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MULTIPLE LOCAL WHITTLE ESTIMATION
IN STATIONARY SYSTEMS

BY P. M. ROBINSON1

London School of Economics

Moving from univariate to bivariate jointly dependent long-memory time
series introduces a phase parameter (γ ), at the frequency of principal inter-
est, zero; for short-memory series γ = 0 automatically. The latter case has
also been stressed under long memory, along with the “fractional differenc-
ing” case γ = (δ2 − δ1)π/2, where δ1, δ2 are the memory parameters of the
two series. We develop time domain conditions under which these are and are
not relevant, and relate the consequent properties of cross-autocovariances to
ones of the (possibly bilateral) moving average representation which, with
martingale difference innovations of arbitrary dimension, is used in asymp-
totic theory for local Whittle parameter estimates depending on a single
smoothing number. Incorporating also a regression parameter (β) which,
when nonzero, indicates cointegration, the consistency proof of these implic-
itly defined estimates is nonstandard due to the β estimate converging faster
than the others. We also establish joint asymptotic normality of the estimates,
and indicate how this outcome can apply in statistical inference on several
questions of interest. Issues of implemention are discussed, along with im-
plications of knowing β and of correct or incorrect specification of γ , and
possible extensions to higher-dimensional systems and nonstationary series.

1. Introduction. In the analysis of long-memory time series, two major is-
sues emerge in multivariate extension of univariate results. One is the possibility
of cointegration, whereby one or more linear combinations of the (stationary or
nonstationary) observables reduces memory. In general, rules of large sample in-
ference based on a no-cointegration assumption are invalidated by cointegration,
and vice versa. The literature on cointegration under long memory is dwarfed by
that under autoregressive (AR) unit roots, but has been developed in several direc-
tions recently. Another distinctive multivariate feature, which has attracted very lit-
tle attention, is phase, essentially the argument in polar co-ordinate representation
of the cross-spectrum. This is a particularly interesting issue in a “semiparamet-
ric” setting, where the spectral density matrix is modeled only near zero frequency.
For a jointly covariance stationary short-memory process, this matrix is continu-
ous at zero frequency; thus, since the quadrature spectrum (the imaginary part of
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the cross-spectrum) is an odd function, it, and thus the phase, are zero there. In
long-memory series, on the other hand, where spectra diverge at zero frequency,
the cross-spectrum is discontinuous there, and the phase need not be zero. In the
literature, essentially two values for the phase have been considered, albeit rather
implicitly, with little discussion of implications.

The present paper develops large sample statistical inference, in a possibly coin-
tegrated system, with unknown phase. The formal results focus on a bivariate sys-
tem, extension of our techniques for establishing asymptotic statistical theory to
a system of arbitrary dimension being seemingly relatively straightforward, albeit
introducing issues of specification and implementation, whose detailed treatment
would be lengthy; we include a brief discussion. We also focus on covariance sta-
tionary observable series. This becomes a theoretical possibility when we switch
from an AR unit root cointegration setting to a fractional one, and it has been of re-
cent practical interest in financial time series analysis. We include, however, a brief
discussion of possible nonstationary extensions.

Consider a bivariate jointly covariance stationary process ut = (u1t , u2t )
′, hav-

ing spectral density matrix fu(λ) that satisfies

fu(λ)∼�(λ;α0)
−1	0�̄(λ;α0)

−1 as λ→ 0,(1.1)

�(λ;α)= diag
{|λ|δ1, |λ|δ2e−i sign(λ)γ }

, λ ∈ (−π,0)∪ (0, π].(1.2)

Here, α = (γ, δ′)′ for δ = (δ1, δ2)
′, where γ , δ1 and δ2 are real-valued, γ0 and δ0 =

(δ01, δ02)
′ in α0 = (γ0, δ

′
0)

′ are unknown, δ0i ∈ [0, 1
2), i = 1,2, 	0 is an unknown

2 × 2 positive definite matrix, and the overbar indicates complex conjugation; the
notation “∼” in (1.1) means that for each element, the ratio of real/imaginary parts
of the left and right sides tends to 1 (taking 0/0 = 1).

From (1.1), uit is said to have memory (parameter) δ0i , its spectral density fi(λ)
satisfying

fi(λ)∼ ωii |λ|−2δ0i as λ→ 0, i = 1,2,

where ωij is the (i, j)th element of 	. We deduce also that u1t , u2t have cross-
spectrum f12(λ) [the top right element of fu(λ)] satisfying

f12(λ)∼ ω12|λ|−χ0e−i sign(λ)γ0 as λ→ 0,(1.3)

where χ0 = δ02 + δ01. Then (see, e.g., [4], page 302, [12], page 48) γ0 is the phase
between u1t , u2t at λ = 0. There is no loss of generality in the restriction γ0 ∈
(−π,π ]. Thus the local approximation on the right of (1.3) is real-valued only if
ω12 = 0 and/or

γ0 = 0.(1.4)

To deduce another leading possibility, which applies to an extension of the frac-
tional ARMA class, a general model for fu(λ) is

fu(λ)=ϒ(λ;α0)
−1f∗(λ)ϒ̄(λ;α0)

−1, λ ∈ (−π,0)∪ (0, π],(1.5)



2510 P. M. ROBINSON

where ϒ(λ;α)= diag{υ(λ)δ1, υ(λ)δ2e−i sign(λ)γ }, υ(λ)= (1 − eiλ)ei sign(λ)π/2 and
f∗(λ) is continuous and Hermitian positive definite at λ= 0. Since υ(λ)∼ |λ| as
λ→ 0, (1.1) holds. On the other hand, with ν0 = δ02 − δ01,

γ0 = π

2
ν0(1.6)

gives ϒ(λ;α0)= diag{(1 − eiλ)δ01 , (1 − eiλ)δ02}ei sign(λ)δ01π/2, so since the scalar
factor has modulus 1, ut fractionally integrates an I (0) process; if the latter is
ARMA, ut is fractional ARMA. [Note that (1.6) reduces to (1.4) when δ01 = δ02.]
However, the fractional integration operator was originally motivated in a paramet-
ric framework [1], and in a semiparametric one there seems no overriding reason
to fix γ0. More generally, (1.1) with γ0 = (δ02 − δ01)cπ/2 can be shown to result
from generalizing the fractional differencing filter 1 − eiλ to (1 − ei|λ|1/c sign(λ))c,
c �= 0.

We can investigate the time domain implications of general γ0. The proof of the
following theorem is left to Section 5.

THEOREM 1. Denoting r12(j) = cov(u1j , u20), j ∈ Z, assume χ0 > 0 and,
for (κ+, κ−) �= (0,0),

bj = r12(j)− {κ+1(j ≥ 0)+ κ−1(j < 0)}|j |χ0−1(1.7)

satisfies

|bj − bj+1| ≤K|bj |/(|j | + 1), bj = o(|j |χ0−1) as |j | → ∞,(1.8)

where K throughout denotes an arbitrarily large positive generic constant. Then
(1.3) holds with

γ0 = arctan
{(
κ+ − κ−
κ+ + κ−

)
tan
π

2
χ0

}
,

(1.9)
ω12 = (κ+ + κ−)�(χ0) cos(πχ0/2)/(2π cosγ0).

In particular:

κ− = 0 is equivalent to γ0 = π

2
χ0, ω12 = κ+�(χ0)/(2π),(1.10)

κ+ = 0 is equivalent to γ0 = −π
2
χ0, ω12 = κ−�(χ0)/(2π).(1.11)

Solving (1.9) gives κ± = πω12 sin(πχ0/2 ± γ0)/�(χ0). In view of (1.7) and
the second part of (1.8), r12(j) dominates r12(−j) as j → ∞ in (1.10), and vice
versa in (1.11), while they decay at equal rates otherwise. The first part of (1.8)
implies, with (1.7), an analogous condition for r12(j), which is satisfied by vector
fractional ARMA processes. When κ+ = κ− in (1.9), the power-law approximation
is symmetric in j , and (1.4) results. On the other hand, (1.10) is a kind of weak
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causality (u2 → u1) condition; it agrees with (1.6) only if δ01 = 0. In general, the
theorem indicates that any value of γ0 is a possibility.

