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MANIFOLD ESTIMATION AND SINGULAR DECONVOLUTION
UNDER HAUSDORFF LOSS
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ISABELLA VERDINELLI2 AND LARRY WASSERMAN3

Carnegie Mellon University, Sapienza University of Rome, Carnegie Mellon
University and Sapienza University of Rome, and Carnegie Mellon University

We find lower and upper bounds for the risk of estimating a manifold in
Hausdorff distance under several models. We also show that there are close
connections between manifold estimation and the problem of deconvolving a
singular measure.

1. Introduction. Manifold learning is an area of intense research activity in
machine learning and statistics. Yet a very basic question about manifold learning
is still open, namely, how well can we estimate a manifold from n noisy samples?
In this paper we investigate this question under various assumptions.

Suppose we observe a random sample Y1, . . . , Yn ∈ R
D that lies on or near a

d-manifold M where d < D. The question we address is: what is the minimax risk
under Hausdorff distance for estimating M? Our main assumption is that M is a
d-dimensional, smooth Riemannian submanifold in R

D ; the precise conditions on
M are given in Section 2.

Let Q denote the distribution of Yi . We shall see that Q depends on several
things, including the manifold M , a distribution G supported on M and a model
for the noise. We consider three noise models. The first is the noiseless model
in which Y1, . . . , Yn is a random sample from G. The second is the clutter noise
model, in which

Y1, . . . , Yn ∼ (1 − π)U + πG,(1)

where U is a uniform distribution on a compact set K ⊂ R
D with nonempty inte-

rior, and G is supported on M . (When π = 1 we recover the noiseless case.) The
third is the additive model,

Yi = Xi + Zi,(2)
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where X1, . . . ,Xn ∼ G, G is supported on M , and the noise variables Z1, . . . ,Zn

are a sample from a distribution � on R
D which we take to be Gaussian. In this

case, the distribution Q of Y is a convolution of G and � written Q = G � �.
In a previous paper [Genovese et al. (2010)], we considered a noise model in

which the noise is perpendicular to the manifold. This model is also considered in
Niyogi, Smale and Weinberger (2011). Since we have already studied that model,
we shall not consider it further here.

In the additive model, estimating M is related to estimating the distribution G,
a problem that is usually called deconvolution [Fan (1991)]. The problem of de-
convolution is well studied in the statistical literature, but in the manifold case
there is an interesting complication: the measure G is singular because it puts all
its mass on a subset of R

D that has zero Lebesgue measure (since the manifold has
dimension d < D). Deconvolution of singular measures has not received as much
attention as standard deconvolution problems and raises interesting challenges.

Each noise model gives rise to a class of distributions Q for Y defined more
precisely in Section 2. We are interested in the minimax risk

Rn ≡ Rn(Q) = inf
M̂

sup
Q∈Q

EQ[H(M̂,M)],(3)

where the infimum is over all estimators M̂ , and H is the Hausdorff distance [de-
fined in equation (4)]. Note that finding the minimax risk is equivalent to finding
the sample complexity n(ε) = inf{n :Rn ≤ ε}. We emphasize that the goal of this
paper is to find the minimax rates, not to find practical estimators. We use the
Hausdorff distance because it is one of the most commonly used metrics for as-
sessing the accuracy of set-valued estimators. One could of course create other
loss functions and study their properties, but this is beyond the scope of this paper.
Finally, we remark that our upper bounds sometimes differ from our lower bounds
by a logarithmic factor. This is a common phenomenon when dealing with Haus-
dorff distance (and sup norm in function estimation problems). Currently, we do
not know how to eliminate the log factor.

1.1. Related work. In the additive noise case, estimating a manifold is related
to deconvolution problems such as those in Fan (1991), Fan and Truong (1993) and
Stefanski (1990). More closely related is the problem of estimating the support of
a distribution in the presence of noise as discussed, for example, in Meister (2006).

There is a vast literature on manifold estimation. Much of the literature deals
with using manifolds for the purpose of dimension reduction. See, for example,
Baraniuk and Wakin (2009) and references therein. We are interested instead in
actually estimating the manifold itself. There is a literature on this problem in the
field of computational geometry; see Dey (2007). However, very few papers allow
for noise in the statistical sense, by which we mean observations drawn randomly
from a distribution. In the literature on computational geometry, observations are
called noisy if they depart from the underlying manifold in a very specific way: the
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observations have to be close to the manifold but not too close to each other. This
notion of noise is quite different from random sampling from a distribution. An
exception is Niyogi, Smale and Weinberger (2008), who constructed the follow-
ing estimator: Let I = {i : p̂(Yi) > λ} where p̂ is a density estimator. They define
M̂ = ⋃

i∈I BD(Yi, ε) where BD(Yi, ε) is a ball in R
D of radius ε centered at Yi .

Niyogi, Smale and Weinberger (2008) show that if λ and ε are chosen properly,
then M̂ is homologous to M . This means that M and M̂ share certain topological
properties. However, the result does not guarantee closeness in Hausdorff distance.
A very relevant paper is Caillerie et al. (2011). These authors consider observations
generated from a manifold and then contaminated by additive noise as we do in
Section 5. Also, they use deconvolution methods as we do. However, their interest
is in upper bounding the Wasserstein distance between an estimator Ĝ and the dis-
tribution G, as a prelude to estimating the homology of M . They do not establish
Hausdorff bounds. Koltchinskii (2000) considers estimating the number of con-
nected components of a set, contaiminated by additive noise. This corresponds to
estimating the zeroth order homology.

There is a also a literature on estimating principal surfaces. A recent paper on
this approach with an excellent review is Ozertem and Erdogmus (2011). This is
similar to estimating manifolds but, to the best of our knowledge, this literature
does not establish minimax bounds for estimation in Hausdorff distance. Finally
we would like to mention the related problem of testing for a set of points on a
surface in a field of uniform noise [Arias-Castro et al. (2005)], but, despite some
similarity, this problem is quite different.

