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A NONMANIPULABLE TEST

BY WOJCIECH OLSZEWSKI1 AND ALVARO SANDRONI2

Northwestern University and University of Pennsylvania

A test is said to control for type I error if it is unlikely to reject the data-
generating process. However, if it is possible to produce stochastic processes
at random such that, for all possible future realizations of the data, the se-
lected process is unlikely to be rejected, then the test is said to be manipu-
lable. So, a manipulable test has essentially no capacity to reject a strategic
expert.

Many tests proposed in the existing literature, including calibration tests,
control for type I error but are manipulable. We construct a test that controls
for type I error and is nonmanipulable.

1. Introduction. Professional forecasts are often presented as probabilistic
statements [see, e.g., Gneiting and Raftery (2005) for a review of the role of prob-
abilistic forecasts in meteorology]. The quality of these forecasts is regularly tested
empirically. A concern [which can be traced back at least to Brier (1950)] is that if
forecasts are tested, then experts may misreport their forecasts with the intention
of passing the test. Recent literature shows that, without any knowledge about the
data-generating process, it is possible to produce forecasts that pass some empiri-
cal tests on all possible future realizations of the data.

An example of a test that can be manipulated in this way is the well-known
calibration test. Suppose that a stochastic process generates in every period an
outcome that can be either 0 or 1. The calibration test requires the empirical fre-
quency of 1 to be close to p in the periods that 1 was forecasted with probability
close to p. Dawid (1982) shows that the forecasts of the data-generating process
will eventually be calibrated. Foster and Vohra (1998) show that any individual can
produce forecasts with a random device such that, for all possible infinite strings
of zeros and ones, the realized forecasts will eventually be calibrated as well, with
probability one according to the random device used by the individual.

It is natural to seek tests that cannot be manipulated. We address this problem in
the present paper. We study the following framework: A stochastic process gener-
ates in every period an outcome that can be 0 or 1 (we make no assumptions, such
as an independent, identically distributed process). Before any data are observed,
an expert named Bob delivers a theory, defined as a mapping that takes as an input
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any finite string of outcomes and returns as an output a probability of 1; equiva-
lently, theories are probability measures P on the space of infinite sequences of
outcomes.

A tester named Alice tests Bob’s theory P by selecting an event AP (i.e., a set of
sequences of outcomes), which Alice regards as consistent with the theory P . We
call AP the acceptance set and its complement the rejection set for the theory P .
If, for every P , the event AP has high probability according to P , then the data-
generating process will not be rejected (with high probability). We then say that
the test controls for type I error (of rejecting the data-generating process).

Assume that Bob knows nothing about the data-generating process. However,
Bob may use a random device ζ to select his theory P . At first, Alice cannot tell
whether the announced theory coincides with the data-generating process or was
selected at random. This must be determined by the data. If, for any sequence of
outcomes, Bob’s theory P is not rejected with high probability according to Bob’s
random device ζ , then we say that the test can be manipulated (with this high
probability), or we say, equivalently, that the test has essentially no capacity to
reject theories produced strategically.

Many tests that control for type I error have essentially no capacity to reject
theories produced strategically. The calibration test can be manipulated. Several
extensions of the calibration test have also been proven to be manipulable [see,
e.g., Fudenberg and Levine (1999), Lehrer (2001) and Sandroni, Smorodinsky and
Vohra (2003)]. Other statistical tests can also be manipulated. A prequential test
rejects or accepts a theory based only on the observed data sequence and the next
period forecasts made by the theory along the realized sequence of outcomes [see
Dawid (1991) for more details on the prequential principle]. Many standard sta-
tistical tests, including calibration tests, are prequential tests, and prequential tests
can be manipulated [see Sandroni (2003), Vovk and Shafer (2005), Olszewski and
Sandroni (2008) and Shmaya (2008)].

Dekel and Feinberg (2006) show that, under the continuum hypothesis, there
exists a test that does not reject the data-generating process and cannot be manipu-
lated because every random device ζ fails this test with certainty on an uncountable
number of paths. We construct a (nonprequential) test, called the global category
test, that also does not reject the data-generating process with probability one and
cannot be manipulated. However, our construction does not assume the continuum
hypothesis; that is, it is performed within the Zermelo–Fraenkel axioms and the
axiom of choice. In addition, the global category test is explicitly constructed; that
is, we give set-theoretic formulas for the acceptance sets.

The significance of dispensing the continuum hypothesis can be seen in a sim-
ple example. Assume that Bob announces an easy to describe theory (e.g., 0 and 1
occur with probability 0.5 in all periods) and the sequence of outcomes follows
an easy-to-describe deterministic process (e.g., 0 in every third period and 1 oth-
erwise). If Alice uses the test in Dekel and Feinberg (2006), no researcher can
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determine whether Alice rejects Bob’s theory. If she uses the global category test,
this is a straightforward determination.

The global category test cannot be manipulated, in the sense that every random
device ζ fails this test with certainty on all paths except a first category set of them.

The paper is organized as follows. In Section 2, we introduce our basic concepts
and show some classic examples of tests (calibration and likelihood tests). In Sec-
tion 3, we construct the global category test and provide an informal discussion of
nonmanipulability. In Section 4, we show that the global category test can be mod-
ified to address the problem that, in practice, testers observe only finite data sets.
We also show that the global category test can be modified so as to belong to the fa-
miliar class of likelihood tests. In addition, we exhibit a large class of tests that are
not necessarily prequential tests, but can be manipulated. Finally, still in Section 4,
we offer some additional results on the manipulability of random prequential tests
and an informal discussion on the implications (for the prequential principle) of
the finding that prequential tests can be manipulated while some nonprequential
tests cannot be manipulated. Proofs are relegated to the Appendix.

2. Basic concepts. Each period one outcome, 0 or 1, is observed (our results
generalize to any finite number of outcomes per period). Let � = {0,1}∞ be the
set of all paths, that is, infinite histories. A finite history sm ∈ {0,1}m, m ≥ t, (or
a path s ∈ �) is an extension of a history st ∈ {0,1}t if the first t outcomes of sm
or s coincide with the outcomes of st . In the opposite direction, let sm | t (or s | t)
be the history st ∈ {0,1}t whose outcomes coincide with the first t outcomes of sm
or s. A cylinder with base on st is the set C(st ) ⊂ {0,1}∞ of all infinite extensions
of st . We endow � with the topology that compares unions of cylinders with a
finite base. Let �t be the algebra that consists of all finite unions of cylinders with
base on {0,1}t . Denote by N the set of natural numbers. Let � be the σ -algebra
generated by the algebra �0 := ⋃

t∈N �t ; that is, � is the smallest σ -algebra that
contains �0.

Let �(�) be the set of all probability measures on (�,�). We endow �(�) with
the weak*-topology and the σ -algebra of Borel sets (i.e., the smallest σ -algebra
that contains all open sets in weak*-topology).

As is well known, the weak*-topology consists of all unions of finite intersec-
tions of sets of the form

{Q ∈ �(�) : |EP h − EQh| < ε},
where E stands for the expected-value operator P ∈ �(�), ε > 0, and h is a real-
valued and continuous function on �. We refer the reader to Rudin (1973) for
additional details on the weak*-topology. We also define ��(�) as the set of
probability measures on �(�).

Before any data are observed, an expert named Bob announces a probability
measure P ∈ �(�), which (Bob claims) describes how nature will generate the
data. To simplify the language, we call a probability measure a theory. A tester
named Alice tests Bob’s theory empirically.
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DEFINITION 1. A test is a function T : � × �(�) → {0,1}.

