
The Annals of Statistics
2008, Vol. 36, No. 5, 2284–2318
DOI: 10.1214/07-AOS541
© Institute of Mathematical Statistics, 2008

TRIMMING AND LIKELIHOOD: ROBUST LOCATION
AND DISPERSION ESTIMATION IN THE

ELLIPTICAL MODEL1

BY JUAN A. CUESTA-ALBERTOS, CARLOS MATRÁN

AND AGUSTÍN MAYO-ISCAR

Universidad de Cantabria, Universidad de Valladolid
and Universidad de Valladolid

Robust estimators of location and dispersion are often used in the ellipti-
cal model to obtain an uncontaminated and highly representative subsample
by trimming the data outside an ellipsoid based in the associated Mahalanobis
distance. Here we analyze some one (or k)-step Maximum Likelihood Esti-
mators computed on a subsample obtained with such a procedure.

We introduce different models which arise naturally from the ways in
which the discarded data can be treated, leading to truncated or censored
likelihoods, as well as to a likelihood based on an only outliers gross errors
model. Results on existence, uniqueness, robustness and asymptotic proper-
ties of the proposed estimators are included. A remarkable fact is that the
proposed estimators generally keep the breakdown point of the initial (ro-
bust) estimators, but they could improve the rate of convergence of the initial
estimator because our estimators always converge at rate n1/2, independently
of the rate of convergence of the initial estimator.

1. Introduction. Between the methodologies to produce robust and efficient
estimators we are here concerned with those based on a preliminary robust estima-
tion followed by one step (or k steps) that improves efficiency without a significant
loss of robustness. In a natural way this leads us to search for an uncontaminated
and highly representative subsample, selected using the initial estimation, and then
to make the improvement step on the basis of this subsample. These ideas are
present, for example, in Rousseeuw and van Zommeren [25] or in Lopuhaä and
Rousseeuw [19], where it is shown that some ways of one-step reweighting pre-
serve the breakdown point (BP) of the initial estimators. This scheme seems to be
particularly adequate to preventing gross errors under a model based on a main data
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stream of an elliptical distribution. The robust estimates are then used as a diagnos-
tic tool to select the good observations, such as those at an adequate (Mahalanobis)
distance from the location estimate. Hence, we could improve the efficiency of our
estimators, preserving robustness with respect to outliers, by resorting to classical
methods which obtain efficient estimates but compute only over the observations
considered good.

In this brief description three main ingredients require consideration:

• The choice of the robust initial estimator to produce the zone of good observa-
tions, that is, a suitably trimmed set.

• Once such a zone has been selected, how to treat the discarded (trimmed) data.
• How to choose the efficient estimator.

The first item has received considerable attention in the elliptical model, which
allows us to exploit the symmetries in order to handle gross-errors as points far
away from the center. Under the usual equivariance requirement these robust esti-
mators include well-known proposals like the Minimum Volume Ellipsoid (MVE),
the Minimum Covariance Determinant (MCD) or, in general, S-estimators (see the
book by Maronna, Martin and Yohai [22] for a discussion of these and further
estimators in this setup).

The other items have been treated in an unequal way. Usually the one-step con-
sists of reweighted least squares statistics based only on good sample data, which
take advantage of the elliptical symmetry of the underlying family (see, e.g., Lop-
uhaä [18]). Some versions, as in Gervini [12], exploit even the possibility of se-
lecting the good sample data region in an adaptive way. A different point of view
(see, e.g., Bickel [2] or Davies [8]) resorts to a Newton–Raphson step to increase
the rate of convergence of the initial estimators. Curiously, the maximum likeli-
hood estimator (MLE), being a natural choice in order to get the maximum gain
in efficiency, has only recently been considered in Mayo-Iscar [23] in the mixture
model, and in Marazzi and Yohai [20] in the context of regression of a real val-
ued variable. However, under simple truncation (which is the approach followed
in [20]), existence of the corresponding MLE in any data configuration is not guar-
anteed, so breakdown of the estimator could arise under contamination leading to
such a configuration.

Here we will mainly address the last two stressed items. The starting point will
be that of a given (trimmed) set of the sample space, obtained through any of the
already enumerated methods and that is consistent under the subjacent model. The
consistency of the mentioned methods is well known (see, e.g., Davies [6, 7] and
Butler, Davies and Jhun [4]) under the elliptical model, but has not been treated
in a contamination model like our GEM proposal below. Since the MVE is better
adapted to this contaminated model and it is the more impacting possibility, even
in the uncontaminated model because of its low efficiency, this estimate will act as
a leitmotif in the paper. Its consistency is shown in Proposition 3.1.



