation test on the difference of the means of two Gaus-
sian samples, with sizes K = 4 and L = 8, identical standard deviation σ and stan-
dardized differences (μG − μC )/σ = 0.5,1,1.5 and 2. We used a fixed � = 0.01
and coverage probability 0.99. Our other parameters were set to the defaults listed
at the end of Section 5.

The results are presented in Table 3. In three of the four cases our confidence
interval excludes the corresponding estimate in [1] (although not after adding or
subtracting two of their standard errors). Of course, our computational effort is
considerably larger—but our key contribution is in providing a mechanism that
guarantees the precision of the result.

In this simple example it is in fact possible to compute the p-value of each
dataset exactly by evaluating all 495 permutations. Because of this the power can
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TABLE 3
Power of the permutation test for the difference of means

�/σ 0.5 1.0 1.5 2.0

Truth 0.1830.1840.185 0.4410.4420.443 0.7280.7290.730 0.9120.9120.913
Our method 0.1820.1850.192 0.4400.4430.450 0.7260.7290.736 0.9100.9140.920
Boos and Zhang 0.175 (0.006) 0.439 (0.008) 0.731 (0.007) 0.921 (0.005)

be estimated by standard methodology with a Binomial-based confidence interval.
In each case, a very accurate estimate of β was obtained by generating 106 datasets
and computing the p-value for each exactly. The resulting estimates are presented
in the first row of Table 3, using the convention axb to mean that the estimate is x,
and the confidence interval is [a, b]. In the second row we present the results of our
algorithm, using a fixed � = 0.01 and coverage probability 0.99. In all cases, the
“true” power falls within our estimated confidence interval, as would be expected.
For the convenience of the reader, the third row presents the estimated powers and
standard errors computed in [1].

8. Conclusions. We have proposed an open-ended algorithm to compute a
conservative confidence interval for β , (almost) without any assumptions on the
distribution of the p-value (Theorem 2.1). In practice, the method can be compu-
tationally expensive. However, various improvements (Sections 3 and 4) reduce
the computational effort for fixed � by a sizeable margin. An adaptive � (Sec-
tion 6) can ensure that the effort is only large if the estimated power is in a region
where a high precision is required.

There remain areas of potential improvement: for instance the balance between
the error spent on ε, the pilot and the testing procedure could be explored in more
depth, as well as the choice of the spending sequences εt and ξt . The test for stop-
ping based on joint information in Section 4 is somewhat ad-hoc, and conceivably
a more powerful test could be derived. Finally, of course, the computational effort
could also potentially be reduced by making additional assumptions on the p-value
distribution.

How conservative is the confidence interval? From a few simple experiments,
we found the length to be roughly twice as large as it needs to be for the nomi-
nal coverage probability. Although we have been conservative in many aspects of
the algorithm, this disparity appears to be almost entirely due to the contribution
from unresolved streams in (2.2). This is effectively the price of making almost no
assumptions on the distribution of the p-values.
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APPENDIX A: FINITE EXPECTED STOPPING TIME

The proof of Theorem 2.1 requires preliminary lemmas and the following re-
cursive definition of the stopping boundaries from [5]:

Ut = min
{
j ∈ N : Pα(τ ≥ t, St ≥ j) + Pα(τ < t, Sτ ≥ Uτ ) ≤ εt

}
,

(A.1)
Lt = max

{
j ∈ Z : Pα(τ ≥ t, St ≤ j) + Pα(τ < t, Sτ ≤ Lτ ) ≤ εt

}
.

LEMMA A.1. If there exist constants λ > 0, q > 0 and T ∈ N such that εt −
εt−1 ≥ λt−q for all t ≥ T , then, for all t ≥ T ,

Ut ≤ ⌈
tα +

√
t (q log t − logλ)/2

⌉
, Lt ≥ ⌊

tα −
√

t (q log t − logλ)/2
⌋
.

The square root is well defined since 1 ≥ εt − εt−1 ≥ λt−q .

PROOF. We will show Pα(τ ≥ t, St ≥ U∗
t ) + Pα(τ < t, Sτ ≥ Uτ ) ≤ εt for

t ≥ T . By (A.1) this implies Ut ≤ �tα + √
t (q log t − logλ)/2� =: U∗

t .
First, (A.1) implies

Pα(τ < t, Sτ ≥ Uτ ) = Pα(τ ≥ t − 1, St−1 ≥ Ut−1) + Pα(τ < t − 1, Sτ ≥ Uτ )

≤ εt−1.

Furthermore, by Hoeffding’s inequality [7],

Pα

(
τ ≥ t, St ≥ U∗

t

) ≤ Pα

(
St ≥ U∗

t

) = Pα

(
St/t − α ≥ U∗

t /t − α
)

≤ exp
{−2t

(
U∗

t /t − α
)2} ≤ λt−q ≤ εt − εt−1,

finishing the proof of Ut ≤ U∗
t . The bound for Lt can be shown similarly. �

The above formally confirms the observation in [5], main text, page 1507 and
Figure 4, that Ut −Lt appears to be proportional to

√
t log t for large t . Indeed, the

spending sequence used, εt = εt/(1000 + t), satisfies the conditions of the lemma
with λ = 1 and q = 2 (if one chooses ε ≤ 1/4).

