
The Annals of Statistics
2008, Vol. 36, No. 5, 2531–2550
DOI: 10.1214/07-AOS540
© Institute of Mathematical Statistics, 2008

STEIN ESTIMATION FOR THE DRIFT OF GAUSSIAN PROCESSES
USING THE MALLIAVIN CALCULUS

BY NICOLAS PRIVAULT AND ANTHONY RÉVEILLAC

City University of Hong Kong and Université de la Rochelle

We consider the nonparametric functional estimation of the drift of a
Gaussian process via minimax and Bayes estimators. In this context, we con-
struct superefficient estimators of Stein type for such drifts using the Malli-
avin integration by parts formula and superharmonic functionals on Gaussian
space. Our results are illustrated by numerical simulations and extend the con-
struction of James–Stein type estimators for Gaussian processes by Berger
and Wolpert [J. Multivariate Anal. 13 (1983) 401–424].

1. Introduction. The maximum likelihood estimator μ̂ of the mean μ ∈ R
d

of a Gaussian random vector X in R
d with covariance σ 2IRd under a probabil-

ity Pμ is well known to be equal to X itself. It is efficient in the sense that it attains
the Cramér–Rao bound

σ 2d = Eμ[‖X − μ‖2
d ] = inf

Z
Eμ[‖Z − μ‖2

d ], μ ∈ R
d,

over all unbiased mean estimators Z satisfying Eμ[Z] = μ, for all μ ∈ R
d , where

‖ · ‖d denotes the Euclidean norm on R
d .

In [5], James and Stein have constructed superefficient estimators for the mean
of X ∈ R

d , of the form (
1 − d − 2

‖X‖2
d

)
X,

whose risk is lower than the Cramér–Rao bound σ 2d in dimension d ≥ 3.
The problem of drift estimation for Gaussian processes is of interest in several

fields of application. For example, the process (Xt)t∈[0,T ] can be interpreted as an
observed output signal with decomposition

Xt = ut + Xu
t , t ∈ [0, T ],

where the drift (ut )t∈[0,T ] is viewed as an input signal to be estimated and per-
turbed by a centered Gaussian noise (Xu

t )t∈[0,T ]; see, for example, [4], Chap-
ter VII. Such results find applications in, for example, telecommunication (additive
Gaussian channels) and finance (identification of market trends).
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Berger and Wolpert [2, 11], have constructed estimators of a James–Stein type
for the drift of a Gaussian process (Xt)t∈[0,T ] by applying the James–Stein pro-
cedure to the independent Gaussian random variables appearing in the Karhunen–
Loève expansion of the process. In this context, û := (Xt)t∈R+ is seen as a mini-
max estimator of its own drift (ut )t∈R+ .

Stein [10] has shown that the James–Stein estimators on R
d could be extended

to a wider family of estimators, using integration by parts for Gaussian measures.
Let us briefly recall Stein’s argument, which relies on integration by parts with
respect to the Gaussian density and on the properties of superharmonic functionals
for the Laplacian on R

d . Given an estimator of μ ∈ R
d of the form X + g(X),

where g : Rd → R
d is sufficiently smooth, and applying the integration by parts

formula

Eμ[(Xi − μi)gi(X)] = σ 2
Eμ[∂igi(X)](1.1)

to g = σ 2∇ logf = σ 2(∂1 logf, . . . , ∂d logf ), one obtains

Eμ[‖X + σ 2∇ logf (X) − μ‖2
d ] = σ 2d + 4σ 4

d∑
i=1

Eμ

[
∂2
i

√
f (X)√

f (X)

]
,

that is, X + σ 2∇ logf (X) is a superefficient estimator if

d∑
i=1

∂2
i

√
f (x) < 0, dx-a.e.,

which is possible if d ≥ 3. In this case, X + σ 2∇ logf (X) improves in the mean
square sense over the efficient estimator û which attains the Cramér–Rao bound
σ 2d on unbiased estimators of μ.

In this paper we present an extension of Stein’s argument to an infinite-
dimensional setting using the Malliavin integration by parts formula, with ap-
plication to the construction of Stein type estimators for the drift of a Gaussian
process (Xt)t∈[0,T ]. Our approach applies to Gaussian processes such as Volterra
processes and fractional Brownian motions. It also extends the results of Berger
and Wolpert [2] in the same way that the construction of Stein [10] extends that of
James and Stein [5], and this allows us to recover the estimators of the James–Stein
type introduced by Berger and Wolpert [2] as particular cases. Here we replace the
Stein equation (1.1) with the integration by parts formula of the Malliavin calculus
on Gaussian space. Our estimators are given by processes of the form

Xt + Dt logF, t ∈ [0, T ],
where F is a positive superharmonic random variable on Gaussian space and Dt

is the Malliavin derivative indexed by t ∈ [0, T ]. In contrast to the minimax esti-
mator û, such estimators are not only biased but also anticipating with respect to
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the Brownian filtration (Ft )t∈[0,T ]. This, however, poses no problem when one has
access to complete paths from time 0 to T .