2286 J. A. CUESTA-ALBERTOS, C. MATRÁN AND A. MAYO-ISCAR

With respect to the second item, first we will consider the likelihoods associ-
ated to the (artificially) truncated and censored models given the set, but we will
also introduce a model of gross errors contamination and consider the associated
likelihood. In every case, in connection with the third item, we will consider the
MLEs. The relations between the MLE associated to each likelihood model pro-
vide a novel approach to interpret the presence of gross errors. Under our model
we could adapt the final estimation through a second step, based on a cut-off pa-
rameter, in a similar way to that introduced in Gervini and Yohai [13] (improved
in [20]) or in García–Escudero and Gordaliza [11]. However, in order to make the
comprehension of the methodology easier, we will not consider here these adap-
tive ways of enlarging the MVE to improve the final efficiency of the estimator,
although the corresponding analysis would be parallel to the one developed here.

An important feature of our approach is the rate of convergence of the final
estimator. As a distinctive fact with respect to the known one-step reweighted es-
timators, our estimators converge at rate n1/2, independently of the rate of conver-
gence of the initial estimator, whenever it is consistent. This allows any consistent
initial estimator to be considered, even the MVE that converges at n1/3 rate, as
an initial estimator without loss in the rate of convergence. This happens because,
although based on only a part of the sample, our second step is a genuine MLE, so
it is able to make a full reconsideration of the initial estimation. On the contrary,
this is not possible if we only make a linear estimation based on reweighting in
accordance with the initial estimation. These considerations agree with those in
Rousseeuw [24] or He and Portnoy [14], where it is stressed that the problem is
reweighting. However, the estimators considered in the already mentioned litera-
ture as one-step improvements to get the n1/2-rate of convergence are based on a
Newton–Raphson adjustment (see also Jurečkova and Portnoy [16] or Jurečkova
and Sen [17]). In fact, in [20], it is even suggested (see Remark 2 after Theorem 3
there) that the rate of convergence of the truncated MLE could be the same as that
of the initial estimator.

The paper is organized as follows. In Section 2 we introduce the models and
the estimators to be studied, and analyze the identifiability of the models. More-
over, we discuss the existence and uniqueness of the MLEs under the truncated,
the censored and the gross errors models (GEM). We stress the fact that trunca-
tion can produce the nonexistence of the MLE, and hence produce the breakdown
of the estimator; thus, we introduce natural restrictions which guarantee the exis-
tence of the MLE under truncation. In this setting we obtain new results, even in
the univariate case, which include the consideration of exponential families. Sec-
tion 3 is devoted to studying the robustness and the asymptotic properties of the
proposed estimators, including the BP and the influence function (IF), as well as
the consistency and asymptotic normality at rate n1/2. In Section 4 we present our
conclusions on these estimators. The paper ends with an Appendix containing all
the proofs and some technical results.
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The estimation will be carried out on the basis of the data set X = {x1, x2, . . . ,

xn}. In the asymptotic results we will assume that X is obtained from n indepen-
dent, identically distributed R

p-valued random vectors X1,X2, . . . ,Xn. Pn will
be the associated sample distribution. The usual norm in R

p will be denoted by
‖ − ‖, the σ -field of Borel sets will be βp and λp will be the Lebesgue measure.
When we use matrix notation, vectors must be understood as column vectors. For
a matrix H = (hij ), HT will denote its transpose and |H | its determinant. B(m, r)

[resp. S(m, r)] will denote the open ball (resp. sphere) of radius r centered at m,
while Ac is the complement of the set A, and IA is its indicator function. Further
notation will be introduced throughout the paper as necessary.

We will make use of a generic ω in a probabilistic space of reference; almost
surely (a.s.) statements must be understood as relative to that space. P ω

n would
be then a realization of Pn. Integration of a random variable h with respect to a
probability P will be denoted as Ph (and is interpreted componentwise when h is
a vector). We will use matrix notation for partial derivatives of a function. Given
g : � × � × R

p → R, where � ⊂ R
d,� ⊂ R

k, ∂
∂θ

g(θ,φ, x) will denote the d-di-
mensional vector with components ∂

∂θi g(θ,φ, x), i = 1, . . . , d .
In our setup the choice of an initial set leads us to consider ellipsoids indexed

by the set � := R
p × M+

p×p × R
+, where M+

p×p is the set of positive-definite
symmetric p × p matrices. For γ = (μ,
, r) ∈ �, we will denote E(γ ) := {x ∈
R

p : (x − μ)T 
−1(x − μ) ≤ r2}.

2. Maximum likelihood estimation with a trimmed sample. We begin with
the minimal assumptions that we consider throughout this paper.

