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PRINCIPAL SUPPORT VECTOR MACHINES FOR LINEAR AND
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We introduce a principal support vector machine (PSVM) approach that
can be used for both linear and nonlinear sufficient dimension reduction. The
basic idea is to divide the response variables into slices and use a modified
form of support vector machine to find the optimal hyperplanes that separate
them. These optimal hyperplanes are then aligned by the principal compo-
nents of their normal vectors. It is proved that the aligned normal vectors
provide an unbiased,

√
n-consistent, and asymptotically normal estimator of

the sufficient dimension reduction space. The method is then generalized to
nonlinear sufficient dimension reduction using the reproducing kernel Hilbert
space. In that context, the aligned normal vectors become functions and it
is proved that they are unbiased in the sense that they are functions of the
true nonlinear sufficient predictors. We compare PSVM with other sufficient
dimension reduction methods by simulation and in real data analysis, and
through both comparisons firmly establish its practical advantages.

1. Introduction. With the increase of computer power in storing and process-
ing data, high dimensional data have become increasingly prevalent across many
disciplines. The demand for effective methods to extract useful information from
such data has led inevitably to dimension reduction, an area that has undergone
tremendous development during the past two decades.

Let X be a p-dimensional predictor and Y be a response variable. In its classical
form, sufficient dimension reduction (SDR) [Li (1991, 1992), Cook and Weisberg
(1991), Cook (1998)] identifies a small number of linear combinations of predic-
tors that can replace the original predictor vector X without loss of information on
the conditional distribution of Y given X. In other words, the objective is to find a
p × d (d < p) matrix η such that the following conditional independence holds:

Y ⊥⊥ X|η�X.(1)

In this relation, the identifiable parameter is the subspace spanned by the columns
of η, rather than η itself. The intersection of all subspaces satisfying (1), provided
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itself satisfies (1), is called the central subspace, and is denoted by SY |X [Cook
(1994)]. Cook (1996) and Yin, Li and Cook (2008) showed that SY |X uniquely
exists under very mild conditions. Thus, we assume its existence throughout this
article. Many methods have been proposed for this problem since the publication
of the original works. See, for example, Cook and Li (2002), Xia et al. (2002), Yin
and Cook (2002), Fung et al. (2002), Li, Zha and Chiaromonte (2005), Cook and
Ni (2005), Li and Wang (2007), Li and Dong (2009).

A more general sufficient dimension reduction problem, as formulated in Cook
(2007), is to seek an arbitrary function φ : Rp → R

d such that

Y ⊥⊥ X|φ(X).(2)

We refer to this problem as nonlinear sufficient dimension reduction, and any one-
to-one function of φ(X) as the nonlinear sufficient predictor. Several recent works
pioneered estimation procedures for nonlinear dimension reduction of this type,
including Wu (2008), Wu, Liang and Mukherjee (2008), Wang (2008) and Yeh,
Huang and Lee (2009), by extending sliced inverse regression [SIR; Li (1991)]
from different angles.

In this paper, we propose a sufficient dimension reduction method, to be called
the principal support vector machine (PSVM), that can extract the sufficient pre-
dictors in both problems (1) and (2). Let (X1, Y1), . . . , (Xn, Yn) be a sample of
(X, Y ). The basic idea of PSVM is to divide X1, . . . ,Xn into several slices accord-
ing to the values of the responses, and then use support vector machine [SVM;
Vapnik (1998)] to find the optimal hyperplanes that separate these slices. The opti-
mal hyperplanes are then aligned by applying principal component analysis to their
normal vectors. We show that the principal components are, in fact, an unbiased
estimator of the central subspace SY |X. This idea is then extended to the nonlinear
dimension reduction problem (2) via the reproducing kernel Hilbert space [RKHS;
Aronszajn (1950), Hsing and Ren (2009)]. In this context, the normal vectors in
the linear case become functions in the RKHS. It is shown that the normal func-
tions thus derived are functions of φ in the general problem (2). This is, to our
knowledge, the first result of this type.

Our proposal is noticeably different from the existing SDR methods in the fol-
lowing respects. First, PSVM is developed under, and for, a unified framework of
linear and nonlinear sufficient dimension reduction. Such a standpoint allows us to
formulate some theoretical properties, such as unbiasedness, more rigorously and
generally than previous works. Second, PSVM improves the accuracy for sufficient
dimension reduction, for the following reason. It is well known that a regression
surface is more accurately estimated at the center of the data cloud than at the out-
skirt. However, an inverse regression based method, such as SIR, tends to down-
weight the slice means near the center due to their shorter lengths. Since PSVM
relies on separating hyperplanes rather than slice means, it makes better use of the
central portion of the data than inverse regression. This improvement is clearly
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demonstrated in our numerical studies. Finally, PSVM establishes a firm connec-
tion between sufficient dimension reduction and the acclaimed machine learning
technique, support vector machine, both of which have been extensively used in
high dimensional data analysis. This combination brings fresh insights and further
advances to both subjects. Along with the theoretical development of PSVM, we
develop a more complete asymptotic theory for SVM than previously given, and
introduce the notion of invariant kernel for SVM. Meanwhile, we expect some in-
herent advantages of SVM to benefit sufficient dimension reduction estimation.
For instance, SVM tends to be more robust against outliers than a typical moment
method. This is because the separating hyperplanes are largely determined by the
support vectors lying in the interior of the data cloud, as a result an observation far
away from the data cloud has less influence than a typical moment-based estima-
tor. In this sense, SVM behaves more like a median than a mean. It is also expected
to help address several challenging issues facing the existing SDR methods, such
as small-n–large-p and presence of categorical predictors. However, due to lim-
ited space these potential advantages cannot be fully discussed within this paper.
Some of them, such as robustness and categorical predictors, are further explored
in Artemiou (2010).

The rest of the paper is organized as follows. In Section 2, we illustrate the basic
idea of PSVM by examples and figures, and give intuitions about why it works. In
Section 3, we formally introduce the linear PSVM and study its population-level
properties in terms of its unbiasedness as an estimator of the central subspace. In
Section 4, we develop the estimation procedures for the linear PSVM, and describe
how to implement it using standard SVM packages. In Section 5, we generalize
the linear PSVM to the kernel PSVM to solve the nonlinear sufficient dimension
reduction problem, and establish its unbiasedness in this general setting. In Sec-
tion 6, we develop an algorithm to implement the kernel PSVM, and introduce the
notion of invariant kernel. In Section 7, we study the asymptotic properties for the
linear PSVM estimator. Though the identified subspaces are asymptotically con-
sistent, they are almost surely incorrect for finite sample sizes. Thus, in Section 8,
we compare the linear and kernel PSVM with other dimension reduction methods
in finite sample by simulation. In Section 9, we apply it to analyze a data set con-
cerning the recognition of vowels, and make further comparisons in the practical
setting.

2. Principal support vector machine: The basic idea. The idea of the prin-
cipal support vector machine arises from an interplay of several ideas: sliced in-
verse regression, support vector machine, and contour regression [Li, Zha and
Chiaromonte (2005)]. In this section, we illustrate this idea by two simple ex-
amples that cover both linear and nonlinear dimension reduction. Throughout this
paper, X represents a random vector; Xr represents the r th component of X; Xi

represents the ith random vector from a sample X1, . . . ,Xn, and Xir represents the
r th component of Xi .
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First, consider the regression model

Y = f (X1 + 2X2) + ε,(3)

where ε ⊥⊥ (X1,X2). This is a linear sufficient dimension reduction problem, in
which the central subspace is spanned by (1,2)� ∈ R

2. Note that the contours for
the regression function is the set {(x1, x2) :x1 + 2x2 = c}, which is uniquely asso-
ciated with the vector (1,2)�. Based on this intuition, Li, Zha and Chiaromonte
(2005) introduced the contour regression, which estimates the contour directions
by the directions in X that are aligned with the smallest increments in Y .