That is, a test is defined as an arbitrary function that takes as input a theory and
a path and returns a verdict that is 0 or 1. When the test returns a 1, it does not
reject (or, simply, accepts) the theory. When a 0 is returned, the theory is rejected.

Any test divides paths into those in AP := {s ∈ � | T (s,P ) = 1}, where the
theory P is accepted, and those in � − AP , where the theory is rejected. The set
AP is called the acceptance set, and its complement �−AP is called the rejection
set. We consider only tests T such that the acceptance sets AP are �-measurable.

Given a theory P ∈ �(�), a path s ∈ � and a history st = s | t , let

f P
0 (s) := P(C(1)) and f P

t (s) := P(C(st ,1))

P (C(st ))

be forecasts made along s. f P
t (s) is arbitrarily defined as 0 when P(C(st )) = 0.

The forecasts of P and P ′ are equivalent along s if f P
t (s) = f P ′

t (s) for all periods
t ≥ 0. A test T is prequential if for any given two theories P and P ′, equivalent
along s, T (s,P ) = 0 if and only if T (s,P ′) = 0. So, a prequential test rejects or
accepts a theory based only on the forecasts made by the theory along the realized
path. Fix any ε ∈ [0,1].

DEFINITION 2. A test T does not reject the data-generating process with
probability 1 − ε if for any P ∈ �(�)

P (AP ) ≥ 1 − ε.

That is, a test does not reject the data-generating process (with high probability)
if, no matter which probability measure P generates the data, P is not likely to be
rejected according to its own probability distribution over paths.

2.1. Classic examples of tests. Given a path s ∈ �, let It (s) be the t th outcome
of s. The test

T (s,P ) = 1 if and only if lim
n→∞

1

n

n∑
t=1

[f P
t−1(s) − It (s)] = 0

requires the average forecast of 1 to match the empirical frequency of 1.
The test in Lehrer (2001) requires the match between average forecasts and em-

pirical frequencies to occur on several subsequences. The calibration test requires
the empirical frequency of 1 to be near p ∈ [0,1] in the periods in which 1 was
forecasted with probability close to p.

One well-known class of tests not based on matching empirical frequencies is
likelihood tests. Let Q :�(�) → �(�) be any function that takes a theory P as
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an input and returns an alternative theory QP as an output. The likelihood test T

is defined by

T (s,P ) = 1 iff ∀n∈NP (C(sn)) 
= 0

and

lim sup
n→∞

QP (C(sn))

P (C(sn))
< ∞, sn = s | n.

This test requires that the likelihood of QP does not become arbitrarily larger
than the likelihood of P. A proof that calibration and likelihood tests do not reject
the data-generating process with probability one can be found in Dawid (1982,
1985).

Calibration tests are prequential tests because, like many other well-known tests,
they take as an input not the entire theory but only the data and the forecasts made
by the theory along the realized sequence of outcomes. A likelihood test may or
may not be a prequential test, depending upon the way the alternative theory QP

is selected as a function of P . In Section 4, we exhibit examples of prequential and
nonprequential likelihood tests.

2.2. Manipulating tests. Foster and Vohra (1998) show that Bob can pass the
calibration test on all paths if he is allowed to select theories at random. More
precisely, the calibration test can be manipulated with probability one according to
the following definition:

DEFINITION 3. A test T can be manipulated with probability 1 − ε if there
exists a random generator of theories ζT ∈ ��(�) such that, for every path s ∈ �,

ζT

({P ∈ �(�) | T (s,P ) = 1}) ≥ 1 − ε.

Naturally, our definition of manipulability requires a measurability provision on
the sets {P ∈ �(�) :T (s,P ) = 1}. However, to ease the exposition, we deal with
measurability issues in the Appendix.

Fudenberg and Levine (1999), Lehrer (2001), Sandroni, Smorodinsky and
Vohra (2003) show that generalized calibration tests can also be manipulated. San-
droni (2003), Vovk and Shafer (2005), Olszewski and Sandroni (2008) and Shmaya
(2008) show that prequential tests that can be manipulated. A partial review of this
literature can be found in Cesa-Bianchi and Lugosi (2006). We also refer the reader
to Gneiting, Balabdaoui and Raftery (2007) for additional comments on this liter-
ature.

The random generator ζT may depend only on the test T . It follows that, even
if Bob does not know the data-generating process, he can be very confident that by
selecting theories at random before any data are observed he will not fail any of
these tests, no matter which data are realized in the future.
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The crucial property we seek is the existence, for every random generator of
theories, of a path at which rejection may occur (because it ensures that it is feasi-
ble to reject strategically produced theories). However, stronger properties may be
obtained. Alice may be interested in paths such that randomly produced theories
fail the test with near certainty (as opposed to probability higher than ε) and such
that the sets of these paths are larger than a single path.

DEFINITION 4. Fix a test T . Given a random generator of theories ζ ∈
��(�) and ε ≥ 0, let Rε

ζ ⊆ � be the set of all paths s ∈ � such that

ζ
({P ∈ �(�) | T (s,P ) = 0}) ≥ 1 − ε.

The set Rε
ζ is called the revelation set, where the random generator of theories ζ

fails to manipulate the test with probability 1 − ε.
In Section 3, we exhibit a test such that for all random generators of theories ζ ,

the revelation sets are always non-empty (and topologically large).

3. A nonmanipulable test. In this section, we construct a test that cannot be
manipulated, that is, a test with nonempty revelation sets. In addition, we show
that the revelation sets are topologically large in the following sense: Given a sub-
set A of a (complete metric) space, let Ā be the closure of A. A set A is called
nowhere dense when the interior of its closure Ā is empty. A first-category set is
a countable union of nowhere-dense sets. A first-category set may be regarded as
(topologically) small. The complement of a first-category set may be regarded as
(topologically) large. We refer the reader to Oxtoby (1980) for these definitions
and some basic results regarding first-category sets.

We now define our test. Let S = {s1, s2, . . .} be a countable dense subset of �

(i.e., for every cylinder C with finite base, there exists a path si that belongs to C;
e.g., C can be the set of paths with all but a finite number of outcomes equal to
zero). Fix any k ∈ N. For every path si , there exists a period t ∈ N such that the
cylinder C(si

t ) with base on the finite history si
t = si | t satisfies

P
(
C(si

t ) − {si}) ≤ 1

2k+i
.(3.1)

Indeed, the sequence of sets C(si
t ) − {si} is descending (as t goes to infinity),

and its intersection is empty. So, P(C(si
t ) − {si}) goes to zero as t goes to infinity.

Let t (i, k,P ) be the smallest natural number such that (3.1) is satisfied.
Given a dense set of paths S = {s1, s2, . . .}, the global category test T̂S can be

defined as follows:

T̂S(s,P ) =
⎧⎪⎨⎪⎩ 0, if s /∈ S and s ∈

∞⋂
k=1

∞⋃
i=1

C
(
si
t (i,k,P )

)
;

1, otherwise.

Let R̂0
ζ be the revelation set for the random generator of theories ζ ∈ ��(�).
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THEOREM 1. Fix any countable dense set S ⊂ �. The global category test T̂S

does not reject the data-generating process with probability one. Given any ran-
dom generator of theories ζ ∈ ��(�), the revelation set R̂0

ζ is the complement of
a first-category set of paths.