DEFINITION 2.1. The elliptical model associated to the nonincreasing func-
tion g : R+ → R

+ is a family {Pθ : θ ∈ �} of probabilities on βp with densities fθ

(with respect to λp) given by

fθ (x) = |
|−1/2g
(
(x − μ)T 
−1(x − μ)

)
,(2.1)

where � := R
p × M+

p×p , and θ := (μ,
) ∈ �. Note that M+
p×p , considered as a

subset of R(p+1
2 ), is open, μ is the mean of Pθ when it exists, while, if the second

moment is finite, the variance-covariance matrix of Pθ is proportional to 
.

We will also handle a contaminated version of this model: The only gross-errors
outliers. This term is used to indicate that Pθ could be contaminated with a small
proportion of data coming from a distribution whose support is external to a cen-
tral part of Pθ . Throughout, a central part of an elliptical distribution must be
understood as an ellipsoid E(μ,
, r) where μ and 
 are the location and scatter
parameters of the distribution. These sets have the nice property of being scaled
versions of the MVE; see Lemma A.3 (but also of the MCD, see Butler, Davies
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and Jhun [4]). Recall that an ellipsoid A is an MVE of P, if P(A) ≥ 1/2 and the
volume of A is minimal in the class of all ellipsoids with this property.

Existence and uniqueness of MVE’s are discussed in Davies [7]. As stated, if
P(μ,
) belongs to the elliptical model, then their MVE’s are essentially given by
ellipsoids E(μ,
, r), where r depends on μ and 
 but also on g and p. In par-
ticular, when g is strictly decreasing the MVE is unique. Below we describe our
version of the GEM that is considered from now on.

DEFINITION 2.2 (Gross error model). A distribution P belongs to the Gross
Error Model associated to the family {Pθ : θ ∈ �} if there exist π ∈ [0,1), a prob-
ability Q and θ ∈ �, such that

P = (1 − π)Pθ + πQ,(2.2)

where Q is a probability distribution such that if A is any MVE of P, then
Q(A) = 0 (whence A is also a central part of Pθ ).

Our proposal to produce the estimator is this: First, through a consistent esti-
mator of θ , we produce an estimation E(μ̂, 
̂, r̂) of the MVE of P because, even
in the GEM, at least asymptotically, the values in the sample that remain in the
estimated MVE would be produced by the elliptical part of P. Then, in order to
maintain the BP of the initial estimator (see Theorem 3.1) while achieving the
highest possible efficiency, we will enlarge the estimated MVE by keeping their
location, μ̂, and shape, 
̂, but taking a greater value than r̂ to get a scaled (thus
containing more points of the sample) version of the estimated MVE. As a final
step we will construct an MLE of μ and 
 based on the observations lying in this
scaled MVE.

This program essentially coincides with that introduced in [20], although, to
make the exposition easier, we will focus on the one-step estimator based on the
(nonenlarged) MVE. However, in Tables 1, 2 and 3, in Appendix B, we will present
the gains in efficiency attained by handling the scaled versions.

2.1. Identifiability of the model. Since we will discard the data not included
in an ellipsoid, we need to assure that the parameters of an elliptical distribution
are identifiable from every ellipsoid or, more generally, from every open set. This
holds in the Gaussian case and other general models like the exponential family,
as we show in Proposition 2.1.

PROPOSITION 2.1. Let {fθ : θ ∈ �} be the density functions of a d-parameter
exponential family with respect to a σ -finite measure λ on R

p , where

fθ (x) = C(θ) exp

{
d∑

j=1

Qj(θ)Tj (x)

}
h(x).(2.3)
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Assume that the Qj ’s do not satisfy a linear constraint on �. Let A ∈ βp such that
the T ’s λ-a.s. do not satisfy a linear constraint on A.

If fθ1 = fθ2 λ-a.s. on A, then θ1 = θ2.

The identifiability shown in Proposition 2.1 can be circumvented because we
only need to guarantee that each probability Pθ is identifiable from the rest over
adequate sets. Broadly speaking, we can say that a set A is adequate for Pθ if
μ ∈ A and fθ is not constant on A.

Since g is nonincreasing, to assure that g is neither constant on A nor on affine
transformations of A, a natural hypothesis is to assume that g is strictly decreasing.
But, since the ellipsoids of interest (asymptotically) contain μ, it is enough to
demand that g is strictly decreasing near zero, or, more generally that g fulfills the
following condition:

(G1) There exists a strictly decreasing sequence {tn} which converges to zero,
such that g(tn) < g(tn+1) for every n.

PROPOSITION 2.2. Let {Pθ : θ ∈ �} be the elliptical model on R
p, p ≥ 1

associated to g which verifies condition G1. Let θ0 = (μ0,
0) ∈ � and A be an
open set in R

p, such that μ0 ∈ A. If θ ∈ �, θ �= θ0, then

Pθ0{x ∈ A :fθ (x) �= kfθ0(x)} > 0, for every k > 0.