Here, we propose to identify the contours by the separating hyperplanes derived
from the support vector machine as applied to different slices of X, formed ac-
cording to the values of Y . Let S1 = {Xi :Yi ≤ c} and S2 = {Xi :Yi > c} for some
constant c. We use SVM to obtain the optimal separating hyperplane of S1 and S2,
and repeat the process to obtain several hyperplanes. Intuitively, the normals of
these hyperplanes are roughly aligned with the directions in which the regression
surface varies—directions that form the central subspace. We use the principal
components of these normals to estimate the central subspace. A related idea is
Loh (2002), who proposed to divide each individual predictor according to the
mean of Y and assess the importance of that predictor by its degree of separation.

As an illustration, we generate 100 replications from model (3) where f is taken
to be the identity mapping. We divide X1, . . . ,X100 into 4 slices according to the
25th, 50th, 75th sample quantiles of Y1, . . . , Yn, as indicated in Figure 1 by differ-
ently colored dots. Application of SVM between these slices yields three hyper-
planes, represented by the solid lines on the right panel, which closely resemble

FIG. 1. Linear contours for model Y = 2X1 + X2 + ε. Left panel: true contours; right panel: con-
tours based on linear SVM. Contour levels are three evenly spaced sample quantiles of Y1, . . . , Yn.
The sample size is n = 100.
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FIG. 2. Nonlinear contours for model Y = X1 + X2
2 + ε. Left panel: true contours; right panel:

contours based on kernel SVM with gauss radial kernel. Contour levels are three evenly spaced
sample quantiles of Y1, . . . , Yn. The sample size is n = 100.

the contours derived from the true model, as shown on the left panel. Clearly, the
normals of the three hyperplanes give close estimate of the central subspace.

We can apply the same idea to sufficient nonlinear dimension reduction. Let

Y = f (X1 + X2
2) + ε,(4)

where f is an unknown function. The contours of this function are of the form
{(x1, x2) :x1 + x2

2 = c}, which are no longer hyperplanes in R
2. However, if we

map x to a higher dimensional space of functions of x that is rich enough to con-
tain x1 + x2

2 , then the contours become hyperplanes again. We can apply SVM
at that level to find the optimal hyperplanes, and then map them back to the x-
space to extract the nonlinear predictor. Usually, in conjunction with mapping a
low-dimensional regressor to a high-dimensional regressor, a Tikhonov-type reg-
ularization is applied, so that the overfitting tendency of increased dimension is
counteracted by the regularization.

As in the linear case we generate 100 replications from model (4) and use the
same set of quantiles to slice the response. The curves in the left panel in Figure 2
are the true contours computed from the function y = x1 + x2

2 . Those in the right
panel are obtained by first applying kernel SVM (with Gaussian radial basis) to
find hyperplanes in R

100 and then mapping them back to R
2. Clearly, any function

of (x1, x2) that generates the contours in the right panel would closely resemble
the true predictor x1 + x2

2 , modulo a monotone transformation.

3. PSVM for linear sufficient dimension reduction. We first develop PSVM
for linear sufficient dimension reduction. We begin with a population-level formu-
lation of SVM, since it is usually described at the sample level, which is not the
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best way to set up our problem. For now, assume Y to be a binary random variable
taking values −1 and 1. The soft-margin SVM is defined through the following
optimization:

minimize ψ�ψ + λ

n

n∑
i=1

ξi among (ψ, t, ξ) ∈ R
p × R × R

n

(5)
subject to ξi ≥ 0, Yi[ψ�(Xi − X̄) − t] ≥ 1 − ξi, i = 1, . . . , n,

where λ is a positive constant often referred to as the “cost.” See Vapnik [(1998),
page 411] for the intuitions behind this construction. If (ψ∗, t∗, ξ∗) is the solu-
tion to (5), then the set {x :ψ∗�x = t∗} is the optimal hyperplane that separates
{Xi :Yi = −1} and {Xi :Yi = 1}.

Although this representation defines the algorithm, it does not tell us what ob-
jective function is minimized at the population level. To see things more clearly,
we first carry out the optimization for a fixed (ψ, t). This amounts to minimizing∑n

i=1 ξi subject to ξi ≥ max{0,1 − Yi[ψ�(Xi − X̄) − t]}. The optimal solution is
ξ∗
i = {1 − Yi[ψ�(Xi − X̄) − t]}+ where a+ = max(a,0). Substituting ξ∗

i into (5),
we have

ψ�ψ + λ

n

n∑
i=1

{1 − Yi[ψ�(Xi − X̄) − t]}+.(6)

This corresponds to the following objective function at the population level:

ψ�ψ + λE
[
1 − Y

(
ψ�(X − EX) − t

)]+
.(7)

The hyperplane that minimizes this criterion can be viewed as that which best
separates the conditional distributions of X|Y = −1 and X|Y = 1. Jiang, Zhang
and Cai (2008) used a slight variation of representation (7) to derive the asymp-
totic distribution of SVM. We also use a representation similar to (7) but with two
important modifications, as we describe below.

Return now to sufficient dimension reduction problem (1) where Y is an arbi-
trary random variable (in particular, it can be either continuous or categorical). Let
�Y be the support of Y and let A1 and A2 be disjoint subsets of �Y . Let Ỹ be the
discrete random variable defined by

Ỹ = I (Y ∈ A2) − I (Y ∈ A1).(8)

We introduce the following objective function for linear SDR:

L(ψ, t) = ψ��ψ + λE{1 − Ỹ [ψ�(X − EX) − t]}+,(9)

where � = var(X). Compared with (7), we have made two modifications. First,
we allow Ỹ to take the value 0, so that we can use a pair of disjoint subsets that
are not a partition of �Y . Second, we have inserted � in the first term of (9). This
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is so that the objective function transforms in a desired manner. We will return to
this point in Section 6.

We now establish the unbiasedness of the normal vector for the optimal sepa-
rating hyperplane in SVM as an estimator of the central subspace. Let Fn be the
empirical distribution based on the sample (X1, Y1), . . . , (Xn, Yn), F0 be the true
distribution of (X, Y ), and T be a statistic that can be expressed as a matrix-valued
function of the distribution of (X, Y ). In our context, we say T(Fn) is an unbiased
estimator of SY |X, if it satisfies

span[T(F0)] ⊆ SY |X.(10)

THEOREM 1. Suppose E(X|η�X) is a linear function of η�X, where η is as
defined in (1). If (ψ∗, t∗) minimizes the objective function (9) among all (ψ, t) ∈
R

p × R, then ψ∗ ∈ SY |X.

The linearity condition on E(X|η�X) in the theorem is well known and gen-
erally assumed in the SDR literature. See, for example, Li and Duan (1989), Li
(1991) and Li and Dong (2009). It implies

E(ψ�X|η�X) = ψ�P�
η (�)X,(11)

where Pη(�) is the projection matrix η(η��η)−1η�� [Cook (1998)]. It is satis-
fied when X is elliptically symmetric [Eaton (1986)], and is approximately satis-
fied when p is large [Hall and Li (1993)]. Interestingly, as we show in Section 5,
this assumption is no longer needed for the unbiasedness in the more general set-
ting of nonlinear sufficient dimension reduction.

Here we note that, though Theorem 1 is far from a trivial generalization, the
type of argument used in the proof is somewhat standard in the SDR literature.
See, for example, Li and Duan (1989), Cook (1998) and Cook and Li (2002). It
is possible to extend the above theorem to more general objective functions. For
example, the theorem still holds if a �→ a+ in the objective function is replaced by
any convex function u(a).

4. Estimation procedure for linear PSVM.

4.1. Estimation. We propose two ways to generate the set of pairs of slices
for PSVM. One, which we call “left versus right” (LVR), repeatedly divides the
predictors into two groups according to a set of cutting points for the response.
The other, which we call “one versus another” (OVA), partitions the predictors
into several slices and pairs up all possible slices. We summarize the estimation
procedure as follows.