The global category test controls the type I error of rejecting the data-generating
process and it cannot be manipulated. If the data-generating process is announced,
then it passes the global category test with probability one. On the other hand, no
matter which random generator of theories ζ is employed, failure is inevitable on
the paths of the revelation set R̂0

ζ . This set is nonempty (and topologically large).
The main objective of this paper is to construct a test that is nonmanipulable

according to Definition 3, that is, in the sense studied in the existing literature.
Naturally, our result is limited to our definition of manipulation. Alternative defin-
itions of strategic manipulation are beyond the scope of this paper.

The global category test can be combined with any other test to produce a harder
test. Even so, no test can avoid the following difficulty: for any finite collection of
probability measures Q1, . . . ,Qk over outcome paths, and for any test T that does
not reject the data-generating process with high probability, Bob can ensure that
his randomly selected theory is unlikely to be rejected on a set of outcome paths
whose Qj -probabilities (j = 1, . . . , k) are arbitrarily close to one [see Sandroni
and Olszewski (2008)].

Since the proof of Theorem 1 is somewhat involved, it is relegated to the Ap-
pendix, but the key idea of this proof is simple. The rejection sets for the global
category test have been defined as an intersection of unions of small cylinders C1,

C2, . . . around paths s1, s2, . . . (from which the paths s1, s2, . . . have addition-
ally been removed). The fact that a cylinder around each path is included in the
rejection set guarantees that, for any single theory, the rejection set is topologi-
cally large; moreover, the fact that those cylinders are small guarantees that the
data-generating process will not be rejected.

Suppose now that we are given a random generator of theories ζ . Since cylinders
C1, C2, . . . are defined for every single theory around the fixed set of paths s1,

s2, . . . , it follows that sufficiently small cylinders around those paths s1, s2, . . .

will be contained in cylinders C1, C2, . . . , respectively, for a set of theories whose
ζ -probability is sufficiently close to one. As the intersection of topologically large
sets is itself a topologically large set, there exists a topologically large set contained
in the rejection sets for a set of theories whose ζ -probability is equal to one.

3.1. Informal discussion on manipulability. A result concerning the manipu-
lability of a test can be interpreted in different ways. Consider a forecaster whose
objective is to be calibrated. The Foster and Vohra (1998) result shows that the
forecaster’s goal can be achieved no matter how the data evolves in the future.
Hence, from this forecaster’s perspective, the Foster and Vohra (1998) result is
positive. The results of Sandroni (2003), Vovk and Shafer (2005), Olszewski and
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Sandroni (2008) and Shmaya (2008) show that, like calibration, many observable
properties of the data-generating process can be obtained by a strategic forecaster,
no matter how the data evolves in the future. So, these results show how to produce
forecasts that, in the future, will prove to have some observable properties of the
data-generating process. However, these strategically produced forecasts may re-
main bounded away from the predictions of the data-generating process, and these
forecasts need not have all observable properties of the data-generating process
simultaneously (only the properties used to define some specific manipulable test).
Hence, whether strategically produced forecasts are desirable from the perspective
of a forecaster is an arguable point, as this may depend upon the objective of the
forecaster. Now, consider the concept of manipulability from the viewpoint of a
tester.

Assume that Alice wants to determine whether Bob has information about the
data-generating process that she does not have. If this is Alice’s objective, then a
manipulable test (e.g., the calibration test) has limited use to her when Bob knows
the test that will be used (see Section 4.2 for a discussion of the case in which Bob
does not know the test at the time of delivering his theory). Even in the extreme
case that Bob is completely uninformed about the data-generating process, he can
strategically pass such a test. Hence, Alice knows from the outset (i.e., before any
data is revealed) the verdict that, with near certainty, the test will deliver once the
data is revealed.

The difficulty with manipulable tests can be understood in the context of a con-
tracting problem between a tester (Alice) and an expert (Bob) who claims, before
any data is observed, to know the data-generating process. Alice does not know the
data-generating process, and she is willing to pay a reward that gives Bob utility
u > 0 if he announces his theory at period zero. In order to discourage Bob from
delivering an arbitrary theory, Alice stipulates a penalty if Bob’s theory is rejected
by her test. This penalty gives Bob disutility d > u (Bob does not discount the fu-
ture). Bob observes Alice’s test before deciding whether to accept Alice’s contract.
Bob receives no reward and no penalty if he does not accept the contract.

Alice looks for a screening contract, which will be accepted by Bob if informed
about the data-generating process and rejected by Bob if uninformed about the
data-generating process. Then, Alice learns whether Bob is informed from Bob’s
choice on whether to accept the contract.

Assume that the test does not reject the data-generating process with probabil-
ity 1 − ε, where ε is small enough so that u − dε > 0 and u − d(1 − ε) < 0. Bob,
if informed, accepts the contract because his expected utility with the contract is
positive (and without the contract his utility is zero). On the other hand, if Bob
is uninformed, then he faces uncertainty. He does not know the odds that any the-
ory is rejected. Assume that Bob evaluates his prospects based on the minimum
expected utility he obtains. This is the most pessimistic behavioral rule of decision
under uncertainty among those axiomatized by Gilboa and Schmeidler (1989). For-
mally, if Bob is uninformed and uses a random generator of theories ζ ∈ ��(�),
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then his payoff, with a contract, is

u − d sup
s∈S

ζ {P ∈ �(�) | T (s,P ) = 0}.(3.2)

If Alice’s test is manipulable, then Bob, although extremely averse to uncer-
tainty, accepts her contact because his payoff with the contract (3.2) is positive.
Hence, a manipulable tests cannot be used to construct a screening contract that
Bob, if informed, accepts and if uninformed, does not accept.

On the other hand, if Alice’s test is nonmanipulable, then Bob, when unin-
formed, does not accept Alice’s contract, as his payoff with the contract is nega-
tive. So, a nonmanipulable test does produce a screening contract. Bob accepts this
contract (and, therefore, Alice pays Bob) only when Bob delivers to Alice some-
thing she values (the data-generating process), as opposed to a theory selected by
a method that she can produce on her own without having to pay an expert for it.

3.2. Limitations of the main result. The main objective of this paper is to con-
struct a nonmanipulable test. Nonmanipulability is in our opinion a desirable prop-
erty (at least as far as Bob knows in advance the test that will be used), because
it ensures the feasibility of the rejection of a strategic, but otherwise completely
uninformed, expert. However, we do not claim that an uninformed expert is likely
to be rejected by a global category test, nor do we claim that a theory that passes
our test must be closely related to the data-generating process.

In addition, we are not confidently advocating the use of global category tests.
An uninformed expert may accept Alice’s contract, even if she adopts a global cat-
egory test, when Bob adopts a less pessimistic behavioral rule to evaluate uncertain
prospects. Moreover, global category tests have not been extensively studied, and
they may have undesirable properties. On the other hand, global category tests do
not reject the data-generating process with probability one. Hence, they can be
combined with any other test without reducing the odds that the data-generating
process is rejected. This combined test remains nonmanipulable.

4. Additional results. In this section, we show modified forms of the global
category test and discuss some of its properties. We begin with the simple observa-
tion that tests, as defined in Section 2, give a verdict only after observing an infinite
history. In practice, a tester can only observe finite data sets and, therefore, may
find more applicable tests that give some verdict with a finite number of outcomes.

DEFINITION 5. Rejection tests have the property that, for any theory P ∈
�(�), the rejection set � − AP is a union of cylinders.

So, a rejection test rejects a theory in finite time.

DEFINITION 6. A test T2 is harder than a test T1 if

{s ∈ � :T2(s,P ) = 1} ⊆ {s ∈ � :T1(s,P ) = 1}.
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If T2 is harder than T1, then rejection by T1 implies rejection by T2.