For the bivariate series zt = (yt , xt )
′, observed for t = 1, . . . , n, consider the

system

B0zt = ut , t ∈ Z, B0 =
(

1 −β0
0 1

)
(1.12)

with β0 unknown, so u1t is unobservable. When δ01 ≥ δ02, β0 cannot be identified
[from the spectral density matrix fz(λ) of zt near λ = 0] unless 	0 is suitably
restricted, for example, ω12 is known. When δ01 �= δ02, and β0 = 0, yt and xt have
unequal memories δ01, δ02, respectively. When δ01 < δ02 and β0 �= 0, then both xt
and yt have the same memory δ02, but the unobservable linear combination u1t =
yt − β0xt has less memory, δ01, and xt and yt are said to be cointegrated. Both
have a dominant common component with memory δ02, and so a dimensionality
reduction is achievable:

fz(λ)∼ (β0,1)
′(β0,1)ω22|λ|−2δ02, as λ→ 0.(1.13)

The right-hand side of (1.13) is singular, and the cointegrating error u1t has mem-
ory δ01. Included is the possibility that δ01 = 0, when u1t has short memory. We
focus on estimating θ0 = (β0, α

′
0)

′ under

0 ≤ δ01 < δ02 <
1
2 ,(1.14)

covering cointegrated systems (β0 �= 0), and, for δ01 < δ02, noncointegrated ones
(β0 = 0).

In [31] estimation of β0 in (1.12) was discussed with zt exhibiting quite gen-
eral forms of nonstationarity, and u1t being stationary or nonstationary. Reference
[27] pointed out that cointegration is possible even when zt is stationary with long
memory, as might be true of certain financial time series, say, and a number of
references (e.g., [6, 23, 24]) have developed theory and applications in this set-
ting. Financial time series are often very long, motivating reliance on only the
“semiparametric,” local, assumption (1.1). This justifies methods with only slow
convergence rates, but a very large n compensates. Faster rates are available in
parametric models, for example when ut is a fractional ARMA process. However,
if the ARMA component is misspecified, in that either the autoregressive (AR)
or moving average (MA) orders are underspecified, or both are overspecified, all
parameters will be inconsistently estimated. In [5] estimation of cointegrating sub-
spaces in a semiparametric fractional context was studied. A recent parametric
reference is [19].

We consider a narrow-band or local Whittle estimate θ̂ = (β̂, α̂′)′ = (β̂, γ̂ , δ̂1,

δ̂2)
′ extending that for scalar long-memory series of [20], whose asymptotic prop-

erties were developed by [29], and further studied by and extended to nonstation-
ary or noncointegrated multivariate systems by [18, 22, 26, 33–35]. References
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[36, 37] considered a version of it for cointegrated systems but with nonstation-
ary fractional observables, while [24] has alternative results in the stationary case.
We establish asymptotic properties of θ̂ . For estimates that are only implicitly de-
fined, a central limit theorem (CLT) is typically preceded by a consistency proof.
This is more difficult to establish than usual because β̂ converges faster than α̂.
Consistency is usually established by showing that, after suitable normalization,
the objective function converges uniformly in the parameter space to a limit which
identifies all parameters and can thus be uniquely optimized. In multiparameter
models this approach only works when all parameter estimates converge at the
same rate. Additionally, as encountered by Robinson [29] in local Whittle estima-
tion of the memory of a scalar series, our consistency result is insufficient to show
that in the usual mean value theorem relations commencing the CLT proof, points
on line segments between θ̂ and θ0 can be replaced to negligible effect by θ0;
a slow convergence rate for δ̂1, δ̂2 is needed, and established using the stronger
moment condition in any case required for the CLT.

The following section describes θ̂ . Section 3 presents regularity conditions,
a consistency result and CLT, and a small simulation study of finite-sample per-
formance. Section 4 contains further discussion. Proofs are in Sections 5–8.

2. Local Whittle estimation. For a generic vector wt define the periodogram
matrix Iw(λ)= n−1(

∑n
t=1wte

itλ)(
∑n
t=1wte

−itλ)′. Define the Fourier frequencies
λj = 2πj/n, for integer j . In connection with (1.2) we allow some choice of
“working model” for fu(λ) near λ= 0. Introduce

�(λ;α)= diag
{
ψ(λ)δ1,ψ(λ)δ2e−i sign(λ)γ }

,

for a given complex-valued function ψ(λ) such that ψ(−λ)= ψ̄(λ) and

ψ(λ)− |λ| = o(1) as λ→ 0.(2.1)

For example, ψ(λ) = |λ| or υ(λ). Defining A(λ; θ) = �(λ;α)BIz(λ)B ′�̄(λ;α),
where θ = (β,α′)′ and B is defined as in (1.12) with β0 replaced by β , consider
the objective function

Q(θ,	)= 1

m

m∑
j=1

[log det{�(λj ;α)−1	�̄(λj ;α)−1} + tr{A(λj ; θ)	−1}],

for 	 ∈ S, the set of real positive definite 2 × 2 matrices, and an integer m ∈
[1, n/2] which satisfies at least

1

m
+ m

n
→ 0 as n→ ∞.(2.2)

The real function Q is minimized over S by 	̂(θ) = Re{m−1 ∑m
j=1A(λj ; θ)},

leading to

R(θ)=Q(θ, 	̂(θ))= log det{	̂(θ)} − 2(δ1 + δ2)
1

m

m∑
j=1

log |ψ(λj )|.
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Thus estimate θ0 by θ̂ = arg min�R(θ), for a compact set � ∈ R4 such that
�=�β ×�γ ×�δ, with �β, �γ , �δ chosen as follows. Take �δ = {δ :−η1 ≤
δ1 ≤ δ2 − η2 ≤ 1

2 − η2 − η3}, where the ηi are arbitrarily small positive numbers
satisfying 0 < η1 < min(η2, η3), η2 + η3 <

1
2 ; our consistency proof necessitates

including a constraint corresponding to (1.14). We allow some δ1 < 0 because the
CLT requires θ0 to be interior to �, and we cover short memory, δ01 = 0. We
choose �γ = [η4 − π/2, π/2 − η4] for η4 ∈ (0, η3 − η1), so γ0 ∈�γ under (1.4)
and (1.6). We can take�β to be an arbitrarily large interval, possibly including {0}.

3. Asymptotic and finite-sample properties. Existence of fu(λ) implies that
for p ≥ 2 we can find a 2 × p matrix-valued function C(λ) such that C(−λ) =
C(λ) and

fu(λ)=C(λ)C̄(λ)′, λ ∈ (−π,π ].(3.1)

The representation (3.1) is familiar in case p = 2, but it is then obviously available
for p ≥ 2. Even when p = 2, C(λ) is defined only up to post-multiplication by
a unitary matrix, and when p > 2 the ambiguity is greater. From [12], page 61,
existence of fu(λ) is equivalent to ut having representation

ut =Eut +
∑
j∈Z

Cjεt−j , t ∈ Z,
∑
j∈Z

‖Cj‖2 <∞,(3.2)

where {εt } is a p × 1 vector process such that Eεt = 0, Eεtε′t = Ip (the p ×
p identity matrix), Eεsε′t = 0, s �= t , s, t ∈ Z, Cj = (2π)−1 ∫ π

−π C(λ)e−ijλ dλ,
and ‖ · ‖ is Euclidean norm. We will have to strengthen the conditions on εt for
asymptotic theory, but first discuss two other features of (3.2).