1.2. Notation. We let BD(x, r) denote a D-dimensional open ball centered at
x with radius r . If A is a set, and x is a point, then we write d(x,A) = infy∈A ‖x −
y‖ where ‖ · ‖ is the Euclidean norm. Given two sets A and B , the Hausdorff
distance between A and B is

H(A,B) = inf{ε :A ⊂ B ⊕ ε and B ⊂ A ⊕ ε},(4)

where

A ⊕ ε = ⋃
x∈A

BD(x, ε).(5)

The L1 distance between two distributions P and Q with densities p and q is
�1(p, q) = ∫ |p − q| and the total variation distance between P and Q is

TV(P,Q) = sup
A

|P(A) − Q(A)|,(6)

where the supremum is over all measurable sets A. Recall that TV(P,Q) =
(1/2)�1(p, q).

Let p(x) ∧ q(x) = min{p(x), q(x)}. The affinity between P and Q is

‖P ∧ Q‖ =
∫

p ∧ q = 1 − 1

2

∫
|p − q|.(7)
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Let P n denote the n-fold product measure based on n independent observations
from P . It can be shown that

‖P n ∧ Qn‖ ≥ 1

8

(
1 − 1

2

∫
|p − q|

)2n

.(8)

The convolution between two measures P and �—denoted by P ��—is the mea-
sure defined by

(P � �)(A) =
∫

�(A − x)dP (x).(9)

If � has density φ, then P �� has density
∫

φ(y−u)dP (u). The Fourier transform
of P is denoted by

p∗(t) =
∫

eitT u dP (u) =
∫

eit ·u dP (u),(10)

where we use both tT u and t · u to denote the dot product.
We write Xn = OP (an) to mean that for every ε > 0, there exists C > 0

such that P(‖Xn‖/an > C) ≤ ε for all large n. Throughout, we use symbols like
C,C0,C1, c, c0, c1, . . . to denote generic positive constants whose value may be
different in different expressions. We write poly(ε) to denote any expression of
the form aεb for some positive real numbers a and b. We write an � bn if there
exists c > 0 such that an ≤ cbn for all large n. Similarly, write an 
 bn if bn � an.
Finally, write an � bn if an � bn and bn � an.

We will use Le Cam’s lemma to derive lower bounds, which we now state. This
version is from Yu (1997).

LEMMA 1 (Le Cam 1973). Let Q be a set of distributions. Let θ(Q) take val-
ues in a metric space with metric ρ. Let Q0,Q1 ∈ Q be any pair of distributions
in Q. Let Y1, . . . , Yn be drawn i.i.d. from some Q ∈ Q and denote the correspond-
ing product measure by Qn. Let θ̂ = θ̂ (Y1, . . . , Yn) be any estimator. Then

sup
Q∈Q

EQn[ρ(θ̂, θ(Q))] ≥ ρ(θ(Q0), θ(Q1))‖Qn
0 ∧ Qn

1‖

≥ ρ(θ(Q0), θ(Q1))
1

8

(
1 − TV(Q0,Q1)

)2n
.

2. Assumptions. We shall be concerned with d-dimensional Riemannian
submanifolds of R

D where d < D. Usually, we assume that M is contained in
some compact set K ⊂ R

D . An exception is Section 5 where we allow noncompact
manifolds. Let �(M) be the largest r such that each point in M ⊕ r has a unique
projection onto M . The quantity �(M) will be small if either M is not smooth or
if M is close to being self-intersecting. The quantity �(M) has been rediscovered
many times. It is called the condition number in Niyogi, Smale and Weinberger
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(2008) and the reach in Federer (1959). Let M(κ) denote all d-dimensional man-
ifolds embedded in R

D such that �(M) ≥ κ . Throughout this paper, κ is a fixed
positive constant.

We consider three different distributional models:

(1) Noiseless. We observe Y1, . . . , Yn ∼ G where G is supported on a manifold
M where M ∈ M = {M ∈ M(κ),M ⊂ K}. In this case, Q = G and the observed
data fall exactly on the manifold. We assume that G has density g with respect to
the uniform distribution on M and that

0 < b(M) ≤ inf
y∈M

g(y) ≤ sup
y∈M

g(y) ≤ B(M) < ∞,(11)

where b(M) and B(M) are allowed to depend on the class M, but not on the
particular manifold M . Let G(M) denote all such distributions. In this case we
define

Q = G = ⋃
M∈M

G(M).(12)

(2) Clutter noise. Define M and G(M) as in the noiseless case. We observe

Y1, . . . , Yn ∼ Q ≡ (1 − π)U + πG,(13)

where 0 < π ≤ 1, U is uniform on the compact set K ⊂ R
D and G ∈ G(M). Define

Q = {Q = (1 − π)U + πG :G ∈ G(M),M ∈ M}.(14)

(3) Additive noise. In this case we allow the manifolds to be noncompact. How-
ever, we do require that each G put nontrivial probability in some fixed compact
set. Specifically, we again fix a compact set K. Let M = M(κ). Fix positive con-
stants 0 < b(M) < B(M) < ∞. For any M ∈ M, let G(M) be the set of distri-
butions G supported on M , such that G has density g with respect to Hausdorff
measure on M , and such that

0 < b(M) ≤ inf
y∈M∩K

g(y) ≤ sup
y∈M∩K

g(y) ≤ B(M) < ∞.(15)

Let X1,X2, . . . ,Xn ∼ G ∈ G(M), and define

Yi = Xi + Zi, i = 1, . . . , n,(16)

where Zi are i.i.d. draws from a distribution � on R
D , and where � is a standard

D-dimensional Gaussian. Let Q = G � � be the distribution of each Yi and Qn be
the corresponding product measure. Let Q = {G � � :G ∈ G(M),M ∈ M}.

These three models are an attempt to capture the idea that we have data falling
on or near a manifold. These appear to be the most commonly used models. No
doubt, one could create other models as well which is a topic for future research.
As we mentioned earlier, a different noise model is considered in Niyogi, Smale
and Weinberger (2011) and in Genovese et al. (2010). Those authors consider the
case where the noise is perpendicular to the manifold. The former paper consid-
ers estimating the homology groups of M while the latter paper shows that the
minimax Hausdorff rate is n−2/(2+d) in that case.