PROPOSITION 1. Fix any δ ∈ (0,1 − ε]. Let T1 be any test that does not reject
the data-generating process with probability 1 − ε. There exists a rejection test T2
that is harder than the test T1 and does not reject the data-generating process with
probability 1 − ε − δ.

Proposition 1 is a direct corollary of the following well-known result: for any
given probability measure P ∈ �(�) and δ > 0, any set A ∈ � can be enlarged
to an open set U ⊃ A such that P(U) < P(A) + δ [see Ulam’s theorem, Theo-
rem 7.1.4 in Dudley (1989)].

Proposition 1 shows that, given any test T1, there exists a rejection test T2 that
does not reject the data-generating process with probability almost as high as T1,
and the acceptance sets of T2 are contained in those of T1. Thus, T2 is more capable
than T1 to reject theories. For example, if T1 has nonempty (or topologically large)
revelation sets, then T2 is a rejection test with nonempty (or topologically large)
revelation sets. We refer to T2 as the rejection test associated with the test T1.

Given ε > 0, let T̂ ε be a rejection test (that does not reject the data-generating
process with probability 1 − ε) associated with a global category test T̂S. Corol-
lary 1 follows immediately from Proposition 1 and Theorem 1.

COROLLARY 1. The rejection test T̂ ε does not reject the data-generating
process with probability 1 − ε, and it cannot be manipulated. The revelation sets
of T̂ ε contain the revelation sets of the global category test, and, hence, their com-
plements are first-category sets.

For any given theory P , the test T̂ ε delivers the rejection set of the theory P

that consists of finite histories of outcomes that must be regarded as sufficiently
inconsistent with the theory P to justify its rejection. This test does not reject the
actual data-generating process and, in contrast with manipulable tests, maintains
the possibility of theory rejection (in finite time) even if an uninformed individual
randomizes with the intent of manipulating the test. In addition, it follows directly
from our proof that each revelation set of T̂ ε contains an open and dense set.
Hence, the revelation sets of T̂ ε contain finite-histories.

4.1. A nonmanipulable likelihood test. In this section, we modify a global cat-
egory test so that, in this modified form, it belongs to the familiar class of likeli-
hood tests (and remains nonmanipulable).

Let an atom of a theory P be a path that P assigns strictly positive measure. Let
A ⊆ �(�) be the set of all theories that attach probability one to a set comprising
finitely many atoms.

Let T̂S be a global category test. Given any natural number m ≥ 1, let T̂ m be a
rejection test that is harder than T̂S and does not reject the data-generating process
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with probability 1
2(m+1)3 . Given a theory P, let R̂m

P be the rejection set of P (for

test T̂ m). So, by definition,

P(R̂m
P ) ≤ 1

2(m + 1)3 .

Given any theory P ∈ (A)c, let Cm
P be a cylinder with finite base such that

0 < P(Cm
P ) <

1

2(m + 1)3 .(4.1)

The existence of a cylinder that satisfies (4.1) is shown in Remark A.1 in the
Appendix. Let Rm

P := R̂m
P ∪ Cm

P , and let Qm
P be the theory P ∈ (A)c conditional

of Rm
P ; that is, for every A ∈ �,

Qm
P (A) = P(A ∩ Rm

P )

P (Rm
P )

.(4.2)

Let π(m) = 1
(m+1)m

. Let QP be the theory defined by

QP =
∞∑

m=1

π(m)Qm
P .

Given a theory P ∈ (A)c, QP is well defined because
∞∑

m=1

π(m) = 1.

The function Q :�(�) −→ �(�), such that Q(P ) = QP if P ∈ (A)c and
Q(P ) = P if P ∈ A, defines the likelihood test T̄ .

PROPOSITION 2. The likelihood test T̄ is harder than the global category
test T̂S .

The likelihood test T̄ , like any other likelihood test, does not reject the data-
generating process with probability 1. It follows from Proposition 2 that the rev-
elation sets of the likelihood test T̄ contain those of the global category test T̂S .
Hence, the likelihood test T̄ is nonmanipulable.

4.2. The prequential principle. Prequential tests are manipulable, but some
nonprequential tests (e.g., the global category tests) are nonmanipulable. These re-
sults pose a difficulty for the prequential principle, because they indicate that the
prequential principle must be discarded to produce a nonmanipulable test. We ex-
amine in closer detail the relationship between manipulability and the prequential
principle. We now consider random tests. That is, we allow Alice to randomize
among prequential tests that do not reject the data-generating process.
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Let (	,B, ṽ) be a probability space where 	 is a parameter space, B is a
σ -algebra and ṽ is a probability measure on (	,B). A random test is probability
space (	,B, ṽ) and a function T̃ :	×�×�(�) → {0,1}. So, for every parame-
ter θ ∈ 	, T̃θ :� × �(�) → {0,1}, T̃θ (s,P ) = T̃ (θ, s,P ) is a test. We also define
T̃s(θ,P ) = T̃ (θ, s,P ) and T̃P (θ, s) = T̃ (θ, s,P ). We assume that T̃ is measur-
able, jointly, with respect to θ , s and P (and we refer to this assumption as the
joint measurability condition).

A random test is prequential if, for every θ ∈ 	, T̃θ is a prequential test. A ran-
dom test does not reject the data-generating process with probability one if, for
every P ∈ �(�),

(ṽ × P)
({(θ, s) ∈ 	 × � : T̃P (θ, s) = 1}) = 1.

We now construct a prequential random test T̃ that does not reject the
data-generating process with probability one. Given a countable dense set S =
{s1, s2, . . .}, let QS ∈ �(�) be a probability distribution defined by

QS(si) = 1

i(i + 1)

for i = 1,2, . . . and QS(� − S) = 0. That is, QS assigns full measure to S. Since

∞∑
i=1

1

i(i + 1)
= 1,

QS is well defined.
Let T LR

S be the likelihood test such that, for every theory P , the alternative
theory is QS . This test is prequential because the alternative theory is fixed in-
dependently of the theory announced by Bob. By general properties of likelihood
ratio tests, T LR

S does not reject the data-generating process with probability 1 [see
Dawid (1982)].

Let 	 = � = {0,1}∞ be the parameter space. Given a path θ ∈ 	, let Sθ ⊂ �

be the set of all paths that coincide with θ in all but a finite number of periods.
That is,

Sθ = {
s ∈ � : |{t : It (s) 
= It (θ)}| < ∞}

=
∞⋃
t=1

{0,1}t−1 × {It (θ)} × {It+1(θ)} × · · · ;

of course the set Sθ is countable and dense in �. We define the randomized like-
lihood test T̃ LR as follows. First, let �̇(�) ⊆ �(�) be the set of all theories that
assigns zero measure to any single path. Alice draws randomly a path θ ∈ � ac-
cording to a probability measure ṽ ∈ �̇(�) and then tests Bob with the likelihood
test T LR

Sθ
. So, T̃ LR(θ, s,P ) = T LR

Sθ
(s,P ).
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To make this definition precise, we must say how we represent the set Sθ as a
sequence s1

θ , s2
θ , . . . , because the probability distribution QSθ depends on the order

of the paths in Sθ . In addition, if we took an arbitrary representation, the test T̃ LR

could potentially violate our joint measurability condition.
One possible way to represent the set Sθ as a sequence of paths s1

θ , s2
θ , . . . is

such that for every t = 1,2, . . . the paths from {0,1}t × {It (θ)} × {It+1(θ)} × · · ·
precede the paths from {0,1}t ×{It+1(θ)}×{It+2(θ)}×· · ·−{0,1}t−1 ×{It (θ)}×
{It+1(θ)} × · · ·, and paths from {0,1}t × {It+1(θ)} × {It+2(θ)} × · · · − {0,1}t−1 ×
{It (θ)}× {It+1(θ)}× · · · are ordered lexicographically. As shown in the Appendix
(Lemma A.2), the joint measurability condition is satisfied with the sets Sθ ordered
in this way.