When the variance of X is large it can be shown that the percentage gain of this
estimator is at least equal to the universal constant

16

π4

∫
R4

e−(x2+y2+z2+r2)/2 dx dy dzdr

x2 + 9y2 + 25z2 + 49r2 ,(1.2)

which approximately represents 11.38%; see (4.4) below.
We proceed as follows. Section 2 deals with notation and preliminaries on

the representation of Gaussian processes. In Section 3 we show the estimator
û := (Xt)t∈[0,T ] is minimax and in the case of independent increments we prove a
Cramér–Rao bound over all unbiased drift estimators, which is attained by û. Then
we turn to the construction of superefficient drift estimators using the Malliavin
gradient operator which show, as in the finite dimensional case, that the minimax
estimator û is not admissible. We also construct nonnegative superharmonic func-
tionals using cylindrical functionals on Gaussian space and show that the James–
Stein estimators of Berger and Wolpert [2] can be recovered as particular cases of
our approach. Examples and numerical simulations for the gain of such estima-
tors are presented in Section 4 for the estimation of a deterministic drift. Proofs of
the main results are provided in Section 5 using the Girsanov theorem, functional
Bayes estimators and the Malliavin calculus.

2. Notation. Let T > 0. Consider a real-valued centered Gaussian process
(Xt)t∈[0,T ] with covariance function

γ (s, t) = E[XsXt ], s, t ∈ [0, T ],
on a probability space (�,F ,P), where F is the σ -algebra generated by X.

We choose to represent (Xt)t∈[0,T ] as an isonormal Gaussian process on the
real separable Hilbert space H generated by the functions χt(s) = min(s, t), s, t ∈
[0, T ], with the scalar product 〈·, ·〉H and norm ‖ · ‖H defined by

〈χt ,χs〉H := γ (s, t), s, t ∈ [0, T ].
In this case X is viewed as an isometry X :H → L2(�,F ,P ) with

X(χt) := Xt, t ∈ [0, T ],
and {X(h) : h ∈ H } is a family of centered Gaussian random variables satisfying

E[X(h)X(g)] = 〈h,g〉H , h,g ∈ H.

We will assume in addition that γ (s, t) has the form

γ (s, t) =
∫ s∧t

0
K(t, r)K(s, r) dr, s, t ∈ [0, T ],
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where K(·, ·) is a deterministic kernel and

(Kh)(t) :=
∫ t

0
K(t, s)ḣ(s) ds

is differentiable in t ∈ [0, T ]. In this case the scalar product in H satisfies

〈h,g〉H = 〈K∗h,K∗g〉 = 〈h,�g〉,
where � = KK∗ and K∗ is the adjoint of K with respect to

〈h,g〉 := 〈ḣ, ġ〉L2([0,T ],dt);
see [1]. Moreover, for any orthonormal basis (hk)k∈N of H , we have the expansion

Xt =
∞∑

k=0

〈χt , hk〉HX(hk)

=
∞∑

k=0

〈
1[0,t], �̇hk

〉
L2([0,T ],dt)X(hk)(2.1)

=
∞∑

k=0

�hk(t)X(hk),

t ∈ [0, T ], and the representation

Xt =
∫ t

0
K(t, s) dWs, t ∈ [0, T ],

where (Ws)s∈[0,T ] is a standard Brownian motion; see [1].
Note that there exists other constructions of Gaussian processes leading to dif-

ferent series decompositions for Xt , for example, Berger and Wolpert [2, 11] use
Karhunen–Loève expansions; see [8] for a formulation of our results in that setting.

3. Main results.

Efficient drift estimator. Recall that the classical linear parametric estimation
problem for the drift of a diffusion consists in estimating the coefficient θ appear-
ing in

dξt = θat (ξt ) dt + dYt , ξ0 = 0,

with a maximum likelihood estimator θ̂T given by

θ̂T =
∫ T

0 at (ξt ) dξt∫ T
0 a2

t (ξt ) dt
;(3.1)

see [6, 9] in case (Yt )t∈R+ is a Brownian motion.
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In this paper we consider the nonparametric functional estimation of the drift of
a one-dimensional Gaussian process (Xt)t∈R+ with decomposition

dXt = u̇t dt + dXu
t ,(3.2)

where (ut )t∈[0,T ] is an adapted process of the form

ut =
∫ t

0
u̇s ds, t ∈ [0, T ], u̇ ∈ L2(� × [0, T ]),

and (Xu
t )t∈R+ is a centered Gaussian process under a probability Pu which is the

translation of P on � by u. The expectation under Pu will be denoted by Eu.

