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We wish to congratulate the authors for their innovative contribution, which is
bound to inspire much further research. We find latent variable model selection
to be a fantastic application of matrix decomposition methods, namely, the super-
position of low-rank and sparse elements. Clearly, the methodology introduced in
this paper is of potential interest across many disciplines. In the following, we
will first discuss this paper in more detail and then reflect on the versatility of the
low-rank + sparse decomposition.

Latent variable model selection. The proposed scheme is an extension of the
graphical lasso of Yuan and Lin [15] (see also [1, 6]), which is a popular approach
for learning the structure in an undirected Gaussian graphical model. In this setup,
we assume we have independent samples X ∼ N (0,�) with a covariance matrix
� exhibiting a sparse dependence structure but otherwise unknown; that is to say,
most pairs of variables are conditionally independent given all the others. Formally,
the concentration matrix �−1 is assumed to be sparse. A natural fitting procedure
is then to regularize the likelihood by adding a term proportional to the �1 norm of
the estimated inverse covariance matrix S:

minimize −�(S,�n
0 ) + λ‖S‖1(1)

under the constraint S � 0, where �n
0 is the empirical covariance matrix and

‖S‖1 = ∑
ij |Sij |. (Variants are possible depending upon whether or not one would

want to penalize the diagonal elements.) This problem is convex.
When some variables are unobserved—the observed and hidden variables are

still jointly Gaussian—the model above may not be appropriate because the hidden
variables can have a confounding effect. An example is this: we observe stock
prices of companies and would like to infer conditional (in)dependence. Suppose,
however, that all these companies rely on a commodity, a source of energy, for
instance, which is not observed. Then the stock prices might appear dependent
even though they may not be once we condition on the price of this commodity.
In fact, the marginal inverse covariance of the observed variables decomposes into
two terms. The first is the concentration matrix of the observed variables in the
full model conditioned on the latent variables. The second term is the effect of
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marginalization over the hidden variables. Assuming a sparse graphical model, the
first term is sparse, whereas the second term may have low rank; in particular,
the rank is at most the number of hidden variables. The authors then penalize the
negative log-likelihood with a term proportional to

γ ‖S‖1 + trace(L)(2)

since the trace functional is the usual convex surrogate for the rank over the cone
of positive semidefinite matrices. The constraints are S � L � 0.

Adaptivity. The penalty (2) is simple and flexible since it does not really make
special parametric assumptions. To be truly appealing, it would also need to be
adaptive in the following sense: suppose there is no hidden variable, then does the
low-rank + sparse model (L + S) behave as well or nearly as well as the graphical
lasso? When there are few hidden variables, does it behave nearly as well? Are
there such theoretical guarantees? If this is the case, it would say that using the
L + S model would protect against the danger of not having accounted for all
possible covariates. At the same time, if there were no hidden variable, one would
not suffer any loss of performance. Thus, we would get the best of both worlds.

At first sight, the analysis presented in this paper does not allow us to reach
this conclusion. If X is p-dimensional, the number of samples needed to show
that one can obtain accurate estimates scales like �(p/ξ4), where ξ is a mod-
ulus of continuity introduced in the paper that is typically much smaller than 1.
We can think of 1/ξ as being related to the maximum degree d of the graph so
that the condition may be interpreted as having a number of observations very
roughly scaling like d4p. In addition, accurate estimation holds with the proviso
that the signal is strong enough; here, both the minimum nonzero singular value
of the low-rank component and the minimum nonzero entry of the sparse compo-
nent scale like �(

√
p/n). On the other hand, when there are no hidden variables,

a line of work [11, 13, 14] has established that we could estimate the concentra-
tion matrix with essentially the same accuracy if n = �(d2 logp) and the magni-
tude of the minimum nonvanishing value of the concentration matrix scales like

�(
√

n−1 logp). As before, d is the maximum degree of the graphical model. In
the high-dimensional regime, the results offered by this literature seem consider-
ably better. It would be interesting to know whether this could be bridged, and if
so, under what types of conditions—if any.

Interestingly, such adaptivity properties have been established for related prob-
lems. For instance, the L + S model has been used to suggest the possibility
of a principled approach to robust principal component analysis [2]. Suppose
we have incomplete and corrupted information about an n1 × n2 low-rank ma-
trix L0. More precisely, we observe Mij = L0

ij + S0
ij , where (i, j) ∈ �obs ⊂

{1, . . . , n1} × {1, . . . , n2}. We think of S0 as a corruption pattern so that some
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entries are totally unreliable but we do not know which ones. Then [2] shows that
under rather broad conditions, the solution to

minimize ‖L‖∗ + λ‖S‖1
(3)