Bob knows that he is tested according to this protocol, but he does not know
the test selected by Alice. Given any random generator of theories ζ ∈ ��(�), let
R0

ζ (θ) be the revelation set of the test T LR
Sθ

.

PROPOSITION 3. Consider a randomized likelihood test T̃ LR, (�,�, ṽ), ṽ ∈
�̇(�). For every random generator of theories ζ ∈ ��(�), ṽ-almost surely, R0

ζ (θ)

is the complement of a first-category set of paths.

Assume that Alice tests Bob with a randomized likelihood test and that Bob
uses an arbitrary random generator of theories ζ . Proposition 3 shows that, with
ṽ-probability one, Alice selects a prequential test T LR

Sθ
for which there exist a topo-

logically large set of paths that, if realized, ζ -almost surely, reject Bob’s theory.
We now provide a general result showing that random prequential tests, includ-

ing the randomized likelihood test, are manipulable as far as a natural generaliza-
tion (to random tests) of definition 3 of manipulability goes.

PROPOSITION 4. Fix any δ > 0. Let (	,B, ṽ) and T̃ be a prequential random
test (satisfying the joint measurability condition) that does not reject the data-
generating process with probability 1. Then, there exists a random generator of
theories ζ̃ such that, on any path s ∈ �,

ζ̃
({P ∈ �(�) : ṽ-almost surely T̃ (θ, s,P ) = 1}) ≥ 1 − δ.

The random generator of theories ζ̃ may depend upon δ, (	,B, ṽ) and T̃ , but
it does not require (for its construction) any distributional assumptions over the
future realizations of the paths. Proposition 4 shows that Bob can produce theories
according to a random device ζ̃ such that, no matter which path s is realized, it is
unlikely (odds given by ṽ and ζ̃ ) that Alice selects a test that rejects Bob’s theory.

To reconcile Propositions 3 and 4, consider the randomized likelihood test
(�,�, ṽ), T̃ LR . This test satisfies the joint measurability conditions, and so, the
conclusions of Propositions 3 and 4 hold for this test. Let Eṽ and Eζ be the expec-
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tation operators associated with ṽ and ζ, respectively. By Proposition 3, for every
ζ ∈ ��(�),

Eṽ

{
inf
s∈�

Eζ {T̃ LR
s }

}
= 0.(4.3)

By Proposition 4, for every δ > 0 there exists ζ̃ ∈ ��(�) such that

inf
s∈�

Eζ̃Eṽ{T̃ LR
s } ≥ 1 − δ.(4.4)

From (4.3), Bob knows that Alice (almost surely) selects a test for which there
are paths that, if realized, will (almost surely) reject Bob’s randomly selected the-
ories. From (4.4), Bob knows that if he selects a theory with carefully designed
odds (by ζ̃ ), then (no matter how the data evolves in the future) it is unlikely that
the selected theory will be rejected by Alice’s test.

Consider the question of whether a strategic, but uninformed, expert can pass a
random prequential test (which does not reject the data-generating process). Propo-
sition 3 seems to answers this question in the negative while Proposition 4 seems
to answer this question in the positive. Hence, results (4.3) and (4.4) leave room
for different interpretations. In our viewpoint, Proposition 4 is a natural gener-
alization (to random tests) of existing results showing that prequential tests are
manipulable. Our preference (for result 4 over 3) can be understood in the context
of decision-making under uncertainty as described in Section 3.1.

Assume that Alice offers a contract to Bob. If Bob accepts the contract, he de-
livers a theory to Alice and receives positive payment. However, if Bob’s theory
is rejected by the test selected by the randomized likelihood test, then Bob is pe-
nalized. Now, assume that Bob knows nothing about the data-generating process.
Then, Bob faces uncertainty about the probabilities of the future realizations of the
data. By definition, Bob knows the odds that Alice uses to select her test, and he
also knows the odds that he uses to select his theory. Hence, with regards to the-
ory selection and to test selection, Bob faces common risk. The most pessimistic
behavioral rule of decision under uncertainty, among those axiomatized by Gilboa
and Schmeidler (1989), determines Bob’s prospects by his expected utility com-
puted in the worse-case scenario [as in (4.4)]. By this rule of decision under uncer-
tainty, Bob accepts Alice’s contract. Hence, prequential random tests do not screen
informed and uniformed experts.

The results showing that prequential tests (and even randomizations over pre-
quential tests, Proposition 3 withstanding) are manipulable, combined with the fact
that some nonprequential tests are nonmanipulable, poses a difficulty for the pre-
quential principle (as far as testing potentially strategic experts goes). However,
this difficulty may not persist under conditions that are beyond the scope of this
paper. Fortnow and Vohra (2007) show a prequential test that is computationally
demanding to manipulate. In addition, Olszewski and Sandroni (2008) show a pre-
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quential test that cannot be manipulated when the domain of permissible theories
(i.e., the theories the expert is allowed to announce) is restricted. It is not known
whether the results in this paper extend to the case of multiple experts [see Al-
Najjar and Weinstein (2007) and Feinberg and Stewart (2007) for some results on
testing several experts simultaneously]. Finally, while any given prequential test
(which does not reject the data-generating process) can be manipulated, it is not
possible to manipulate all prequential tests (that do not reject the data-generating
process) simultaneously [see Olszewski and Sandroni (2008)].

4.3. Nonprequential manipulable tests. As mentioned in the Introduction,
prequential tests are manipulable. So, prequentiality is a sufficient condition for
manipulability, but it is not a necessary condition. We now show several tests,
many of them nonprequential, that can be manipulated.

DEFINITION 7. Acceptance tests have the property that, for any theory
P ∈ �(�), the acceptance set AP is a union of cylinders.

In an acceptance test, the acceptance sets are open. In a rejection test, the rejec-
tion sets are open.

PROPOSITION 5. Fix any ε ∈ [0,1] and δ ∈ (0,1−ε]. Let T be an acceptance
test that does not reject the data-generating process with probability 1 − ε. Then,
the test T can be manipulated with probability 1 − ε − δ.

A formal proof of Proposition 5 is presented in the Appendix. An intuition is
as follows: let V :�(�) × ��(�) → [0,1] be a function defined by V (P, ζ ) =
EP EζT ; that is, V (P, ζ ) is the probability of the verdict 1 if P is the data-
generating process and ζ is the random generator of theories used by Bob. By
assumption, for every P ∈ �(�), there exists ζP ∈ ��(�) (a deterministic gen-
erator of theories that assigns probability one to P ) such that V (P, ζP ) = 1 − ε.

Thus, if the conditions of Fan’s minmax theorem are satisfied, then there also exists
ζT ∈ ��(�) such that V (P, ζT ) ≥ 1 − ε − δ for every P ∈ �(�). This yields the
result, since V (P, ζT ) = ζT ({Q ∈ �(�) | T (s,Q) = 1}) if P is the degenerated
measure that assigns probability one to s.