1. Compute the sample mean X̄ and sample variance matrix �̂.
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2. (LVR) Let qr, r = 1, . . . , h − 1, be h − 1 dividing points. For example, they
can be equally spaced sample percentiles of {Y1, . . . , Yn}. Let

Ỹ r
i = I (Yi > qr) − I (Yi ≤ qr)(12)

and let (ψ̂ r , t̂r ), r = 1, . . . , h − 1, be the minimizer of

ψ��̂ψ + λEn{1 − Ỹ r [(X − X̄)�ψ − t]}+.(13)

2′. (OVA) Apply SVM to each pair of slices from the h slices. More specifi-
cally, let q0 = min{Y1, . . . , Yn} and qh = max{Y1, . . . , Yn}. For each (r, s) satisfy-
ing 1 ≤ r < s ≤ h, let

Ỹ rs
i = I (qs−1 < Yi ≤ qs) − I (qr−1 < Yi ≤ qr).

Let (ψ̂ rs, t̂rs) be the minimizer of the objective function

ψ��̂ψ + λEn{1 − Ỹ rs[(X − X̄)�ψ − t]}+.

3. Let v̂1, . . . , v̂d be the d leading eigenvectors of either one of the matrices

M̂n =
h−1∑
r=1

ψ̂ r ψ̂
�
r or M̂n =

h∑
r=1

h∑
s=r+1

ψ̂ rsψ̂
�
rs .(14)

We use subspace spanned by v̂ = (v̂1, . . . , v̂d) to estimate SY |X.

Based on our experiences, LVR works best when the response is a continuous
variable, where Y being larger or smaller has a concrete physical meaning; OVA
works best when the response is categorical, where the values of Y are simply
labels of classes, such as different vowels in our example in Section 9. Our numer-
ical studies also suggest that the estimation results are not overly sensitive to the
choice of the number of slices h, though a larger h often works better.

Standard packages for SVM minimize the objective function (6) instead of (13).
However, they can be modified to suit our procedure. Let ζ = �̂1/2ψ and Z =
�̂−1/2(X − X̄). Then (13) becomes

ζ�ζ + λEn[1 − Ỹ r (Z�ζ − t)]+.(15)

We can apply standard packages to minimize (15) to obtain ζ̂ , whose transforma-
tion �̂−1/2ζ̂ is the desired minimizer of (13). We use the kernlab package in R
to solve problem (15). See Karatzoglou and Meyer (2006) for an exposition of this
package.

4.2. Order determination. Estimating the dimension d of the central subspace
is a vital ingredient of sufficient dimension reduction estimation. Here, we propose
a cross-validated BIC procedure [Schwarz (1978)] for this purpose. The BIC com-
ponent of this procedure is an extension of a criterion introduced by Wang and
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Yin (2008), and is also related to Zhu, Miao and Peng (2006). We refer to this
combined procedure as CVBIC.

Let M̂n be one of the matrices in (14), and let λi(M̂n) be its ith largest eigen-
value. Let Gn(k) = ∑k

i=1 λi(M̂n) − c1(n)c2(k), where c1(n) is a sequence of pos-
itive numbers or random variables that converge (in probability) to 0, and c2(k)

is a nonrandom increasing function of k. Let d̂ be the maximizer of Gn(k) over
{0, . . . , p}. In Section 7, we show that P(d̂ = d) → 1. The standard choices of
c1(n) and c2(k) are c1(n) ∝ n−1/2 log(n) and c2(k) = k, so that the penalty term
is c0n

−1/2 log(n)k, where c0 > 0 is a constant (or random variable) of order O(1)

[or OP (1)]. Since the eigenvalues λi(M̂n) may differ for different problems, it is
sensible to make c0 comparable to their magnitude. One reasonable choice is to
make c0 proportional to λ1(M̂n), leading to the following BIC-type criterion:

k∑
i=1

λi(M̂n) − aλ1(M̂n)n
−1/2 log(n)k.(16)

We now turn to the choice of a. Though this choice does not affect the con-
sistency of d̂ , it does affect its finite-sample performance. Moreover, from our
experience this choice is also sensitive to p, d , and the regression model. For these
reasons, it is important to have a systematic way of choosing a. The SVM used in
our setting suggests naturally the cross-validation, because the former provides a
set of labels to validate. We outline the CVBIC procedure as follows, using LVR
as an illustration.

First, divide the data into a training set and a testing set, denoted by

{(X́1, Ý1), . . . , (X́n1, Ýn1)}, {(X̀1, Ỳ1), . . . , (X̀n2, Ỳn2)}.
Apply the PSVM to the training set with dividing points q1, . . . , qh−1 to ob-
tain a set normal vectors ψ́1, . . . , ψ́h−1. Let Ḿn1 = ∑h−1

i=1 ψ́ iψ́
�
i . Second, for

a fixed a, maximize the criterion (16), with M̂n replaced by Ḿn1 , to obtain
an integer k. Let v́1, . . . , v́k be the k leading eigenvectors of Ḿn1 and trans-
form the testing predictors X̀i to X̀(k)

i = (v́1, . . . , v́k)
�X̀i , i = 1, . . . , n2. Third,

let L̀i = I (Ỳi > qr) − I (Ỳi ≤ qr) be the true label of Ỳi in the testing set. Apply

SVM to (X̀(k)
1 , L̀1), . . . , (X̀

(k)
n2 , L̀n2) to predict L̀1, . . . , L̀n2 . Repeat this process for

all dividing points and record the total number of misclassifications. The optimal a

is the one that minimizes the total number of misclassifications. Finally, substitute
the optimal a into (16) and maximize it again using the full data to estimate d . In
Section 8.3, we investigate the numerical performance of CVBIC under a variety
of combinations of p, d , n and regression models.

4.3. Special features of linear PSVM. As we conclude the exposition of the
linear PSVM, we mention some special features of this method. One is that it
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shares the similar limitation with SIR when dealing with regression functions that
are symmetric about the origin. If the regression function is f (‖X‖), then all slices
of the form {Xi :Yi ∈ S} are roughly concentric spheres in R

p , which no hyper-
plane in R

p can separate. However, as we shall see in Sections 5 and 8, this is
remedied by the kernel PSVM, because when mapped into higher dimensional
feature space the slices become linear again.

Another is that when dealing asymmetric regression functions, the linear PSVM
tends to work better than SIR for the following reason. Recall that SIR is based,
roughly, on the principal components of the slice mean vectors of the form
E(X|Y ∈ S) − E(X), where S is an interval in �Y . This determines that it down-
weights the slice means near the center of the data cloud, where the Euclidean
norm of E(X|Y ∈ S) − E(X) is smaller. However, it is well known that the re-
gression function E(Y |X) tends to be more accurately estimated near the center
of the data cloud [see, e.g., Kutner, Nachtsheim and Neter (2004), Section 2.4].
In comparison, the linear PSVM relies on the normals of the separating hyper-
planes of the slices, which does not downweight the data near the center. As we
will see from our simulation studies in Section 8, this brings substantial improve-
ment to the estimate. We should point out, however, that there is an important
exception. As shown in Cook (2007) and Cook and Forzani (2008), under the as-
sumption that Y has a finite support and X|Y has a conditional multivariate normal
distribution where var(X|Y) is independent of Y , SIR is the maximum likelihood
estimate of the central subspace. In this case, no regular estimate can be more ef-
ficient than SIR. The mentioned advantage of linear PSVM applies mainly to the
forward regression setting where the conditional distribution of X|Y is typically
non-Gaussian.

5. Kernel PSVM for nonlinear dimension reduction. In this section, we
extend the PSVM to nonlinear sufficient dimension reduction as defined by (2).
We first develop the objective function by generalizing the linear PSVM objective
function (9), and then establish the unbiasedness of the proposed nonlinear PSVM
estimator.