DEFINITION 3.1. A drift estimator ξ is called unbiased if

Eu[ξt ] = Eu[ut ], t ∈ [0, T ],
for all square-integrable adapted process (ut )t∈[0,T ]. It is called adapted if the
process (ξt )t∈[0,T ] is adapted to the filtration (Ft )t∈[0,T ] generated by (Xu

t )t∈[0,T ].

Here, the canonical process (Xt)t∈[0,T ] will be considered as an unbiased esti-
mator of its drift (ut )t∈[0,T ] under Pu, with risk defined as

R(γ,μ, û) := Eu

[‖X − u‖2
L2([0,T ],dμ)

]
=

∫ T

0
Eu[|Xu

t |2]μ(dt)

=
∫ T

0
γ (t, t)μ(dt),

where μ is a finite weighting Borel measure on [0, T ]. In case u is constrained
to have the form ut = θt , t ∈ [0, T ], θ ∈ R, our estimator û satisfies ûT = θ̂T T ,
where θ̂T is given by (3.1), T > 0, with the asymptotics θ̂T → θ in probability
as T tends to infinity.

In the next proposition we note that, as in the finite dimensional Gaussian case,
the estimator û = (Xt)t∈[0,T ] is minimax. Note that no adaptedness condition is
imposed on ξ in the infimum (3.3).

PROPOSITION 3.2. The estimator û = (Xt)t∈[0,T ] is minimax. For all u ∈ �,
we have

R(γ,μ, û) = Eu

[∫ T

0
|Xt − ut |2μ(dt)

]
(3.3)

= inf
ξ

sup
v∈�

Ev

[∫ T

0
|ξt − vt |2μ(dt)

]
.
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This proposition is proved in Section 5 using functional Bayes estimators.
We close this section with a more precise statement concerning the efficiency

of the estimator û = (Xt)t∈[0,T ] in the case where (Xt)t∈[0,T ] has independent
increments, that is, γ (s, t) is of the form

γ (s, t) =
∫ s∧t

0
σ 2

u du,

where σ ∈ L2([0, T ], dt) is an a.e. nonvanishing function with

E

[∫ T

0

u̇2
s

σ 2
s

ds

]
< ∞.(3.4)

In this case the following proposition allows us to compute a Cramér–Rao bound
attained by û, and shows that û = (Xt)t∈[0,T ] is an efficient estimator.

PROPOSITION 3.3. Cramér–Rao inequality. For any unbiased and adapted
estimator ξ of u we have

Eu

[∫ T

0
|ξt − ut |2μ(dt)

]
≥ R(σ,μ, û),(3.5)

where u ∈ L2(� × [0, T ],Pu ⊗ μ) is adapted and the Cramér–Rao type bound

R(σ,μ, û) :=
∫ T

0

∫ t

0
σ 2

s ds μ(dt)

is independent of u and is attained by the efficient estimator û = X.

This proposition is proved in Section 5 using the Girsanov theorem.

Superefficient drift estimators. Next we construct a family of superefficient es-
timators of u of the form X + ξ , whose mean square error is strictly smaller than
the minimax risk R(γ,μ, û) of Proposition 3.2 when ξ ∈ L2([0, T ] × �,Pu ⊗ μ)

is a suitably chosen stochastic process. This estimator will be biased and anticipat-
ing with respect to the Brownian filtration. In the next theorem we follow Stein’s
argument which uses integration by parts, but we replace (1.1) by the duality rela-
tion (5.5) between the gradient and divergence operators on Gaussian space.

Before turning to the main result, we need to introduce some elements of analy-
sis and Malliavin calculus on Gaussian space, see, for example, [7]. Fix (hn)n≥1 a
total subset of H , and let S denote the space of cylindrical functionals of the form

F = fn(X
u(h1), . . . ,X

u(hn)),(3.6)

where fn is in the space of infinitely differentiable rapidly decreasing functions on
R

n, n ≥ 1.
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DEFINITION 3.4. The Malliavin derivative D is defined as

DtF =
n∑

i=1

�hi(t)∂ifn(X
u(h1), . . . ,X

u(hn)), t ∈ [0, T ],

for F ∈ S of the form (3.6).

It is known that D is closable (cf. Proposition 1.2.1 of [7]) and its closed domain
will be denoted by Dom(D).