As is well known, �(�) is compact in the weak*-topology and V is a bilinear
function. Hence, the conditions of Fan’s minmax theorem (see the Appendix for
this result) are satisfied if V is lower semi-continuous with respect to P . We show
that this lower semi-continuity follows from the openness of acceptance sets. It is
here that the assumption that T is open turns out to be essential. In the case of a
rejection test, V is upper semi-continuous with respect to P , but not necessarily
lower semi-continuous.
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APPENDIX: PROOFS

PROOF OF THEOREM 1. Define Ai
k(P ) := �−C(si

t (i,k,P )) as the complement

of C(si
t (i,k,P )). Let

Ak(P ) :=
∞⋂
i=1

Ai
k(P ) and ÂP :=

∞⋃
k=1

Ak(P ) ∪
∞⋃
i=1

{si}.

Each set Ak(P ) is an intersection of closed sets and is therefore closed itself.
By construction, each set Ak(P ) has an empty interior; indeed, the complement of
Ak(P ); that is, the set

� − Ak(P ) =
∞⋃
i=1

C
(
si
t (i,k,P )

)
is open and dense. Hence, ÂP is a first-category set. Notice that ÂP is the accep-
tance set of P ∈ �(�).

Since

� − ÂP ⊂ � −
(
Ak(P ) ∪

∞⋃
i=1

{si}
)

⊂
∞⋃
i=1

[
C

(
si
t (i,k,P )

) − {si}]
for all k ∈ N ,

P(� − ÂP ) ≤
∞∑
i=1

P
(
C

(
si
t (i,k,P )

) − {si}) ≤
∞∑
i=1

1

2k+i
= 1

2k
,

also for all k ∈ N , which yields that P(ÂP ) = 1. Thus, the global category test
does not reject the data-generating process with probability one. It remains to show
that the test cannot be manipulated. Suppose we are given a ζ ∈ ��(�). We first
show that there exists a subset Â of �, which is a countable union of closed sets
with empty interior, and a Borel set B ⊂ �(�) such that

ζ(B) = 1(A.1)

and

∀P∈B ÂP ⊂ Â.(A.2)

We show later (in Corollary A.1, which follows this proof) that for every s the
set {P ∈ �(�) : s ∈ ÂP } is Borel. Since

B ⊂ {P ∈ �(�) : s /∈ ÂP }
for every s ∈ � − Â, we obtain that

∀
s∈�−Â

ζ
({P ∈ �(�) : s ∈ ÂP }) = 0.
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This means that � − Â ⊂ R0
ζ , and so the complement of R0

ζ is a first category set.

We will now construct sets Â and B with properties (A.1)–(A.2). Consider the
sets

Bi
k(m) := {P ∈ �(�) : t (i, k,P ) > m};

Lemma A.1, which follows this proof, shows that the sets Bi
k(m) are open and so

Borel. Since this sequence of sets is descending (with respect to m, for any given
k and i) and its intersection is empty, for every l = 1,2, . . . there exists an m such
that

ζ(Bi
k(m)) ≤ 1

2k+i+l
;

denote by mi
k(l) any such m.

Let now

Ai
k(l) := � − C(si

m) for m = mi
k(l),

Ak(l) :=
∞⋂
i=1

Ai
k(l)

and

Â(l) :=
∞⋃

k=1

Ak(l) ∪
∞⋃
i=1

{si}.

The set A(l) is a countable union of closed sets with empty interior by an argument
analogous to that used, in the main body of the paper, for the case of the sets ÂP ,
and so is

Â :=
∞⋃
l=1

Â(l).

To show that (A.1) and (A.2) are satisfied, notice that, by the definition of Bi
k(m)

for m = mi
k(l), if P /∈ Bi

k(m), then C(si
m) ⊂ C(si

t (i,k,P )); therefore,

if P ∈ �(�) −
∞⋃
i=1

Bi
k(m

i
k(l)) then Ak(P ) ⊂ Ak(l),

which in turn yields that

if P ∈ �(�) −
∞⋃

k=1

∞⋃
i=1

Bi
k(m

i
k(l)) then ÂP ⊂ Â(l).

Thus,

B :=
∞⋃
l=1

[
�(�) −

∞⋃
k=1

∞⋃
i=1

Bi
k(m

i
k(l))

]
⊂ {P ∈ �(�) : ÂP ⊂ Â}.
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It remains to show that ζ(B) = 1; however,

ζ(B) ≥ ζ

(
�(�) −

∞⋃
k=1

∞⋃
i=1

Bi
k(m

i
k(l))

)

≥ 1 −
∞∑

k=1

∞∑
i=1

ζ(Bi
k(m

i
k(l)))

≥ 1 −
∞∑

k=1

∞∑
i=1

1

2k+i+l
= 1 − 1

2l

for every l ∈ N . �

LEMMA A.1. For every t ∈ N , the set

Bi
k(t) := {P ∈ �(�) : t (i, k,P ) > t}

is open.

PROOF. Let P ∈ Bi
k(t). By definition, t (i, k,P ) > t , which means that

P
(
C(si

t ) − {si}) >
1

2k+i
.

Further, there exists an m > t such that

P
(
C(si

t ) − C(si
m)

)
>

1

2k+i
;(A.3)

indeed, the sequence of sets C(si
t ) − C(si

m) is ascending (as m goes to infinity),
and its union is equal to C(si

t ) − {si}.
Note that each cylinder is an open and closed subset of �, and so is C(si

t ) −
C(si

m). Thus, the function f :� → R given by

f (s) =
{

1, for every s ∈ C(si
t ) − C(si

m),
0, for every s /∈ C(si

t ) − C(si
m),

is continuous.
Let

δ := P
(
C(si

t ) − C(si
m)

) − 1

2k+i
,(A.4)

and let N(P ) stand for the set all measures Q ∈ �(�) such that∣∣∣∣ ∫ f dQ −
∫

f dP

∣∣∣∣ < δ.

This last inequality means that∣∣Q(
C(si

t ) − C(si
m)

) − P
(
C(si

t ) − C(si
m)

)∣∣ < δ;
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by (A.3) and (A.4),

Q
(
C(si

t ) − {si}) ≥ Q
(
C(si

t ) − C(si
m)

)
> 1/2k+i ,

which implies that Q ∈ Bk
i (t).

That is, the set N(P ), which is an open neighborhood of P in weak∗-topology,
is contained in Bi

k(t). �

COROLLARY A.1. For every s ∈ �, the set {P ∈ �(�) : s ∈ ÂP } is Borel.

PROOF. If s = si for some i ∈ N , then {P ∈ �(�) : s ∈ ÂP } = �(�) by def-
inition. Suppose, therefore, that s 
= si for any i ∈ N . It suffices to show that the
sets {P ∈ �(�) : s ∈ C(si

t (i,k,P ))} are Borel, as

{P ∈ �(�) : s ∈ ÂP } = �(�) −
[ ∞⋂

k=1

( ∞⋃
i=1

{
P ∈ �(�) : s ∈ C

(
si
t (i,k,P )

)})]
.

Since s 
= si and Ck
P (si

0) = �(�), there is a unique m = 0,1, . . . such that
s ∈ Ck

P (si
m) − Ck

P (si
m+1). For this m, we have that {P ∈ �(�) : s ∈ C(si

t (i,k,P ))} =
�(�) − {P ∈ �(�) : t (i, k,P ) > m}, and so the set {P ∈ �(�) : s ∈ C(si

t (i,k,P ))}
is closed by Lemma A.1. �

PROOF OF PROPOSITION 2. First, consider P ∈ (A)c. It follows from (4.2)
and from P(Rm

P ) ≤ 1
(m+1)3 that, for any cylinder C ⊆ Rm

P ,

Qm
P (C) ≥ P(C)

P (Rm
P )

≥ (m + 1)3P(C).