946 GENOVESE, PERONE-PACIFICO, VERDINELLI AND WASSERMAN

3. Noiseless case. We now derive the minimax bounds in the noiseless case.

THEOREM 2. Under the noiseless model, we have

inf
M̂

sup
Q∈Q

EQn[H(M̂,M)] ≥ Cn−2/d .(17)

PROOF. Fix γ > 0. By Theorem 6 of Genovese et al. (2010) there exist mani-
folds M0,M1 that satisfy the following conditions:

(1) M0,M1 ∈ M.
(2) H(M0,M1) = γ .
(3) There is a set B ⊂ M1 such that:

(a) infy∈M0 ‖x − y‖ > γ/2 for all x ∈ B .
(b) μ1(B) ≥ γ d/2 where μ1 is the uniform measure on M1.
(c) There is a point x ∈ B such that ‖x − y‖ = γ where y ∈ M0 is the closest

point on M0 to x. Moreover, TxM1 and TyM0 are parallel where TxM is
the tangent plane to M at x.

(4) If A = {y :y ∈ M1, y /∈ M0}, then μ1(A) ≤ Cγ d/2 for some C > 0.

Let Qi = Gi be the uniform measure on Mi , for i = 0,1, and let A be the set
defined in the last item. Then TV(G0,G1) = G1(A) − G0(A) = G1(A) ≤ Cγ d/2.
From Le Cam’s lemma,

sup
Q∈Q

EQnH(M̂,M) ≥ γ (1 − γ d/2)2n.(18)

Setting γ = (1/n)2/d yields the stated lower bound. �

See Figure 1 for a heuristic explanation of the construction of the two manifolds,
M0 and M1, used in the above proof. Now we derive an upper bound.

THEOREM 3. Under the noiseless model, we have

inf
M̂

sup
Q∈Q

EQn[H(M̂,M)] ≤ C

(
logn

n

)2/d

.(19)

Hence, the rate is tight, up to logarithmic factors. The proof is a special case of
the proof of the upper bound in the next section and so is omitted.

REMARK. The Associate Editor pointed out that the rate (1/n)2/d might seem
counterintuitive. For example, when d = 1, this yields (1/n)2 which would seem
to contradict the usual 1/n rate for estimating the support of a uniform distribution.
However, the slower 1/n rate is actually a boundary effect much like the boundary
effects that occur in density estimation and regression. If we embed the uniform
into R

2 and wrap it into a circle to eliminate the boundary, we do indeed get a
rate of 1/n2. Our assumption of smooth manifolds without boundary removes the
boundary effect.
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FIG. 1. The proof of Theorem 2 uses two manifolds, M0 and M1. A sphere of radius κ is pushed
upward into the plane M0 (top left). The resulting manifold M ′

0 is not smooth (top right). A sphere is
then rolled around the manifold (bottom left) to produce a smooth manifold M1 (bottom right). The
construction is made rigorous in Theorem 6 of Genovese et al. (2010).

4. Clutter noise. Recall that

Y1, . . . , Yn ∼ Q = (1 − π)U + πG,

where U is uniform on K, 0 < π ≤ 1 and G ∈ G .

THEOREM 4. Under the clutter model, we have

inf
M̂

sup
Q∈Q

EQn[H(M̂,M)] ≥ C

(
1

nπ

)2/d

.(20)

PROOF. We define M0, M1 and A as in the proof of Theorem 2. Let Q0 =
(1−π)U +πG0 and Q1 = (1−π)U +πG1. Then TV(Q0,Q1) = πTV(G0,G1).
Hence TV(Q0,Q1) ≤ π(G1(A) − G0(A)) = πG1(A) ≤ Cπγ d/2. From Le Cam’s
lemma,

sup
Q∈Q

EQn[H(M̂,M)] ≥ γ (1 − πγ d/2)2n.(21)

Setting γ = (1/nπ)2/d yields the stated lower bound. �

Now we consider the upper bound. Let Q̂n be the empirical measure. Let
εn = (K logn/n)2/d where K > 0 is a large positive constant. Given a manifold
M and a point y ∈ M let SM(y) denote the slab, centered at y, with size b1

√
εn
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FIG. 2. Given a manifold M and a point y ∈ M , SM(y) is a slab, centered at y, with size O(
√

εn)

in the d directions corresponding to the tangent space TyM and size O(εn) in the D − d normal
directions.

in the d directions corresponding to the tangent space TyM and size b2εn in the
D − d normal directions to the tangent space. Here, b1 and b2 are small, positive
constants. See Figure 2.

Define

s(M) = inf
y∈M

Q̂n[SM(y)] and M̂n = arg max
M

s(M).

In case of ties we take any maximizer.

THEOREM 5. Let ξ > 1 and let εn = (K logn/n)2/d where K is a large, pos-
itive constant. Then

sup
Q∈Q

Qn(
H(M0, M̂n) > εn

)
< n−ξ

and hence

sup
Q∈Q

EQn(H(M0, M̂n)) ≤ Cεn.

We will use the following result, which follows from Theorem 7 of Bousquet,
Boucheron and Lugosi (2004). This version of the result is from Chaudhuri and
Dasgupta (2010).

LEMMA 6. Let A be a class of sets with VC dimension V. Let 0 < u < 1 and

βn =
√(

4

n

)[
V log(2n) + log

(
8

u

)]
.

Then for all A ∈ A,

−min
{
βn

√
Q̂n(A),β2

n + βn

√
Q(A)

}
≤ Q(A) − Q̂n(A) ≤ min

{
β2

n + βn

√
Q̂n(A),βn

√
Q(A)

}
with probability at least 1 − u.

The set of hyper-rectangles in R
D (which contains all the slabs) has finite

VC dimension V , say. Hence, we have the following lemma obtained by setting
u = (1/n)ξ .
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LEMMA 7. Let A denote all hyper-rectangles in R
D . Let C = 4[V +

max{3, ξ}]. Then for all A ∈ A,

Q̂n(A) ≤ Q(A) + C logn

n
+

√
C logn

n

√
Q(A) and(22)

Q̂n(A) ≥ Q(A) −
√

C logn

n

√
Q(A)(23)

with probability at least 1 − (1/n)ξ .