LEMMA A.2. Suppose that F is Hölder continuous with exponent ξ in a
neighborhood of α, that the conditions of Lemma A.1 hold, and that ε ≤ 1/4.
Then, for any η ∈ (0,1), there exist constants κ and T̃ such that

P(τ > t) ≤ 2e−2tη + κtξ(η−1)/2, t ≥ T̃ .

Hence, P(τ > t) = o(td) for any d > −ξ/2.

PROOF. Let F be the CDF of p. Then, for any t ∈ N,

P(τ > t) = I
{[

0,p−
t

]} + I
{(

p−
t , p+

t

)} + I
{[

p+
t ,1

]}
,
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where I {A} = ∫
A Pp(τ > t)dF(p) and 0 ≤ p−

t < α < p+
t ≤ 1. When 0 ≤ p ≤ p−

t

and Lt/t − p−
t > 0,

Pp(τ > t) ≤ Pp(St > Lt) ≤ Pp−
t
(St > Lt) ≤ exp

{−2t
(
Lt/t − p−

t

)2}
,

using Hoeffding’s inequality for the rightmost bound. Hence, letting

p−
t = max

{
Lt/t − t (η−1)/2,0

}
, t ∈ N

for some η ∈ R, we get

Pp(τ > t) ≤ exp
{−2tη

}
, 0 ≤ p ≤ p−

t , t ∈ N.

Do we have 0 ≤ p−
t < α? The lower bound is obvious. The upper bound also

holds, since the proof of Theorem 2 in [5] shows that if ε ≤ 1/4, then Lt/t < α for
all t ∈ N.

Similarly we can define p+
t = min{Ut/t + t (η−1)/2,1}, t ∈ N, guaranteeing that

α < p+
t ≤ 1. Then, for any η ∈ R,

Pp(τ > t) ≤ exp
(−2tη

)
, p+

t ≤ p ≤ 1, t ∈ N.

We therefore have

I
{[

0,p−
t

]} + I
{[

p+
t ,1

]} ≤ 2 exp
(−2tη

)
.(A.2)

It remains for us to obtain a bound on I {(p−
t , p+

t )}. Using Theorem 1 in [5], Ut −
αt = o(t), αt −Lt = o(t). Thus, by restricting η < 1, p−

t → α, p+
t → α and there

exists a time T ∗ such that F is Hölder continuous over (p−
t , p+

t ) for all t ≥ T ∗. It
follows that for some constant h > 0,

I
{(

p−
t , p+

t

)} ≤
∫
(p−

t ,p+
t )

dF(p) ≤ F
(
p+

t

) − F
(
p−

t

) ≤ h
(
p+

t − p−
t

)ξ
, t ≥ T ∗.

Let T̃ = max{T ,T ∗,2}, where T is defined in Lemma A.1. For t ≥ T̃ ,

I
{(

p−
t , p+

t

)} ≤ h
(
p+

t − p−
t

)ξ
≤ h

[
2t (η−1)/2 + 2

[√
t (q log t − logλ)/2 + 1

]
/t

]ξ
≤ h

[
2t (η−1)/2 + 2

[√
(q + a)/2

√
t log t + 1

]
/t

]ξ
≤ h

[
2t (η−1)/2 + b

√
log t/t

]ξ
≤ h

[
(2 + c)t(η−1)/2]ξ (requiring η > 0),

where a = max{0,− logλ/ log T̃ }, b = 2(
√

(q + a)/2 + 1), c = b
√

log t/t |
t=T̃

.
We needed T̃ ≥ 2 in the definition of a and used it in the third inequality (1 <√

2 log 2). Using (A.2), the proof is complete after we take κ = h(2 + c)ξ . �
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PROOF OF THEOREM 2.1. Using standard results for order statistics [4],

P(τ(N−k) > t) =
N−k−1∑

j=0

(
N

j

)
P(τ > t)N−j P(τ ≤ t)j ≤ c1P(τ > t)k+1

for t ≥ 0 and some c1 > 0. Therefore, using Lemma A.2

E(τ(N−q)) =
∞∑
t=0

P(τ(N−k) > t) ≤ 1 +
∞∑
t=1

c1P(τ > t)k+1 ≤ 1 +
∞∑
t=1

c2t
(k+1)d

for all d > −ξ/2, with c2 chosen based on c1 and d . The summation in the right-
hand side is finite if the exponent of t is strictly smaller than −1. �2/ξ is the
smallest possibility for k ∈ N such that there exists a d > −ξ/2 with (k + 1)d <

−1. �

APPENDIX B: HYPOTHESIS TEST

The proof of Theorem 4.1 first requires the following lemma.