subject to Mij = Lij + Sij , (i, j) ∈ �obs,

where ‖L‖∗ is the nuclear norm, recovers L0 exactly. Now suppose there are no
corruptions. Then we are facing a matrix completion problem and, instead, one
would want to minimize the nuclear norm of L under data constraints. In other
words, there is no need for S in (3). The point is that there is a fairly precise
understanding of the minimal number of samples needed for this strategy to work;
for incoherent matrices [3], |�obs| must scale like (n1 ∨ n2)r log2 n, where r is the
rank of L0. Now some recent work [10] establishes the adaptivity in question. In
details, (3) recovers L0 from a minimal number of samples, in the sense defined
above, even though a positive fraction may be corrupted. That is, the number of
reliable samples one needs, regardless of whether corruption occurs, is essentially
the same. Results of this kind extend to other settings as well. For instance, in
sparse regression or compressive sensing we seek a sparse solution to y = Xb by
minimizing the �1 norm of b. Again, we may be worried that some equations are
unreliable because of gross errors and would solve, instead,

minimize ‖b‖1 + λ‖e‖1
(4)

subject to y = Xb + e

to achieve robustness. Here, [10] shows that the minimal number of reliable sam-
ples/equations required, regardless of whether the data is clean or corrupted, is
essentially the same.

The versatility of the L + S model. We now move to discuss the L + S model
more generally and survey a set of circumstances where it has proven useful and
powerful. To begin with, methods which simply minimize an �1 norm, or a nuclear
norm, or a combination thereof are seductive because they are flexible and apply
to a rich class of problems. The L + S model is nonparametric and does not make
many assumptions. As a result, it is widely applicable to problems ranging from
latent variable model selection [4] (arguably one of the most subtle and beautiful
applications of this method) to video surveillance in computer vision and docu-
ment classification in machine learning [2]. In any given application, when much
is known about the problem, it may not return the best possible answer, but our
experience is that it is always fairly competitive. That is, the little performance
loss we might encounter is more than accounted for by the robustness we gain vis
a vis various modeling assumptions, which may or may not hold in real applica-
tions. A few recent applications of the L + S model demonstrate its flexibility and
robustness.
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Applications in computer vision. The L + S model has been applied to ad-
dress several problems in computer vision, most notably by the group of Yi Ma
and colleagues. Although the low-rank + sparse model may not hold precisely, the
nuclear + �1 relaxation appears practically robust. This may be in contrast with
algorithms which use detailed modeling assumptions and may not perform well
under slight model mismatch or variation.

Video surveillance. An important task in computer vision is to separate back-
ground from foreground. Suppose we stack a sequence of video frames as columns
of a matrix (rows are pixels and columns time points), then it is not hard to imag-
ine that the background will have low-rank since it is not changing very much over
time, while the foreground objects, such as cars, pedestrians and so on, can be seen
as a sparse disturbance. Hence, finding an L + S decomposition offers a new way
of modeling the background (and foreground). This method has been applied with
some success [2]; see also the online videos Video 1 and Video 2.

From textures to 3D. One of the most fundamental steps in computer vision
consists of extracting relevant features that are subsequently used for high-level
vision applications such as 3D reconstruction, object recognition and scene un-
derstanding. There has been limited success in extracting stable features across
variations in lightening, rotations and viewpoints. Partial occlusions further com-
plicate matters. For certain classes of 3D objects such as images with regular sym-
metric patterns/textures, one can bypass the extraction of local features to recover
3D structure from 2D views. To fix ideas, a vertical or horizontal strip can be re-
garded as a rank-1 texture and a corner as a rank-2 texture. Generally speaking,
surfaces may exhibit a low-rank texture when seen from a suitable viewpoint; see
Figure 1. However, their 2D projections as captured by a camera will typically not
be low rank. To see why, imagine there is a low-rank texture L0(x, y) on a planar
surface. The image we observe is a transformed version of this texture, namely,
L0 ◦ τ−1(x, y). A technique named TILT [16] recovers τ simply by seeking a low-
rank and sparse superposition. In spite of idealized assumptions, Figures 1 and 2
show that the L + S model works well in practice.

(a) (b)

FIG. 1. (a) Pair of images from distinct viewpoints. (b) 3D reconstruction (TILT) from photographs
in (a) using the L + S model. The geometry is recovered from two images.

http://www.youtube.com/watch?feature=player_embedded&v=RPmr8WLkBSo
http://www.youtube.com/watch?feature=player_embedded&v=Yxj1_52EAXA
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FIG. 2. We are given the 16 images on the right. The task is to remove the clutter and align the
images. Stacking each image as a column of a matrix, we look for planar homeographies that reveal
a low-rank plus sparse structure [12]. From left to right: original data set, aligned images, low-rank
component (columns of L), sparse component (columns of S).