Now we can prove Theorem 5.

PROOF OF THEOREM 5. Let M0 denote the true manifold. Assume that (22)
and (23) hold. Let y ∈ M0 and let A = SM0(y). Note that Q(A) = (1 − π)U(A) +
πG(A). Since y ∈ M0 and G is singular, the term U(A) is of lower order and so
there exist 0 < c1 ≤ c2 < ∞ such that, for all large n,

c1K logn

n
= c1ε

d/2
n ≤ Q(A) ≤ c2ε

d/2
n = c2K logn

n
.

Hence

Q̂n(A) ≥ Q(A) −
√

C logn

n

√
Q(A) ≥ c1K logn

n
−

√
c′

2K
logn

n
>

c3K logn

n
.

Thus s(M0) >
c3K logn

n
with high probablity.

Now consider any M for which H(M0,M) > εn. There exists a point y ∈ M

such that d(y,M0) > εn. It can be seen, since M ∈ M, that SM(y) ∩ M0 = ∅. [To
see this, note that �(M) ≥ κ > 0 implies that the interior of any ball of radius κ

tangent to M at y has empty intersection with M and the slab SM(y) is strictly
contained in such a ball for b1 and b2 small enough relative to κ .] Hence

Q(SM(y)) = (1 − π)U(SM(y)) = c4ε
d/2
n εD−d

n

=
(

K logn

n

)
c4

(
K logn

n

)2(D−d)/d

= C

(
logn

n

)(2D−d)/d

.

So, from the previous lemma,

s(M) = inf
x∈M

Q̂n(SM(x)) ≤ Q̂n(SM(y))

≤ Q(SM(y)) + C logn

n
+

√
C logn

n

√
Q(SM(y))

=
(

K logn

n

)(2D−d)/d

+ C logn

n
+

(
K logn

n

)D/d

<
C3K logn

n
= s(M0)
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since D > d and K is large. Let Mn = {M ∈ M :H(M0,M) > εn}. We conclude
that

Qn(
s(M) > s(M0) for some M ∈ Mn

)
<

(
1

n

)ξ

. �

5. Additive noise. Let us recall the model. Let M = M(κ). We allow the
manifolds to be noncompact. Fix positive constants 0 < b(M) < B(M) < ∞. For
any M ∈ M let G(M) be the set of distributions G supported on M such that G

has density g with respect to Hausdorff measure on M and such that

0 < b(M) ≤ inf
y∈M∩K

g(y) ≤ sup
y∈M∩K

g(y) ≤ B(M) < ∞,(24)

where K is a compact set. Let X1,X2, . . . ,Xn ∼ G ∈ G(M), and define

Yi = Xi + Zi, i = 1, . . . , n,(25)

where Zi are i.i.d. draws from a distribution � on R
D , and where � is a standard

D-dimensional Gaussian. Let Q = G � � be the distribution of each Yi and Qn be
the corresponding product measure. Let Q = {G � � :G ∈ G(M),M ∈ M}.

Since we allow the manifolds to be noncompact, the Hausdorff distance could
be unbounded. Hence we define a truncated loss function,

L(M,M̂) = H(M ∩ K, M̂ ∩ K).(26)

THEOREM 8. For all large enough n,

inf
M̂

sup
Q∈Q

EQ[L(M,M̂)] ≥ C

logn
.(27)

PROOF. Define c̃ : R → R and c : Rd → R
D−d as follows: c̃(x) = cos(x/

(a
√

γ )) and c(u) = (
∏d

�=1 c̃(u�),0, . . . ,0)T . Let M0 = {(u, γ c(u)) :u ∈ R
d} and

M1 = {(u,−γ c(u)) :u ∈ R
d}. See Figure 3 for a picture of M0 and M1 when

D = 2, d = 1. Later, we will show that M0,M1 ∈ M.
Let U be a d-dimensional random variable with density ζ where ζ is d-

dimensional standard Gaussian density. Let ζ̃ be a one-dimensional N(0,1) den-
sity. And define G0 and G1 by G0(A) = P((U, γ c(U)) ∈ A) and G1(A) =
P((U,−γ c(U)) ∈ A).

FIG. 3. The two least favorable manifolds M0 and M1 in the proof of Theorem 8 in the special case
where D = 2 and d = 1.
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We begin by bounding
∫ |q1 − q0|2. Define the D-cube Z = [−1/(2a

√
γ ),

1/(2a
√

γ )]D . Then, by Parseval’s identity, and that fact that q∗
j = φ∗g∗

j ,

(2π)D
∫

|q1 − q0|2 =
∫

|q∗
1 − q∗

0 |2 =
∫

|φ∗|2|g∗
1 − g∗

0 |2

=
∫

Z
|φ∗|2|g∗

1 − g∗
0 |2 +

∫
Z c

|φ∗|2|g∗
1 − g∗

0 |2

≡ I + II.

Then

II =
∫

Z c
|g∗

1(t) − g∗
0(t)|2|φ∗(t)|2

≤
∫

Z c
|φ∗(t)|2 ≤ C

(∫ ∞
1/(2a

√
γ )

e−t2
dt

)D

≤ poly(γ )e−D/4a2γ .