Before proceeding further, we note that the function φ in relation (2) is not
unique in the strict sense, but is unique modulo injective transformations. Again,
the situation is parallel to linear sufficient dimension reduction problem (1), where
η�X is only unique modulo injective linear transformations. Any injective linear
transformation of η�X is an equivalent linear predictor, because it does not change
the linear subspace. Likewise, for nonlinear SDR, any injective transformation of
φ is an equivalent sufficient predictor, because it does not change conditional in-
dependence (2).

Let H be a Hilbert space of functions of X. In analogy to the linear objective
function (9), consider � : H × R → R

+ defined by

�(ψ, t) = var[ψ(X)] + λE
[
1 − Ỹ

(
ψ(X) − Eψ(X) − t

)]+
,(17)
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where Ỹ is as defined in (8). To see that this is indeed a generalization of (9), con-
sider the bilinear form from H × H to R defined by b(f1, f2) = cov[f1(X), f2(X)].
Under the assumption that the mapping

H → L2(PX), f �→ f(18)

is continuous, the bilinear form b induces a bounded and self-adjoint operator
� : H → H such that 〈f1,�f2〉H = b(f1, f2), where 〈·, ·〉H is the inner product
in H. See, for example, Conway (1990), Theorem 2.2, and Fukumizu, Bach and
Jordan (2004). The objective function (17) can now be rewritten as

�(ψ, t) = 〈ψ,�ψ〉H + λE
[
1 − Ỹ

(
ψ(X) − Eψ(X) − t

)]+
.(19)

Thus, �(ψ, t) is a generalization of L(ψ, t) with the matrix � replaced by the
operator �, the linear function ψ�X replaced by an arbitrary function ψ in H,
and the inner product in R

p replaced by the inner product in H. For the usual
kernel SVM, the population-level objective function is

〈ψ,ψ〉H + λE
[
1 − Ỹ

(
ψ(X) − Eψ(X) − t

)]+
.

Comparing with (19), we see a parallel modification to the linear case. The signif-
icance of this modification is further discussed in Section 6.

We now establish that, if (ψ∗, t∗) is the minimizer of �(ψ, t), then ψ∗ is nec-
essarily a function of the sufficient predictor φ(X) in the nonlinear problem prob-
lem (2). This is a generalization of the notion unbiasedness in the linear setting.
Our definition of unbiasedness (10) in the linear sufficient dimension reduction
setting is equivalent to

[T(F0)]�X is a linear function of η�X.(20)

It is the statement (20) that is more readily generalized to the nonlinear sufficient
dimension reduction setting: we simply require ψ to be a function of the sufficient
predictor φ(X) in (2). The following definition makes this notion rigorous. For a
generic random element U, let σ {U} denote the σ -field generated by U.

DEFINITION 1. A function ψ ∈ H is unbiased for nonlinear sufficient dimen-
sion reduction (2) if it has a version that is measurable σ {φ(X)}.

The reason that we only require a version of ψ to be measurable σ {φ(X)} is
that the L2-metric ignores measure zero sets.

THEOREM 2. Suppose the mapping (18) is continuous and:

1. H is a dense subset of L2(PX),
2. Y ⊥⊥ X|φ(X).

If (ψ∗, t∗) minimizes (19) among all (ψ, t) ∈ H × R, then ψ∗(X) is unbiased.
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Condition 1 is satisfied by some commonly used reproducing kernel Hilbert
spaces. For example, if G is a reproducing kernel Hilbert space based on the Gaus-
sian radial basis, then the collection of functions {c + g : c ∈ R, g ∈ G} is dense in
L2(PX). See Fukumizu, Bach and Jordan (2009).

It is important to note that in this more general setting we no longer require
any linearity assumption that resembles the one assumed in Theorem 1. In con-
trast, the kernel sliced inverse regression developed by Wu (2008) and Wu, Liang
and Mukherjee (2008), and functional sliced inverse regression by Hsing and Ren
(2009) all require a version of the linearity condition to hold in the reproducing
kernel Hilbert space.

The notion of unbiasedness for sufficient dimension reduction is more akin to
Fisher consistency than to unbiasedness in the classical setting. While unbiased-
ness in the classical setting can exclude many useful statistics, Fisher consistency
often guarantees correct asymptotic behavior without putting undue restrictions on
the expectation. Moreover, an estimator that is not Fisher consistent is clearly un-
desirable, because it is guaranteed not to converge to the true parameter. For these
reasons unbiasedness for linear SDR is a useful criterion, even though some use-
less estimators (such as 0) are unbiased. Unbiasedness for nonlinear SDR plays the
parallel role, except that it only requires the estimator to be an arbitrary, rather than
a linear, function of the true predictor. This relaxation also allows us to establish
the unbiasedness of PSVM without evoking the linearity condition.

Theorem 2 assumes that �(ψ, t) attains its minimum in H × R. We think this
is a reasonable assumption for the following reasons. As shown below, �(ψ, t)

is lower semicontinuous with respect to the weak topology in H × R. Since
any closed, bounded, and convex set in a Hilbert space is compact with re-
spect to the weak topology [Weidmann (1980), Theorem 4.25, Conway (1990),
Corollary V.1.5], by the generalized Weierstrass theorem [Kurdila and Zabarankin
(2005), Section 7.3], �(ψ, t) attains its minimum within any such set in H × R.
The next proposition establishes this fact. Let H′ be the Hilbert space H × R en-
dowed with the inner product 〈ψ1,ψ2〉H + t1t2.

PROPOSITION 1. If H is an RKHS with its kernel κ satisfying Eκ(X,X) < ∞,
then �(ψ, t) is lower semicontinuous with respect to the weak topology in H′, and
attains its minimum in any closed, bounded, and convex set in H′.

6. Estimation of kernel PSVM and invariant kernel. The purpose of this
section is twofold. First, because we have modified 〈ψ,ψ〉H to 〈ψ,�ψ〉H in the
kernel SVM objective function, we can no longer use the standard SVM pack-
ages to solve for ψ∗. Therefore, we reformulate the minimization of �(ψ, t) as
quadratic programming that can be solved by available computer packages. Sec-
ond, in deriving this quadratic programming problem, we gain more insights into
the meaning and significance of this modification. As we shall see, by replacing
〈ψ,ψ〉H by 〈ψ,�ψ〉H, we are in effect making SVM invariant with respect to the
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marginal distribution of X. Intuitively, since we are using SVM to make inference
about the conditional distribution of Y |X, it is plausible that the procedure does
not depend on the marginal distribution of X.

Let H be a linear space of functions from �X to R spanned by Fn =
{ψ1, . . . ,ψk}. The choice of these functions will be discussed later, but it will
ensure En[ψi(X)] = 0, so that ψi(x) = ψi(x) − Enψi(X). Let

� =
⎛
⎜⎝

ψ1(X1) · · · ψk(X1)
...

. . .
...

ψ1(Xn) · · · ψk(Xn)

⎞
⎟⎠ .(21)

Then the sample version of the objective function (19) is

�̂(c) = n−1c����c + λn−1
n∑

i=1

[1 − Ỹi(�
�
i c − t)]+,(22)

where ��
i = (ψ1(Xi), . . . ,ψk(Xi )) and c ∈ R

k . We minimize �̂(c) among all c.
In the following, ỹ = (ỹ1, . . . , ỹn)

� and α,β, ξ ∈ R
n. The symbol ≤ repre-

sents componentwise inequality. The symbol � represents the Hadamard prod-
uct between matrices. For a matrix A of full column rank, PA is the projection
A(A�A)−1A�. The symbols 0 and 1 represent, respectively, the n-dimensional
vectors whose entries are 0 and 1.

THEOREM 3. If c∗ minimizes �̂(c) over R
k , then c∗ = 1

2(���)−1��(ỹ �
α∗), where α∗ is the solution to the quadratic programming problem:

maximize 1�α − 1
4(α � ỹ)�P�(α � ỹ)

(23)
subject to 0 ≤ α ≤ λ1,α�ỹ = 0.