Moving average (MA) representations of long-memory time series models have
typically been one-sided in particular Cj = 0, all j < 0, in (3.2), implying ut is
purely nondeterministic (see, e.g., [11]). (An exception is [8], which considers a
parametric model.) With Assumption A2, and the stronger Assumption B2 be-
low for central limit theory, a one-sided representation was assumed in [29] in
asymptotic theory for local Whittle estimation of memory parameter estimation,
and subsequently by a number of authors in extensions of this work. On the other
hand, since the basic quantity modeled is the spectral density matrix, rather than
the process itself, there is no essential reason to impose one-sidedness. Indeed,
going back to the earlier literature one can find repeated examples of bilateral rep-
resentations in time series asymptotics (e.g., [2, 12, 25]). More recently, such rep-
resentations have been employed to model specific (non-Gaussian, short-memory)
phenomena (see, e.g., [3, 21], as well as examples in the electrical engineering lit-
erature, say). Our main motivation for allowing a bilateral representation here is to
indicate its ability to yield any phase under long memory.
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THEOREM 2. Let (3.2) hold with {εt } satisfying the conditions that follow it,
and, denoting the (k, �)th element of Cj by cjk�, let

gjk� = cjk� − {ξ+k�1(j ≥ 0)+ ξ−k�1(j < 0)}|j |δ0k−1

satisfy

|gjk� − gj+1,k�| ≤K|gjk�|/(|j | + 1), gjk� = o(|j |δ0k−1) as |j | → ∞,
for constants ξ+k�, ξ−k�, k = 1,2 and �= 1, . . . , p. Then (1.7) and (1.8) of Theo-
rem 1 hold with

κ+ = ξ ′+1ξ+2B(1 − χ0, δ02)+ ξ ′+1ξ−2B(δ01, δ02)+ ξ ′−1ξ−2B(1 − χ0, δ01),

κ− = ξ ′+1ξ+2B(1 − χ0, δ01)+ ξ ′−1ξ+2B(δ02, δ01)+ ξ ′−1ξ−2B(1 − χ0, δ02),

where ξ+�, ξ−� are p× 1 vectors with kth elements ξ+k�, ξ−k�, respectively.

Section 6 contains a proof sketch. When ξ−1 = ξ−2 = 0, so that ut is purely non-
deterministic, the relation �(x)�(1−x)= −π csc(πz) and trigonometric addition
formulae may be shown to give (1.6), to extend the known results for fractional
ARMA models. On the other hand, [6, 22–24] consider purely nondeterministic
long-memory vector sequences with zero phases, (1.4), and we do not know of Cj
satisfying this prescription. However, the power-law decay of MA coefficients is
only a sufficient condition for power-law spectral behavior. When ξ+1 = ξ+2 = 0,
so ut has a one-sided forward representation, then γ0 = −ν0π/2, the negative of
(1.6), and the theorem indicates that for bilateral models γ0 can take any value,
which depends on the ξ+�, ξ−� as well as the δ0i .

Another difference from the earlier references where MA representations are
used in asymptotic theory for local Whittle estimates is in the allowance for rec-
tangular, not necessarily square, Cj in (3.2), and thus ut generated by shocks of
higher dimension than the bivariate observable. Note that the equivalence prop-
erty mentioned when introducing (3.2) is lost when εt satisfies stronger assump-
tions, as in Assumption A2 below, but some generality can be recouped by the
allowance for p > 2. This is natural if xt , yt are seen as just two of a vector
of related observations that are analyzed pairwise. It is also natural if (1.12) is
viewed as a consequence of component models for xt , yt , namely xt = at + bt ,
yt = β0at + ct , where at , bt , ct are unobservable sequences such that at has mem-
ory δ02 and u1t = ct − β0bt has memory δ01; if the memories of bt and ct differ,
then b in Assumptions B1, B3 and B5 below is restricted. We can allow (at , bt , ct )
to have a nonsingular spectral density matrix by choosing p ≥ 3 in (3.1). Note
that xt and yt might themselves be instantaneous nonlinear functions of raw series
Xt, Yt , where Yt and Xt are nonlinearly related, for example (in view of evidence
of stationary long memory and cointegration in nonlinear functions of financial
time series, see, e.g., [6]), logged squares, with Xt, Yt generated by long-memory
stochastic volatility models, Xt = AtBt , Yt = A

β
t Ct , where At = eat , Bt = ebt ,

Ct = ect .
We introduce the following assumptions for our consistency result.



MULTIPLE LOCAL WHITTLE ESTIMATION 2515

ASSUMPTION A1. Property (1.1) holds, where ut is covariance stationary,
and for C(λ) in (3.1),

�(λ;α0)C(λ)− P = o(1) as λ→ 0+,(3.3)

where the real 2 × p matrix P satisfies PP ′ =	0, and C(λ) is differentiable in a
neighborhood of λ= 0, satisfying there

�(λ;α0)
d

dλ
C(λ)=O(λ−1) as λ→ 0+.(3.4)

ASSUMPTION A2. {εt } in (3.2) satisfy also E(εt |Ft−1) = E(εt ),E(εtε
′
t |

Ft−1) = E(εtε
′
t ), a.s., t ∈ Z, where Ft is the σ -field of events generated by εs ,

s ≤ t , and also P(ε′t εt > η)≤KP(X > η) for all η > 0 for some scalar nonnega-
tive random variable X such that EX <∞.

ASSUMPTION A3. Property (2.1) holds.

ASSUMPTION A4. θ0 ∈�.

ASSUMPTION A5. Property (2.2) holds.

ASSUMPTION A6.

0< |ω12|< (ω11ω22)
1/2.(3.5)

Assumption A6 on the one hand implies	0 is positive definite, and on the other
rules out

ω12 = 0,(3.6)

when u1t , u2t are incoherent at λ= 0 [cf. (1.3)]. Under (3.6) γ0 is unidentifiable.
We subsequently discuss related problems in which γ0 is known and (3.6) is per-
mitted. It could be covered in our theorems with extra detail, but while (3.6) is
milder than the time domain orthogonality condition r12(j) = 0, j ∈ Z, it is less
usual in the cointegration setting than (3.5), which tends to treat observables as
jointly dependent. Assumption A1 implies (1.1), and this and other conditions are
natural extensions or modifications of ones in [22, 29, 33].

THEOREM 3. Let Assumptions A1–A6 hold. Then

α̂→p α0, β̂ = β0 + op
((
m

n

)ν0
)

as n→ ∞.

To prove asymptotic normality we introduce the following assumptions.
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ASSUMPTION B1. Assumption A1 holds, with the right-hand side of (3.3)
replaced by O(λb), for some b ∈ (0,2].

ASSUMPTION B2. Assumption A2 holds, with also the elements of εt having
a.s. constant third and fourth moments and cross-moments, conditional on Ft−1.

ASSUMPTION B3. Property (2.1) holds for all γ ∈ �γ , after replacing its
right-hand side by O(λb), b ∈ (0,2].

ASSUMPTION B4. θ0 is an interior point of �.

ASSUMPTION B5. For any C <∞
(logm)2m1+2b

n2b + (logn)C

m
→ 0 as n→ ∞.(3.7)

The extensions of the previous conditions are similar to ones in earlier lit-
erature, the requirement (logn)C/m → 0 coping, as in [33], with the fact that
logn terms are not eliminated at the outset when ψ(λ) = |λ|. Define by �
the symmetric 4 × 4 matrix with (k, �)th element σk�, given by σ11 = 2μ{(1 −
2ν0)

−1 − (1 − ν0)
−2 cos2(γ0)}ω22/ω11, σ12 = −2μ(1 − ν0)

−1 sin(γ0)(ω12/ω11),
σ13 = 2μν0(1 − ν0)

−2 cos(γ0)ω12/ω11, σ14 = −2μν0(1 − ν0)
−2 cos(γ0)ω22/ω11,

σ22 = −σ34 = 2μρ2, σ23 = σ24 = 0, σ33 = σ44 = 4 + σ34, where μ= (1 − ρ2)−1,

ρ = ω12/(ω11ω22)
1/2. Write�n = diag{λ−ν0

m ,1,1,1} and letNk denote a k-variate
normal variate.

THEOREM 4. Let Assumptions B1–B5 and A6 hold. Then as n→ ∞
m1/2�n(θ̂ − θ0)

d→N4(0,�
−1).