DEFINITION 3.5. We define the Laplacian � by

�F = traceL2([0,T ],dμ)⊗2 DDF =
∫ T

0
DtDtFμ(dt)

on the space Dom(�) made of all F ∈ Dom(D) such that DtF ∈ Dom(D), t ∈
[0, T ], and (DtDtF )t∈[0,T ] ∈ L2([0, T ], dμ), P-a.s.

For F ∈ S of the form (3.6), we have

�F =
n∑

i,j=1

〈�hi,�hj 〉L2([0,T ],dμ)∂i∂jfn(X
u(h1), . . . ,X

u(hn)),

and it can be easily shown that the operator � is closable; see, for example, [8].
We will say that a random variable F in Dom(�) is �-superharmonic on � if

�F(ω) ≤ 0, P(dω)-a.s.(3.7)

The next theorem is our main result on the construction of superefficient estima-
tors. It is proved in Section 5 using the Malliavin calculus on Gaussian space.

THEOREM 3.6. (i) Unbiased risk estimate. For any ξ ∈ L2(� × [0, T ],Pu ⊗
μ) such that ξt ∈ Dom(D), t ∈ [0, T ], and (Dtξt )t∈[0,T ] ∈ L1(�×[0, T ],Pu ⊗μ),
we have

Eu

[‖X + ξ − u‖2
L2([0,T ],dμ)

]
(3.8)

= R(γ,μ, û) + ‖ξ‖2
L2(�×[0,T ],Pu⊗μ)

+ 2Eu

[∫ T

0
Dtξtμ(dt)

]
.

(ii) Stein-type estimator. For any P-a.s. positive random variable F ∈ Dom(D)

such that DtF ∈ Dom(D), t ∈ [0, T ], and (DtDtF )t∈[0,T ] ∈ L1(� × [0, T ],Pu ⊗
μ), we have

Eu

[‖X + D logF − u‖2
L2([0,T ],dμ)

]
= R(γ,μ, û) − Eu

[‖D logF‖2
L2([0,T ],dμ)

] + 2Eu

[
�F

F

]
(3.9)

= R(γ,μ, û) + 4Eu

[
�

√
F√

F

]
.
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REMARKS.

(a) The �-superharmonicity of F is sufficient but not necessary for X +
D logF to be superefficient, namely, it can be replaced by the �-superharmonicity
of

√
F , which is a weaker assumption; see [3] in the finite dimensional case.

(b) As in [10], the superefficient estimators constructed in this way are minimax
in the sense that, from Proposition 3.2 and Theorem 3.6(ii), for all u ∈ H we have,

Eu

[‖X + D logF − u‖2
L2([0,T ],dμ)

]
< R(γ,μ, û) = inf

ξ
sup
v∈�

Ev

[∫ T

0
|ξt − vt |2 dt

]
,

provided �
√

F < 0 on a set of strictly positive P-measure, thus showing that the
minimax estimator û = (Xt)t∈[0,T ] is inadmissible.

We now turn to some examples of nonnegative superharmonic functionals with
respect to the Laplacian �, which satisfy the hypotheses of Theorem 3.6 and will
be used in the numerical applications of Section 4. We assume that (�hk)k≥1 is
orthogonal in L2([0, T ], dμ), and we let

λk = ‖�hk‖L2([0,T ],dμ), k ≥ 1.

For example, in case μ(dt) = dt the sequence (hk)k≥1 can be realized as the solu-
tion of the eigenvalue problem

�hk = −λ2
kḧk, ḣk(T ) = 0, k ≥ 1.(3.10)

Superharmonic functionals on Gaussian space can be constructed as cylindrical
functionals, by composition with finite-dimensional functions. From the expres-
sion

�F =
n∑

i=1

∂2
i fn(λ

−1
1 Xu(h1), . . . , λ

−1
n Xu(hn)),

of � on cylindrical functionals, we check that

F = fn(λ
−1
1 Xu(h1), . . . , λ

−1
n Xu(hn))

is superharmonic on � if and only if fn is superharmonic on R
n. Note that when

u ∈ H is deterministic, any superharmonic functional of the form

fn(λ
−1
1 Xu(h1), . . . , λ

−1
n Xu(hn))

can be replaced with

fn(λ
−1
1 X(h1), . . . , λ

−1
n X(hn)),

which retains the same harmonicity property since u is deterministic, and can be
directly computed from an observation of X.
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Given a ∈ R and b ∈ R
n, let fn,a,b : Rn → R be defined as

fn,a,b(x1, . . . , xn) = ‖x + b‖a = (
(x1 + b1)