Note that the quadratic programming problem (23) differs from that of the
standard kernel SVM, where the projection P� is replaced by the kernel ma-
trix Kn = {κ(i, j) : i, j = 1, . . . , n} for some positive definite bivariate mapping
κ :�X ×�X → R. The kernel matrix Kn uniquely determines the sample estimate
of the covariance operator �, which bears the information about the shape of the
marginal distribution of X. By replacing Kn with P� , we are, in effect, removing
the information about X. For this reason we call the matrix P� an invariant kernel.

For the function class H, we use the reproducing kernel Hilbert space based on
the mapping κ . Common choices of κ include the polynomial kernel κ(x1,x2) =
(x�

1 x2 + c)r , where r is a positive integer, and the Gaussian radial kernel κ(x1,

x2) = e−γ ‖x1−x2‖2
, where γ > 0. Let

Hκ = {c0 + c1κ(·,X1) + · · · + cnκ(·,Xn) : c0, . . . , cn ∈ R}(24)

with inner product specified by 〈κ(·,a), κ(·,b)〉 = κ(a,b). In the standard kernel
SVM, it is a common practice to use all functions in Hκ as H. However, the in-
variant nature of our kernel, P� , determines that we cannot use all those functions,
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because if so then P� becomes nearly an identity matrix (note that if Pψ were
an identity matrix then the objective function in (23) would become independent
of X1, . . . ,Xn). We instead use the principal functions of the linear operator �n,
as defined by 〈ψ1,�nψ2〉 = covn[ψ1(X),ψ2(X)], as our basis Fn. Here covn(·, ·)
denotes sample covariance. Let Qn = In − Jn/n, where In is the n × n identity
matrix and Jn is the n × n matrix whose entries are 1. The next proposition tells
us how to find the eigenfunctions of �n. Its proof is easy and omitted.

PROPOSITION 2. Let w = (w1, . . . ,wn), ψw = ∑
wi[κ(x,Xi) − Enκ(x,X)].

The following statements are equivalent:

1. w is an eigenvector of the matrix QnKnQn with eigenvalue λ;
2. ψw is an eigenfunction of the operator �n with eigenvalue λ/n.

If λ �= 0, then either statement implies (ψw(X1), . . . ,ψw(Xn)) = λw�.

Although the eigenvectors of QnKnQn and the eigenfunctions of �n are sim-
ilar objects, it is the latter that can be evaluated at any x, not just the observed
X1, . . . ,Xn. This property is important for prediction. Essentially, we use the first
k eigenfunctions φ1, . . . , φk of �n as the functions in Fn. This is equivalent to us-
ing {a1φ1, . . . , akφk} ≡ {ψ1, . . . ,ψk} for any nonzero a1, . . . , ak . We choose ai to
satisfy ai(ψi(X1), . . . ,ψi(Xn))

� = wi , where wi is the eigenvector of QnKnQn,
corresponding to its ith eigenvalue λi . Thus ai = 1/λi . With this choice, � is sim-
ply (w1, . . . ,wk). The choice of number of basis functions, k, should allow suffi-
cient flexibility but not as large as n; our experiences indicate that the choice of k

in the range n/3 ∼ 2n/3 works well. We summarize the kernel PSVM estimation
procedure as follows.

1. (Optional) Marginally standardize X1, . . . ,Xn. Let μ̂r and σ̂ 2
r be the sam-

ple mean and sample variance X1r , . . . ,Xnr . Reset Xir to be (Xir − μ̂r )/σ̂r . The
purpose of this step is so that the kernel κ treats different components of Xi more
or less equally. This step can be omitted if the components of Xi have similar
variances.

2. Choose a kernel κ and the number of basis functions k (say k = n/2). Com-
pute � = (w1, . . . ,wk) and P� from QnKnQn.

3. Divide the sample according to LVR or OVA, each yielding a set of slices.
For each pair of slices, solve the quadratic programming problem in Theorem 3
using the P� computed from step 2. This gives coefficient vectors c∗

1, . . . , c∗
h̃

∈ R
k ,

where h̃ = h − 1 for LVR and h̃ = (h
2

)
for OVA.

4. Compute the first d eigenvectors, v1, . . . ,vd , of the matrix
∑h̃

s=1 c∗
s c∗

s
�. De-

note the r th component of of vs as vsr .
5. The sth sufficient predictor evaluated at x is vs1ψ1(x) + · · · + vskψk(x),

where ψr(x) = λ−1
r

∑n
i=1 wri[κ(x,Xi) − Enκ(x,X)]. If step 1 is used, then x

should be marginally standardized by the μ̂r and σ̂r computed from that step.
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Many computing packages are available to solve the quadratic programming prob-
lem in step 3. We use the ipop program in the kernlab package in R. See
Karatzoglou et al. (2004). If the Gaussian radial kernel is used in step 2, then we
recommend choosing γ as

γ = 1/τ 2, τ = 1(n
2

)
n∑

i<j,j=2

‖Xi − Xj‖.(25)

Alternatively, we can use the population version of the above quantity,

γ = 1/(E‖X − X′‖)2,(26)

where X and X′ are independent N(0, Ip) random vectors. This quantity can be
easily evaluated by Monte Carlo. In Section 8, we use (26) for large-scale sim-
ulations to avoid repeated evaluations of (25), whereas in Section 9 we use (25)
for the real data analysis, where it needs to be calculated only once. Some authors
recommend sample median in (25). See Gretton et al. (2005) and Fukumizu, Bach
and Jordan (2009). This does not make a significant difference in our examples.

7. Asymptotic analysis of linear PSVM. In this section, we give a compre-
hensive asymptotic analysis of linear PSVM estimator introduced in Sections 3
and 4. This is developed in three parts. First, we derive the influence function for
the normal vector ψ̂ based on two slices. In this part, we employ some asymp-
totic properties of SVM developed recently by Jiang, Zhang and Cai (2008). In the
second part, we derive the asymptotic distribution of the linear PSVM estimator,
(v̂1, . . . , v̂d), defined in Section 4.1. In the third part, we establish the consistency
of the order determination criterion introduced in Section 4.2.

7.1. Influence function for support vector machine. The asymptotic results of
Jiang, Zhang and Cai (2008) are largely applicable here except for three places: our
SVM involves an additional �; our λ is fixed but the λ in their paper depends on n;
they did not derive the explicit form of the hessian matrix—and hence neither the
asymptotic variance—but we are interested in the explicit asymptotic distribution.
The first two points are minor but the third needs nontrivial additional work. We
only consider the case where Ỹ is defined through a partition {A1,A2} of �Y .
Thus, our results only apply to the LVR scheme. The asymptotic analysis the OVA
scheme can be carried out similarly, and is omitted.

We first develop some notation. Let θ = (ψ�, t)�, Z = (X�, Ỹ )�, X∗ = (X�,
−1)�, �∗ = diag(�,0). Then

ψ��ψ + λ[1 − Ỹ (X�ψ − t)]+ = θ��∗θ − λ(1 − θ�X∗Ỹ )+.(27)

We denote this function by m(θ ,Z). Let �Z be the support of Z and let h :� ×
�Z → R

r be a function of (θ ,Z). Let Dθ denote the (p + 1)-dimensional column
vector of differential operators (∂/∂θ1, . . . , ∂/∂θp+1)

�. The next theorem gives
the gradient of the support vector machine objective function E[m(θ ,Z)].
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THEOREM 4. Suppose, for each ỹ = −1,1, the distribution of X|Ỹ = ỹ is
dominated by the Lebesgue measure and E(‖X‖2) < ∞. Then

DθE[m(θ ,Z)] = (2ψ��,0)� − λE[X∗Ỹ I (1 − θ�X∗Ỹ > 0)].(28)

We now present the hessian matrix of support vector machine, which leads to the
asymptotic variance of θ̂ . To our knowledge, this is the first time that the asymp-
totic variance is explicitly given. This result is then used to derive the asymptotic
distribution of the linear PSVM estimator.