A consistent estimate �̂ of � is formed by plugging θ̂ in place of θ0,
and elements of 	̂(θ̂) for those of 	0. After also replacing �n by �̂n =
diag{λδ̂1−δ̂2m ,1,1,1}, we can form asymptotically valid confidence regions for θ0,
and also test hypotheses of interest, such as the linear homogeneous restrictions
β0 = 0 “no-cointegration”; (1.4) “zero-phase”; (1.6) “purely nondeterministic”;
γ0 = (δ01 + δ02)π/2 “weak causality”; δ01 = 0 “short-memory cointegrating er-
ror.” A small Monte Carlo study of finite-sample performance was carried out
along such lines. To satisfy (1.1), ut was generated from the fractional ARMA
diag{(1 − L)δ01, (1 − L)δ02}(1 − 0.5L)ut = R1/2εt , where L is the lag opera-
tor, the εt are bivariate normal, and R has elements 1 and 4 down the main-
diagonal and off-diagonal element 2ρ. Thus γ0 = ν0π/2 (and ω12 = 4ρ/π). We
took δ0 = (0.05, 0.45)′ and (0.2, 0.3)′, ρ = 0.75 and 0.9, β0 = 1. On each of 1000
replications, θ̂ was computed for three values of m, [n2/3/2], [n2/3], 2n2/3 in each
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TABLE 1
Frequency of Wald test rejections, nominal 5% level

n = 128 n = 512 n = 2048

δ01 δ02 ρ m β γ δ1 m β γ δ1 m β γ δ1

0.05 0.45 0.75 13 95.0 8.6 18.3 32 99.6 8.4 25.0 81 100 6.1 38.9
0.05 0.45 0.75 25 93.5 6.0 59.0 64 99.9 5.5 76.5 161 100 3.5 83.9
0.05 0.45 0.75 51 69.8 6.0 99.5 128 96.3 4.5 100 323 100 6.4 100
0.05 0.45 0.9 13 97.3 5.5 18.1 32 99.8 6.3 32.9 81 100 5.0 52.9
0.05 0.45 0.9 25 96.4 4.1 61.5 64 99.9 3.5 82.7 161 100 4.2 93.2
0.05 0.45 0.9 51 84.1 2.3 98.9 128 99.9 4.4 100 323 100 11.0 100
0.2 0.3 0.75 13 92.5 16.8 40.6 32 94.4 21.7 66.8 81 95.6 15.2 94.9
0.2 0.3 0.75 25 89.7 12.0 88.6 64 92.6 17.0 99.1 161 98.0 12.9 100
0.2 0.3 0.75 51 90.6 4.9 100 128 93.3 7.9 100 323 99.6 11.0 100
0.2 0.3 0.9 13 91.9 15.7 41.7 32 93.3 16.1 73.1 81 98.7 12.0 97.3
0.2 0.3 0.9 25 88.8 10.5 91.5 64 95.8 12.8 99.8 161 99.8 9.0 100
0.2 0.3 0.9 51 91.0 5.5 100 128 98.0 7.8 100 323 100 6.1 100

of three sample sizes, n = 128, 512 and 2048. We employed ψ(λ) = |λ| (so lo-
cal misspecification was incurred), and η1 = 0.01, η2 = η3 = 0.02, η4 = 0.005,
�β = [−3,3]. Table 1 gives Wald test rejection frequencies, at nominal two-sided
5% level, for the hypotheses β0 = 0 (under “β”), (1.6) (under “γ ”) and δ01 = 0
(under “δ1”).

The second hypothesis is true so that size is measured, while the others are false
so that power is measured. When δ0 = (0.2, 0.3)′ the gap ν0 is very small (and hard
to detect); here the test on γ0 is clearly oversized, even for large n, though matters
improve for large m, and for δ0 = (0.05, 0.45)′ the sizes are better on average,
albeit variable. For the test on δ01 power is poor for the smallest m, especially
but unsurprisingly when δ01 = 0.05, but increases satisfactorily with both. Power
for testing β0 is mostly very high. Overall, it seems hard to draw firm conclusions
about the effect of ρ, while a relatively largem appears to work best. Our technical
results can be readily adapted to justify score and pseudo-likelihood-ratio-type
tests.

4. Discussion.

REMARK 1. Lack of block-diagonality in� suggests that correctly fixing α in
R(θ) or employing an estimate α̃ which converges faster than m1/2 gives an esti-

mate, β̂(α), say, that is more efficient than β̂ , satisfying m1/2λ
−ν0
m {β̂(α0)− β0} d→

N1(0, σ
−1
11 ). Going even further, but assuming (1.6), [15] provided an even more

precise estimate of β0, having the same efficiency as one minimizingQ(θ,	) after
replacing α and 	 by known α0 and 	0; this estimate has also the advantage of a
closed form representation. However, the need to select more than one bandwidth
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number, and in other respects suitably design the estimate of α0, and possibly 	0,
presents some disadvantage.

REMARK 2. On the other hand, computationally simpler but less efficient esti-
mates than β̂ are available. Reference [27] suggested the narrow-band least squares
estimate

β̃ = Re

{
m∑
j=1

Iyx(λj )

} / m∑
j=1

Ix(λj ),(4.1)

where (Iyx(λ), Ix(λ))′ makes up the second column of Iz(λ), and showed it to
be consistent under very similar conditions to some of those for Theorem 1; [32]
showed it is (n/m)ν0 -consistent (cf. Theorem 1). It advantageously avoids estimat-
ing α0. Reference [6] showed β̃ to be (n/m)ν0m1/2-consistent and asymptotically
normal under (3.6) and χ0 < 1/2; [23] gave analogous results for a weighted ver-
sion of (4.1). Even when a CLT for β̃ , or another simple estimate, is available, the
limiting variance depends on α0. Under (3.5), [32] showed that (n/m)ν0(β̃ − β0)

converges in probability to a nonzero constant, so no useful inferential result is
available. Our β̂ corrects the bias.

REMARK 3. Simpler estimates of other parameters are available. We can es-
timate δ01 and δ02 using univariate local Whittle (see, e.g., [20, 29]), bivariate
log-periodogram [28] or bivariate local Whittle [22, 33] techniques, though such
estimation of δ01 requires a preliminary estimate of β0. Given a preliminary esti-
mate β̃, a simple estimate of γ0 is

γ̃ = arctan

[
Im

{
m∑
j=1

s(λj )

}/
Re

{
m∑
j=1

s(λj )

}]
,

where s(λ)= Iyx(λ)− β̃Ix(λ).

REMARK 4. When γ0 = 0,� is block-diagonal with respect to β̂, δ̂ on the one
hand and γ̂ on the other. Treating γ0 as an unknown parameter seems unique in a
long-memory setting, and it is worth noting the effects of its prior misspecification.
Suppose we fix γ = γ ∗ in R(θ), and then minimize with respect to β, δ. Denoting
θ∗

0 = (β0, γ
∗, δ01, δ02)

′, arguments like those in the proofs of Theorems 1 and 2
give

	̂(θ∗
0 )

p→
[

ω11 ω12 cos(γ ∗ − γ0)

ω12 cos(γ ∗ − γ0) ω22

]
.

Likewise, taking a ∼p b to mean a/b→p 1 element-wise, calculations in the proof
of Theorem 4 give

∂	̂(θ∗
0 )

∂β

p∼ 2λ−ν0
m

1 − ν0

[
2ω12 cos(γ0) ω22 cos(γ ∗)
ω22 cos(γ ∗) 0

]
.
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Thus from (8.3) in the proof of Theorem 4 below,

∂R(θ∗
0 )

∂β

p∼ 2λ−ν0
m

1 − ν0

ω12ω22 sin(γ ∗ − γ0) sin(γ ∗)
ω11ω22 −ω2

12 cos2(γ ∗ − γ0)
.