Compressive acquisition. In the spirit of compressive sensing, the L+S model
can also be used to speed up the acquisition of large data sets or lower the sampling
rate. At the moment, the theory of compressive sensing relies on the sparsity of
the object we wish to acquire, however, in some setups the L + S model may be
more appropriate. To explain our ideas, it might be best to start with two concrete
examples. Suppose we are interested in the efficient acquisition of either (1) a
hyper-spectral image or (2) a video sequence. In both cases, the object of interest is
a data matrix M which is N ×d , where each column is an N -pixel image and each
of the d columns corresponds to a specific wavelength (as in the hyper-spectral
example) or frame (or time point as in the video example). In the first case, the data
matrix may be thought of as M(x,λ), where x indexes position and λ wavelength,
whereas in the second example, we have M(x, t) where t is a time index. We would
like to obtain a sequence of highly resolved images from just a few measurements;
an important application concerns dynamic magnetic resonance imaging where it
is only possible to acquire a few samples in k-space per time interval.

Clearly, frames in a video sequence are highly correlated in time. And in just
the same way, two images of the same scene at nearby wavelengths are also highly
correlated. Obviously, images are correlated in space as well. Suppose that W ⊗F

is a tensor basis, where W sparsifies images and F time traces (W might be a
wavelet transform and F a Fourier transform). Then we would expect WMF to be
a nearly sparse matrix. With undersampled data of the form y = A(M) + z, where
A is the operator supplying information about M and z is a noise term, this leads
to the low-rank + sparse decomposition problem

minimize ‖X‖∗ + λ‖WXF‖1
(5)

subject to ‖A(X) − y‖2 ≤ ε,

where ε2 is the noise power. A variation, which is more in line with the discussion
paper is a model in which L is a low-rank matrix modeling the static background,
and S is a sparse matrix roughly modeling the innovation from one frame to the



2002 E. J. CANDÉS AND M. SOLTANOLKOTABI

next; for instance, S might encode the moving objects in the foreground. This
would give

minimize λ‖L‖∗ + ‖WSF‖1
(6)

subject to ‖A(L + S) − y‖2 ≤ ε.

One could imagine that these models might be useful in alleviating the tremendous
burden on system resources in the acquisition of ever larger 3D, 4D and 5D data
sets.

We note that proposals of this kind have begun to emerge. As we were preparing
this commentary, we became aware of [8], which suggests a model similar to (5)
for hyperspectral imaging. The difference is that the second term in (5) is of the
form

∑
i ‖Xi‖TV in which Xi is the ith column of X, the image at wavelength

λi ; that is, we minimize the total variation of each image, instead of looking for
sparsity simultaneously in space and wavelength/frequency. The results in [8] show
that dramatic undersampling ratios are possible. In medical imaging, movement
due to respiration can degrade the image quality of Computed Tomography (CT),
which can lead to incorrect dosage in radiation therapy. Using time-stamped data,
4D CT has more potential for precise imaging. Here, one can think of the object
as a matrix with rows labeling spatial variables and columns time. In this context,
we have a low-rank (static) background and a sparse disturbance corresponding
to the dynamics, for example, of the heart in cardiac imaging. The recent work
[7] shows how one can use the L + S model in a fashion similar to (6). This has
interesting potential for dose reduction since the approach also supports substantial
undersampling.

Connections with theoretical computer science and future directions.
A class of problems where further study is required concerns situations in which
the low-rank and sparse components have a particular structure. One such prob-
lem is the planted clique problem. It is well known that finding the largest clique
in a graph is NP hard; in fact, it is even NP-hard to approximate the size of the
largest clique in an n vertex graph to within a factor n1−ε . Therefore, much re-
search has focused on an “easier” problem. Consider a random graph G(n,1/2)

on n vertices where each edge is selected independently with probability 1/2. The
expected size of its largest clique is known to be (2 − o(1)) logn. The planted
clique problem adds a clique of size k to G. One hopes that it is possible to find
the planted clique in polynomial time whenever k � logn. At this time, this is only
known to be possible if k is on the order of

√
n or larger. In spite of its seemingly

simple formulation, this problem has eluded theoretical computer scientists since
1998, and is regarded as a notoriously difficult problem in modern combinatorics.
It is also fundamental to many areas in machine learning and pattern recognition.
To emphasize its wide applicability, we mention a new connection with game
theory. Roughly speaking, the recent work [9] shows that finding a near-optimal
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Nash equilibrium in two-player games is as hard as finding hidden cliques of size
k = C0 logn, where C0 is some universal constant.

One can think about the planted clique as a low rank + sparse decomposition
problem. To be sure, the adjacency matrix of the graph can be written as the sum
of two matrices: the low-rank component is of rank 1 and represents the clique of
size k (a submatrix with all entries equal to 1); the sparse component stands for the
random edges (and with −1 on the diagonal if and only if that vertex belongs to
the hidden clique). Interestingly, low-rank+ sparse regularization based on nuclear
and �1 norms have been applied to this problem [5]. (Here the clique is both low-
rank and sparse and is the object of interest so that we minimize ‖X‖∗ + λ‖X‖1
subject to data constraints.) These proofs show that these methods find cliques of
size �(

√
n), thus recovering the best known results, but they may not be able to

break this barrier. It is interesting to investigate whether tighter relaxations, taking
into account the specific structure of the low-rank and sparse components, can do
better.
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