2.2. The estimators. Once we know that it is possible to estimate the elliptical
part from adequate sets, we will analyze some estimation procedures related to this
task. In Section 2.2.1 we will consider the MLE associated to (in our case artifi-
cially) truncated or censored samples. In Section 2.2.2, under the GEM, we design
a new estimator, called the Smart estimator. In every case their effective compu-
tation can be implemented through the EM algorithm. Section 2.2.3 explores the
existence and uniqueness of these estimators.

2.2.1. Censored and truncated estimators. The difference between truncated
and censored estimators lies on the way in which they consider the discarded points
in the sample. The censored one forgets the right values of the points outside A, but
takes into account their number. Thus, this number should appear in the likelihood
function but related to no specific point. To this, we introduce an artificial point c,
not necessarily in Rp , which is only used to count the number of censored points.
Thus, the objective function is the censored log-likelihood:

Lc
θ/A(x) := IA(x) logfθ (x) + I{c}(x) log Pθ (A

c), x ∈ R
p ∪ {c};(2.4)

here the points in Ac are treated as located on the identical censored state c /∈ A,
and 0 × ∞ is taken as 0. This log-likelihood corresponds to the model {Pc

θ,A : θ ∈
�} given by P

c
θ,A(B) = Pθ (B ∩ A) + Pθ (A

c)IB(c),B ∈ σ(βp ∪ {c}), with density
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function f c
θ,A(x) = fθ (x)IA(x) + Pθ (A

c)I{c}(x), x ∈ R
p ∪ {c}, with respect to the

measure λp + δ{c}, where δ{c} is the Dirac measure on c.
Obviously the MLE based on Lc

θ/A is more stable than the usual MLE in pres-
ence of some contamination in Ac. However, this contamination can produce an
excessive weight on Ac. To protect against this possibility, we can consider trun-
cation, which does not consider at all the data in Ac, the truncated log-likelihood
being

Lt
θ/A(x) := IA(x) log

fθ(x)

Pθ (A)
, x ∈ R

p.(2.5)

This corresponds to the model {Pt
θ,A : θ ∈ �} defined through the density functions

f t
θ,A(x) = IA(x)fθ (x)/Pθ (A), x ∈ R

p with respect to λp . In agreement with the
obvious incompatibility which would arise for those θ ’s such that Pθ (A) = 0, we
adopt the convention that Lt

θ/A = −∞ if this happens.
Thus, given a sample X = {x1, . . . , xn}, the maximum likelihood censored (resp.

truncated) estimator, MLE(c) [resp. MLE(t)] on an appropriately chosen set A will
be the value θ̂c,n (resp. θ̂t,n) maximizing PnL

c
θ/A (resp. PnL

t
θ/A).

2.2.2. A data based choice: The smart estimator. We present an estimator
which takes full advantage of the GEM. As far as we know, likelihood-based esti-
mators under this model have not yet been proposed.

We have to face two difficulties: There is not a unique set A related to the model
and, given an observation in Ac, we do not know whether this observation comes
from Pθ or from Q. To circumvent the first difficulty, given a sample of size n, for
every suitable set A, we can consider the log-likelihood of n1 (resp. n2) data points
in A (resp. in Ac) arising from Pθ and n3 = n − n1 − n2 from the contaminating
source also in Ac. For the second, we consider a model in which we have the
complete information for the data in A and only the global (n2 + n3) number of
points in Ac.

Thus, we have to make a first estimation to get a suitable set A, which can be
understood as a noise parameter in the model, and realize the final estimation on
the basis of the likelihood associated to this empirical set. In analogy with the
censored likelihood in (2.4), we consider an ideal censored state c and, for every
x ∈ R

p ∪ {c}, define the log-likelihood

Ls
θ,π/A(x) := IA(x) log

(
(1 − π)fθ (x)

)
(2.6)

+ I{c}(x) log
(
(1 − π)Pθ (A

c) + π
)
,

which is associated to the model {Ps
θ,π,A : θ ∈ �,π ∈ [0,1)} given by

P
s
θ,π,A(B) = (1 − π)Pθ (B ∩ A) + (

(1 − π)Pθ (A
c) + π

)
IB(c),(2.7)

where B ∈ σ(βp ∪ {c}). The sample objective function to maximize is now

PnL
s
θ,π/A = Pn

(
IA log

(
(1 − π)fθ

) + IAc log
(
(1 − π)Pθ (A

c) + π
))

,(2.8)



ROBUST ESTIMATION IN THE ELLIPTICAL MODEL 2291

under the restriction π ∈ [0,1). The estimator obtained by maximizing this objec-
tive function will be called smart MLE [MLE(s)]. The analysis of the existence
of this estimator, to be carried in the next subsection, will shed new light on our
proposal for this problem.

