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ASYMPTOTICALLY OPTIMAL PARAMETER ESTIMATION UNDER
COMMUNICATION CONSTRAINTS

BY GEORGIOS FELLOURIS

University of Southern California

A parameter estimation problem is considered, in which dispersed sen-
sors transmit to the statistician partial information regarding their observa-
tions. The sensors observe the paths of continuous semimartingales, whose
drifts are linear with respect to a common parameter. A novel estimating
scheme is suggested, according to which each sensor transmits only one-bit
messages at stopping times of its local filtration. The proposed estimator is
shown to be consistent and, for a large class of processes, asymptotically op-
timal, in the sense that its asymptotic distribution is the same as the exact
distribution of the optimal estimator that has full access to the sensor obser-
vations. These properties are established under an asymptotically low rate of
communication between the sensors and the statistician. Thus, despite being
asymptotically efficient, the proposed estimator requires minimal transmis-
sion activity, which is a desirable property in many applications. Finally, the
case of discrete sampling at the sensors is studied when their underlying pro-
cesses are independent Brownian motions.

1. Introduction. Consider a number of dispersed sensors, each one of which
observes the path of a real-valued stochastic process. The joint distribution of these
processes is assumed to belong to some parametric family. The goal is to estimate
the unknown parameter at a central location (fusion center) that receives informa-
tion from all sensors.

When the sensors transmit their complete observations to the fusion center, we
have a classical (centralized) parameter estimation problem. However, the fusion
center often does not have full access to the sensor observations due to practical
considerations, such as limited communication bandwidth. These communication
constraints are present in applications such as mobile and wireless communication,
data fusion, environmental monitoring and distributed surveillance, in which it is
crucial to minimize the congestion in the network and the computational burden at
the fusion center (see, e.g., Foresti et al. [6]).

Under this setup, which is often called decentralized, each sensor needs to trans-
mit a small number of bits per communication to the fusion center and it is clear
that the classical (centralized) statistical techniques are no longer applicable. As
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a result, there has been a great interest in decentralized formulations of statistical
problems (see, e.g., the review papers by Viswanathan and Varshney [24], Blum et
al. [1], Han and Amari [10] and Veeravalli [23]).

Parameter estimation under a decentralized setup has been studied extensively
using information-theoretic techniques. More specifically, it is often assumed that
there are two correlated sensors, each of which observes a sequence of indepen-
dent and identically distributed (i.i.d.), finite-valued random variables whose joint
probability mass function is determined by the unknown parameter. The sensors
are then required to transmit to the fusion center messages that belong to alphabets
of smaller size than those of the original observations. The review paper by Han
and Amari [9] describes in detail the main advances in this line of research. On
the other hand, Luo [15] and Xiao and Luo [25] considered an arbitrary number
of independent sensors that take i.i.d. observations with a common mean, which
is the unknown parameter. Assuming that the parameter space and the support of
the noise distribution are both compact intervals, they constructed decentralized
estimating schemes that require the transmission of a small number of bits per
communication.

In all the above papers, the sensors collect i.i.d. observations at a sequence of
discrete times and transmit a small number of bits to the fusion center at every
such sampling time. Moreover, even under an asymptotically large horizon of ob-
servations, the resulting estimators have larger mean square errors than the cor-
responding optimal centralized estimators, which have full access to the sensor
observations.

In this paper the goal is to construct a decentralized estimating scheme that re-
quires minimal communication activity from the sensors and achieves asymptot-
ically the mean square error of the optimal centralized estimator, under a general
statistical model for the sensor observations. In particular, we assume that the sen-
sors observe the paths of continuous semimartingales whose drifts are linear with
respect to the unknown parameter.

The centralized version of this problem is well understood. For Gaussian pro-
cesses with independent increments, the fixed-horizon maximum likelihood esti-
mator (MLE) was studied by Grenander [8] and Striebel [22]. Brown and Hewitt
[2] proved that the MLE is consistent and asymptotically normal for stationary
and ergodic time-homogeneous diffusions. Feigin [4] established the same prop-
erties for more general diffusions, assuming that the score process is a martingale.
Liptser and Shiryaev ([13], pages 225–236) studied the MLE for a diffusion-type
process and computed its bias and variance in the Ornstein–Uhlenbeck case. For
a diffusion-type process with linear drift with respect to the unknown parameter,
Liptser and Shiryaev [13], pages 244–248, and earlier Novikov [18], suggested
a sequential version of the MLE and proved that it is unbiased and that it attains
a prescribed accuracy. In the particular case of a square root diffusion, Brown
and Hewitt [3] suggested an alternative sequential estimator with similar optimal-
ity properties. Melnikov and Novikov [17] and Galtchouk and Konev [7] studied
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least-squares sequential estimators that attain a prescribed accuracy in a multidi-
mensional semimartingale regression model, generalizing in this way the results of
Novikov [18]. We refer to Kutoyants [12] and Rao [19] for exhaustive references
in the statistical inference of diffusion and diffusion-type processes.

Apart from the statistical model for the sensor observations, our work differs
from previous approaches in some other important aspects as well. First of all, we
do not assume that the frequency with which a sensor transmits its messages to
the fusion center (communication rate) is the same as the frequency with which
it collects its local observations (sampling rate). Instead, we assume that the sen-
sors observe their underlying processes continuously, but communicate with the
fusion center at discrete times. Therefore, in our context, the incurred loss of in-
formation is not only due to the quantization of sensor observations, but also due
to the discrete transmission of messages to the fusion center in comparison to the
continuous flow of information at the sensors.

Moreover, we do not require that the sensors communicate with the fusion cen-
ter at deterministic and equidistant times. Instead, we allow each sensor to trans-
mit its messages to the fusion center at random times that are triggered by its lo-
cal observations. In particular, we propose a communication scheme according to
which the sensors transmit only one-bit messages at first exit times of appropriate,
locally-observed statistics (see Rabi et al. [20] and Fellouris and Moustakides [5]
for similar communication schemes in different decentralized problems). Based on
this communication scheme, we construct an estimator that is always consistent,
even when the sensor processes are dependent.

However, the main result of this paper is that, in certain cases, the asymp-
totic distribution of the proposed estimator is the same as the exact distribution
of the corresponding optimal centralized estimator. In particular, this holds when
the sensor processes are arbitrary, orthogonal continuous semimartingales, as well
as when they are correlated Gaussian processes with independent increments.

More importantly, these asymptotic properties are established as the horizon of
observations goes to infinity and as the rate of communication between sensors and
the fusion center goes to zero. Thus, although the proposed estimator is statistically
efficient, it requires minimal communication activity from the sensors, which is a
very desirable property in applications with severe communication constraints.

Finally, we consider in more detail the special case in which the sensors observe
independent Brownian motions, since the tractability of this model allows us to ob-
tain additional insight regarding the suggested estimating scheme. In this context,
we also consider the case of discrete sampling, where the sensors do not observe
their underlying processes continuously, but at a sequence of discrete times. It is
shown that the proposed estimator remains consistent for any fixed sampling fre-
quency, as long as the sensors have an asymptotically low rate of communication
with the fusion center. However, asymptotic optimality does require a sufficiently
high sampling rate, which we determine as a function of the communication rate
and the observation horizon.
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The rest of the paper is organized as follows: in Section 2 we formulate the prob-
lem under consideration. In Section 3 we specify the proposed estimating scheme
and analyze its asymptotic properties. In Section 4 we focus on the special case that
the sensors observe independent Brownian motions. We conclude in Section 5.

2. Problem formulation. In what follows, we denote by i the generic sensor,
where i = 1, . . . ,K . We assume that sensor i observes the path of a continuous
stochastic process Y i = {Y i

t }t≥0 and is able to compute any statistic that is adapted
to the filtration generated by Y i .