It is readily seen that (∂/∂δk)R(θ∗
0 ) →p 0, but due to the nondiagonal limiting

structure of (∂2/∂θ ∂θ ′)R(θ∗
0 ), it appears that unless γ ∗ = γ0, or γ ∗ = 0, not only

is the β0 estimate only (n/m)ν0 -consistent but the δ0i estimates are inconsistent.
When γ0 �= γ ∗ = 0, these estimates are asymptotically normal but their limiting
variance matrix is complicated, and depends on γ0. Our discussion suggests a more
serious cost to incorrectly fixing γ ∗ �= 0, for example, when γ is replaced by νπ/2
inQ(θ,	), where ν = δ2 − δ1; see (1.6). However, it can also be inferred that such
bias problems are absent under (3.6). There are two cases of potential interest. In
one, (3.6) is assumed a priori, in the other it is not; in both γ0 is specified. In both
cases the estimates of β0, δ01, δ02, after correct centering and normalization as in
Theorem 4, converge to independent zero-mean normal variates, whose variances
can be deduced from the formulae in � in the latter case (which the CLT of [24]
addresses).

REMARK 5. On the other hand, if β0 is known (e.g., to be zero, where there is
no cointegration) we can infer from Theorems 3 and 4 that after correct centering
andm1/2 normalization, the estimates of γ0 and δ0 are asymptotically independent,
with limiting variances given in the inverse of the matrix consisting of the last three
rows and columns of �. In fact the consistency proof is much simpler than that of
Theorem 3, and the results hold for |δ0i |< 1

2 , i = 1,2, with �δ chosen suitably.

REMARK 6. Also in the known noncointegrated case β0 = 0, consistent esti-
mation of γ0, as well as of δ0, is relevant in inference based on the sample mean
z= (z1 + · · · + zn)/n. Under our conditions it may be shown that as n→ ∞

diag{n1/2−δ01, n1/2−δ02}(z−Ez1)

d→N2
(
0,

(
2πωij cos

(
(i − j)γ0

)
/
(
�(δ0i + δ0j + 2) cos

(
π(δ0i + δ0j )/2

))))
,

where the (i, j)th element of the 2 × 2 variance matrix is indicated. In [30] infer-
ence was developed in which the ωij and δ0 are replaced by consistent estimates
[better than log-n-consistent in case of δ0, for which (3.7) suffices] but assuming
γ0 satisfies (1.6). If this assumption is incorrect, a corresponding confidence ellipse
would be inconsistent. This kind of issue does not arise under short memory δ01 =
δ02 = 0, where the variance matrix is 2πfu(0), and phase is bound to be zero.

REMARK 7. An earlier version of this paper employed a different phase pa-
rameterization, φν, in place of γ. This naturally covers (1.4) (φ0 = 0) and (1.6)
(φ0 = π/2), but is less natural in general, in view of Theorems 1 and 2. It affects
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the form of �, in particular giving nonzero σ23 and σ24. As a consequence, when
β0 is known the limiting variance matrix for estimation of α0 is no longer block-
diagonal (cf. Remark 5), while if φ is incorrectly specified to a nonzero value (e.g.,
π/2), δ0 is estimated inconsistently; in Remark 4, with γ likewise misspecified,
this was due to estimating β0. On the other hand, with the φν parameterization,
[33] compared the cases when φ is correctly fixed at π/2, and when φ is correctly
fixed at 0 (where the limit distribution is the same as in Remark 5), finding greater
precision in the former.

REMARK 8. To construct approximate Newton iterations, given an ith iterate
θ̂ (i), i ≥ 1, we can form �̂(i) by plugging in θ̂ (i) for θ0 in �, replacing elements
of 	 by those of 	̂(θ̂ (1)), and then compute θ̂ (i+1) = θ̂ (i) − �̂(i)−1

(∂/∂θ)R(θ̂ (i)).
Choices for θ̂ (1) include estimates described in Remarks 2 and 3. If θ̂ (1) satisfies
m1/2�n(θ̂

(1) − θ0)=Op(1), then θ̂ (2) has the properties of θ̂ in Theorem 4. If the
initial β0 estimate is only (n/m)ν0 -consistent, as is (4.1), θ̂ (i) should satisfy Theo-
rem 4 for some finite i but determination of a minimal i depends on hypothesizing
a rate of increase for m with n, and on the unknown ν0. If a smaller m is used in
(4.1) than in R(θ), assuming the former m increases sufficiently slowly relative to
the latter one can justify i = 2 even.

REMARK 9. With respect to choice of m, minimizing approximate mean
squared error (MSE) of a given linear combination of θ̂ elements is complicated,
especially as β̂ converges faster than α̂. Though suboptimal, the minimum MSE
rule (in scalar local Whittle estimation of memory) of [13] could be applied, most
simply to the xt sequence (requiring preliminary estimation of δ02 and fixing b
in Assumption B1, say, to 2). As always, a minimum-MSE rate violates the as-
sumption (here B5) that provides correct centering in the CLT, suggesting use of
a smaller m. In univariate local Whittle memory estimation, with data tapering,
Giraitis and Robinson [10] developed an m that minimizes the error in the CLT,
having rate nb/(1+b), which satisfies B5; with b = 2 this is the rate employed in
the Monte Carlo. References [16] and [17] proposed data-dependent m in univari-
ate log-periodogram memory estimation. Full confidence cannot be placed in any
automatic technique and it may be wise to employ a grid of m values, and assess
sensitivity; estimates for a given m should be a good starting point for iterations
with adjacent m.

REMARK 10. From Assumption B5, α̂, β̂ converge slower than nb/(1+2b),
n1/2−(1/2−ν0)/(1+2b), respectively, for example, n2/5, n(2+ν0)/5 for b= 2, while for
all b the rate of β̂ approaches n1/2 as ν0 → 1

2 . This rate is best for estimates of all
parameters if fu(λ), λ ∈ (−π,π ], is parametric (extending theory of [7, 9, 11, 14]).
But misspecification of fu incurs inconsistent estimation of all parameters, and
if fu involves additional parameters [over those in (1.1)], computational burden
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increases. The least squares estimate of β0 is inconsistent when u1t and u2t are
correlated (cf. Assumption A6).

REMARK 11. By analogy with the pseudospectrum of univariate nonstation-
ary fractional series, we can define a pseudospectral density matrix [involving a
phase parameter as in (1.1)] for vector series with one or more nonstationary ele-
ments. Integer differencing of both series will not change phase, and may produce
the stationary setting of the present paper. Given uncertainty as to whether or not
the data are nonstationary, or about the degree of nonstationarity, alternative meth-
ods, already employed to extend univariate local Whittle estimates (e.g., [34, 35]),
should produce analogous asymptotic properties to those in Theorems 3 and 4,
albeit perhaps with some variance inflation, so long as the gap between memory
parameters is less than 1

2 [as in (1.14)]. If this gap exceeds 1
2 optimal estimates

have a faster rate, and mixed normal asymptotics [15]. Reference [36] considered
local Whittle estimation with a gap exceeding 1

2 , but the estimate of β0 achieves a
slower convergence rate than is attainable even by such simple estimates as (4.1)
and least squares when also the sum of memory parameters exceeds 1.

REMARK 12. Another kind of extension concerns multivariate series zt of di-
mension q > 2. Reference [24] considers local Whittle estimation with q ≥ 2 and
a single cointegrating relation, though with phases correctly assumed to be zero,
(3.6) assumed in the CLT, and a consistency proof which, like ours, takes q = 2.
More generally, q > 2 raises the possibility that the number, r < q, of cointegrat-
ing relations exceeds 1. In (1.12), B0 can be redefined by replacing the 1’s in the
diagonal by blocks Ir and Iq−r , with β0 now being an r× (q− r)matrix. Likewise
in (1.1), (1.2) the dimension is extended to q, with, for j ∈ [2, q], the j th diagonal
element of �(λ;α) now being |λ|δj e−i sign(λ)(γ1+···+γj−1), with δi < δj for i ≤ r ,
j > r. Thus α = (γ1, . . . , γq−1, δ1, . . . , δq)

′ unless, to mitigate possible curse of
dimensionality and additional computational challenge, prior restrictions are im-
posed, for example, δ1 = · · · = δr and/or δr+1 = · · · = δq. Such constraints could
imply some zero γi even under fractional integration assumptions [cf. (1.6), which
is zero for δ01 = δ02], but in general they can be unrestricted. Prior restrictions on
β0 might also be imposed. Our methods can be straightforwardly extended to es-
timate the remaining, unknown, parameters. The techniques of proof of Theorems
3 and 4 also appear to extend, while Theorems 1 and 2 clearly remain relevant.