By definition, QP (A) ≥ π(m)Qm
P (A) = 1

(m+1)m
Qm

P (A) for any m ≥ 1 and
set A ∈ �. Hence, for any cylinder C ⊆ Rm

P ,

QP (C) ≥ (m + 1)3

(m + 1)m
P (C) ≥ mP(C).(A.5)

Given a theory P ∈ (A)c, let R̂P and R̄P be the rejection sets of P for the
tests T̂S and T̄ , respectively. Consider a path s ∈ R̂P . Then, s ∈ R̂m

P for every
m ≥ 1, because T̂ m is harder than T̂S. Since R̂m

P comprises cylinders, there is a
cylinder C(sn(m)) with base on sn(m) = s | n(m) such that C(sn(m)) ⊆ R̂m

P ⊆ Rm
P .

By (A.5),

QP (C(sn(m)))

P (C(sn(m)))
≥ m �⇒ lim

m→∞
QP (C(sn(m)))

P (C(sn(m)))
= ∞.

Thus, s ∈ R̄P . So, if P ∈ (A)c, then R̂P ⊆ R̄P .
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Now, consider a theory P ∈ A. Consider a path s ∈ R̂P . Given that P assigns
probability one to the union of all its atoms, it follows that s is not an atom of P .
So, P(C(st )), st = s | t, approaches zero as t goes to infinity. Since P has finitely
many atoms, there exists an η > 0 such that the probability of each atom is smaller
than η. Let t be large enough so that P(C(st )) < η. It follows that C(st ) contains
no atom. Hence, P(C(st )) = 0. So, s ∈ R̄P . It follows that T̄ is harder than T̂ . �

REMARK A.1. The existence of a cylinder with finite base that satisfies (4.1)
can be shown as follows.

If P ∈ (A)c, then there are infinitely many atoms, or the set of all nonatoms has
positive measure. If there are infinitely many atoms, then one of them (say s) has
to have measure below 1

4(m+1)3 . It follows that the P(C(st )), st = s | t , must be

strictly positive and (for t large enough) smaller than 1
2(m+1)3 . Now, consider the

case in which the set of all nonatoms of P has positive measure. Assume that every
nonatom s ∈ � of P is contained in a cylinder Cs (with finite base) such that P

assigns zero probability to Cs . Let C̄ be the union of all zero-probability cylinders.
There are only countably many cylinders with finite base. So, P(C̄) = 0. Given
that C̄ contains all nonatoms of P , it follows that the set of nonatoms has zero
measure. This is a contradiction. So, P has a nonatom s such that P(C(st )) 
= 0,
st = s | t , for all t ∈ N. Since P(C(st )) approaches zero as t goes to infinity,
P(C(st )) must (for t large enough) be smaller than 1

2(m+1)3 .

LEMMA A.2. The test T̃ LR satisfies the joint measurability condition.

PROOF. We need show that the set

{(θ, s,P ) ∈ 	 × � × �(�) :T LR
S (θ, s,P ) = 1}

is measurable. Notice that

{(θ, s,P ) ∈ 	 × � × �(�) :T LR
S (θ, s,P ) = 1}

=
{
(θ, s,P ) ∈ 	 × � × �(�) :

∀n∈NP (C(sn)) 
= 0 and lim sup
n→∞

QSθ (C(sn))

P (C(sn))
< ∞

}
= 	 × � × �(�)

−
∞⋂

k=1

∞⋃
n=1

{(θ, s,P ) ∈ 	 × � × �(�) :QSθ (C(sn)) > kP (C(sn))},

where (as always) sn = s | n. To see the last equality, notice that QSθ (C(sn)) > 0
for every cylinder C(sn), so if P(C(sn)) = 0, then the inequality QSθ (C(sn)) >
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kP (C(sn)) is satisfied. Therefore, it suffices to show that sets of the form

{(θ, s,P ) ∈ 	 × � × �(�) :QSθ (C(sn)) > kP (C(sn))}
are measurable.

Further, the inequality that defines this last set depends only on sn, not on the
entire path s, so this set can be represented as a union of sets

{(θ,P ) ∈ 	 × �(�) :QSθ (C(sn)) > kP (C(sn))} × C(sn),

and so it suffices to show that sets of the form {(θ,P ) ∈ 	 × �(�) :QSθ (C) >

kP (C)}, where C is a given cylinder (with base on sn), are measurable. We will
show that every set of this form is open.

Indeed, a pair (θ,P ) belonging to this set means that∑
i:si

θ∈C

1

i(i + 1)
> kP (C);(A.6)

denote by η > 0 the difference between the two expressions. Take the set of all
paths θ such that ∑

i:si
θ
∈C

1

i(i + 1)
> M := kP (C) + η

2
,(A.7)

and the set of all probability distributions P such that

|P(C) − P (C)| < η

2k
.

Obviously, the Cartesian product of the two sets contains the pair (θ,P ), and
any pair (θ,P ) that belongs to this Cartesian product satisfies condition (A.6)
(for P replaced with P and θ replaced with θ ). So, it suffices to show that the
two sets are open. The fact that the latter set is open follows directly from the
definition of weak*-topology, as any cylinder C is a closed and open subset of �.

We will now show that the former set is also open. If θ satisfies (A.7), then∑
i:si

θ
∈Ct (θ)

1

i(i + 1)
> M,

for some t = 1,2, . . . , where

Ct(θ) := C ∩ {0,1}t × {It+1(θ)} × {It+2(θ)} × · · · .
This follows from the assumption that the paths from {0,1}t ×{It (θ)}×{It+1(θ)}×
· · · precede the paths from Sθ − {0,1}t × {It+1(θ)} × {It+2(θ)} × · · · in the se-
quence s1

θ , s2
θ , . . . and the fact that, if an infinite sum exceeds some number, then

sufficiently large finite sums exceed that number as well.
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With no loss of generality, one can assume that t ≥ n; recall that n is the length
of the base of C. Then, for any θ

′ ∈ C(θt ), the cylinder with base on the first t

outcomes of θ , we have∑
i:si

θ
′∈C

1

i(i + 1)
>

∑
i:si

θ
′∈Ct (θ

′
)

1

i(i + 1)
= ∑

i:si
θ
∈Ct (θ)

1

i(i + 1)
> M;

the middle equality follows from the fact that the first t outcomes of θ and θ
′

coincide, and so si(θ) ∈ Ct(θ) is equivalent to si(θ
′
) ∈ Ct(θ

′
). �

LEMMA A.3. Let S = {s1, s2, . . .} be a countable dense subset of �. Take
any P ∈ �(�) such that P(S) = 0. The set of paths on which T LR

S rejects P is a
superset of the set of paths on which the global category test T̂S rejects P .

PROOF. Take any s ∈ � such that T̂S(s,P ) = 0 and k = 1,2, . . . . Then,
s ∈ C(si

t (i,k,P )) for some i = 1,2, . . . ; in other words, st (i,k,P ) = si
t (i,k,P ). On one

hand, as P(S) = 0,

P
(
C

(
si
t (i,k,P )

)) = P
(
C

(
si
t (i,k,P )

) − {si}) ≤ 1

2k+i
,

and, on the other,

QS(
C

(
si
t (i,k,P )

)) ≥ QS(si) = 1

i(i + 1)
.