Now we bound I . Write t ∈ R
D as (t1, t2) where t1 = (t11, . . . , t1d) ∈ R

d and
t2 = (t21, . . . , t2(D−d)) ∈ R

D−d . Let c1(u) = ∏d
�=1 c̃(u�) denote the first compo-

nent of the vector-valued function c. We have

g∗
1(t) − g∗

0(t) =
∫

Rd

(
eit1·u+it21γ c1(u) − eit1·u−it21γ c1(u))ζ(u) du

= 2i

∫
eit1·u sin(t21γ c1(u))ζ(u) du

= 2i

∫
eit1·u

∞∑
k=0

(−1)kt2k+1
21 γ 2k+1

(2k + 1)! c2k+1
1 (u)ζ(u) du

= 2i

∞∑
k=0

(−1)kt2k+1
21 γ 2k+1

(2k + 1)!
∫

eit1·uc2k+1
1 (u)ζ(u) du

= 2i

∞∑
k=0

(−1)kt2k+1
21 γ 2k+1

(2k + 1)!
d∏

�=1

∫
eit1�u� c̃2k+1(u�)ζ̃ (u�) du�

= 2i

∞∑
k=0

(−1)kt2k+1
21 γ 2k+1

(2k + 1)!
d∏

�=1

(c̃2k+1ζ̃ )∗(t1�)

= 2i

∞∑
k=0

(−1)kt2k+1
21 γ 2k+1

(2k + 1)!
d∏

�=1

mk(t1�),

where

mk(t1�) = (c̃2k+1ζ̃ )∗(t1�) = (c̃∗ � c̃∗ � · · · � c̃∗︸ ︷︷ ︸
2k+1 times

�ζ̃ ∗)(t1�).(28)
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Note that

c̃∗ = 1
2δ−1/(a

√
γ ) + 1

2δ1/(a
√

γ ),

where δy a Dirac delta function at y, that is, a generalized function corresponding
to point evaluation at y. For any integer r , if we convolve c̃∗ with itself r times,
we have that

c̃∗ � c̃∗ � · · · � c̃∗︸ ︷︷ ︸
r times

=
(

1

2

)r r∑
j=0

(
r

j

)
δaj

,(29)

where aj = (2j − r)/(a
√

γ ). Thus

mk(t1�) =
(

1

2

)2k+1 2k+1∑
j=0

(
2k + 1

j

)
ζ̃ ∗(t1� − aj ).(30)

Now ζ̃ ∗(t1�) = exp(− t2
1�

2 ) and ζ̃ ∗(s) ≤ 1 for all s ∈ R. For t ∈ Z , ζ̃ ∗(t1� − aj ) ≤
e−1/(2a2γ ), and thus |mk(t1�)| ≤ e−1/(2a2γ ). Hence,

∏d
�=1 |mk(t1�)| ≤ e−d/(2a2γ ). It

follows that for t ∈ Z ,

|g∗
1(t) − g∗

0(t)| ≤ 2
∞∑

k=0

|t21|2k+1γ 2k+1

(2k + 1)!
d∏

�=1

|mk(t1�)|

≤ e−d/(2a2γ )
∞∑

k=0

|t21|2k+1γ 2k+1

(2k + 1)!
≤ e−d/(2a2γ ) sinh(|t21|γ ) ≤ e−d/(2a2γ ).

So,

I =
∫

Z
|g∗

1(t) − g∗
0(t)|2|φ∗(t)|2 dt

≤
∫

Z
|g∗

1(t) − g∗
0(t)|2 dt

≤ Volume(Z)e−d/(a2γ ) = poly(γ )e−d/(a2γ ).

Hence, ∫
|q1 − q0|2 ≤ I + II ≤ poly(γ )e−d/a2γ + poly(γ )e−D/4a2γ

= poly(γ )e−2w/γ ,(31)

where 2w = min{d/a2,D/(4a2)}.
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Next we bound
∫ |q1 − q0| so that we can apply Le Cam’s lemma. Let Tγ be a

ball centered at the origin with radius 1/γ . Then, by Cauchy–Schwarz,∫
|q1 − q0| =

∫
Tγ

|q1 − q0| +
∫
T c

γ

|q1 − q0|

≤
√

Volume(Tγ )

√∫
|q1 − q0|2 +

∫
T c

γ

|q1 − q0|

≤ poly(γ )e−w/γ +
∫
T c

γ

|q1 − q0|.

For all small γ we have that K ⊂ Tγ . Hence,∫
T c

γ

|q1 − q0| ≤
∫
M1

∫
T c

γ

φ(‖y − u‖) +
∫
M0

∫
T c

γ

φ(‖y − u‖) ≤ poly(γ )e−D/γ 2

≤ poly(γ )e−w/γ .

Putting this all together, we have that
∫ |q1 − q0| ≤ poly(γ )e−w/γ .

Now we apply Lemma 1 and conclude that, for every γ > 0,

sup
Q

E(L(M,M̂)) ≥ γ

8

(
1 − poly(γ )e−w/γ )2n

.

Set γ � w/ logn and conclude that, for all large n,

sup
Q

E(L(M,M̂)) ≥ w

8e2

1

logn
.

This concludes the proof of the lower bound except that it remains to show
that M0,M1 ∈ M(κ). Note that |̃c′′(u)| = a−2| cos(u/(a

√
γ )|. Hence, as long as

a >
√

κ , supu |̃c′′(u)| < 1/κ . It now follows that M0,M1 ∈ M(κ). This completes
the proof. �

REMARK. Consider the special case where D = 2, d = 1 and the manifold
has the special form {(u,m(u)) :u ∈ R} for some function m : R → R. In this case,
estimating the manifold is like estimating a regression function with errors in vari-
ables. (More on this in Section 6.) The rate obtained for estimating a regression
function with errors in variables under these conditions [Fan and Truong (1993)]
is 1/ logn in agreement with our rate. However, the proof technique is not quite
the same as we explain in Section 6.

REMARK. The proof of the lower bound is similar to other lower bounds in
deconvolution problems. There is an interesting technical difference, however. In
standard deconvolution, we can choose G0 and G1 so that g∗

1(t) − g∗
0(t) is zero

in a large neighborhood around the origin. This simplifies the proof considerably.
It appears we cannot do this in the manifold case since G0 and G1 have different
supports.



954 GENOVESE, PERONE-PACIFICO, VERDINELLI AND WASSERMAN

Next we construct an upper bound. We use a standard deconvolution density
estimator ĝ (even thought G has no density), and then we threshold this estimator.