5. Proof of Theorem 1. From [38], page 186,
∞∑
j=1

jχ0−1eijλ = �(χ0)e
iπχ0/2λ−χ0 +O(1) as λ→ 0+.(5.1)

For λ �= 0, mod(2π),

f12(λ)= (2π)−1

{
r12(0)+κ+

∞∑
j=1

jχ0−1e−ijλ+κ−
∞∑
j=1

jχ0−1eijλ+
∞∑

|j |=1

bj e
−ijλ

}
.
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The last term in braces is bounded by
N∑
j=1

(|bj | + |b−j |)+
∞∑

j=N+1

{|bj − bj+1| + |bj − b−j−1|}
∣∣∣∣∣

∞∑
k=N

e−ikλ
∣∣∣∣∣

≤Kε(Nχ0 +Nχ0−1|λ|−1)= o(|λ|−χ0) as λ→ 0,

where ε > 0 is arbitrary and we choose N ∼ |λ|−1. Thus from (5.1),

f12(λ)∼ (2π)−1(
κ+e−i sign(λ)πχ0/2 +κ−ei sign(λ)πχ0/2

)
�(χ0)|λ|−χ0 as λ→ 0.

Then (1.9) is determined by inspection, and the remaining statements are straight-
forwardly verified.

6. Proof of Theorem 2. Take j ≥ 0. With c′ij denoting the ith row of Cj ,
write

r12(j)=
∞∑

i=j+1

c′1ic2,i−j +
j∑
i=0

c′1ic2,i−j +
−1∑

i=−∞
c′1ic2,i−j .

Each of the three terms on the right-hand side is dominated by contributions in
which c1i , c2,i−j are of order |i|δ01−1 and |i − j |δ02−1, respectively, the remainder
terms involving products of these with the gi1�, gi−j,2� and products of the latter.
After integral approximation of the leading terms we write

r12(j)=
{
ξ ′+1ξ+2

∫ ∞
0
(1 + x)δ01−1xδ02−1 dx

+ ξ ′+1ξ−2

∫ 1

0
xδ01−1(1 − x)δ02−1 dx(6.1)

+ ξ ′−1ξ−2

∫ ∞
0
xδ01−1(1 + x)δ02−1 dx

}
jχ0−1 + bj .

We omit the straightforward but lengthy proof that bj satisfies (1.7) and (1.8). It
only remains to express the integrals in (6.1) as Beta functions. The method of
proof for j < 0 is identical.

7. Proof of Theorem 3. We first give the proof with “o” replaced by “O” in
the error bound for β̂ . For any c > 0 define neighborhoods Nβ(c)= {β : |β−β0|<
c}, Nγ (c) = {γ : |γ − γ0| < c}, Nδ(c) = {δ :‖δ − δ0‖ < c}. Fix ε > 0 and de-
fine N (ε) = Nβ(ε

−1(m/n)ν0) × Nγ (ε) × Nδ(ε), N̄ (ε) = � \ N (ε). We have
P(θ̂ ∈ N̄ (ε)) ≤ P(infN̄ (ε){R(θ) − R(θ0)}). To show that this tends to zero we
first decompose R(θ)−R(θ0). We omit the straightforward proof, using Assump-
tion A3, that the effect of replacing �(λ;α) by �(λ;α), when they differ, is neg-
ligible, uniformly on N̄ (ε), and proceed as if � =�. Then

R(θ)−R(θ0)= log det{	̂(θ)	̂(θ0)
−1} − 2

2∑
i=1

ζi
1

m

∑
j

logλj ,(7.1)
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where ζi = δi − δ0i and
∑
j means

∑m
j=1. With ϒ(δ)= diag{(2ζ1 + 1)1/2, (2ζ2 +

1)1/2},  (θ)= diag{λζ1m,λζ2m }, 	̂∗(θ)= (δ)	̂(θ) (θ), write

R(θ)−R(θ0)= log det{ϒ(δ)	̂∗(θ)ϒ(δ)	̂(θ0)
−1} + u(δ),

where u(δ) = ∑2
i=1{2ζi − log(2ζi + 1) + 2ζi(logm − m−1 ∑

j log j − 1)}. To

decompose 	̂∗(θ) denote Iuj = Iu(λj ), and deduce

BIz(λj )B
′ = Iuj + (B0 −B)Iuj + Iuj (B0 −B)′ + (B0 −B)Iuj (B −B0)

′.

With the definitions Hj = �(λj ;α0)Iuj �̄(λj ;α0), bn(β) = λ
−ν0
m (β0 − β), τ =

γ − γ0, rearrangement gives

	̂∗(θ)= Ĝ(1)(α)+ bn(β)Ĝ(2)(α)+ b2
n(β)Ĝ

(3)(α),(7.2)

where Ĝ(i)(α) = (ĝ
(i)
k� ), ĝ

(1)
kk = m−1 ∑

j (j/m)
2ζkhkkj (k = 1,2), ĝ(1)12 = ĝ

(1)
21 =

(2m)−1 ∑
j (j/m)

ζ1+ζ2(eiτ h12j + e−iτ h21j ), ĝ
(2)
11 = (2m)−1 ∑

j (j/m)
ζ1+δ1−δ02 ×

(eiγ0h21j + e−iγ0h12j ), ĝ
(2)
12 = ĝ(2)21 = m−1 ∑

j (j/m)
δ1−δ02+ζ2(cosγ )h22j , ĝ

(3)
11 =

m−1 ∑
j (j/m)

2(δ1−δ02)h22j , ĝ
(2)
22 = ĝ(3)12 = ĝ(3)21 = ĝ(3)22 = 0, suppressing reference

to dependence on α in the ĝ(i)k� and with Hj = (hk�j ). Defining

Uα(α)= log det
{
ϒ(δ)Ĝ(1)(α)ϒ(δ)Ĝ(1)(α0)

−1} + u(δ),
Uβ(θ)= log det

{
	̂∗(θ)Ĝ(1)(α)−1}

,

we have R(θ) − R(θ0) = Uα(α) + Uβ(θ), since 	̂(θ0) = Ĝ(1)(α0). Writing
N̄β(c)=�β�Nβ(c), N̄γ (c)=�γ�Nγ (c), N̄δ(c)=�δ�Nδ(c), and also �α =
�γ × �δ , N̄α(c) = {N̄γ (c) × �δ} ∪ {�γ × N̄δ(c)}, it suffices to show that as
n→ ∞

P

(
inf

N̄α(ε)
Uα(α)≤ 0

)
→ 0,(7.3)

P

(
inf

N̄β(1/ε(n/m)ν0 )×�α
Uβ(θ)≤ 0

)
→ 0.(7.4)

Introduce the following population analogues of the ĝ(i)k� : g(1)kk = ωkk(2ζk+1)−1

(k = 1,2), g(1)12 = g
(1)
21 = (ζ1 + ζ2 + 1)−1ω12 cos τ , g(2)11 = 2(ζ1 + δ1 − δ02 +

1)−1ω12 cosγ0, g(2)12 = g(2)21 = (δ1 +ζ2 −δ02 +1)−1ω22 cosγ , g(3)11 = (2(δ1 −δ02)+
1)−1ω22, g(2)22 = g(3)12 = g(3)21 = g(3)22 = 0; write G(i)(α)= (g(i)k� ).