2.2.3. On the existence and uniqueness of the estimators. The existence and
uniqueness of the MLE is not an easy problem. In fact, the truncated normal model
is often used as an example of possible inexistence of the MLE.

For the elliptical model, Maronna [21] treated the problem of existence and
uniqueness of M-estimators, for the model and the sample, but his assumptions on
g are not satisfied, for example, by the normal model or by our models related to
truncation or censoring.

Under the theoretical model both facts are an easy consequence of Jensen’s
(strict) inequality and the identifiability. The proof is similar to the classic one.

PROPOSITION 2.3. Under the hypotheses of Proposition 2.2, for every θ �= θ0,
we have

P
c
θ0 ,ALc

θ0/A > P
c
θ0,A

Lc
θ/A(2.9)

and

P
t
θ0 ,ALt

θ0/A > P
t
θ0,A

Lt
θ/A,(2.10)

and, for every (θ,π) ∈ � × [0,1) − {(θ0, π0)},
P

s
θ0,π0,A

Ls
θ0,π0/A

> P
s
θ0,π0,A

Ls
θ,π/A.(2.11)

To obtain the existence of the MLEs, we should avoid, for a sample in general
position, a degenerated (into a lower dimension) solution. This is related to the
speed of decreasing of g and leads us to introduce the following assumption Gp.
Moreover, we will impose the continuity of g as another natural requirement:

(Gp) If p > 1, then there exists γ > p/2 such that limr→∞ rγ g(r) = 0.
(G2) g is continuous on R

+.

Note that, by Scheffé’s lemma, G2 implies that

sup
A∈βp

|Pθn(A) − Pθ0(A)| → 0, whenever θn → θ0.(2.12)

PROPOSITION 2.4 (Existence of nonrestricted MLE). Let g be a function
which defines an elliptical family on R

p and satisfies G1, G2 and Gp. Let n > 2, if
p = 1, and let n >

pγ
γ−p/2 in the case p > 1, where γ is the constant which appears

in Gp.
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Then, for every data set X = {x1, . . . , xn}, whose points are in general position,
there exists (μ̂, 
̂) ∈ � such that

n∏
i=1

f
(μ̂,
̂)

(xi) ≥
n∏

i=1

f(μ,
)(xi), for every (μ,
) ∈ �.

The next proposition proves the existence of the smart and censored estimators.

PROPOSITION 2.5 [Existence of MLE(s) and MLE(c)]. Assume that g defines
an elliptical family on R

p and satisfies G1, G2 and Gp, and let X = {x1, . . . , xn}
be a data set.

Let A ∈ βp such that the number of points, m, in the set X ∩ A satisfies that
m > 2, if p = 1, and that m >

pγ
γ−p/2 in the case p > 1, where γ is the constant

which appears in Gp.
If the points in X ∩ A are in general position, then there exist the MLE(s),

(θ̂s,n, π̂n), and the MLE(c), θ̂c,n, based on the sample X and A.

The existence of the MLE(t) cannot be shown with the same argument because
the denominator Pθk

(A) in (2.5) could converge to zero. In fact, this can lead to
nonexistence of the MLE(t). This difficulty can be handled on the basis that the sets
A under consideration will be estimations of the MVE of P, thus their probabilities
must be large enough.

Given α > 0 and the ellipsoid A, let

�α
A := {θ ∈ � : Pθ (A) ≥ α}.(2.13)

Assume that P is a probability obtained by contaminating Pθ0 by any probability
Q with Q(Ac) = 1, and Pθ0(A) = α0. We will obtain in Proposition 3.2 that, as-
ymptotically, if α ∈ (0, α0), the restrictions �α

An
obtained from the sample MVE,

An, are satisfied by every θ in a neighborhood of θ0. Moreover, as stated below,
the truncated likelihood function constrained to the set �α

An
has a maximum. These

facts allow us to consider the MLE(r) or constrained MLE(t), to be denoted as θ̂r,n,
as a substitute of the MLE(t).

PROPOSITION 2.6. Given α > 0, let �α
A be defined as in (2.13). Let us assume

the hypotheses in Proposition 2.5 for g, X and A.
If the points in X ∩ A are in general position, then there exists θ̂r,n ∈ �α

A, such
that

PnL
t

θ̂r,n/A
= sup

θ∈�α
A

PnL
t
θ/A.

Dependence of the constrained solutions on the α-value could be considered as
a drawback of this proposal. However, as shown in the next proposition, in our
setup the level defining the restriction will arise in a natural way, justifying our
considering the MLE(r) for α = Pn(A) as a natural MLE(r).
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PROPOSITION 2.7. Let us assume the hypotheses in Proposition 2.5.
Let (θ̂s,n, π̂s,n) be an MLE(s) and let us define, for every θ ∈ �,

π∗(θ) := Pθ (A) − Pn(A)

Pθ (A)
.(2.14)

If π̂s,n = 0, then θ̂s,n is an MLE(c).
If π̂s,n > 0, then π̂s,n = π∗(θ̂s,n) and θ̂s,n is an MLE(r) restricted to �α

A, for
α = Pn(A).