2 + · · · + (xn + bn)
2)a/2

,

then
√

fn,a,b is superharmonic on R
n, n ≥ 3, if and only if a ∈ [4 − 2n,0]. Letting

Fn,a,b = fn,a,b(λ
−1
1 Xu(h1), . . . , λ

−1
n Xu(hn)),

we have

Dt logFn,a,b = a

n∑
i=1

λ−1
i �hi(t)(bi + λ−1

i Xu(hi))

|b1 + λ−1
1 Xu(h1)|2 + · · · + |bn + λ−1

n Xu(hn)|2

and

�
√

Fn,a,b =
n∑

i=1

∂2
i

√
fn,a,b(λ

−1
1 Xu(h1), . . . , λ

−1
n Xu(hn)),

since (�hk)k≥1 is orthogonal in L2([0, T ], dμ). Hence,

�
√

Fn,a,b√
Fn,a,b

= a(n − 2 + a/2)/2

|b1 + λ−1
1 Xu(h1)|2 + · · · + |bn + λ−1

n Xu(hn)|2
(3.11)

is negative if 4 − 2n ≤ a ≤ 0. On the other hand,

�Fn,a,b

Fn,a,b

= a(n + a − 2)

|b1 + λ−1
1 Xu(h1)|2 + · · · + |bn + λ−1

n Xu(hn)|2
(3.12)

is negative for a ∈ (2 − n,0] and vanishes for a = 2 − n. Taking bi = λ−1
i 〈u,hi〉,

i = 1, . . . , n, we have

Dt logFn,2−n,b = −(n − 2)
[�nX]t

‖�nX‖2
L2([0,T ],dt)

,

where �n denotes the orthogonal projection

�nX(t) :=
n∑

k=1

λ−1
k X(hk)�hk(t) =

n∑
k=1

λ−1
k

(
bk + λ−1

k Xu(hk)
)
�hk(t).

The resulting estimator

Xt + Dt logFn,2−n,b = Xt − (n − 2)
[�nX]t

‖�nX‖2
L2([0,T ],dt)

, t ∈ [0, T ],

is of a James–Stein type, but it is not a shrinkage operator.
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From (3.12) we have �Fn,2−n,b = 0, hence (3.9) and (3.11) show that

‖D logFn,2−n,b‖2
L2([0,T ]×�,Pu⊗dt)

= −4Eu

[
�

√
Fn,2−n,b√

Fn,2−n,b

]
(3.13)

= (n − 2)2
Eu

[
1

|λ−1
1 X(h1)|2 + · · · + |λ−1

n X(hn)|2
]

= (n − 2)2
Eu

[‖�nX‖−2
L2([0,T ],dt)

]
,

and the risk of X + D logFn,2−n,b is

Eu

[‖X + D logFn,2−n,b − u‖2
L2([0,T ],dt)

]
= R(γ,μ, û) − (n − 2)2

Eu

[‖�nX‖−2
L2([0,T ],dt)

]
.

4. Numerical application. In this section we present numerical simulations
which allow us to measure the efficiency of our estimators. We use the superhar-
monic functionals constructed as cylindrical functionals in the previous section,
and we assume that u ∈ H is deterministic.

We work in the case of independent increments and we additionally assume
that σt = σ is constant, t ∈ [0, T ], that is, (Xt)t∈[0,T ] is a Brownian motion with
variance σ 2, �h(t) = σ 2h(t), t ∈ [0, T ], and

R(σ,μ, û) = σ 2

2
T 2.

Letting

hn(t) =
√

2T

σπ(n − 1/2)
sin

((
n − 1

2

)
πt

T

)
, t ∈ [0, T ], n ≥ 1,

that is,

ḣn(t) = 1

σ

√
2

T
cos

((
n − 1

2

)
πt

T

)
, t ∈ [0, T ], n ≥ 1,

provides an orthonormal basis (hn)n≥1 of H such that (�hk)k≥1 is orthogonal in
L2([0, T ], dt), with

λn = σT

π(n − 1/2)
, n ≥ 1,

and satisfies (3.10). The Stein estimator X + D logF of u will be given by

Dt logFn,2−n,b = −(n − 2)

√
2

T

n∑
k=1

X(hk)

|λ−1
1 X(h1)|2 + · · · + |λ−1

n X(hn)|2

× sin
((

k − 1

2

)
πt

T

)
.
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For simulation purposes we will represent the (nondrifted) Brownian motion
(Xu

t )t∈[0,T ] via the Paley–Wiener expansion

Xu
t = σ 2

∞∑
n=1

ηnhn(t) = σ

√
2T

π

∞∑
n=1

ηn

sin((n − 1/2)(πt)/T )

(n − 1/2)
,(4.1)

where (ηn)n≥1 are independent standard Gaussian random variables with unit vari-
ance under Pu and

ηn =
∫ T

0
ḣn(s) dXu

s , n ≥ 1.