To prove (7.3) observe that from the inequality | log(1 + x)| ≤ 2|x| for |x| ≤ 1
2 ,

and because N̄α(ε)⊂ {N̄γ (ε)×�δ} ∪ N̄δ(ε), it suffices (following a development
like that in [22]) to show

sup
�α

∥∥ϒ(δ){Ĝ(1)(α)−G(1)(α)}ϒ(δ)∥∥ p→ 0,(7.5)
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sup
�α

∥∥{
ϒ(δ)G(1)(α)ϒ(δ)

}−1∥∥ < ∞,(7.6)

inf
N̄γ (ε)×�δ

log det
{
ϒ(δ)G(1)(α)ϒ(δ)G(1)(α0)

−1}
> 0,(7.7)

lim
n→∞

inf
N̄δ(ε)

u(δ) > 0.(7.8)

We omit the details of (7.5) as these are now standard, mainly following the proof
of Theorem 1 of [29], and multivariate extensions [22, 33]. Our model (3.2) is
more general than those in such references in two respects, namely our allowance
for a bilateral MA and for the dimension of εt to exceed 2, but it is readily seen
that neither extension materially affects the proof. The basic technique involves
summation-by-parts (to deal with the uniformity) followed by approximation of
the Hj by the PIεjP ′, where Iεj = Iε(λj ) (see [29]) and then approximating the
consequent term in the Iεj by one in	0 (with only a second moment for εt required
for the latter step due to applying a law of large numbers for L1 variables to the
term in the εtε′t ) and approximating sums of formm−1 ∑

j (j/m)
a by (1+a)−1 for

a >−1. The most significant difference from earlier results is the presence of the
general γ , γ0, but this is easily handled in view of compactness of �γ . Likewise,
(7.8) follows from the proof of Theorem 1 of [29], which used the inequalities

inf|x|>ε{x − log(x + 1)}> ε
2

6
,

∣∣∣∣∣logm−m−1
∑
j

log j − 1

∣∣∣∣∣ ≤Km−1.(7.9)

To prove (7.6) observe that

det
{
ϒ(δ)G(1)(α)ϒ(δ)

} = ω11ω22 −ω2
12c(δ) cos2 τ,(7.10)

where c(δ) = (2ζ1 + 1)(2ζ2 + 1)/(ζ1 + ζ2 + 1)2. It follows from the inequality
0< 4xy ≤ (x+y)2, for x, y > 0, that 0< c(δ)≤ 1, and thus (7.10) ≥ det(	0) > 0.

To prove (7.7) note that

log det
{
ϒ(δ)G(1)(α)ϒ(δ)G(1)(α0)

−1} = log
{

1 − ρ2c(δ) cos2 τ

1 − ρ2

}
.(7.11)

From | cos τ | ≤ 1, |c(δ)| ≤ 1 and log(1 + x)≥ x/(1 + x) for x ≥ 0, this is lower-
bounded by ρ2{1 − c(δ) cos2 τ } ≥ ρ2 sin2 τ. Because sin(π − x)= − sinx,

inf
N̄γ (ε)×�δ

sin2 τ ≥ min
{

sin2
(
ε

2

)
, sin2(2η4)

}
> 0.(7.12)

Since ρ �= 0, (7.7) is proved.
Now consider (7.4). We can write Uβ(θ) = logQ(bn(β)), where Q(s) =

1 + â1s + â2s
2, â1 = (ĝ

(2)
11 ĝ

(1)
22 − 2ĝ(1)12 ĝ

(2)
12 )/det{G(1)1 (α)}, â2 = (ĝ

(3)
11 ĝ

(1)
22 −

ĝ
(2)2

12 )/det{G(1)1 (α)}. For all θ , â2 ≥ 0 by the Cauchy inequality, and, since 	̂∗(θ)
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and Ĝ(1)(α) are nonnegative definite, Q(s) is nonnegative for all real s. It has a
global minimum at s = −â1/2â2. Thus

inf|s|≥1/ε
Q(s) ≥

(
1 − â2

1

4â2

)
1
(∣∣∣∣ â1

2â2

∣∣∣∣> 1

ε

)
+

(
1 − |â1|

ε
+ â2

ε2

)
1
(∣∣∣∣ â1

2â2

∣∣∣∣ ≤ 1

ε

)

= 1 − |â1|
ε

+ â2

ε2 +
( |â1|
ε

− â2

ε2 − â2
1

4â2

)
1
(∣∣∣∣ â1

2â2

∣∣∣∣> 1

ε

)
,

where 1(·) denotes the indicator function. Thus the probability on the left-hand
side of (7.4) is bounded by

P

(
log

{
1 − sup

�α

|â1|
ε

+ inf
�α

â2

ε2

}
≤ 0

)
+ P

(
sup
�α

∣∣∣∣ â1

2â2

∣∣∣∣> 1

ε

)
(7.13)

≤ 2P
(

sup
�α

|â1 − a1| + 2

ε
sup
�α

|â2 − a2| ≥ 1

ε
inf
�α
a2 − sup

�α

|a1|
)

by elementary inequalities, where a1 = (g(2)11 g
(1)
22 − 2g(1)12 g

(2)
12 )/detG(i)(α), a2 =

(g
(3)
11 g

(1)
22 −g(2)212 )/detG(i)(α). Now sup�α |ĝ(i)k� −g(i)k� | →p 0 (i = 2,3, k, �= 1,2)

as n→ ∞, by the same method of proof as described for (7.5), so sup�α |âi −
ai | →p 0 (i = 1,2) as n→ ∞. We need to show that the right-hand side of the
last inequality in (7.13) is positive. It is easily seen that sup�α |a1| <∞, noting

boundedness away from zero on �α of denominators in the g(i)k� . Since ε can be
arbitrarily small we require only that inf�α a2 > 0. This is true because, on �α ,

g
(3)
11 g

(1)
22 − g(2)212 = ω2

22

{
1

{2(δ1 − δ02)+ 1}(2ζ2 + 1)
− cos2 γ0

(δ1 + ζ1 − δ02 + 1)2

}

≥ ω2
22

[
1

{2(δ1 − δ02)+ 1}(2ζ2 + 1)
− 1

(δ1 − δ02 + ζ2 + 1)2

]

>
ω2

22ν
2

8
≥ ω2

22η
2
2

8
> 0.

This completes the proof that α̂
p→ α0, β̂ = β0 +Op((m/n)ν0). To replace “O”

by “o” in the latter, for ε ∈ (0,1) define N ∗(ε) = Nβ(ε
1/2(m/n)ν0)× Nγ (ε

2)×
Nδ(ε

2), N̄ ∗(ε)=��N ∗(ε).We have P(θ̂ ∈ N̄ ∗(ε))≤ P(θ̂ ∈ N̄ ∗(ε)∩N (ε))+
P(θ̂ ∈ N̄ (ε)). We have just shown that the last probability tends to zero. For the
previous one it suffices to show that as n→ ∞

P

(
inf

N̄ ∗
α (ε)

Uα(α)≤ 0
)

→ 0,(7.14)

P

(
inf

N̄β(ε1/2(m/n)ν0 )×Nα(ε)
Uβ(θ)≤ 0

)
→ 0,(7.15)
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where Nα(ε) = Nγ (ε)× Nδ(ε), N̄ ∗
α (ε) = Nα(ε) \ N ∗

α (ε). The proof of (7.14) is
as above. To prove (7.15), following the argument up to (7.13) we have to show

P

(
sup

Nα(ε)
|â1 − a1| + 2ε1/2 sup

Nα(ε)
|â2 − a2| ≥ ε1/2 inf

Nα(ε)
a2 − sup

Nα(ε)
|a1|

)
(7.16)

→ 0.

In view of the above remarks about (7.13) it remains to show that the right-hand
side of the inequality in (7.16) is positive. We have

sup
Nα(ε)

|a1| ≤
{

sup
Nα(ε)

∣∣∣g(2)11 g
(1)
22 − 2g(1)12 g

(2)
12

∣∣∣} /
inf

Nα(ε)
det

{
G
(1)
1 (α)

}
.

The denominator is already known to be finite and the quantity on the right-hand
side whose absolute value is taken equals

2ω12ω22

[
cosγ0

(2ζ2 + 1)(ζ1 + δ1 − δ02 − 1)
− cosγ cos τ

(ζ1 + ζ2 + 1)(δ1 + ζ2 − δ02 + 1)

]
.