In this section we specify the dynamics of (Y 1, . . . , YK) under a family of prob-
ability measures {Pλ, λ ∈ R}, we review standard results regarding the centralized
estimation of the unknown parameter λ and we define the notion of an (asymptot-
ically optimal) decentralized estimator.

2.1. Statistical model. Let (Y 1, . . . , YK) be the coordinate process on the
canonical space of continuous functions (�, F ), where � := C[0,∞)K and F :=
B(�) is the associated Borel σ -algebra. We denote by {F i

t } the right-continuous
version of the natural filtration generated by Y i and by {Ft } the corresponding
global filtration

F i
t := Ci

t+, Ci
t := σ

(
Y i

s ;0 ≤ s ≤ t
)
,(2.1)

Ft := Ct+, Ct := σ
(
Y i

s ;0 ≤ s ≤ t,1 ≤ i ≤ K
)
.(2.2)

Let also P0 be a probability measure on (�, F ) so that

Y i ∈ M0 ∀1 ≤ i ≤ K,

where M0 is the class of continuous P0-local martingales that start from 0.
For every 1 ≤ i, j ≤ K , we denote by 〈Y i, Y j 〉 the quadratic covariation of Y i

and Y j and we assume that Xi is an {F i
t }-progressively measurable process so that

P0

(
K∑

i=1

∫ t

0

∣∣Xi
s

∣∣2 d
〈
Y i, Y i 〉

s < ∞
)

= 1 ∀0 ≤ t < ∞.(2.3)

Then, we can define the stochastic integral

Bt :=
K∑

i=1

∫ t

0
Xi

s dY i
s , t ≥ 0,(2.4)

and we denote by A its quadratic variation, that is,

At := 〈B,B〉t =
K∑

i=1

K∑
j=1

∫ t

0
Xi

sX
j
s d
〈
Y i, Y j 〉

s, t ≥ 0.(2.5)
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Moreover, we assume that the Novikov-type condition:

E0
[
e(λ2/2)At

]
< ∞ ∀0 ≤ t < ∞(A1)

is satisfied for every λ 	= 0, which allows us to define for every λ 	= 0 the probabil-
ity measure Pλ in the following way:

dPλ

dP0

∣∣∣∣
Ft

:= eλBt−(λ2/2)At ∀0 ≤ t < ∞.(2.6)

Then, if we denote by Mλ the class of continuous Pλ-local martingales that start
from 0, Girsanov’s theorem (see [21], page 331) implies that

Ni := Y i − 〈
Y i, λB

〉 ∈ Mλ ∀i = 1, . . . ,K(2.7)

and, consequently, 〈Ni,Nj 〉 = 〈Y i, Y j 〉 for every i 	= j . Therefore, from (2.4) and
(2.7) it follows that under Pλ

Y i
t = λ

K∑
j=1

∫ t

0
Xj

s d
〈
Y i, Y j 〉

s + Ni
t , t ≥ 0,1 ≤ i ≤ K.(2.8)

2.2. The parameter estimation problem. The goal is to estimate the unknown
parameter λ using the information that is being transmitted from the sensors to
the fusion center. The flow of this information can be described by a sub-filtration
of {Ft } and is determined by the communication scheme that is chosen by the
statistician.

Let {Gt } ⊂ {Ft } be the fusion center filtration. We will say that:

(a) (φt )t>0 is a fixed-horizon, {Gt }-adapted estimator of λ, if φt is a Gt -
measurable statistic for every t > 0.

(b) (Tγ ,φγ )γ>0 is a sequential, {Gt }-adapted estimator of λ, if (Tγ )γ>0 is an
increasing family of {Gt }-stopping times and φγ a GTγ -measurable statistic for
every γ > 0.

We will say that a {Gt }-adapted estimator, either fixed-horizon or sequential, is
decentralized, when the fusion center filtration {Gt } is of the form

Gt = σ
(
σ i

n,χ
i
n|σ i

n ≤ t, i = 1, . . . ,K
)
, t ≥ 0,(2.9)

where (σ i
n)n∈N is an increasing sequence of {F i

t }-stopping times and each χi
n is

an F i
σ i

n
-measurable statistic that takes values in a finite set. In other words, a de-

centralized estimator must rely on quantized versions of the sensor observations,
which may be transmitted to the fusion center at stopping times of the local sensor
filtrations.
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If the fusion center learns the complete sensor observations at any time t , then it
can construct {Ft }-adapted estimators, which we will call centralized. Assuming
that for every λ ∈ R,

Pλ(At > 0) = 1 ∀t > 0,(A2)

the centralized, fixed-horizon MLE of λ at some time t > 0 is

λ̂t := Bt

At

,(2.10)

that is, the maximizer of the corresponding log-likelihood function,

�t (λ) := log
dPλ

dP0

∣∣∣∣
Ft

= λBt − λ2

2
At .(2.11)

From (2.11) we also obtain the corresponding score process and (observed) Fisher
information, that is,

Mt := d�t (λ)

dλ
= Bt − λAt , −d2�t (λ)

dλ2 = At, t ≥ 0,(2.12)

and, consequently, we have

λ̂t = λ + Mt

At

, t > 0.(2.13)

Moreover, from (2.4), (2.5) and (2.8) it follows that M ∈ Mλ, since

Mt =
K∑

i=1

∫ t

0
Xi

s dNi
s , t ≥ 0.(2.14)

Since 〈M,M〉 = 〈B,B〉 = A, if we also assume that for every λ ∈ R

Pλ

(
lim

t→∞At = ∞
)

= 1,(A3)

then there exists a Pλ-Brownian motion W (see [11], page 174) so that

Pλ(Mt = WAt , t ≥ 0) = 1.(2.15)

This representation has some important consequences, which we state in the fol-
lowing lemma.

LEMMA 2.1. (a) If (tγ )γ>0 is an increasing family of (possibly random) times
so that tγ → ∞ Pλ-a.s., then λ̂tγ → λ Pλ-a.s. as γ → ∞.

(b) If T1 ≤ T2 are {Ft }-stopping times so that Eλ[AT2] < ∞, then

Eλ[MT1] = Eλ[MT2] = 0,(2.16)

Eλ

[
(MT2 − MT1)

2]= Eλ[AT2 − AT1].(2.17)
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(c) If {At } is deterministic, then√
At(λ̂t − λ) ∼ N (0,1) ∀t > 0.(2.18)

PROOF. Part (a) is a consequence of (2.13), (2.15) and the strong law of large
numbers for the Brownian motion. Part (b) follows from a localization argument,
optional sampling theorem and Doob’s maximal inequality. Finally, when {At } is
deterministic, from (2.15) it follows that Mt ∼ N (0,At ) for every t > 0. From this
observation and (2.13) we obtain (2.18). �

In the following lemma we state a version of the Cramer–Rao–Wolfowitz in-
equality.

LEMMA 2.2. If T is an {Ft }-stopping time and φ is an FT -measurable statis-
tic so that 0 < Eλ[AT ] < ∞ and Eλ[φ] = λ,Vλ[φ] < ∞ for every λ ∈ R, then

Vλ[φ] ≥ 1

Eλ[AT ] .

PROOF. From (2.16) and (2.17) and the Cauchy–Schwarz inequality we have

Eλ[φMT ] = Eλ

[
(φ − λ)MT

]≤√
Eλ

[
(φ − λ)2

]
Eλ

[
(MT )2

]=√
Vλ[φ]Eλ[AT ].