THEOREM 5. Suppose X has a convex and open support and its conditional
distributions given Ỹ = 1 and Ỹ = −1 are dominated by the Lebesgue measure.
Suppose, moreover:

1. for any linearly independent ψ, δ ∈ R
p , ỹ = −1,1, and v ∈ R, the following

function is continuous:

u �→ E(X∗|ψ�X = u, δ�X = v, Ỹ = ỹ)fψ�X|δ�X,Ỹ
(u|v, ỹ);

2. for any i = 1, . . . , p, and ỹ = −1,1, there is a nonnegative function ci(v, ỹ)

with E[ci(V , Ỹ )|Ỹ ] < ∞ such that

vE(Xi |ψ�X = u, δ�X = v, Ỹ = ỹ)fψ�X|δ�X,Ỹ
(u|v, ỹ) ≤ ci(v, ỹ);

3. there is a nonnegative function c0(v, ỹ) with E[c0(V , Ỹ )|Ỹ ] < ∞ such that
fψ�X|δ�X,Ỹ

(u|v, ỹ) ≤ c0(v, ỹ).

Then the function θ �→ DθE[m(θ ,Z)] is differentiable in all directions with
derivative matrix

2 diag(�,0) + λ
∑

ỹ=−1,1

P(Ỹ = ỹ)fψ�X|Ỹ (t + ỹ|ỹ)E(X∗X∗�|ψ�X = t + ỹ).

Furthermore, if the function (ψ, t) �→ fψ�X|Ỹ (t + ỹ|ỹ)E(X∗X∗�|ψ�X = t + ỹ)

is continuous, then Dθ [m(θ ,Z)] is jointly differentiable with respect to θ .

Joint differentiability and directional differentiability are sometimes refered to
as Frechet differentiability and Gateaux differentiability. The latter is generally
weaker than the former. In a finite-dimensional space, having continuous direc-
tional derivative in all directions implies joint differentiability [Bickel et al. (1993),
page 453]. The next theorem gives the influence function for support vector ma-
chine.

THEOREM 6. If the conditions in Theorems 4 and 5 are satisfied, then

θ̂ = θ0 − H−1{(2ψ�
0 �,0)� − λEn[X∗Ỹ I (1 − Ỹ θ�

0 X∗ > 0)]} + oP (n−1/2),

where H is hessian matrix given by Theorem 5.

The proof is similar to that of Jiang, Zhang and Cai (2008) and is omitted.
Alternatively, one can prove it by applying Theorem 5.23 of van der Vaart (1998).
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7.2. Asymptotic distribution of (v̂1, . . . , v̂d). Consider a fixed division point
qr , where r ∈ {1, . . . , h − 1}. Let Ỹ r be as defined in (12), and Zr = (X�, Ỹ r )�.
Let θ0r = (ψ�

0r , t0r )
� be the minimizer of E[m(θ ,Zr )], and θ̂ r = (ψ̂�

r , t̂r )
� be the

minimizer of En[m(θ ,Zr )]. Let Hr be the hessian matrix of E[m(θ ,Zr )], and let
Fr be the first p rows of H−1

r . By Theorem 6,

ψ̂ r = ψ0r − sr (θ0r ,Zr ) + oP (n−1/2),(29)

where sr (θ ,Zr ) = Fr [(2ψ��,0)� − λX∗Ỹ r I (1 − Ỹ rθ�X∗ > 0)]. Let

M̂n =
h−1∑
r=1

ψ̂ r ψ̂
�
r , M0 =

h−1∑
r=1

ψ0rψ
�
0r .

For a matrix A ∈ R
r1×r2 , let Kr1,r2 ∈ R

r1r2×r1r2 be the commutation matrix defined
by the relation Kr1,r2 vec(A) = vec(A�). See Magnus and Neudecker (1979). Two
properties of Kr1,r2 that will prove useful for our purpose are that Kr1,r2 = K�

r2,r1

and that for any B ∈ R
r3×r4 ,

A ⊗ B = Kr1,r3(B ⊗ A)Kr4,r2 .(30)

We now present the asymptotic distribution of M̂n.

THEOREM 7. Under the assumptions in Theorems 4 and 5,
√

nvec(M̂n −M0)

converges to multivariate normal with mean 0 and variance

(Ip2 + Kp,p)

h−1∑
r=1

h−1∑
t=1

(ψ0rψ
�
0t ⊗ rt )(Ip2 + Kp,p),

where rt = E[sr (θ0r ,Zr )s�
t (θ0t ,Zt )].

This result leads directly to the asymptotic distribution of V̂ = (v̂1, . . . , v̂d).
Since, by Theorem 1, span(M0) ⊆ SY |X, we have rank(M0) ≤ d . We make the
working assumption that rank(M0) = d . This means we exclude the situations
where the regression surface is symmetric about the origin. Since M0 is positive
semi-definite, it has the spectral decomposition UDU�, where U is a p × d matrix
whose columns are the eigenvectors of M0 corresponding to nonzero eigenvalues,
and D is a d × d diagonal matrix with diagonal elements being the nonzero eigen-
values. The following corollary is a direct consequence of Theorem 7 and Bura
and Pfeiffer (2008). Its proof is omitted.

COROLLARY 1. Under the assumptions in Theorems 4 and 5 and rank(M0) =
d ,

√
nvec(V̂ − V0)

D−→ N(0,ϒ), where ϒ is the pd × pd matrix

(D−1U� ⊗ Ip)(Ip2 + Kp,p)

h−1∑
r=1

h−1∑
t=1

(ψ0rψ
�
0t ⊗ rt )(Ip2 + Kp,p)(UD−1 ⊗ Ip).
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It is possible to refine the PSVM estimator by introducing weights to M̂n. Take
the LVR scheme for example. Let � = (ψ̂1, . . . , ψ̂h−1). Let A be an h − 1 by
h − 1 matrix. Rather than working with M̂n, we could base the spectral decom-
position on a weighted matrix M̂n(A) = ��A� . Let v̂(A) = (v̂1(A), . . . , v̂d(A))

be the first d eigenvectors of M̂n(A). One way to determine the optimal A is by
minimizing a real-valued monotone function (say trace) of the asymptotic vari-
ance matrix of vec[v̂(A)], which can be extracted from the asymptotic distribution.
This type of argument was used in Li (2000, 2001) to construct optimal estimating
equations. Alternatively, one can develop an optimal procedure using the minimum
distance approach introduced by Cook and Ni (2005). We leave these to future re-
search.

7.3. Consistency of the BIC-type criterion. In the following, we say a se-

quence of random variables Wn converges in probability to infinity (Wn
P→ ∞)

if, for any K > 0, limn→∞ P(|Wn| > K) = 1. Let d̂ is the maximizer of Gn(k)

over {0, . . . , p} as defined in Section 4.2.

THEOREM 8. Suppose P(c1(n) > 0) = 1, c1(n)
P→ 0, n1/2c1(n)

P→ ∞, and
c2(k) is an increasing function of k. Under the conditions in Theorems 1, 4 and 5
and rank(M0) = d , we have limn→∞ P(d̂ = d) = 1.

Note that we have again made the working assumption rank(M0) = d . However,
even when this assumption is violated the theorem still holds with d replaced by
the rank of M0.

8. Simulation studies. In this section, we compare the linear and kernel
PSVM with four other methods based on the idea of inverse regression: SIR, the
sliced average variance estimator [SAVE; Cook and Weisberg (1991)], directional
regression [DR; Li and Wang (2007)], and kernel sliced inverse regression [Wu
(2008)]. We also investigate the performance of the CVBIC for order determina-
tion.