The key to compare the proposed estimators is the MLE(t) when it exists (see
Theorem 2.1 and Proposition 3.2). From the arguments in the proof of Propo-
sition 2.7, if π∗(θ̂t,n) ≥ 0 then (θ̂t,n, π

∗(θ̂t,n)) would be the MLE(s), while if
π∗(θ̂t,n) < 0, then the maximum of PnL

s

θ̂t,n,π/A
on [0,1] is obtained for π = 0, so

the solution given by the MLE(c) and π = 0 would be preferable. In other words,
in spite of the MLE(c) always existing, under the assumptions in Proposition 2.5,
it is only preferred when the MLE(t) produces troubles, either because the MLE(t)
does not exist or because the associated estimation of π (given by π̂t,n) is nega-
tive. But the MLE(t) only takes into account the data inside A, thus the troubles
appear either because they are not likely enough to arise from the elliptical distrib-
ution, or because this estimation leads us waiting on more sample data outside A.
Proposition 2.8 highlights these facts.

PROPOSITION 2.8. Assume the assumptions and notation of Proposition 2.7
and that there exists an MLE(t), θ̂t,n. Then π∗(θ̂t,n) ≥ 0 implies that (θ̂t,n, π

∗(θ̂t,n))

is an MLE(s). Otherwise (θ̂c,n,0) would be an MLE(s).

It was precisely this behavior that led us to give the name “smart” to our esti-
mate, in order to stress this suggestive property of choosing between two estima-
tors. Whenever we make reference to the global problem, including the estimation
of the contamination level, we will also use smart estimate to refer to the pair
(θ̂s,n, π̂n), where π̂n is defined as π∗(θ̂s,n) in (2.14) when it is feasible and as 0
otherwise.

We also stress that under the GEM the consistency of the MLE(s) will imply
that π̂t,n is positive for large n, so that (θ̂t,n, π

∗(θ̂t,n)) will asymptotically produce
the smart estimator.

Uniqueness of the MLEs in our different schemes is a very distinct task. In
any case, it should be noticed that the uniqueness of the estimators themselves
is not necessary to obtain results on their asymptotic behavior or even their BP.
In general, the treatment of the uniqueness of the MLE is closely related to the
exponential family (see [1]), and this is also our approach in Theorem 2.1.
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THEOREM 2.1. Let {fθ : θ ∈ �} be the density functions of a d-parameter
exponential family with respect to a σ -finite measure λ on R

p given by (2.3).
Let A ∈ βp and P be any probability on R

p such that P(A) > 0 and P(|Tj IA|) <

∞, j = 1, . . . , d . Assume that neither the T ’s on A (P-a.s.), nor the Q’s on �

satisfy a linear constraint and let PLs
θ,π/A be the expected log-likelihood, under P

of (2.6).
Then, there exists at most one solution for the maximization of PLs

θ,π/A under
the restriction π ≥ 0 and there exists at most one solution for the maximization
of PLt

θ/A. Moreover, if there exists a solution constrained to �α
A, θ̂ , which verifies

P
θ̂
(A) > α (i.e., it is not in the boundary of �α

A), then it is unique and also solves
the unconstrained problem.

As a consequence of Theorem 2.1 and Proposition 3.2, we can assure that the
MLE(t) exists asymptotically and that it is unique for the exponential family. The
following corollary particularizes this for the normal family.

COROLLARY 2.1. Let {Pθ : θ ∈ �} be the normal p-dimensional family, and
let A be any bounded set whose interior is nonempty. If X = {x1, . . . , xn} is a data
set such that X ∩ A has at least p + 1 points which are in general position, then
there exists a unique smart estimator (π̂n, θ̂s,n), at least there exists one MLE(c),
and at most there exists one MLE(t) based on A. Moreover, for every α ∈ (0,1)

there exists an MLE(r). In particular, there exists a natural MLE(r) [corresponding
to α = Pn(A)].

2.3. Information matrices. This section ends with the computation of the in-
formation matrices of the proposed estimators. Those results, under the hypothesis
of regularity of the model, will be employed in Theorem 3.3 to obtain the asymp-
totic distributions.