Thus, it suffices to show that Eλ[φMT ] = 1. Indeed, changing the measure Pλ 
→
P0 and differentiating both sides in Eλ[φ] = λ with respect to λ,

1 = d

dλ
E0
[
eλBT −(λ2/2)AT φ

]= E0
[
eλBT −(λ2/2)AT MT φ

]= Eλ[MT φ].
The second equality follows from interchanging derivative and expectation, which
is possible due to the (quadratic) form of the log-likelihood function (2.11) (see,
e.g., [12], page 54). �

Lemma 2.2 and (2.18) imply that when At is deterministic, λ̂t is an optimal
estimator of λ, in the sense that it has the smallest possible variance among Ft -
measurable, unbiased estimators (for any fixed t > 0). In order to obtain such an
exact optimality property when {At } is random, we consider the following sequen-
tial version of the centralized MLE:

Sγ := inf{t ≥ 0 :At ≥ γ }, λ̂Sγ =
(

B

A

)
Sγ

, γ > 0.(2.19)

LEMMA 2.3. For every γ > 0,

Pλ(Sγ < ∞) = 1,(2.20)
√

γ (λ̂Sγ − λ) ∼ N (0,1).(2.21)

Moreover, Pλ(λ̂Sγ → λ) = 1 as γ → ∞.
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PROOF. Assumption (A3) implies (2.20). Since A has continuous paths,
ASγ = γ . Thus, from (2.15) we have MSγ ∼ N (0, γ ) and, consequently, from

(2.18) we obtain (2.21). Finally, the strong consistency of λ̂Sγ as γ → ∞ is im-
plied by Lemma 2.1(a). �

From Lemmas 2.2 and 2.3 it follows that, for any given γ > 0, λ̂Sγ is an opti-
mal estimator of λ, in the sense that it has the smallest possible variance among
unbiased, {Ft }-adapted estimators (Tγ ,φγ ) for which Eλ[ATγ ] ≤ γ .

Therefore, there is always a centralized estimator of λ that is unbiased, normally
distributed and optimal in a nonasymptotic sense. A decentralized estimator cannot
have such a strong optimality property, as it relies on less information. However,
we will say that a (decentralized) estimator is asymptotically optimal, if it has
the same distribution as the corresponding optimal centralized estimator when an
asymptotically large horizon of observations is available. More specifically,

(a) when {At } is deterministic, a fixed-horizon, {Gt }-adapted estimator (φt )t>0
will be asymptotically optimal if√

At(φt − λ) → N (0,1) as t → ∞,

(b) when {At } is random, a sequential, {Gt }-adapted estimator (Tγ ,φγ )γ>0 will
be asymptotically optimal if

lim sup
γ→∞

(
Eλ[ATγ ] − γ

)≤ 0 and
√

γ (φγ − λ) → N (0,1) as γ → ∞.

2.3. Notation. We close this section with some notation that will be useful in
the construction and analysis of the proposed estimating scheme. Thus, for every
1 ≤ i ≤ K we define the statistic

Bi
t :=

∫ t

0
Xi

s dY i
s , t ≥ 0,(2.22)

and for any 1 ≤ i, j ≤ K we denote by Aij the quadratic covariation of Bi and Bj

and by Ai the quadratic variation of Bi , that is,

A
ij
t := 〈

Bi,Bj 〉
t =

∫ t

0
Xi

sX
j
s d
〈
Y i, Y j 〉

s, t ≥ 0,(2.23)

Ai
t := 〈

Bi,Bi 〉
t =

∫ t

0

(
Xi

s

)2 d
〈
Y i, Y i 〉

s, t ≥ 0.(2.24)

Then, recalling the definitions of B and A in (2.4) and (2.5), we have

B =
K∑

i=1

Bi, A =
K∑

i=1

Ai + ∑
1≤i 	=j≤K

Aij .(2.25)
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Moreover, we define the set

D := {
(i, j)|1 ≤ i 	= j ≤ K and Aij is random

}
(2.26)

and we have the following representation for A:

A =
K∑

i=1

Ai + ∑
(i,j)∈D

Aij + ∑
(i,j)/∈D

Aij .(2.27)

3. A decentralized estimating scheme. In this section we construct and an-
alyze the proposed decentralized estimator. More specifically, we first define the
communication scheme at the sensors and then introduce the statistics and estima-
tors that will be used by the fusion center. As in the centralized setup, we distin-
guish two cases and consider a fixed-horizon estimator when {At } is deterministic
and a sequential estimator when {At } is random. In each case, we analyze the
asymptotic behavior of the resulting estimator as the horizon of observations goes
to infinity and the rate of communication goes to zero, assuming that conditions
(A1), (A2), (A3) are satisfied.

The main idea in the suggested communication scheme is that each sensor
should inform the fusion center about the sufficient statistics for λ that it observes
locally. However, instead of communicating at deterministic times, its communi-
cation times should be triggered by its local observations. In other words, each
sensor i should inform the fusion center about the evolution of the {F i

t }-adapted,
sufficient statistics for λ at a sequence of {F i

t }-stopping times.
When A is deterministic, B1, . . . ,BK are the only sufficient statistics for λ and

it is clear that each Bi is {F i
t }-adapted, thus observable at sensor i.

When A is random, there are additional sufficient statistics, the random pro-
cesses of the form Ai or Aij (when Ai or Aij is deterministic, it is completely
known to the fusion center at any time t). If Ai is random, it is clear that it is {F i

t }-
adapted, since 〈Bi,Bi〉 = Ai . On the other hand, if Aij (with i 	= j ) is random,
it is not locally observed either at sensor i or at sensor j , thus, the fusion center
cannot be informed about its evolution (since there is no communication between
sensors).

3.1. Communication scheme and fusion center statistics. Based on the previ-
ous discussion, we suggest that each sensor i communicate with the fusion center
at the times

τ i,B
n := inf

{
t ≥ τ

i,B
n−1 :Bi

t − Bi

τ
i,B
n−1

/∈ (−
i,
i)}, n ∈ N,(3.1)

and, if A and Ai are random, also at the times

τ i,A
n := inf

{
t ≥ τ

i,A
n−1 :Ai

t − Ai

τ
i,A
n−1

≥ ci}, n ∈ N,(3.2)
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where τ
i,A
0 = τ

i,B
0 := 0 and ci,
i,
i > 0 are arbitrary, constant thresholds, cho-

sen by the designer of the scheme, known both at sensor i and the fusion center. If
either Ai or A is deterministic, sensor i does not communicate at the times (τ i,A

n )

and we set τ i,A
n = ∞ for every n ≥ 1.

At τ i,B
n , sensor i transmits to the fusion center with one bit the outcome of the

Bernoulli random variable

zi
n :=

⎧⎪⎨
⎪⎩

1, if Bi

τ
i,B
n

− Bi

τ
i,B
n−1

≥ 
i ,

0, if Bi

τ
i,B
n

− Bi

τ
i,B
n−1

≤ −
i ,
(3.3)

whereas at τ i,A
n , if needed, it informs the fusion center with one bit that Ai has

increased by ci since τ
i,A
n−1. Therefore, the induced filtration at the fusion center is

F̃t := σ
(
τ i,A
n , τ i,B

n , zi
n|τ i,A

n ≤ t, τ i,B
n ≤ t, i = 1, . . . ,K

)
, t ≥ 0,(3.4)

which means that the fusion center can compute any {F̃t }-adapted statistic.
For every 1 ≤ i ≤ K we define

Ãi
t := nci, τ i,A

n ≤ t < τ
i,A
n+1, n ∈ N ∪ {0},(3.5)

B̃i
t :=

n∑
j=1

[

izi

j − 
i(1 − zi
j

)]
, τ i,B

n ≤ t < τ
i,B
n+1, n ≥ 1,(3.6)

where B̃i
t := 0 for t < τ

i,B
1 , with the understanding that Ãi := Ai when Ai is

deterministic. Moreover, motivated by (2.25)–(2.27), we define

B̃ :=
K∑

i=1

B̃i,(3.7)

Ã :=
K∑

i=1

Ãi +
K∑

i=1

diÃ
i + ∑

(i,j)/∈D
Aij

(3.8)

=
K∑

i=1

(1 + di)Ã
i + ∑

(i,j)/∈D
Aij ,

where di is the number of random terms of the form Aij , that is,

di := #
{
j |1 ≤ i 	= j ≤ K and Aij is random

}
.(3.9)

Again, we set Ã := A when A is deterministic. Finally, we define the following
quantities:


 :=
K∑

i=1

max
{

i,
i}, c :=

K∑
i=1

(1 + di)c
i,(3.10)
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which will play an important role in the asymptotic analysis of the proposed esti-
mating scheme.