In this case we have

Dt logFn,2−n,b = −(n − 2)

√
2

T

n∑
k=1

ηk + 〈u,hk〉∑n
l=1 λ−2

l (ηl + 〈u,hl〉)2

(4.2)

× sin
((

k − 1

2

)
πt

T

)
.

The gain of the superefficient estimator X + D logFn,2−n,b compared to the
minimax and efficient estimator û is given by

G(u,σ,T ,n) := − 4

R(σ,μ, û)
Eu

[
�

√
Fn,2−n,b√

Fn,2−n,b

]
, n ≥ 3.

From (3.9) and (3.13) we have

G(u,σ,T ,n) = 2(n − 2)2
E

[(
n∑

l=1

(
π

(
l − 1

2

)
(ηl + 〈u,hl〉)

)2
)−1]

,(4.3)

hence,

lim
σ→∞G(u,σ,T ,n) = (n − 2)2 8

π2 E

[(
n∑

l=1

(2l − 1)2η2
l

)−1]
.(4.4)

The quantity (4.4) can be evaluated as a Gaussian integral to yield (1.2). Unlike in
the classical Stein method, we stress that here n becomes a free parameter and there
is some interest in determining the values of n which yield the best performance.
The next proposition is proved by standard arguments (see [8] for details), and is
illustrated by Figure 2.

PROPOSITION 4.1. For all σ,T > 0, and u ∈ H , we have

G(u,σ,T ,n) � 6

nπ2

as n goes to infinity.
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FIG. 1. u(t) = t, t ∈ [0, T ]; n = 5.

In the sequel we choose ut = αt , t ∈ [0, T ], α ∈ R. Figure 1 gives a sample path
representation of the process X + D logF .

In this case, from (4.3) we have

G(α,σ,T ,n) = 2(n − 2)2
E

[(
n∑

l=1

(
π

(
l − 1

2

)
ηl − α

√
2T

σ
(−1)l

)2
)−1]

,

from which it follows that G(α,σ,T ,n) converges to

(n − 2)2 8

π2 E

[(
n∑

l=1

(2l − 1)2η2
l

)−1]
,

when α−2σ 2/T tends to infinity, and is equivalent to(
1 − 2

n

)2 σ 2

α2T

as α−2σ 2/T tends to 0. Figure 2 represents the gain in percentage of the superef-
ficient estimator X +σ 2D logFn,2−n,b compared to the efficient estimator û using
Monte Carlo simulations, that is, we represent 100 × G(α,σ,T ,n) as a function
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FIG. 2. Percentage gain as a function of n for 10000 samples and α = σ = T = 1.

of n ≥ 3. An optimal value

nopt = arg max{G(α,σ,T ,n) :n ≥ 3}
of n exists in general and is equal to 4 when α = σ = T = 1. Figure 3 shows the
variation of the gain as a function of n and T for α = σ = 1. Figure 4 represents
the variation of the gain as a function of n and σ .

5. Proofs of the main results.

Minimaxity. In order to prove the minimaxity of the estimator û = X, we will
need the notion of Bayes estimator. We will make use of the next lemma which is
classical in the framework of Gaussian filtering. We say that a Gaussian process Z

has covariance � and drift v ∈ � if Z − v is a centered Gaussian process with
covariance �.

LEMMA 5.1. Let Z be a Gaussian process with covariance operator �τ and
drift v ∈ H , and assume that X is a Gaussian process with drift Z and covariance
operator � given Z. Then, conditionally to X, Z has drift

f �→ 〈f, (� + �τ )
−1�v〉 + X

(
(� + �τ )

−1�τf
)
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FIG. 3. Gain as a function of n and T .

and covariance

�τ (� + �τ )
−1�.

FIG. 4. Gain as a function of n and σ .
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Note that, unlike in Proposition 3.3, no adaptedness or unbiasedness restriction
is made on ξ in the infimum taken in (5.2) below.

PROPOSITION 5.2. Bayes estimator. Let P
τ
v denote the Gaussian distribution

on � with covariance operator �τ and drift v ∈ H . The Bayes risk∫
�

Ez

[∫ T

0
|ξt − zt |2μ(dt)

]
dP

τ
v(z)(5.1)

of any drift estimator (ξt )t∈[0,T ] on � under the prior distribution P
τ
v is uniquely

minimized by

ξ
τ,v
t := 〈χt , (�τ + �)−1�v〉 + X

(
(�τ + �)−1�τχt

)
, t ∈ [0, T ],

which has risk ∫ T

0
〈χt ,�(�τ + �)−1�τχt 〉μ(dt)

(5.2)

= inf
ξ

∫
�

Ez

[∫ T

0
|ξt − zt |2μ(dt)

]
dP

τ
v(z).