Regularity of a statistical experiment demands the following (see, e.g., page 65
in [15]): (a) continuity of the densities fθ (x) on � for λp-a.e. x; (b) Fisher’s finite
information at every θ ∈ � [i.e., differentiability of the function f

1/2
θ (·) in L2(λ

p)

at every point θ ∈ �], and (c) continuity in the space L2(λ
p) of this differential

function for every θ ∈ �.
In order to guarantee the regularity of the elliptical model, we could resort to

the minimal conditions given by Bickel (see pages 96–98 in [3]), consisting in the
absolute continuity of g and the finiteness of the integral∫ ∞

0
rp+1(1 + r2)

(
g′

g

)2

(r2)g(r2) dr.

Under the regularity of the statistical experiment, Lemma 7.2 in [15] shows that
for any function T , such that PθT

2 is bounded in a neighborhood, Vθ0 , of θ0 ∈ �

the function θ :→ Pθ (T ) is continuously differentiable in Vθ0 and

Pθ

(
T

(
∂

∂θ
log(fθ )

))
= ∂

∂θ
Pθ (T ).(2.15)
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In particular, we have Pθ (
∂
∂θ

log(fθ )) = 0.
These relations and easy computations (we omit), which take into account facts

as

∂

∂θ
log Pθ (A) =

∂
∂θ

Pθ (A)

Pθ (A)
= 1

Pθ (A)
Pθ

(
IA

∂
∂θ

fθ

fθ

)
,

lead to the following propositions on the information matrices of our models. No-
tice that (except in Proposition 2.10) the involved results do not depend on the
elliptical hypothesis. Proposition 2.9 also relates the information matrices based
on the original, the censored and the truncated models, which we respectively de-
note by I(θ),Ic(θ,A),It (θ,A).

PROPOSITION 2.9. Under the regularity of the model {Pθ : θ ∈ �} defined by
the density functions {fθ : θ ∈ �}, the information matrices corresponding to the
censored and truncated likelihood functions based on a set A verify the relations

It (θ,A) = Pθ

(
IA

Pθ (A)

( ∂
∂θ

fθ

fθ

)( ∂
∂θ

fθ

fθ

)T )
− ( ∂

∂θ
Pθ (A))( ∂

∂θ
Pθ (A))T

(Pθ (A))2 ,(2.16)

Ic(θ,A) = Pθ (A)It (θ,A) + ( ∂
∂θ

Pθ (A))( ∂
∂θ

Pθ (A))T

Pθ (A)(1 − Pθ (A))
(2.17)

= I(θ) − Pθ (A
c)It (θ,Ac).

REMARK 2.1. The information matrices above are obtained from different
probability models. However, in our setup, censoring or truncation are artificial.
This means that, in fact, we will know the size of our data sample, and thus, trun-
cation must be understood as a way of handling the data outside the trimming set,
but not as a way of wrongly reconsidering the data size. Therefore, we must take
into account the original data size for a correct analysis of the information given
from a complete sample through both procedures.

This leads to the consideration of either the conditional (to the number of
observations that belong to A) truncated information, or the expected trun-
cated information. In the first case, we would associate the information ma-
trix knIt (θ,A) to a sample of size n with kn elements in A, while in the sec-
ond we should associate that given by nPθ (A)It (θ,A). This last point of view
means, in fact, that in our model of complete data the truncated information
should be I∗

t (θ,A) = Pθ (A)It (θ,A), leading (2.17) to the equivalent relation
Ic(θ,A) = I(θ) − I∗

t (θ,Ac). Of course, the Law of Large Numbers guarantees
that both definitions give the same asymptotic value.

It should be also stressed that the information obtained with censoring is ever
greater than that expected with truncation, as trivially arises from (2.16).

Moreover, (2.16) and Proposition 2.10 also show that in the elliptical model,
for sets A taken as (scaled versions of) the MVE of Pθ , both information matrices
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coincide for all the parameters related to the location and shape of the distribution,
and only differ for the scale parameter. In other words, if we reparameterize 
 as
� = 
/|
|1/p, ς2 = |
|1/p , for the (scaled versions of) the MVE of the elliptical
probability Pθ , the only different component in the information matrices Ic(θ,A)

and I∗
t (θ,A) is that corresponding to the scale parameter ς analyzed in [11].

PROPOSITION 2.10. Assume regularity of the elliptical model {Pθ : θ ∈ �}.
Let 
 be reparameterized by � = 
/|
|1/p, ς2 = |
|1/p . Then, for every θ0 =
(μ0,
0) ∈ � and every r > 0, the following relations hold:

∂

∂μ

∣∣∣∣
θ0

Pθ (E((μ,
), r)) = 0,
∂

∂�

∣∣∣∣
θ0

Pθ (E((μ0,
0), r)) = 0.

In the GEM, the information matrix Is(η,A), where η = (π, θ), is composed
of a sub-matrix corresponding to the parameter θ , a term corresponding to π and
p(p + 1)/2 terms (i.e., the same number as the dimension of θ ) corresponding to
the cross terms between θ and π . We will, respectively, denote them by Is(θ,A),
Is(π,A) and Is(θ

i, π,A).