LEMMA 3.1. For every 1 ≤ i ≤ K and t, c,
 > 0,

0 ≤ Ai
t − Ãi

t ≤ ci,
∣∣Bi

t − B̃i
t

∣∣≤ max
{

i,
i},(3.11)

At − Ãt ≤ c, |Bt − B̃t | ≤ 
.(3.12)

PROOF. If Ai , A are deterministic, then Ãi := Ai , Ã := A and the correspond-
ing inequalities hold trivially. Thus, without loss of generality, we assume that both
Ai and A are random.

First of all, we observe that B̃i is exactly equal to Bi at τ i,B
n and Ãi is exactly

equal to Ai at τ i,A
n for every n ∈ N. Indeed, due to the path continuity of Ai and Bi ,

for every n ∈ N it is

Ãi

τ
i,A
n

= nci =
n∑

j=1

[
Ai

τ
i,A
j

− Ai

τ
i,A
j−1

]= Ai

τ
i,A
n

,

B̃i

τ
i,B
n

=
n∑

j=1

[

izi

j − 
i(1 − zi
j

)]= n∑
j=1

[
Bi

τ
i,B
j

− Bi

τ
i,B
j−1

]= Bi

τ
i,B
n

.

Moreover, from the definition of the communication times (τ i,B
n )n, it is clear that

|Bi
t − B̃i

t | < max{
i,
i} for any time t between two jump times of B̃i , which
proves the second inequality in (3.11). Similarly, from the definition of (τ i,A

n )n

and the fact that Ai has increasing paths, it is clear that 0 < Ai
t − Ãi

t < ci for any
time t between two jump times of Ãi , which proves the first inequality in (3.11).

The second inequality in (3.12) follows directly from the second inequality
in (3.11) and the definition of 
. Finally, from the Kunita–Watanabe inequality
(see [11], page 142) and the algebraic inequality 2

√|xy| ≤ |x| + |y| we have∣∣Aij
∣∣≤ √

AiAj ≤ 1
2

(
Ai + Aj ), 1 ≤ i 	= j ≤ K,

thus, from the definitions of D and di [recall (2.26) and (3.9)] we obtain

∑
(i,j)∈D

Aij ≤ 1

2

∑
(i,j)∈D

(
Ai + Aj )= ∑

(i,j)∈D
Ai =

K∑
i=1

diA
i.

From the representation of A in (2.27) and the latter inequality we have

A ≤
K∑

i=1

Ai +
K∑

i=1

diA
i + ∑

(i,j)/∈D
Aij

≤
K∑

i=1

(1 + di)
(
Ãi + ci)+ ∑

(i,j)/∈D
Aij = Ã + c,
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where the second inequality is due to (3.11) and the equality follows from the
definitions of Ã and c in (3.8) and (3.10), respectively. �

3.2. The proposed estimator. The proposed communication scheme requires
the transmission of only one bit whenever a sensor communicates with the fusion
center. Thus, the overall communication activity in the network will be low as
long as the communication rate of each sensor is low. Therefore, we should ide-
ally design an {F̃t }-adapted estimator that is statistically efficient even under an
asymptotically low communication rate as the horizon of observations goes to in-
finity. For this reason, we let 
 → ∞ and c → ∞ as t → ∞ (or γ → ∞) and we
determine the relative rates that guarantee consistency and asymptotic optimality.

When {At } is deterministic, we suggest the following estimator of λ at some
arbitrary, deterministic time t > 0:

λ̃t := B̃t

At

.(3.13)

In the following theorem, which is the first main result of this paper, we show
that {λ̃t } is consistent and asymptotically optimal under an asymptotically low
communication rate.

THEOREM 3.1. If t,
 → ∞ so that 
 = o(At ), then λ̃t converges to λ almost
surely and in mean square. If additionally 
 = o(

√
At), then λ̃t is asymptotically

optimal, that is,
√

At(λ̃t − λ) → N (0,1).

PROOF. Since λ̂t converges to λ almost surely and in mean square as t → ∞,
in order to prove that λ̃t is consistent, it suffices to show that Pλ(|λ̃t − λ̂t | → 0) = 1
and Eλ[(λ̃t − λ̂t )

2] → 0 as t,
 → ∞ so that 
 = o(At ).
Moreover, since

√
At(λ̂t − λ) ∼ N (0,1) for any t > 0, in order to establish the

asymptotic optimality of λ̃t , it suffices to show that
√

At |λ̃t − λ̂t | converges to 0
in probability as t,
 → ∞ so that 
 = o(

√
At).

Indeed, from the second inequality in (3.12) we have

|λ̃t − λ̂t | =
∣∣∣∣ B̃t

At

− Bt

At

∣∣∣∣= |B̃t − Bt |
At

≤ 


At

, t > 0,

which proves both claims. �

When {At } is random, we suggest the following sequential, {F̃t }-adapted esti-
mator of λ:

S̃γ := inf{t ≥ 0 : Ãt ≥ γ − c}, λ̃S̃γ
:=

(
B̃

Ã

)
S̃γ

, γ > c.(3.14)
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LEMMA 3.2. For any γ , c such that γ > c,

Pλ(S̃γ ≤ Sγ < ∞) = 1,(3.15)

Pλ(AS̃γ
≤ γ ) = 1,(3.16)

Eλ

[
(MS̃γ

)2] ≤ γ.(3.17)

Moreover, if c, γ → ∞ so that c = o(γ ), then

lim sup
γ→∞

(
Eλ[AS̃γ

] − γ
)≤ 0.(3.18)

PROOF. From the first inequality in (3.12) we have Ã ≥ A − c, therefore,

S̃γ ≤ inf{t ≥ 0 :At − c ≥ γ − c} = Sγ .(3.19)

From this inequality and (2.20) we obtain (3.15). Moreover, since A is the
quadratic variation of B , it has continuous and increasing paths, thus, from (3.15)
we obtain Pλ(AS̃γ

≤ ASγ = γ ) = 1. Finally, from (2.17) and (3.16) we obtain

Eλ

[
(MS̃γ

)2]= Eλ[AS̃γ
] ≤ γ,

which proves (3.17) and implies (3.18). �

In the following theorem we show that λ̃S̃γ
is a consistent estimator of λ, even

under an asymptotically low communication rate.

THEOREM 3.2. Pλ(λ̃S̃γ
→ λ) = 1 and Eλ[(λ̃S̃γ

− λ)2] → 0 as γ, c,
 → ∞
so that c,
 = o(γ ).

PROOF. Recalling from (2.12) that B = λA + M , we have Pλ-a.s.