THEOREM 9. Fix any 0 < δ < 1/2. Let h = 1/
√

logn. Let λn be such that

C′
(

1

h

)D−d

< λn < C′′
(

1

L

)2k(1

h

)D−d

,

where k ≥ d/(2δ), C′ is defined in Lemma 11 and C′′ and L are defined in
Lemma 12. Define M̂ = {y : ĝ(y) > λn} where ĝ is defined in (34). Then for all
large n,

inf
M̂

sup
Q∈Q

EQ[L(M,M̂)] ≤ C

(
1

logn

)(1−δ)/2

.(32)

Let us now define the estimator in more detail. Define ψk(y) = sinc2k(y/(2k)).
By elementary calculations, it follows that

ψ∗
k (t) = 2kB2k

(
t

2k

)
,

where Br = J � · · · � J︸ ︷︷ ︸
r times

where J = 1
2I[−1,1]. The following properties of ψk and

ψ∗
k follow easily:

(1) The support of ψ∗
k is [−1,1].

(2) ψk ≥ 0 and ψ∗
k ≥ 0.

(3)
∫

ψ∗
k (t) dt = ψk(0) = 1.

(4) ψ∗
k and ψk are spherically symmetric.

(5) |ψk(y)| ≤ 1/((2k)2k|y|2k) for all |y| > π/(2k).

Abusing notation somewhat, when u is a vector, we take ψk(u) ≡ ψk(‖u‖).
Define

ĝ∗(t) = q̂∗(t)
φ∗(t)

ψ∗
k (ht),(33)

where q̂∗(t) = 1
n

∑n
i=1 e−itT Yi is the empirical characteristic function. Now define

ĝ(y) =
(

1

2π

)D ∫
e−itT y ψ∗

k (ht)q̂∗(t)
φ∗(t)

dt.(34)

Let g(y) = E(ĝ(y)).

LEMMA 10. For all y ∈ R
D ,

g(y) =
(

1

2πh

)D ∫
ψk

(‖y − u‖
h

)
dG(u).
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PROOF. Let ψk,h(x) = h−Dψk(x/h). Hence, ψ∗
k,h(t) = ψ∗

k (th). Now,

g(y) =
(

1

2π

)D ∫
e−itT y ψ∗

k (th)q∗(t)
φ∗(t)

dt

=
(

1

2π

)D ∫
e−itT y ψ∗

k (th)g∗(t)φ∗(t)
φ∗(t)

dt

=
(

1

2π

)D ∫
e−itT yψ∗

k (th)g∗(t) dt

=
(

1

2π

)D ∫
e−itT yψ∗

k,h(t)g
∗(t) dt =

(
1

2π

)D ∫
e−itT y(g � ψk,h)

∗(t) dt

=
(

1

2π

)D

(g � ψk,h)(y) =
(

1

2π

)D ∫
ψk,h(y − u)dG(u)

= 1

hD

(
1

2π

)D ∫
ψk

(
y − u

h

)
dG(u). �

LEMMA 11. We have that infy∈M∩K g(y) ≥ C′hd−D .

PROOF. Choose any x ∈ M ∩ K and let B = B(x,Ch). Note that G(B) ≥
b(M)chd . Hence,

g(x) = (2π)−Dh−D
∫

ψk

(
x − u

h

)
dG(u)

≥ (2π)−Dh−D
∫
B

ψk

(
x − u

h

)
dG(u)

≥ (2π)−Dh−DG(B) = C′hd−D. �

LEMMA 12. Fix 0 < δ < 1/2. Suppose that k ≥ d/(2δ). Then,

sup{g(y) :y ∈ K, d(y,M) > Lh1−δ} ≤ C′′L−2k

(
1

h

)D−d

.(35)

PROOF. Let y be such that d(y,M) > Lh1−δ . For integer j ≥ 1, define

Aj = [
B

(
y, (j + 1)Lh1−δ) − B(y, jLh1−δ)

] ∩ M ∩ K.

Then

g(y) =
(

1

2πh

)D ∫
ψk

(‖u − y‖
h

)
dG(u)

≤
(

1

2πh

)D ∞∑
j=1

∫
Aj

ψk

(‖u − y‖
h

)
dG(u)
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≤
(

1

2πh

)D ∑
j

∫
Aj

(
2kh

‖u − y‖
)2k

dG(u)

≤ C

(
1

h

)D ∑
j

∫
Aj

(
h

jLh1−δ

)2k

dG(u)

≤ C

(
1

h

)D

L−2kh2kδ
∑
j

(
1

j

)2k

G(Aj )

(*) ≤ C

(
1

h

)D

L−2kh2kδ

(**) ≤ C

(
1

h

)D

L−2khd

≤ C′′L−2k

(
1

h

)D−d

,

where equation (*) follows because G is a probability measure and
∑

j j−2k < ∞,
and equation (**) follows because 2kδ ≥ d . �

Now define �n = supy |ĝ(y) − g(y)|.

LEMMA 13. Let h = 1/
√

logn, and let ξ > 1. Then, for large n,

�n =
(

1√
logn

)4k+4−D

(36)

on an event An of probability at least 1 − n−ξ .

PROOF. We proceed as in Theorem 2.3 of Stefanski (1990). Note that

ĝ(y) − g(y) =
(

1

2π

)D ∫
e−itT y ψ∗

k (th)

φ∗(t)
(
q̂∗(t) − q∗(t)

)
dt,(37)

and also note that the integrand is 0 for ‖t‖ > 1/h. So

sup
y

|ĝ(y) − g(y)| ≤ �n

(2π)D

∣∣∣∣∫‖t‖≤1/h

ψ∗
k (th)

φ∗(t)
dt

∣∣∣∣,(38)

where �n = sup‖t‖<1/h |q̂∗(t) − q∗(t)|.
For D = 1, it follows from Theorem 4.3 of Yukich (1985) that

Qn(�n > 4ε) ≤ 4N(ε) exp
(
− nε2

8 + 4ε/3

)
+ 8N(ε) exp

(
−nε

96

)
,(39)
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where N(ε) is the bracketing number of the set of complex exponentials, which
is given by N(ε) = 1 + 24MεTn

ε
, and Mε is defined by Q(‖Y‖ > Mε) ≤ ε/4. By a

similar argument, we have that in D dimensions,

sup
Q∈Qn

Qn(�n > 4ε) ≤ 4N(ε) exp
(
− nε2

8 + 4ε/3

)
+ 8N(ε) exp

(
−nε

96

)
,(40)

where now

N(ε) = C

[
1 + 24MεTn

ε

]
ε−(D−1),(41)

and Mε is defined by supQ∈Qn
Q(‖Y‖ > Mε) ≤ ε/4. Note that Mε = O(1). It

follows that �n ≤
√

C logn
n

except on a set of probability n−ξ where ξ can be made
arbitrarily large by taking C large.