8.1. Linear dimension reduction. We use the following models:

Model I: Y = X1/[0.5 + (X2 + 1)2] + σε,

Model II: Y = X1(X1 + X2 + 1) + σε,

Model III: Y = (X2
1 + X2

2)
1/2 log(X2

1 + X2
2)

1/2 + σε,

where X ∼ N(0, Ip), p = 10,20,30, ε ∼ N(0,1) and σ = 0.2. The sample size
n is taken to be 100. The first two models, which are taken from Li (1991), are
asymmetric about 0, but the last one is symmetric about 0. As we have discussed
in Section 4.3, linear PSVM, like SIR, does not work when the regression surface
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is symmetric about 0. The first two examples show how the linear PSVM compares
with other methods in the situations where it works. The purpose of the last model
is to provide a benchmark of error when it fails, so that we can gauge how the
kernel PSVM improves the situation in the next comparison.

To evaluate the performance of each method, we use the distance measure sug-
gested by Li, Zha and Chiaromonte (2005). Specifically, let S1 and S2 be two
subspaces of R

p . Then

dist(S1, S2) = ‖PS1 − PS2‖,(31)

where PS1 and PS2 are orthogonal projections on to S1 and S2, and ‖ · ‖ is a matrix
norm. In the following the Frobenius norm is used.

For SAVE and DR, we use h = 4 slices, and for SIR, we use h = 8 slices,
having roughly the same number of points. Our choices of h are in line with the
usual practice in the SDR literature for such a sample size. For methods such as
SAVE and DR that involve the second-order inverse moment, h is suggested to be
chosen smaller than that for methods such as SIR which only involve the first-order
inverse moment [Li and Zhu (2007)]. For the linear PSVM, the cost λ is taken to
be 1. The number of division points (qr ) is 20. We have tried some other numbers
of division points and obtained very similar results. In general, our experiences
suggest that a relatively large number of dividing points is preferable. The results
are presented in Table 1. The entries are of the form a(b) where a is the mean,
and b is the standard deviation of the distance criterion (31) calculated from 200
simulated samples. The last row in Table 1 records the CPU time (in seconds) each
method uses for Model I with p = 10 (on a Dell OptiPlex 745 desktop computer
with speed 2.66 GHz).

TABLE 1
Estimated means and simulation standard errors (in parentheses) of the distance measure (31) and

mean computation times (in second) of linear sufficient dimension reduction methods

Models p SIR SAVE DR Linear PSVM

I 10 0.84 (0.22) 1.55 (0.19) 1.02 (0.23) 0.65 (0.17)
20 1.14 (0.18) 1.93 (0.05) 1.32 (0.17) 0.93 (0.16)
30 1.31 (0.14) 1.96 (0.03) 1.48 (0.11) 1.17 (0.14)

II 10 1.20 (0.27) 1.43 (0.16) 1.17 (0.23) 0.85 (0.25)
20 1.51 (0.19) 1.72 (0.15) 1.46 (0.14) 1.26 (0.23)
30 1.67 (0.16) 1.84 (0.12) 1.63 (0.12) 1.58 (0.17)

III 10 1.80 (0.13) 0.87 (0.21) 0.85 (0.20) 1.65 (0.16)
20 1.89 (0.08) 1.46 (0.20) 1.45 (0.20) 1.85 (0.10)
30 1.93 (0.05) 1.72 (0.12) 1.71 (0.12) 1.93 (0.05)

Time 0.03 0.01 0.03 0.16
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Table 1 shows that the linear PSVM consistently performs better than the other
methods in all cases for models I and II. The intuition behind this improvement
is explained in Section 4.3. Also, as expected, the linear PSVM and SIR do not
perform well for Model III because of the symmetry of the regression function.
However, as we will see in the next comparison, this defect is no longer present
in the kernel PSVM. The linear PSVM requires more computing time than the
classical methods, mainly because it needs to process more dividing points, and,
for each dividing point, the full data (rather than a slice of data) are processed.

8.2. Nonlinear dimension reduction. As we have mentioned, Model III is
symmetric about 0, and the linear PSVM fails. To a certain degree, the shape of
regression surface of Model II is also symmetric about 0. We now use these two
models to investigate the performance of the kernel PSVM for nonlinear sufficient
dimension reduction. In terms of linear dimension reduction, Model III has two
sufficient predictors, X1, X2, but in terms of nonlinear dimension reduction, it has
only one sufficient predictor, (X2

1 + X2
2)

1/2, or any monotone function of it. The
kerenl PSVM is designed to recover a monotone transformation of (X2

1 + X2
2)

1/2

without having to assume any regression model. In doing so, it solves two prob-
lems at one stroke—further reducing the dimension from 2 to 1, and avoiding the
difficulty of SIR in dealing with symmetric responses.

To illustrate the idea, in Figure 3 we present the 2-D and 3-D scatter plots for
Y versus the nonlinear and linear predictors obtained by different methods. The
upper left panel is the 2-D scatter plot for Y versus the true nonlinear predictor
(X2

1 + X2
2)

1/2; the upper right panel is the 2-D scatter plot of Y versus the first
kerenl PSVM predictor; the lower panels are 3-D scatter plots for Y versus the first
two predictors from SAVE and DR. We can see that all three methods capture the
right shape of the regression function, but kernel PSVM only requires one predictor
and its sufficient plot appears sharper (bearing in mind that the upper right panel
only has to resemble a monotone transformation of the upper left panel).

To make a more precise comparison, we need to design a new criterion that can
compare one nonlinear predictor with two linear predictors; the criterion (31) is no
longer suitable for this purpose. Since the nonlinear sufficient predictor estimates
a monotone function of (X2

1 + X2
2)

1/2, we use the absolute value of Spearman’s
correlation to measure their closeness, which is invariant under monotone trans-
formation [Kutner, Nachtsheim and Neter (2004), page 87]. To measure the close-
ness between two linear predictors and the true nonlinear predictor (X2

1 + X2
2)

1/2,
let (U11, . . . ,U1n), (U21, . . . ,U2n) represent the two linear predictors obtained by
SAVE or DR. These predictors estimate linear combinations of X1i ,X2i but do not
specify X1i , X2i themselves. We therefore regress Ti = X2

1i + X2
2i on

{(1,U1i ,U2i ,U
2
1i ,U

2
2i ) : i = 1, . . . , n}.

If U1i and U2i are (linearly independent) linear combinations of X1i and X2i ,
then this regression is guaranteed to recover the true predictor Ti regardless of the
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FIG. 3. Comparison between linear and nonlinear sufficient dimension reduction methods. Upper

left panel: true nonlinear predictor
√

X2
1 + X2

2 versus Y ; upper right panel: first (nonlinear) PSVM
predictor versus Y ; lower left: first two SAVE predictors versus Y ; lower right panel: first two DR
predictors versus Y .

specific form of the linear combinations. Let T̂1, . . . , T̂n be the fitted responses of
this regression. We use the absolute values of Spearman’s correlation between Ti

and T̂i to measure the performance of SAVE and DR.
We compute these numbers for 200 simulation samples, and tabulate their

means and standard deviations in Table 2. Note that large numbers represent better
performance, and all numbers are between 0 and 1. The SAVE and DR estima-
tors are computed in exactly the same way as in the linear dimension reduction
comparison. For the kernel PSVM, the cost is 1, the number of division points is
still 20, the kernel is the Gaussian radial basis, and the number of principal eigen-
functions of �n is taken to be 60. The parameter γ is calculated by (26), which are
approximately 0.0526, 0.0257 and 0.0169 for p = 10,20,30, respectively. We see
that the kernel PSVM actually performs better than SAVE and DR, even though it
uses only one predictor. It also performs better than KSIR. Moreover, the accuracy
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TABLE 2
Estimated means and simulation standard errors (in parentheses) of Spearman correlations of

linear and nonlinear sufficient dimension reduction

Model II Model III

p SAVE DR KSIR KPSVM SAVE DR KSIR KPSVM

10 0.53 0.67 0.88 0.92 0.79 0.79 0.89 0.90
(0.13) (0.11) (0.07) (0.02) (0.09) (0.08) (0.05) (0.02)

20 0.37 0.53 0.68 0.86 0.56 0.57 0.59 0.81
(0.14) (0.09) (0.17) (0.03) (0.11) (0.11) (0.18) (0.03)

30 0.30 0.43 0.55 0.83 0.47 0.48 0.42 0.77
(0.13) (0.10) (0.23) (0.04) (0.11) (0.11) (0.21) (0.04)

of the kernel PSVM remains reasonably high for larger p, where the accuracies of
SAVE, DR, and KSIR drop considerably.