λ̃S̃γ
=
(

B̃

Ã

)
S̃γ

=
(

B̃ − B

Ã

)
S̃γ

+
(

B

Ã

)
S̃γ

=
(

B̃ − B

Ã

)
S̃γ

+ λ

(
A

Ã

)
S̃γ

+
(

M

Ã

)
S̃γ

and, consequently,

λ̃S̃γ
− λ =

(
B̃ − B

Ã

)
S̃γ

+ λ

(
A − Ã

Ã

)
S̃γ

+
(

M

Ã

)
S̃γ

.(3.20)

From the definition of S̃γ it follows that ÃS̃γ
≥ γ − c, whereas from (3.12) we

have |B̃ − B|S̃γ
≤ 
 and (A − Ã)S̃γ

≤ c. Therefore,

|λ̃S̃γ
− λ| ≤ 
 + |λ|c

γ − c
+

|MS̃γ
|

γ − c
.(3.21)



2252 G. FELLOURIS

The first term in the right-hand side clearly goes to 0 as c,
,γ → ∞ so that
c,
 = o(γ ). Moreover, from (2.15) and (3.16) we have Pλ-a.s.

|MS̃γ
|

γ − c
=

|WAS̃γ
|

AS̃γ

AS̃γ

γ − c
≤

|WAS̃γ
|

AS̃γ

γ

γ − c
.(3.22)

If c, γ → ∞ so that c = o(γ ), Pλ(AS̃γ
→ ∞) = 1, due to assumption (A3). There-

fore, the strong law of large numbers implies that the right-hand side in (3.22) con-
verges to 0 and, consequently, Pλ(λ̃S̃γ

→ λ) = 1 as c, γ → ∞ so that c = o(γ ).
Moreover, if we square both sides in (3.21), apply the algebraic inequality (x +

y)2 ≤ 2(x2 + y2), take expectations and use (3.17), we obtain

Eλ

[
(λ̃S̃γ

− λ)2]≤ 2
(


 + |λ|c
γ − c

)2

+ 2
γ

(γ − c)2 ,

which implies that Eλ[(λ̃S̃γ
− λ)2] → 0 as c,
,γ → ∞ so that c,
 = o(γ ). �

The consistency of λ̃S̃γ
was established without any additional conditions on the

dynamics of the sensor processes. However, it is clear that the suggested estimator
cannot be asymptotically efficient in such a general setup, since it does not have
any access to sufficient statistics of the form Aij with (i, j) ∈ D.

Nevertheless, if every Aij with i 	= j is deterministic, then D = ∅ and the fusion
center has access to all sufficient statistics for λ. In this case, we can obtain an
asymptotically sharp lower bound for AS̃γ

, the observed Fisher information that
is utilized by the proposed estimator, which allows us to establish its asymptotic
optimality even under an asymptotically low communication rate.

LEMMA 3.3. If D = ∅, then Ãt ≤ At for every t ≥ 0. Consequently, for every
γ, c such that γ > c,

Pλ(AS̃γ
≥ γ − c) = 1,(3.23)

Eλ

[
(MSγ − MS̃γ

)2] ≤ c.(3.24)

PROOF. If D = ∅, then di = 0 for every 1 ≤ i ≤ K , thus, from (2.25), (3.8)
and the first inequality in (3.11) we obtain

Ã =
K∑

i=1

Ãi + ∑
1≤j 	=i≤K

Aij ≤
K∑

i=1

Ai + ∑
1≤j 	=i≤K

Aij = A.

Then, from the definition of S̃γ we have Pλ(AS̃γ
≥ ÃS̃γ

≥ γ − c) = 1, which

proves (3.23). Finally, from (2.17), (3.19) and (3.23) we obtain

Eλ

[
(MSγ − MS̃γ

)2]= Eλ[ASγ − AS̃γ
] = Eλ[γ − AS̃γ

] ≤ c,

which completes the proof. �
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THEOREM 3.3. If D = ∅, then
√

γ (λ̃S̃γ
− λ) → N (0,1) as c,
,γ → ∞ so

that c,
 = o(
√

γ ).

PROOF. Since
√

γ (λ̂Sγ − λ) ∼ N (0,1) for every γ > 0, it suffices to show

that
√

γ |λ̃S̃γ
− λ̂Sγ | converges to zero in probability as γ, c,
 → ∞ so that c,
 =

o(
√

γ ). Indeed, from (2.13) and (3.20) we have Pλ-a.s.

λ̃S̃γ
− λ̂Sγ =

(
B̃ − B

Ã

)
S̃γ

+ λ

(
A − Ã

Ã

)
S̃γ

+
(

M

Ã

)
S̃γ

−
(

M

A

)
Sγ

.

Since ÃS̃γ
≥ γ − c and from (3.12) we have |B̃ − B|S̃γ

≤ 
 and (A − Ã)S̃γ
≤ c,

√
γ |λ̃S̃γ

− λ̂Sγ | ≤ √
γ


 + |λ|c
γ − c

+ √
γ

∣∣∣∣
(

M

Ã

)
S̃γ

−
(

M

A

)
Sγ

∣∣∣∣.(3.25)

The first term in the right-hand side of (3.25) converges to 0 as c,
,γ → ∞ so
that c,
 = o(

√
γ ). Moreover, since ASγ = γ and ÃS̃γ

≥ γ − c,

√
γ

∣∣∣∣
(

M

Ã

)
S̃γ

−
(

M

A

)
Sγ

∣∣∣∣= √
γ

∣∣∣∣
(

M

Ã

)
S̃γ

−
MS̃γ

γ
+

MS̃γ

γ
− MSγ

γ

∣∣∣∣
≤ 1√

γ

[
|MS̃γ

|
γ − ÃS̃γ

ÃS̃γ

+ |MS̃γ
− MSγ |

]
(3.26)

≤ 1√
γ

[
|MS̃γ

| c

γ − c
+ |MS̃γ

− MSγ |
]
.

From the Cauchy–Schwarz inequality, (3.17) and (3.24) we have

Eλ

[|MS̃γ
|]≤

√
Eλ

[
M2

S̃γ

]≤ √
γ ,

Eλ

[|MS̃γ
− MSγ |]≤

√
Eλ

[
(MS̃γ

− MSγ )2
]≤ √

c.

Then, taking expectations in (3.26), we obtain

√
γ Eλ

[∣∣∣∣
(

M

Ã

)
S̃γ

−
(

M

A

)
Sγ

∣∣∣∣
]

≤ c

γ − c
+
√

c

γ
.

Therefore, the second term in the right-hand side of (3.25) converges to 0 in prob-
ability, due to Markov’s inequality, as c,
,γ → ∞ so that c = o(γ ). This con-
cludes the proof. �

COROLLARY 3.1. If D = ∅, then (S̃γ , λ̃S̃γ
) is asymptotically optimal as

γ, c,
 → ∞ so that c,
 = o(
√

γ ).

PROOF. This is a consequence of (3.18) and Theorem 3.3. �
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3.3. Remarks and examples. For the implementation of the proposed esti-
mator, the fusion center does not need to record the values of the communi-
cation times. It simply needs to keep track of B̃1, . . . , B̃K and—if necessary—
Ã1, . . . , ÃK , and update them whenever it receives a relevant message. Since these
statistics are defined recursively, at most 2K values need to be stored at any given
time.

Theorems 3.1, 3.2 and 3.3 remain valid if c and 
 are held fixed as t → ∞ or
γ → ∞. Moreover, they remain valid if we use in the definitions of τ i,B

n and τ i,A
n

time-varying, positive thresholds, 
i
n, 
i

n, ci
n, so that


i
n ≤ 
i, 
i

n ≤ 
i, ci
n ≤ ci ∀n ∈ N.

Therefore, it may be possible to improve the performance of the proposed estima-
tor by introducing linear or curved boundaries and optimizing over the additional
parameters.