PROOF. Let Z denote a Gaussian process with drift v ∈ H and covariance �τ .
From Lemma 5.1, (Zt )t∈[0,T ] has drift

t �→ 〈χt , (�τ + �)−1�v〉 + X
(
(�τ + �)−1�τχt

)
, t ∈ [0, T ],

and covariance �τ (�τ + �)−1� conditionally to X. Hence, the Bayes risk of an
estimator ξ under the prior distribution P

τ
v is given by∫

�
Ez

[∫ T

0
|ξt − zt |2μ(dt)

]
dP

τ
v(z)

= E

[
E

[∫ T

0
|ξt − Zt |2μ(dt)

∣∣∣X]]

= E

[∫ T

0
|ξt − E[Zt | X]|2μ(dt)

]
+ E

[∫ T

0
Var(Zt |X)μ(dt)

]

= E

[∫ T

0

∣∣ξt − 〈χt , (�τ + �)−1�v〉 − X
(
(�τ + �)−1�τχt

)∣∣2μ(dt)

]

+
∫ T

0
〈χt ,�(�τ + �)−1�τχt 〉μ(dt),

which is minimized by

ξ
τ,v
t := E[Zt | X] = 〈χt , (�τ + �)−1�v〉 − X

(
(�τ + �)−1�τχt

)
,

t ∈ [0, T ].
�
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Clearly, ξτ,v is unique in the sense that it is the only estimator which minimizes
the Bayes risk (5.1). This shows, in particular, that every ξτ,v is admissible in the
sense that if an estimator ξ satisfies

Ez

[‖ξ − z‖2
L2([0,T ],dμ)

] ≤ Ez

[‖ξτ,v − z‖2
L2([0,T ],dμ)

]
, z ∈ �,

then∫
�

Ez

[‖ξ − z‖2
L2([0,T ],dμ)

]
dP

τ
v(z) ≤

∫
�

Ez

[‖ξτ,v − z‖2
L2([0,T ],dμ)

]
dP

τ
v(z)

=
∫ T

0
〈χt ,�(�τ + �)−1�τχt 〉μ(dt),

hence, ∫
�

Ez

[‖ξ − z‖2
L2([0,T ],dμ)

]
dP

τ
v(z) =

∫ T

0
〈χt ,�(�τ + �)−1�τχt 〉μ(dt),(5.3)

and ξ = ξτ,v by Proposition 5.2.

PROOF OF PROPOSITION 3.2. We apply Proposition 5.2 in the case �τf (t) =
τ 2f (t), t ∈ [0, T ]. Clearly, taking ξ = 0 yields

R(γ,μ, û) = sup
u∈�

Eu

[∫ T

0
|Xt − ut |2μ(dt)

]
≥ inf

ξ
sup
u∈�

Eu

[∫ T

0
|ξt − ut |2μ(dt)

]
.

On the other hand, from Proposition 5.2, for all processes ξ we have

sup
u∈�

Eu

[∫ T

0
|ξt − ut |2μ(dt)

]
≥

∫
�

Ez

[∫ T

0
|ξt − zt |2μ(dt)

]
dP

τ
0(z)

≥
∫ T

0
〈χt , (I + �/τ 2)−1�χt 〉μ(dt),

for all τ > 0, hence,

inf
ξ

sup
u∈H

Eu

[∫ T

0
|ξt − ut |2μ(dt)

]
≥

∫ T

0
〈χt ,�χt 〉μ(dt) = R(γ,μ, û). �

Cramér–Rao bound.

PROOF OF THE CRAMÉR–RAO INEQUALITY PROPOSITION 3.3. By the Gir-
sanov theorem, Pu is absolutely continuous with respect to P under the condi-
tion (3.4), with

dPu = �(u)dP,

where

�(u) := exp
(∫ T

0

u̇s

σ 2
s

dXs − 1

2

∫ T

0

u̇2
s

σ 2
s

ds

)
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denotes the Girsanov–Cameron–Martin density, and the canonical process
(Xt)t∈[0,T ] becomes a continuous Gaussian semimartingale under Pu, with
quadratic variation σ 2

t dt and drift u̇t dt .
Since ξ is unbiased, for all ζ ∈ H , we have

Eu+εζ [ξt ] = Eu+εζ [ut + εζt ]
= Eu+εζ [ut ] + εEu+εζ [ζt ]
= Eu+εζ [ut ] + εζt , t ∈ [0, T ], ε ∈ R,

hence,

ζt = d

dε
Eu+εζ [ξt − ut ]|ε=0

= d

dε
E[(ξt − ut )�(u + εζ )]|ε=0

= E

[
(ξt − ut)

d

dε
�(u + εζ )|ε=0

]