Now, note that ψ∗
k (ht)/φ∗(t) is a spherically symmetric function R(‖t‖).

Hence, ∫
‖t‖≤1/h

ψ∗
k (ht)

φ∗(t)
dt = C

∫ 1/h

s=0
R(s)sD−1 ds ≤ Ch4k+4−De1/(2h2),

where the last result follows from Lemma 3.1 in Stefanski (1990) using parameters
δ = 2, γ = 1/2, r = 2k + 2, β = D − 1, with λ = h. The value of r follows from
the definition of ψ∗

k . The result now follows by combining this bound with (38).
�

Now we can complete the proof of the upper bound.

PROOF OF THEOREM 9. On the event An where �n ≤ (1/
√

logn)4k+4−D (de-
fined in the previous lemma), we have

inf
y∈M∩K

ĝ(y) ≥ inf
y∈M∩K

g(y) − �n ≥ C

(
1

h

)D−d

−
(

1√
logn

)4k+4−D

≥ (C/2)

(
1

h

)D−d

> λn.

This implies that M ∩ K ⊂ M̂ ∩ K
Next, we have

sup
y∈K

d(y,M)≥Lh1−δ

ĝ(y) ≤ sup
y∈K

d(y,M)≥Lh1−δ

g(y) + �n

≤ CL−2k

(
1

h

)D−d

+
(

1√
logn

)4k+4−D

≤ 2CL−2k

(
1

h

)D−d

< λn
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for large enough L. This implies that

{y :y ∈ K and d(y,M) ≥ Lh1−δ} ∩ M̂ = ∅.

Therefore, on An, L(M,M̂) ≤ C( 1
logn

)(1−δ)/2 and hence,

E(L(M,M̂)) = E(L(M,M̂)1An) + E(L(M,M̂)1Ac
n
)

≤ C

(
1

logn

)(1−δ)/2

+ Qn(Ac
n)

≤ C

(
1

logn

)(1−δ)/2

+ n−ξ ≤ C

(
1

logn

)(1−δ)/2

,

and the theorem is proved. �

REMARK. Again, the proof of the upper bound is similar to proofs used in
other deconvolution problems. But once more, there are interesting differences. In
particular, the density estimator ĝ is not estimating any underlying density since
the measure G is singular and thus does not have a density. Hence, the usual bias
calculation is meaningless.

REMARK. Note that M̂ is a set not a manifold; if desired, we can replace M̂

with any manifold in {M ∈ M :M ⊂ M̂}, and then the estimator is a manifold and
the rate is the same.

REMARK. The upper bound is slightly slower than the lower bound. The
rate is consistent with the results in Caillerie et al. (2011) who show that
E(W2(ĝ,G)) ≤ C/

√
logn where W2 is the Wasserstein distance. In the special

case where the manifold has the form {(u,m(u)) :u ∈ R} for some function m, the
problem can be viewed as nonparametric regression with measurement error; see
Section 6. In this special case, we can use the deconvolution kernel regression esti-
mator in Fan and Truong (1993) which achieves the rate 1/ logn. We do not know
of any estimator in the general case that achieves the rate 1/ logn, although we
conjecture that the following estimator might have a better rate: let (M̂, Ĝ) mini-
mize sup‖t‖≤Tn

|q̂∗(y) − q∗
M,G(t)| where Tn = O(

√
logn). In any case, as with all

Gaussian deconvolution problems, the rate is very slow, and the difference between
1/ logn and 1/

√
logn is not of practical consequence.

6. Singular deconvolution. Estimating a manifold under additive noise is re-
lated to deconvolution. It is also related to regression with errors in variables. The
purpose of this section is to explain the connections between the problems.
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6.1. Relationship to density deconvolution. Recall that the model is Y =
X + Z where X ∼ G, G is supported on a manifold M and Z ∼ �. G is a sin-
gular measure supported on the d-dimensional manifold M .

Now consider a somewhat simpler model: suppose again that Yi = Xi + Zi , but
suppose that X has a density g on R

D (instead of being supported on a manifold).
All three distributions Q, G and � have D-dimensional support and Q = G � �.
The problem of recovering the density g of X from Y1, . . . , Yn is the usual density
deconvolution problem. A key reference is Fan (1991).

Most of the existing literature on deconvolution assumes that X and Y have the
same support, or at least that the supports have the same dimension; an excep-
tion is Koltchinskii (2000). Manifold learning may be regarded as the problem of
deconvolution for singular measures.

It is instructive to compare the least favorable pair used for proving the lower
bounds in the ordinary case versus the singular case. Figure 4 shows a typical least
favorable pair for proving a lower bound in ordinary deconvolution. The top left
plot is a density g0, and the top right plot is a density g1 which is a perturbed
version of g0. The L1 distance between the densities is ε. The bottom plots are
q0 = ∫

φ(y − x)g0(x) dx and q1 = ∫
φ(y − x)g1(x) dx. These densities are nearly

indistinguishable, and, in fact, their total variation distance is of order e−1/ε . Of
course, these distributions have the same support and hence such a least favorable
pair will not suffice for proving lower bounds in the manifold case where we will
need two densities with different support.