We close this section with some examples that illustrate our main results. Thus,
let σt := [σ ij

t ] be an {Ft }-adapted, square matrix of size K, set αt := σtσ
′
t , where

σ ′
t is the transpose of σt , and consider the following special case of model (2.8):

Y i
t = λ

K∑
j=1

∫ t

0
Xj

s αij
s ds +

K∑
j=1

∫ t

0
σ ij

s dWj
s , t ≥ 0,1 ≤ i ≤ K,(3.27)

where (W 1, . . . ,WK) is a K-dimensional Pλ-Brownian motion. The observed
Fisher information {At } then becomes

At =
K∑

i=1

K∑
j=1

∫ t

0
Xi

sX
j
s αij

s ds, t ≥ 0.(3.28)

In Theorem 3.1, we stated the asymptotic properties of the proposed estimator
when At is deterministic. This assumption is clearly satisfied when there are real
functions bi, ρij : [0,∞) → R so that Xi

t = bi(t) and α
ij
t = ρij (t) for every 1 ≤

i, j ≤ K , in which case

At =
K∑

i=1

K∑
j=1

∫ t

0
bi(s)bj (s)ρij (s)ds, t ≥ 0,(3.29)

and (Y 1, . . . , YK) is a Gaussian process with independent increments. However,
Theorem 3.1 also applies when Xi

t = bi(t)/Y i
t and α

ij
t = ρij (t)Y

i
t Y

j
t , in which

case A is still given by (3.29).
In Theorem 3.3, we proved that the proposed estimator is asymptotically op-

timal when Aij is deterministic for every i 	= j . This condition is clearly satis-
fied when σ ij = 0 for every i 	= j , in which case Y 1, . . . , YK are independent,
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αii = (σ ii)2 and (3.27), (3.28) become

Y i
t = λ

∫ t

0
Xi

sα
ii
s ds +

∫ t

0

√
αii

s dWi
s , t ≥ 0,

At =
K∑

i=1

∫ t

0

(
Xi

s

)2
αii

s ds, t ≥ 0.

If, in particular, Xi is a nonzero constant and αii = Y i , then Y i is a square-root
diffusion, whereas if Xi = Y i and αii is a positive constant, then Y i is an Ornstein–
Uhlenbeck process.

4. The Brownian case. In this section we assume that 〈Y i, Y j 〉t = 0,
〈Y i, Y i〉t = t and Xi

t = xi , where xi 	= 0 is a known constant, for every 1 ≤ i 	=
j ≤ K and t ≥ 0.

Thus, Bi
t = xiY

i
t , Ai

t = (xi)
2t , At =∑K

i=1 Ai
t and (2.8) reduces to

Y i
t = λxit + Ni

t , t ≥ 0, i = 1, . . . ,K,

where N1, . . . ,NK are independent, standard Brownian motions under Pλ.
Since the filtrations {F 1

t }, . . . , {F K
t } are independent, for every 1 ≤ i ≤ K and

t > 0 we have

dPλ

dP0

∣∣∣∣
F i

t

= eλBi
t −(λ2/2)Ai

t = eλBi
t −(λxi)

2t/2.(4.1)

We also assume, for simplicity, that 
i = 
i = 
i for every 1 ≤ i ≤ K , thus,

 =∑K

i=1 
i and

τ i,B
n = inf

{
t ≥ τ

i,B
n−1 :

∣∣Bi
t − Bi

τ
i,B
n−1

∣∣≥ 
i},(4.2)

zi
n =

⎧⎪⎨
⎪⎩

1, if Bi

τ
i,B
n

− Bi

τ
i,B
n−1

≥ 
i ,

0, if Bi

τ
i,B
n

− Bi

τ
i,B
n−1

≤ −
i .
(4.3)

We denote by δi
n the time between the arrival of the (n − 1)th and the nth message

from sensor i and by mi
t the number of transmitted messages by sensor i up to

time t , that is,

δi
n := τ i,B

n − τ
i,B
n−1, mi

t := max
{
n ∈ N : τ i

n ≤ t
}
.(4.4)

Since {At } is deterministic, τ i,A
n = ∞ for every 1 ≤ i ≤ K and n ∈ N and the

fusion center filtration becomes

F̃t = σ
(
δi
n, z

i
n;n ≤ mi

t ,1 ≤ i ≤ K
)
, t ≥ 0.
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Moreover, Ã := A and Ãi := Ai for every i, however, we now define the following
{F̃t }-adapted statistics:

Ǎi
t := |xi |2

mi
t∑

j=1

δi
j , Ǎt :=

K∑
i=1

Ǎi
t , t ≥ 0.(4.5)

That is, Ǎt is an approximation of At that relies only on the communication times
{τ i,B

n ;n ≤ mi
t ,1 ≤ i ≤ K}.

Since Brownian motion “restarts” at stopping times, each (δi
n, z

i
n)n∈N is a se-

quence of i.i.d. pairs, thus, each (mi
t )t≥0 is a renewal process. Moreover, it is

possible to obtain a series representation for the joint density of the pair (δi
1, z

i
1)

under Pλ,

p̄i(t;λ) := Pλ(δ
i
1 ∈ dt, zi

1 = 1)

dt
,

¯
pi(t;λ) := Pλ(δ

i
1 ∈ dt, zi

1 = 0)

dt
.

This representation is the content of the following lemma, for which we need to
define the following functions:

g(t;x) :=
∞∑

n=−∞
h
(
t; (4n + 1)x

)
, h(t;x) := x√

2πt3
e−x2/2t , t, x ≥ 0.

LEMMA 4.1. For every 1 ≤ i ≤ K and t > 0,

p̄i(t;λ) = eλ
i−0.5(λxi)
2t g
(
t;
i/|xi |),

¯
pi(t;λ) = e−λ
i−0.5(λxi)

2t g
(
t;
i/|xi |).

PROOF. From (4.2) and (4.4) we have

δi
1 = inf

{
t ≥ 0 :

∣∣Y i
t

∣∣≥ 
i/|xi |}, n ∈ N.(4.6)

Since Y i is a standard Brownian motion under P0, it is well known (see, e.g.,
[11], page 99) that p̄i(t;0) =

¯
pi(t;0) = g(t;
i/|xi |). Then, changing the measure

Pλ 
→ P0 (similarly, e.g., to [11], page 196), we obtain the desired result. �

The following lemma describes some properties of the communication scheme
that remain valid in the case of discrete sampling at the sensors, which we treat in
Section 4.2. In order to lighten the notation, we denote by �(
i) a term that when
divided by 
i is asymptotically bounded from above and below as 
i → ∞.

LEMMA 4.2. (a) For any t,
i > 0,

Eλ

[mi
t+1∑

j=1

δi
j − t

]
≤ Eλ[(δi

1)
2]

Eλ[δi
1]

,(4.7)
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Eλ

[
t −

mi
t∑

j=1

δi
j

]
≤ Eλ[(δi

1)
2]

Eλ[δi
1]

.(4.8)

(b) As t,
i → ∞,

Eλ

[
δi

1
]= �

(

i), Vλ

[
δi

1
]= �

(

i),(4.9)

0 ≤ Eλ

[
Ai

t − Ǎi
t

]≤ �
(

i),(4.10)

Eλ

[
mi

t

]≤ t/�
(

i)+ 1/�

(

i).(4.11)

PROOF. (a) Since (δi
n)n∈N is a sequence of i.i.d. random variables, (4.7) fol-

lows from Theorem 1 in Lorden [14] and (4.8) from Lorden [14], page 526.
(b) Recall from (4.6) that δi

1 is the first time a Brownian motion with drift λxi

exits the symmetric interval (−
i/|xi |,
i/|xi |). Then, as 
i → ∞, from Wald’s
identity we have

Eλ

[
δi

1
]= 
i/|xi |

|λxi |
(
1 + o(1)

)
,(4.12)

whereas from Martinsek [16] we have

Vλ

[
δi

1
]= 
i/|xi |

|λxi |3
(
1 + o(1)

)
.(4.13)

Then, from (4.12) and (4.13) we obtain (4.9), whereas from (4.5), (4.8) and (4.9)
we obtain (4.10).