Thus,

QS(C(st(i,k,P )))

P (C(st (i,k,P )))
≥ 2k+i

i(i + 1)
≥ 2k−1

for every k = 1,2, . . . , which means that the sequence (QS(C(st ))
P (C(st ))

)∞t=1 is un-
bounded. �

PROOF OF PROPOSITION 3. We show that, except countably many paths θ ,
the set R0

ζ (θ) is a superset of the revelation set R0
ζ of the global category test T̂S

for S = Sθ . Suppose that R0
ζ (θ) is not a superset of the revelation set R0

ζ of the
global category test T̂S for S = Sθ . Then, by Lemma A.3, it must be the case that

ζ
({P ∈ �(�) :P(Sθ ) > 0}) > 0.

If this is the case for an uncountable number of θ ∈ 	, then there exist m,n ∈ N

such that

ζ

({
P ∈ �(�) : P(Sθ ) >

1

m

})
>

1

n
,
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for an uncountable set � ⊂ 	.
Notice that the set 	 can be partitioned into countable subsets such that θ1

and θ2 belong to the same subset if Sθ1 = Sθ2 ; that is, paths θ1 and θ2 coincide
on all but a finite number of outcomes. Notice further that, if θ1 and θ2 belong
to the distinct subsets, then the sets Sθ1 and Sθ2 are disjoint. Without loss of gen-
erality, we can assume that distinct paths from � belong to distinct subsets; that
is, they differ on an infinite number of outcomes. Therefore, for any P ∈ �(�),
P(Sθ ) > 1/m for at most m − 1 paths θ ∈ �. Further, we can restrict attention
to an infinite but countable subset of �; from now on, we will denote this subset
by �.

Consider any linear ordering � of the set �, and define sets

Dk
θ :=

{
P ∈ �(�) : θ is kth path from � such that P(Sθ ) >

1

m

}
for k = 1, . . . ,m − 1 and θ ∈ �.

For a given k = 1, . . . ,m − 1, the sets Dk
θ are pairwise disjoint, and, for a given

θ ∈ �, the sets Dk
θ are pairwise disjoint. The measurability of the sets Dk

θ follows
from the measurability of the set of all measures P that at a given path s have an
atom of measure larger than a given number. Finally,{

P ∈ �(�) :P(Sθ ) >
1

m

}
= D1

θ ∪ · · · ∪ Dm−1
θ

for every θ ∈ �.
Thus,

m − 1 = (m − 1) · ζ(�(�))

≥
m−1∑
k=1

ζ

( ⋃
θ∈�

Dk
θ

)
=

m−1∑
k=1

(∑
θ∈�

ζ(Dk
θ )

)

= ∑
θ∈�

(
m−1∑
k=1

ζ(Dk
θ )

)

= ∑
θ∈�

ζ

({
P ∈ �(�) :P(Sθ ) >

1

m

})

>
∑
θ∈�

1

n
= ∞,

a contradiction. �

PROOF OF PROPOSITION 4. Let T̃ ′ :� × �(�) → {0,1} be a test defined by
T̃ ′(s,P ) = 1 if and only if T̃ (θ, s,P ) = 1 ṽ-almost surely. The test T̃ ′ is a prequen-
tial test because, given two theories P and P ′ equivalent along s, for every θ ∈ 	,
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T̃ (θ, s,P ) = 1 if and only if T̃ (θ, s,P ′) = 1. Hence, T̃ (θ, s,P ) = 1, ṽ-almost
surely, if and only if T̃ (θ, s,P ′) = 1, ṽ-almost surely. Since, for every θ ∈ 	,

P
({s ∈ � | T̃ (θ, s,P ) = 1}) = 1,

by Fubini’s theorem

P
({s ∈ � | T̃ (θ, s,P ) = 1 ṽ-almost surely}) = 1.

So, T̃ ′ does not reject the data-generating process with probability one. By
Shmaya’s (2008) result [which relies on Martin’s (1998) theorem], there exists ζ̃

such that for all s ∈ �

ζ̃
({P ∈ �(�) | T̃ ′(s,P ) = 1}) ≥ 1 − δ. �

Let X be a metric space. Recall that a function f :X → R is lower semi-
continuous at an x ∈ X if, for every sequence (xn)

∞
n=1 converging to x,

∀ε>0 ∃N ∀n≥N f (xn) > f (x) − ε.

The function f is lower semi-continuous if it is lower semi-continuous at every
x ∈ X. We refer the reader to Engelking [(1989), Problem 1.7.14] for these defini-
tions and some basic results regarding lower semi-continuous functions.

LEMMA A.4. Let U ⊂ X be an open set where X is a compact metric
space. Equip X with the σ -algebra of Borel subsets. Let �(X) be the set of all
probability measures on X. Equip �(X) with the weak*-topology. The function
F :�(X) → [0,1] defined by

F(P ) = P(U)

is lower semi-continuous.

PROOF. See Dudley (1989), Theorem 11.1.1(b). �

THEOREM [Fan (1953)]. Let X be a compact Hausdorff space, which is a
convex subset of a linear space, and let Y be a convex subset of linear space (not
necessarily topologized). Let f be a real-valued function on X × Y such that for
every y ∈ Y , f (x, y) is lower semi-continuous, with respect to x. If f is also con-
vex, with respect to x, and concave, with respect to y, then

min
x∈X

sup
y∈Y

f (x, y) = sup
y∈Y

min
x∈X

f (x, y).

We note that Fan’s (1953) theorem allows for X and Y that may not be subsets
of linear spaces. We, however, apply his result only to subsets of linear spaces.
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PROOF OF PROPOSITION 5. Let X = �(�), let Y be the subset of �(�(�))

that consists of all random generators of theories with finite support. So, an el-
ement ζ of Y can be described by a finite sequence of probability measures
{P1, . . . ,Pn} and positive weights {π1, . . . , πn} that add up to one, where ζ se-
lects Pi with probability πi, i = 1, . . . , n. Let the function f :X × Y → R be
defined by

f (P, ζ ) := EP EζT =
n∑

i=1

πi

∫
T (s,Pi) dP (s).(A.8)

We now check that the assumptions of Fan’s theorem are satisfied. Since T is
an open test, the set

UQ = {s ∈ � :T (s,Q) = 1}
is open for every Q ∈ �(�). Therefore, by Lemma A.4,

P(UQ) =
∫

T (s,Q)dP (s)

is a lower semi-continuous function of P . Thus, for every ζ ∈ Y , the function
f (P, ζ ) is lower semi-continuous on X as a weighted average of lower semi-
continuous functions.

By definition, f is linear with respect to both x and y, and so it is convex with
respect to x and concave with respect to y. By the Riesz and Banach–Alaoglu
theorems, X is a compact space in weak∗-topology; it is a metric space, and so
Hausdorff [see, e.g., Rudin (1973), Theorem 3.17].

Thus, by Theorem 1,

min
P∈X

sup
ζ∈Y

EP EζT = sup
ζ∈Y

min
P∈X

EP EζT .

Notice that the left-hand side of this equality exceeds 1−ε, as the test T is assumed
not to reject the data-generating process with probability 1 − ε; indeed, for a given
P ∈ X, take ζ such that ζ({P }) = 1. Therefore, the right-hand side exceeds 1 − ε,
which yields the existence of a random generator of theories ζ ∈ Y such that

EP EζT > 1 − ε − δ

for every P ∈ �(�). Taking, for any given s ∈ �, the probability measure P such
that P({s}) = 1, we obtain

ζ
({Q ∈ �(�) :T (s,Q) = 1}) > 1 − ε − δ. �
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