Figure 5 shows the type of least favorable pair we used for manifold learn-
ing. The top two plots do not show the densities; rather they show the support
of the densities. The distribution g0 is uniform on the circle in the top left plot.
The distribution g1 is uniform on the perturbed circle in the top right plot. The

FIG. 4. A typical least favorable pair for proving a lower bounds in ordinary deconvolution. The
top left plot is a density g0 and the top right plot is a density g1 which is a perturbed version
of g0. The L1 distance between the densities is ε. The bottom plots are q0 = ∫

φ(y − x)g0(x) dx

and q1 = ∫
φ(y − x)g1(x) dx. These densities are nearly indistinguishable and, in fact, their total

variation distance is e−1/ε .
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FIG. 5. The type of least favorable pair needed for proving lower bounds in manifold learning.
The distribution g0 is uniform on the circle in the top left plot. The distribution g1 is uniform on the
perturbed circle in the top right plot. The Hausdorff distance between the supports of the densities
is ε. The bottom plots are heat maps of q0 = ∫

φ(y − x)g0(x) dx and q1 = ∫
φ(y − x)g1(x) dx.

These densities are nearly indistinguishable and, in fact, their total variation distance is e−1/ε .

Hausdorff distance between the supports of densities is ε. The bottom plots are
q0 = ∫

φ(y − x)g0(x) dx and q1 = ∫
φ(y − x)g1(x) dx. Again, these densities are

nearly indistinguishable, and, in fact, their total variation distance is e−1/ε . In this
case, however, g0 and g1 have different supports.

6.2. Relationship to regression with measurement error. We can also relate
the manifold estimation problem with nonparametric regression with measurement
error. Suppose that

Ui = Xi + Z2i ,(42)

Yi = m(Xi) + Z1i ,

and we want to estimate the regression function m. If we observe (X1, Y1), . . . ,

(Xn,Yn), then this is a standard nonparametric regression problem. But if we only
observe (U1, Y1), . . . , (Un,Yn), then this is the usual nonparametric regression
with measurement error problem. The rates of convergence are similar to decon-
volution. Indeed, Fan and Truong (1993) have an argument that converts nonpara-
metric regression with measurement error into a density deconvolution problem.
Let us see how this related to manifold learning.

Suppose that D = 2 and d = 1. Futher, suppose that the manifold is function-
like, meaning that the manifold is a curve of the form M = {(u,m(u)) :u ∈ R} for
some function m. Then each Yi can be written in the form

Yi =
(

Yi1
Yi2

)
=

(
Ui

m(Ui)

)
+

(
Z1i

Z2i

)
which is exactly of the form (42). Let Q be all such distributions obtained this way
with |m′′(u)| ≤ 1/κ . However, this only holds when the manifold has the function-
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like form. Moreover, the lower bound argument in Fan and Truong (1993) cannot
directly be transferred to the manifold setting as we now explain.

In our lower bound proof, we defined a least favorable pair q0 and q1 for the dis-
tribution of Y as follows. Take M0 = {(u,0) :u ∈ R} and M1 = {(u,m(u)) :u ∈ R}.
[In fact, we used (u,m(u)) and (u,−m(u)), but the present discussion is clearer if
we use (u,0) and (u,m(u)).] Let Y = (Y1, Y2). For M0, the distribution q0 for Y

is based on (
Y1
Y2

)
=

(
U

0

)
+

(
Z1
Z2

)
.

The density of (U,Y2) is f0(u, y2) = ζ(u)φ(y2) where ζ is some density for U .
Then

q0(y1, y2) = f0 � � =
∫

f0(y1 − Z1, y2) d�(z1),

where the convolution symbol here and in what follows, refers to convolution only
over U + Z1.

Now let q1(y1, y2) denote the distribution of Y in the model(
Y1
Y2

)
=

(
U

m(U)

)
+

(
Z1
Z2

)
.

This generates the least favorable pair q0, q1 used in our proof (restricted to this
special case).

The least favorable pair used by Fan and Truong is different in a subtle way.
The first distribution q0 is the same. The second, which we will denote w1, is
constructed as follows. Let

w1(y1, y2) = f1 � �,

where the convolution is only over U ,

f1(ξ, y2) = f0(ξ, y2) + γH
(
ξ/

√
γ

)
h0(y2),

where f1(ξ) = g(ξ), γH(ξ/
√

γ )/g(ξ) = b(ξ), H is a perturbation function such
as a cosine, and h0 is chosen so that

∫
h0(y2) dy2 = 0 and

∫
y2h0(y2) dy2 = 1. Now

we show that w1(y1, y2) �= q1(y1, y2). In fact, w1 is not in Q. Note that

w1(y1, y2) = f1 � � = q0(y1, y2) + γ h0(y2)

∫
H

(
y1 − z1√

γ

)
d�(z1).

Now,

q1(y2|u) = φ
(
y2 − m(u)

)
,

but

f1(y2|u) = f1(y2, u)

f1(u)
= φ(y2) + m(u)h0(y2).
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These both have mean m(u) but the distributions are different. Indeed, the
marginals w1(y2) and q1(y2) are different. In fact,

w1(y2) = q0(y2) + ch0(y2)

for some c. This is not in our class because it is not of the form φ(y2 − m(u)).
Hence, w1 is not in our class Q: it does not correspond to drawing a point on a
manifold and adding noise.

The point is that manifold learning reduces to nonparametric regression with
errors only in the special case that the manifold is function-like. And even in this
case, the proofs of the bounds are somewhat different than the usual proofs.

7. Discussion. The purpose of this paper is to establish minimax bounds on
estimating manifolds. The estimators used to prove the upper bounds are theoreti-
cal constructions for the purposes of the proofs. They are not practical estimators.

There is a large literature on methodology for estimating manifolds. However,
these estimators are not likely to be optimal except under stringent conditions. In
current work we are trying to bridge the gap between the theory and the method-
ology.

Probably the most realistic noise condition is the additive model. In this case, we
are dealing with a singular deconvolution problem. The upper bound used decon-
volution techniques. Such methods require that the noise distribution is known (or
is at least restricted to some narrow class of distributions). This seems unrealistic
in real problems. A more realistic goal is to estimate some proxy manifold M∗ that,
in some sense, approximates M . We are currently working on such techniques.
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