Finally, since mi
t + 1 is a stopping time with respect to the filtration generated

by the pairs (δi
n, z

i
n)n∈N, from Wald’s identity and (4.7) we have

Eλ

[
mi

t + 1
]
Eλ

[
δi

1
]= Eλ

[mi
t+1∑

j=1

δi
j

]
≤ t + Eλ[(δi

1)
2]

Eλ[δi
1]

and, consequently,

Eλ

[
mi

t

]≤ t

Eλ[δi
1]

+ Vλ[δi
1]

(Eλ[δi
1])2

.

From this inequality and (4.9) we obtain (4.11), which completes the proof. �

4.1. Likelihood-based estimation at the fusion center. Let L̃t (λ) and �̃t (λ) be
the likelihood and the log-likelihood function of λ that correspond to F̃t , the ac-
cumulated information at the fusion center up to time t . The following proposition
describes the structure of the corresponding score function.
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PROPOSITION 4.1. For any t > 0,

d�̃t (λ)

dλ
=
{

K∑
i=1

Eλ

[
Bi

t |mi
t

]− λAt

}
+ {B̃t − λǍt }.(4.14)

PROOF. Suppose that mi
t = mi , that is, sensor i has transmitted mi messages

to the fusion center up to time t , where mi is some nonnegative integer. Then,
since all pairs {(zi

n, δ
i
n), n ∈ N,1 ≤ i ≤ K} are independent, the fusion likelihood

function has the following form:

L̃t (λ) :=
K∏

i=1

Pλ

(
mi

t = mi

)( mi∏
n=1

p̄i

(
δi
n;λ

)zi
n ·

¯
pi

(
δi
n;λ

)1−zi
n

)1{mi>0}
.

Due to Lemma 4.1, the corresponding log-likelihood function becomes

�̃t (λ) =
K∑

i=1

log Pλ

(
mi

t = mi

)

+
K∑

i=1

1{mi>0}
mi∑

n=1

[
λ
i − (λxi)

2δi
n

2
+ logg

(
δi
n;
i/|xi |)

]
zi
n

+
K∑

i=1

1{mi>0}
mi∑

n=1

[
−λ
i − (λxi)

2δi
n

2
+ logg

(
δi
n;
i/|xi |)

](
1 − zi

n

)
.

Then, recalling the definition of B̃ in (3.6)–(3.7) and of Ǎ in (4.5),

d�̃t (λ)

dλ
=

K∑
i=1

d

dλ

(
log Pλ

(
mi

t = mi

))+ B̃t − λǍt .

Since {mi
t = mi} ∈ F i

t , changing the measure Pλ 
→ P0, we have

Pλ

(
mi

t = mi

)= E0
[
eλBi

t −λ2Ai
t /21{mi

t=mi}
]

and, consequently,

d

dλ

(
log Pλ

(
mi

t = mi

))= E0[eλBi
t −λ2Ai

t /2(Bi
t − λAi

t )1{mi
t=mi}]

Pλ(m
i
t = mi)

= Eλ[Bi
t 1{mi

t=mi}] − λAi
tPλ(m

i
t = mi)

Pλ(m
i
t = mi)

= Eλ

[
Bi

t |mi
t = mi

]− λAi
t ,

which implies (4.14). �
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Note that the second term in (4.14) reflects the information from the commu-
nication times and the transmitted messages, whereas the first term reflects the
information between transmissions.

At time t , the fusion center should ideally estimate λ with the fusion center
MLE, that is, the root of the score function (4.14). However, since Eλ[Bi

t |mi
t ] does

not admit a simple, closed-form expression as a function of λ, we can only ap-
proximate this conditional expectation and obtain an approximate fusion center
MLE.

If we replace each Eλ[Bi
t |mi

t ] with the corresponding unconditional expecta-
tion, Eλ[Bi

t ] = λAi
t , the first term in (4.14) vanishes and we obtain the following

estimator:

λ̌t := B̃t

Ǎt

, t ≥ min
1≤i≤K

τ i
1.(4.15)

On the other hand, if we approximate Eλ[Bi
t |mi

t ] with λǍi
t , we recover the esti-

mator {λ̃t } that was defined in (3.13) and whose asymptotic properties were estab-
lished in Theorem 3.1. In the following proposition we show that, in the special
Brownian case that we consider in this section, λ̌t has similar asymptotic behavior
as λ̃t .

PROPOSITION 4.2. If t,
 → ∞ so that 
 = o(t), then λ̌t converges to λ in
probability. If additionally 
 = o(

√
t), then

√
At(λ̌t −λ) → N (0,1), that is, λ̌t is

an asymptotically optimal estimator of λ.

PROOF. From the definition of λ̃t in (3.13) and λ̌t in (4.15) we have

λ̌t − λ̃t = B̃t

Ǎt

− B̃t

At

= At

Ǎt

At − Ǎt

At

λ̃t , t ≥ 0.(4.16)

From (4.10) it follows that

0 ≤ Eλ[At − Ǎt ]
At

= 1

At

K∑
i=1

Eλ

[
Ai

t − Ǎi
t

]≤ K∑
i=1

�(
i)

At

= �(
)

At

.(4.17)

Therefore, Markov’s inequality implies that (At − Ǎt )/At converges to 0 and
At/Ǎt converges to 1 in probability as t,
 → ∞ so that 
 = o(t), since At is
a linear function of t . Moreover, from Theorem 3.1 we know that λ̃t converges
to λ in probability if 
 = o(t). Thus, we conclude that λ̌t also converges to λ in
probability as t,
 → ∞ so that 
 = o(t).

In order to prove that λ̌t is asymptotically optimal, it suffices to show that√
At |λ̌t − λ̃t | converges to 0 in probability as t,
 → ∞ so that 
 = o(

√
t), which

also follows from (4.16) and (4.17). �
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4.2. The case of discrete sampling. We now assume that each sensor ob-
serves its underlying process only at a sequence of discrete and equidistant times
{nh,n ∈ N}, where h > 0 is a common sampling period. Thus, in what follows,
t = h,2h, . . . . The goal is to examine the effect of discrete sampling on the pro-
posed estimating scheme.

First of all, we observe that the centralized estimator,

λ̂t = Bt

At

=
∑K

i=1 xiY
i
t∑K

i=1(xi)2t
(4.18)

is not affected by the discrete sampling of the underlying processes and (2.18)
remains valid, that is,

√
At(λ̂t − λ) ∼ N (0,1) for every t = h,2h, . . . .

Moreover, the pairs (δi
n, z

i
n)n∈N remain i.i.d. and Lemma 4.2 still holds. On the

other hand, Lemma 4.1 is no longer valid and there is not an explicit formula for
the density of the pair (δi

1, z
i
1). However, the main difference in the case of discrete

sampling is that at any time τ i,B
n the fusion center learns whether Bi increased or

decreased by at least 
i since τ
i,B
n−1, but does not learn by how much exactly. In

other words, the fusion center does not learn the size of the realized overshoots,

ηi
n := (

Bi

τ
i,B
n

− Bi

τ
i,B
n−1

− 
i)+ + (
Bi

τ
i,B
n

− Bi

τ
i,B
n−1

+ 
i)−, n ∈ N.(4.19)

As a result, the statistic B̃i , defined in (3.6), is no longer equal to Bi at the commu-
nication times (τ i,B

n )n∈N and the distance |Bi
t − B̃i

t | is no longer bounded by 
i .
Therefore, Theorem 3.1, which establishes the consistency and asymptotic opti-
mality of the proposed estimator, λ̃t = B̃t /At , under the assumption of continuous-
time sensor observations may not hold when the sensors observe their underlying
processes at discrete times.