8.3. Estimation of structural dimension. We now investigate the performance
of the CVBIC order-determination procedure for a variety of combinations of
(p, d,n). We still use models I and II, but, to include different d , we add the
following models which both have d = 1:

Model IV: Y = X1/[0.5 + (X1 + 1)2] + σε,

Model V: Y = X1(2X1 + 1) + σε.

These are derived from models I and II by replacing X2 by X1.
We apply CVBIC in conjunction with PSVM to Models I, II, IV and V, with

(d, n,p) ranging over the set {1,2} × {200,300,400,500} × {10,20,30}. The
training and testing sample sizes are n1 = n2 = n/2. We take 20 dividing points qr

as equally-spaced sample quantiles of Ý1, . . . , Ýn1 . As a comparison we also apply
the order-determination procedure for SIR based on Theorem 5.1 of Li (1991) with
significant level α = 0.05. The results are presented in Table 3, where the entries
are the percentage of correct estimation of d out of 200 simulated samples for each
of the 48 combinations of (model,p,n). Table 3 shows that CVBIC works very
well, with percentage of correct estimation reaching as high as 100% for sample
size of 200 (training sample size 100). In almost all cases, PSVM compares fa-
vorably with SIR for order determination. Also clear from the table is the trend of
increasing accuracy for both methods as n increases.

9. Application and further discussions. We now compare the kernel PSVM
with SIR, SAVE, and DR in a real data analysis concerning recognition of vowels.
The data can be found in the UCI Machine Learning Repository (http://archive.ics.
uci.edu/ml/datasets). The response variable Y is a categorical variable of 11 levels,

http://archive.ics.uci.edu/ml/datasets
http://archive.ics.uci.edu/ml/datasets
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TABLE 3
Rate of correct order determination by SIR and PSVM in %

n = 200 n = 300 n = 400 n = 500

Model d p SIR PSVM SIR PSVM SIR PSVM SIR PSVM

I 1 10 92 96 92 100 97 100 98 100
20 80 82 95 96 96 100 94 100
30 65 54 92 94 94 98 96 100

II 2 10 67 80 86 85 97 90 98 94
20 36 64 66 84 85 86 96 84
30 22 32 55 77 73 84 88 80

IV 1 10 39 82 60 84 71 93 75 95
20 28 78 42 74 54 76 68 80
30 15 78 33 84 44 78 60 80

V 2 10 93 100 96 100 96 100 97 100
20 94 98 96 100 96 100 96 100
30 96 98 96 99 96 100 92 100

representing different vowel sounds. The predictor X is a 10-dimensional vector
describing the features of a sound. For clear presentation, we select only three
vowels: the sounds in heed, head and hud, with training and testing sample sizes
being 144 and 126, respectively.

For each dimension reduction method, we find a set of sufficient predictors from
the training data, and evaluate them at the testing set, resulting in a sufficient plot
for the testing set. Given that the testing data are independent of the training data
from which the sufficient predictors is derived, the degree of separation of the
vowels in the sufficient plot objectively reflects the discriminating power of a di-
mension reduction method. The four scatter plots in Figure 4 present the first two
predictors found by SIR (upper left panel), SAVE (upper right panel), DR (lower
left panel), and the kerenl PSVM (lower right panel). For the kernel PSVM, the
OVA scheme is used. The basis functions are the first 40 eigenfunctions of the
operator �n derived from the Gaussian radial kernel, whose parameter γ is calcu-
lated by (25). The cost λ is 1. We have varied the number of eigenfunctions (from
10 to 60) and the cost (from 0.5 to 20), but they do not seem to result in significant
difference in the degree of separation in the test data.

From Figure 4, we see that the kernel PSVM achieves much better separation
of the three vowels in the test data than the other three methods. The second best
performer is DR, followed by SIR and SAVE. It is also interesting to note that the
various degrees of separation are also reflected in the sufficient plots; that is, the
distance between heed and hud is larger than those between heed and head, and
head and hud.
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FIG. 4. First two predictors based on SIR, SAVE, DR, and the kernel PSVM plotted for the vowel
recognition testing data set. Green, red and blue colors indicate the vowel sounds in heed, head, hud.

We would like to comment that classification, though important, is not the sole
purpose for sufficient dimension reduction, and that linear and nonlinear sufficient
dimension reductions have their own strengths in reducing, discriminating, visual-
izing, and interpreting high-dimensional data. To illuminate the point, consider an
example where variation, rather than location, is the differentiating characteristic.
Let Y be a bernoulli variable with P(Y = 1) = P(Y = 0) = 1/2 and

(X|Y = y) ∼ N

(
0,

(
σ 2(y)I2 0

0 Ip−2

))
,

where σ 2(0) = 1 and σ 2(1) = 10. Let (X1, Y1), . . . , (Xn, Yn) be a sample from this
model, where n = 200 and p = 10. For simplicity, we fix the number of cases of
Y = 1 at n/2, because this has no bearing on our problem. In this case, the central
subspace is span(e1, e2), where ei = (0, . . . ,1, . . . ,0)� with the 1 occupying the
ith position.

We apply SAVE and the kernel PSVM and the results are shown in Figure 5,
where the top panel shows the scatter plot for the true sufficient predictors X1
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FIG. 5. Variation as the differentiating characteristic. Blue ◦ represents the Y = 0 cases and red
+ represents the Y = 1 cases.

and X2, the lower left panel shows the first two SAVE predictors, and the lower
right panel shows the boxplot of a single kernel PSVM predictor. Since for a single
variable we cannot produce a scatter plot, for clarity we use a boxplot to repre-
sent the predictor. The value of the kernel PSVM predictor is represented by the
height in the boxplot; the two boxes represents the two groups. All three plots are
based on the testing data. What is interesting is that kernel PSVM in some sense
“translates” the difference in variation into the difference in location. The intuitive
reason is that there is a quadratic—and hence variance—component in the kernel
mapping, but in the mapped high-dimensional space the variance component is
treated as an augmented part of feature vector [as in (x, x2)]. Of course this is only
a simplification of the situation: there is still significant difference in variation in
the kernel PSVM predictor for the two groups.

In this case, linear dimension reduction methods such as SAVE have a definite
advantage, both for their clear separation of variation and for their good inter-
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FIG. 6. Degrees of separation by SAVE (upper panels) and kernel PSVM (lower panels) for higher
dimensions: p = 60 (left panels), p = 80 (middle panels) and p = 100 (right panels).

pretability. In the meantime, this example also shows that kernel PSVM is capable
of differentiating variation, to the degree comparable to SAVE, but its interpretabil-
ity is not as direct as SAVE.

Another desirable feature of the kernel PSVM is that its accuracy is more stable
than the classical methods as the dimension p increases. Figure 6 shows the suffi-
cient predictors derived from SAVE and kernel PSVM for p = 60,80,100 (from
left to right). The upper panels are the scatter plots for the first two SAVE predic-
tors, and the lower panels are the boxplots representing the single kernel PSVM
predictor. Again, all plots are based on testing data. We see that SAVE gradually
loses its discriminating power as p is increased to 100, whereas the discriminating
power of kernel PSVM remains reasonably strong.
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