= Eu

[
(ξt − ut )

d

dε
log�(u + εζ )|ε=0

]

= Eu

[
(ξt − ut )

(∫ T

0

ζ̇s

σ 2
s

dXs −
∫ T

0

ζ̇s u̇s

σ 2
s

ds

)]

= Eu

[
(ξt − ut )

∫ T

0

ζ̇s

σ 2
s

dXu
s

]

= Eu

[
(ξt − ut )

∫ t

0

ζ̇s

σ 2
s

dXu
s

]
,

where the exchange between expectation and derivative is justified by classical
uniform integrability arguments. Thus, by the Cauchy–Schwarz inequality and the
Itô isometry, we have

ζ 2
t ≤ Eu

[(∫ t

0

ζ̇s

σ 2
s

dXu
s

)2]
Eu[|ξt − ut |2]

=
∫ t

0

ζ̇ 2
s

σ 2
s

ds Eu[|ξt − ut |2], t ∈ [0, T ].
It then suffices to take

ζt =
∫ t

0
σ 2

s ds, t ∈ [0, T ],
to get

Varu[ξt ] = Eu[|ξt − ut |2] ≥
∫ t

0
σ 2

s ds, t ∈ [0, T ],(5.4)
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which leads to (3.5) after integration with respect to μ(dt). As noted above, û =
(Xt)t∈[0,T ] is clearly unbiased under Pu and it attains the lower bound R(σ,μ,

û). �

Superefficient drift estimators.

PROOF OF THEOREM 3.6. Let δ :L2(�;H,Pu) → L2(�,Pu) denote the
closable adjoint of D, that is, the divergence operator under Pu, which satisfies
the integration by parts formula

Eu[Fδ(v)] = Eu[〈v,DF 〉], F ∈ Dom(F ), v ∈ Dom(δ),(5.5)

with the relation

δ(hF ) = FX(h) − 〈h,DF 〉;
see [7], for F ∈ Dom(D) and h ∈ H such that hF ∈ Dom(δ). Note that (5.5) is an
infinite-dimensional version of the integration by parts (1.1), which can be proved
using, for example, the countable sequence of Gaussian random variables appear-
ing in the Paley–Wiener expansion (4.1) of X.

(i) We have

Eu

[‖X + ξ − u‖2
L2([0,T ],dμ)

]
= Eu

[∫ T

0
|Xu

t + ξt |2μ(dt)

]

= Eu

[∫ T

0
|Xu

t |2μ(dt)

]
+ ‖ξ‖2

L2(�×[0,T ],Pu⊗μ)
+ 2Eu

[∫ T

0
Xu

t ξtμ(dt)

]

= R(γ,μ, û) + ‖ξ‖2
L2(�×[0,T ],Pu⊗μ)

+ 2Eu

[∫ T

0
Xu

t ξtμ(dt)

]

and

Eu[ξtX
u
t ] = Eu[ξtX

u(χt )]
= Eu[ξt δ(χt )]
= Eu[〈χt ,Dξt 〉]
= Eu[Dtξt ], t ∈ [0, T ],

hence, (3.8) holds.
(ii) Next, we specialize the above argument to processes ξ of the form

ξt = Dt logF, t ∈ [0, T ],
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where F is an a.s. strictly positive and sufficiently smooth random variable.
From (3.8) we have

Eu

[‖X + D logF − u‖2
L2([0,T ],μ)

]
= R(γ,μ, û) + ‖D logF‖2

L2(�×[0,T ],Pu⊗μ)
+ 2Eu

[∫ T

0
DtDt logFμ(dt)

]

= R(γ,μ, û) + Eu

[∫ T

0

(∣∣∣∣DtF

F

∣∣∣∣
2

+ 2DtDt logF

)
μ(dt)

]
,

and we use the relation∣∣∣∣DtF

F

∣∣∣∣
2

+ 2DtDt logF = 2
DtDtF

F
−

∣∣∣∣DtF

F

∣∣∣∣
2

, t ∈ [0, T ].
Concerning the last equality, we note that

2
DtDtF

F
−

∣∣∣∣DtF

F

∣∣∣∣
2

= 2√
F

Dt

(
DtF√

F

)
= 4√

F
DtDt

√
F, t ∈ [0, T ],

which implies

4
�

√
F√

F
= 2

�F

F
−

∫ T

0
|Dt logF |2μ(dt),(5.6)

and allows us to conclude from (i). �
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