Our goal is to determine under what conditions the consistency and asymptotic
optimality of λ̃t are preserved in the context of discrete sampling at the sensors.
In order to do so, we need to estimate the inflicted performance loss due to the
unobserved overshoots. The following lemma is very useful in this direction.

LEMMA 4.3. For every 1 ≤ i ≤ K ,

∣∣Bi
t − B̃i

t

∣∣≤ 
i +
mi

t∑
j=1

ηi
j , t ≥ 0,(4.20)

and the overshoots (ηi
n)n∈N are i.i.d. with

sup

i>0

Eλ

[
ηi

1
]= O

( 3
√

h
)
.(4.21)
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PROOF. For every t ≥ 0 we have

Bi
t − B̃i

t = Bi
t − Bi

τ
i,B

mi
t

+
mi

t∑
j=1

(
Bi

τ
i,B
j

− Bi

τ
i,B
j−1

)− B̃i
t

= Bi
t − Bi

τ
i,B

mi
t

+
mi

t∑
j=1

[(
Bi

τ
i,B
j

− Bi

τ
i,B
j−1

)− [

izi

j − 
i(1 − zi
j

)]]
,

which implies (4.20). It is obvious that the overshoots (ηi
n)n∈N are i.i.d. In order to

prove (4.21), we write δi
1 = min{δi

1, δ
i
1}, where

δi
1 := inf

{
nh :Bi

nh ≤ −
i}, δi
1 := inf

{
nh :Bi

nh ≥ 
i}.
Then, from Theorem 3 of Lorden [14] it follows that for any r ≥ 1,

sup

i>0

Eλ

[
ηi

1
]≤ max

{
Eλ

[
Bi

δi
1
− 
i],−Eλ

[
Bi

δi
1
+ 
i]}

(4.22)

≤ r

√√√√r + 2

r + 1

Eλ[|Bi
h|r+1]

|Eλ[Bi
h]|

.

Since Y i
h ∼ N (λxih,h) under Pλ and Bi

h = xiY
i
h,

Eλ

[
Bi

h

]= λ(xi)
2h,

Eλ

[(
Bi

h

)4]= (xi)
4[(λxih)4 + 6(λxih)2h + 3h2]

= 3(xi)
4h2(1 + o(1)

)
as h → 0.

Setting r = 3 in (4.22) completes the proof. �

In the following theorem we show that λ̃t remains consistent as t → ∞ for any
given, fixed sampling period, h > 0, as long as the communication rate of every
sensor is asymptotically low.

THEOREM 4.1. If t,
i → ∞ so that 
i = o(t) for every 1 ≤ i ≤ K , then
Eλ[|λ̃t − λ|] → 0.

PROOF. Since Eλ[|λ̂t − λ|] → 0, it suffices to show that Eλ[|λ̃t − λ̂t |] → 0.
Indeed, from the definition of the two estimators and (4.20) we have

|λ̃t − λ̂t | ≤ 1

At

K∑
i=1

∣∣B̃i
t − Bi

t

∣∣≤ 


At

+ 1

At

K∑
i=1

mi
t+1∑

j=1

ηi
j .(4.23)
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Since mi
t + 1 is a stopping time with respect to the filtration generated by

(δi
n, z

i
n, η

i
n)n∈N, from Wald’s identity we obtain

Eλ

[mi
t+1∑

j=1

ηi
j

]
= Eλ

[
ηi

1
]
Eλ

[
mi

t + 1
]
.(4.24)

Taking expectations in (4.23) and applying (4.24), we obtain

Eλ

[|λ̃t − λ̂t |]≤ 


At

+
K∑

i=1

Eλ[ηi
1]Eλ[mi

t + 1]
At

.(4.25)

Then, from (4.11), (4.21) and the fact that At is a linear function of t we have

Eλ

[|λ̃t − λ̂t |]≤ �(
)

t
+

K∑
i=1

Eλ[ηi
1]

�(
i)
.(4.26)

If some 
i is fixed as t → ∞, the second term in the right-hand side of (4.26)
does not go to 0 (unless h → 0, in which case Eλ[ηi

1] → 0 for every 1 ≤ i ≤ K ,
due to (4.21)). However, if 
i → ∞ so that 
i = o(t) for every 1 ≤ i ≤ K , then
both terms in the right-hand side of (4.26) go to 0 for any given sampling period,
h > 0, which completes the proof. �

The proof of Theorem 4.1 suggests that the proposed estimator is not consistent
when both {
i,1 ≤ i ≤ K} and h are held fixed. In other words, it is necessary
to have either a high sampling rate (h → 0) in order to reduce the size of the
unobserved overshoots or a low communication rate in all sensors (
i → ∞ ∀1 ≤
i ≤ K) in order to reduce their accumulation rate.

However, an asymptotically low communication rate is not sufficient in order
to preserve the asymptotic optimality of λ̃t in the case of discrete sampling at
the sensors. For this, the sampling period h must converge to 0 at an appropriate
rate relative to the communication rate and the horizon of observations, which we
specify in the following theorem.

THEOREM 4.2. If t,
i → ∞ and h → 0 so that


i = o(
√

t) and 3
√

h = o
(

i/

√
t
) ∀1 ≤ i ≤ K,

then
√

At(λ̃t − λ) → N (0,1), that is, λ̃t is an asymptotically optimal estimator.

PROOF. Since
√

At(λ̂t − λ) ∼ N (0,1), it suffices to show that
√

At |λ̃t − λ̂t |
converges to 0 in probability. Indeed, from (4.26) and the fact that At is a linear
function of t ,

√
AtEλ

[|λ̃t − λ̂t |]≤ �(
)√
t

+
K∑

i=1

Eλ[ηi
1]

�(
i/
√

t)
.(4.27)
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The first term in the right-hand side goes to 0 if 
 = o(
√

t). The second term
goes to 0 if Eλ[ηi

1] = o(
i/
√

t) for every 1 ≤ i ≤ K . For the latter, it suffices that
3
√

h = o(
i/
√

t) for every 1 ≤ i ≤ K , due to (4.21), which completes the proof.
�

REMARK. If each 
i is fixed as t → ∞, then Theorem 4.2 implies that λ̂t is
asymptotically efficient as t → ∞ and h → 0 so that 3

√
h
√

t → 0.

5. Conclusions. In this work we considered a parameter estimation problem
assuming that the statistician collects data from dispersed sensors, which observe
continuous (possibly correlated) semimartingales with linear drifts with respect to
a common, unknown parameter. Motivated by sensor network applications, which
are typically characterized by limited communication bandwidth, we required that
the sensors must send a small number of bits per transmission and that they should
avoid a high rate of communication with the fusion center.

We proposed a novel methodology for this problem, according to which the sen-
sors transmit to the fusion center one-bit messages at first exit times of appropriate
statistics that they observe locally. The fusion center then combines these messages
and constructs an estimator that imitates the optimal centralized estimator (which
can be computed only if there is full access to the sensor observations).

We proved that the resulting estimator is consistent and, for a large class of
processes, asymptotically optimal, in the sense that it attains the performance of
the optimal centralized estimator when a sufficiently large horizon of observations
is available. However, it is much more efficient from a practical point of view, as it
reduces dramatically the congestion in the network and the computational burden
at the fusion center. This is the case because it requires the transmission of only
one-bit messages from the sensors and its statistical properties are preserved even
with an asymptotically low rate of communication.

It remains an open problem to design estimators with analogous optimality
properties in more complicated setups, such as when there is not an explicit form
for the optimal centralized estimator, the dimensionality of the parameter space is
large or the sensors take non-i.i.d., discrete-time observations.
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