LEMMA B.1. Suppose that X1
j and X2

j are two sequences of independent
Bernoulli variables with success probabilities π1 and π2, respectively, where 0 ≤
π1 ≤ π2 ≤ 1, and put Sk

t = ∑t
j=1 Xk

t for k = 1,2. Let {lt : t ∈ N} and {ut : t ∈ N}
be two arbitrary integer sequences, and let

τk =
{∞, if lt < Sk

t < ut for all t ∈ N,
min

{
j :Sk

j ≤ lj or Sk
j ≥ uj

}
, otherwise.

Then if P[τk > t] > 0 for k = 1,2,[
S1

t |τ1 > t
] ≤st

[
S2

t |τ2 > t
]
.

PROOF. We will require a stronger form of stochastic ordering: for two dis-
crete RVs X and Y , X is smaller than Y with respect to the likelihood ratio order,
denoted X ≤lr Y , if

fX(x)

fY (x)
↓ x on the support set of Y ,(B.1)

where fX and fY are the probability mass functions (PMFs) of X and Y [9],
page 184. Further, a discrete RV Z has a log-concave distribution if [8]

fZ(x)2 ≥ fZ(x − 1)fZ(x + 1), x ∈ N.(B.2)

[S1
1 |τ1 > 1] and [S2

1 |τ2 > 1] have log-concave distributions and [S1
1 |τ1 > 1] =

X1
1 ≤lr X2

1 = [S2
1 |τ1 > 1]. Suppose the same holds true for [S1

t |τ1 > t] and
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[S2
t |τ2 > t]. For k = 1,2, [Sk

t+1|τk > t] = [Sk
t |τk > t] + Xk

t+1 is a convolution of
two random variables with log-concave distributions, implying that it has itself a
log-concave distribution [8], Lemma page 387. Using [8], Theorem 2.1(d)

[
S1

t+1|τ1 > t
] = [

S1
t |τ1 > t

] + X1
t+1 ≤lr

[
S2

t |τ2 > t
] + X1

t+1

≤lr

[
S2

t |τ2 > t
] + X2

t+1 = [
S2

t+1|τ2 > t
]
,

using the properties assumed to be true at t and the log-concavity, likelihood ratio
ordering and independence of X1

t+1 and X2
t+1.

For k = 1,2, conditioning on τk > t + 1 restricts the support of [S1
t+1|τ1 > t]

and [S2
t+1|τ2 > t] to a same, smaller set, and (where supported) the new PMF is

the old multiplied by a constant ck . Therefore, directly from (B.1) and (B.2), we
conclude that [S1

t+1|τ1 > t + 1] ≤lr [S2
t+1|τ2 > t + 1], and both distributions are

log-concave.
By induction, these properties are true for all t . Likelihood ratio order implies

the usual stochastic order [9], completing the proof. �

PROOF OF THEOREM 4.1. Let nt = |Ut |. T + can be bounded above by

T + ≤
nt∑

i=rt

I
[
Gα

t

(
S̃

(i)
t

) ≤ η
] = T̃ +,

where {S̃(i)
t : i = rt , . . . , nt } are the partial sums corresponding to p(rt ) ≤ p(rt+1) ≤

· · · ≤ p(nt ), the largest ordered p-values of the unresolved streams.
Under H+

0 , p(i) > α for i = rt , . . . , nt . Let Sα
t be a partial sum generated by a

p-value equal to α and let τα denote its stopping-time. By Lemma B.1,

[
Sα

t |τα > t
] ≤st

[
S̃

(i)
t |τ̃(i) > t

]
,

where τ̃(i) is the stopping time of S̃
(i)
t . Therefore, conditional on τα, τ̃(i) > t ,

I
[
Gα

t

(
S̃

(i)
t

) ≤ η
] ≤st I

[
Gα

t

(
Sα

t

) ≤ η
] ≤st X,

where X is a Bernoulli variable with success probability η. It follows that

nt∑
i=rt

I
[
Gα

t

(
S̃

(i)
t

) ≤ η
] ≤st B+,

where B+ is a Binomial variable with success probability η and size nt − rt + 1.
Therefore, T + ≤ T̃ + ≤st B+. The bound for T − can be shown similarly. �
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APPENDIX C: ON THE MIDPOINT RULE

PROOF OF LEMMA 6.1. Let t ∈ [0,1] and define �(t) = sup{β2 − β1 :
β1+β2

2 = t, β ∈ A}. This is well defined because of (ii). The implication from left
to right follows by the definition of �.

Let β ∈ C :β2 − β1 ≤ �(
β1+β2

2 ). Let t = β1+β2
2 . As A is compact and D = {ξ ∈

R
2 : ξ1 +ξ2 = 2t} is closed, A∩D is compact and thus {β2 −β1 : β1+β2

2 = t, β ∈ A}
is compact also.

Hence, there exists a γ ∈ A such that (γ2 + γ1)/2 = t and γ2 − γ1 = �(t). This
implies that β ⊆ γ using (iii), implying that β ∈ A. �

SUPPLEMENTARY MATERIAL

Approximation of the optimal number of streams (DOI: 10.1214/12-
AOS1076SUPP; .pdf). We describe a method that uses information from the pilot
sample to approximate the expected effort of the algorithm as a function of the
number N of streams. This method is used to choose N . Its performance is illus-
trated in a simulated experiment.
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