After rearrangement and application of trigonometric addition formula, this is seen
to be bounded in absolute value by K(|γ − γ0| + ‖δ − δ0‖). It follows that
supNα(ε) |a1| ≤ Kε. From the proof of Theorem 3, ε1/2 infNα(ε) a2 − sup |a1| ≥
ε1/2/K −Kε, which, for arbitrarily large K , is bounded below by ε1/2/2K > 0,
choosing ε ∈ (0, (4K4)−1).

8. Proof of Theorem 4. Define s(θ)= (∂/∂θ)R(θ), S(θ)= (∂/∂θ ′)s(θ). De-
note by S̃ the matrix S(θ)when its kth row is evaluated at θ = θ̃ (k). If ‖θ̃ (k)−θ0‖ ≤
‖θ̂ − θ0‖, k = 1, . . . ,4, the mean value theorem gives θ̂ − θ0 = S̃−1s(θ0), for some
such θ̃ (k). The theorem is established if

m1/2�−1
n s(θ0)

d→N4(0,�),(8.1)

�−1
n S̃�

−1
n

p→�.(8.2)

Denoting by θk , sk(θ), the kth elements of θ , s(θ), and by sk�(θ) the (k, �)th ele-
ment of S(θ),

sk(θ)= tr
{
∂	̂(θ)

∂θk
	̂(θ)−1

}
− 1(k = 3 or 4)

2

m

∑
j

log |ψ(λj ;γ )|,(8.3)

sk�(θ)= tr
{
∂2	̂(θ)

∂θk ∂θ�
	̂(θ)−1 − ∂	̂(θ)

∂θk
	̂(θ)−1 ∂	̂(θ)

∂θ�
	̂(θ)−1

}
.(8.4)

Now

∂	̂(θ)

∂θk
= Re

{
1

m

∑
j

A
(k)
j

}
,

∂2	̂(θ)

∂θk ∂θ�
= Re

{
1

m

∑
j

A
(k,�)
j

}
,
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k, � = 1,2, writing A(k)j = (∂/∂θk)Aj , A(k,�) = (∂/∂θ�)A
(k)
j , Aj = A(λj ; θ).

To simplify we proceed, as in the proof of Theorem 3, as if ψ(λ) = |λ|. This
can be justified via Assumption B3; further discussion appears later in the
proof. Define Ek� by replacing the (k, �)th element by 1 in the 2 × 2 ma-
trix of zeros. Noting that E12B

′ = −E12 we deduce A(1)j = −λ−ν
j (E12Aje

iγ −
AjE21e

−iγ ), A(2)j = iAjE22 − iE22Aj , A
(2+k)
j = (logλj )(EkkAj + AjEkk),

k = 1,2, A(1,1)j = 2λ−2ν
j E12AjE21, A

(1,2)
j = iλ−ν

j (E22AjE21 − E12AjE22),

A
(1,2+k)
j = −(logλj )× λ−ν

j (EkkE12Aj +EkkAjE21 +E12AjEkk +AjE21Ekk),

A
(2,2)
j = 2E22AjE22 − E22Aj − AE22, A

(2,2+k)
j = −i(logλj )(EkkAjE22 −

EkkE22Aj −E22AjEkk +AjE22Ekk), A
(2+k,2+�)
j = (logλj )2(EkkE��Aj +Aj ×

E��Ekk +EkkAjE�� +E��AjEkk). Thus from (8.3), with A0j =A(λj ; θ0),

s1(θ0)= − tr
1

m

∑
j

λ
−ν0
j (E12A0j e

iγ0 +A0jE21e
−iγ0)	̂(θ0)

−1,

s2(θ0)= i tr

{
1

m

∑
j

(A0jE22 −E22A0j )	̂(θ0)
−1

}
,

s2+k(θ0)= tr
1

m

∑
j

(
logλj − 1

m

∑
i

logλi

)
(EkkA0j +A0jEkk)	̂(θ0)

−1,

for k = 1,2, where the real part operator is omitted because imaginary parts
are automatically eliminated here, and we use 	̂(θ0) = m−1 ∑

j Re{A0j }. We

can replace, with negligible error, 	̂(θ0) by 	0 and A0j by Tj = PIεjP
′ in

m1/2�−1
n s(θ0), using arguments of [22, 29, 33], and allowing p ≥ 2. Thus

m1/2�−1
n s(θ0) differs by op(1) from m1/2�−1

n s
∗(θ0), where s∗(θ0) has kth ele-

ment

s∗k = 2

m

∑
j

tr(URkj Re{Iεj } +UIkj Im{Iεj }),(8.5)

where UR1j = − cosγ0(λ
−ν0
j − m−1 ∑

i λ
−ν0
i )P ′	−1

0 E12P, UI1j =
− sinγ0λ

−ν0
j P ′	−1

0 E12P, UR2j = 0, UI2j = P ′	−1
0 E22P, UR,2+k,j = (log j −

m−1 ∑
i log i) × P ′	−1

0 EkkP, UI,2+k,j = 0, for k = 1,2. After rearrangement
and application of a martingale CLT we deduce, following the same references,
�−1
n s

∗/2 →d N4(0,�). [The formula for � can be most easily verified after not-
ing that Es∗k s∗� = 8m−2 ∑

j tr{URkj (U ′
R�j + UR�j ) + UIkj (U ′

I�j − UI�j )}, plus a
negligible fourth cumulant term.] This completes the proof of (8.1).

Turning to (8.2), it suffices to show that

�−1
n {S̃ − S(θ0)}�−1

n

p→ 0,(8.6)

1
2�

−1
n S(θ0)�

−1
n

p→�.(8.7)
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We omit the straightforward proof of (8.7). To prove (8.6), we require a rate
of convergence for the δ̃i . Put θ̃ = (β̃, α̃′)′ = (β̃, γ̃ , δ̃1, δ̃2)

′, for ‖θ̃ − θ0‖ ≤
‖θ̂ − θ0‖. For some such θ̃ , 	̂(θ̃) appears in all elements of S̃. From Sec-
tion 7 we can write, with the same definitions, and � again replaced by �,
	̂(θ̃) =  (δ̃){Ĝ(1)(α̃) + bn(β̃)Ĝ

(2)(α̃) + b2
n(β̃)Ĝ

(3)(α̃)} (δ̃). Then from Theo-
rem 3, 	̂(θ̃)− 	̂(θ0)→p 0 if δ̃→p δ0 and Ĝ(i)(α̃)− Ĝ(i)(α0)→p 0, i = 1,2,3.
To achieve the latter, Hj = A0j can be replaced as before by the Tj , but
from the definitions of Section 7 the δ̃k are involved as exponents of (j/n),
j = 1, . . . ,m, in the Ĝ(1)(α̃), so more than the consistency established in The-
orem 3 is needed (though consistency of γ̃ suffices). So far as remaining terms
which make up elements of S̃ are concerned, similar considerations apply, indeed
differentiation produces factors log |ψj |, log2 |ψj | in some summands. In [29],
only ψ(λ) = |λ| was considered, and logn terms are precisely eliminated prior
to taking limits, as in Section 7. With more general ψj this does not happen,
as in [33]’s choice of ψ , and as there we establish something a little stronger.
It suffices to show that (logn)C(δ̂k − δ0k)→p 0, k = 1,2, for any C <∞ [ex-
plaining the requirement (logn)C/m→ 0 in (3.7)]. Arguing as before, this fol-
lows if, as n→ ∞, supNα(ε) ‖ϒ(δ){Ĝ(1)(α)−G(1)(α)}ϒ(δ)‖ = op((logn)−2C),

infN̄γ (ε2)×Nδ(ε)
log det{ϒ(δ)G(1)(α)ϒ(δ)G(1)(α0)

−1} > 0, limn→∞(logn)2C ×
infN̄δ(ε/(logn)C) u(δ) > 0, for any ε ∈ (0,1). The first result follows by straight-
forward extension of the proof of (4.6) in [29], the rate being due to εt now having
a finite moment of order greater than 2. The proof of the second is identical to that
of (7.7), the only difference in outcome being the replacement of ε by ε2. As in
the proof of [29], we deduce the final result from the inequalities in (7.9).
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