PROPOSITION 2.11. Under the regularity of the model defined by the density
functions {fθ : θ ∈ �}, the information matrix for the GEM (2.7) verifies

Is(θ,A) = (1 − π)

(
Pθ (A)It (θ,A) + ( ∂

∂θ
Pθ (A))( ∂

∂θ
Pθ (A))T

Pθ (A)(1 − (1 − π)Pθ (A))

)
,

Is(π,A) = Pθ (A)

(1 − π)(1 − (1 − π)Pθ (A))
,(2.18)

Is(θ
i, π,A) = −

∂
∂θi Pθ (A)

1 − (1 − π)Pθ (A)
, i = 1, . . . , p(p + 1)/2.

REMARK 2.2. Since we will often be interested only in the θ ’s parameters,
it is natural to explore what is the information for θ in the GEM (2.7), treating
π as a nuisance parameter. According to the well-known block matrix form of
matrix inverses, the block of the inverse matrix of Is(η,A) corresponding to the
θ ’s parameters can be expressed as(

Is(θ,A) −
∂
∂θ

Pθ (A)

1 − (1 − π)Pθ (A)
(Is(π,A))−1 ( ∂

∂θ
Pθ (A))T

1 − (1 − π)Pθ (A)

)−1

,(2.19)

hence, the matrix between the great parentheses is considered as the information
for θ .

From (2.18), it is straightforward that this information coincides with (1 −
π)Pθ (A)It (θ,A). This agrees with our considerations in Remark 2.1 and the sec-
ond item in Proposition 2.7: Taking into account that the truncated model associ-
ated to the GEM on A coincides with the truncated model (on A) associated to
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the uncontaminated model {Pθ : θ ∈ �}, the information matrix for the GEM must
coincide with that of the truncated model corrected through a suitable factor. The
expected number of sample data points in A obtained from a random sample of
size n from the contaminated probability P

∗
θ0

= (1 − π0)Pθ0 + π0Q, where Q is
any probability with support in Ac, is precisely n(1 − π0)Pθ0(A), thus, the trun-
cated information obtained from one observation from the original GEM should
be

I∗∗
t (θ0,A) = (1 − π0)Pθ0(A)It (θ0,A).(2.20)

This also supports that the MLE(s) coincides with the MLE(t) asymptotically.

3. Robustness and asymptotics of the estimators. In the finite sample set-
ting, the robustness of an estimator is usually measured through its (finite sample)
BP, which for an estimator Tn based on a sample Xn will be denoted as ε∗(Tn,Xn).
Of course, the BP has no sense if we are only able to assure the asymptotic exis-
tence of an estimator. In fact, its analysis is closely related to arguments on the
existence of the estimator. In our case we have shown in Propositions 2.5 and 2.6
the existence of the MLE(s), MLE(c) and MLE(r) under very general hypotheses.
If our initial estimator is equivariant, the ellipsoid on which we base our ML (final)
estimation will be also equivariant and the whole procedure will obviously main-
tain the equivariance property. But, as stated in Theorem 3.1, our one-step proce-
dures also preserve the initial BP. In fact, by merging the arguments in Section 5
in [19] with those used in the discussion showing the existence of our estimators,
it is straightforward to show the following theorem.

THEOREM 3.1. Let X = {x1, . . . , xn} ⊂ R
p, n > p, be a sample of points in

general position. Let tn and Cn be estimates of location and covariance. Let

An := {x ∈ R
p : (x − tn)

T C−1
n (x − tn) ≤ c1},

where c1 is any fixed value such that the set An contains at least [n+p+1
2 ] points

of X.
If the hypotheses in Proposition 2.5 are satisfied and θ̂s,n, θ̂c,n and θ̂r,n are

respectively the MLE(s), MLE(c) and MLE(r) based on An, then

min{ε∗(θ̂s,n,X), ε∗(θ̂c,n,X), ε∗(θ̂r,n,X)} ≥ min{ε∗(tn,X), ε∗(Cn,X)}.
In particular, when tn and Cn are the MVE-based estimators, then

ε∗(θ̂s,n,X) = ε∗(θ̂c,n,X) = ε∗(θ̂r,n,X) = [(n − p + 1)/2].

In order to obtain the Influence Functions (IF) of our estimators, we will begin
with a fixed ellipsoid A = E(γ ), γ ∈ �, and emphasize on the dependence on
the parameter γ . In this case the IF’s of our estimators can be obtained as the
IF’s of M-estimators. Thus, after Section 2.3, under the usual conditions to allow
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for interchanging differentiation and integration [recall relation (2.15) obtained
from the regularity of the model], and under the assumed model, provided that the
involved information matrices are nonsingular, we obtain

IF(x, θ̂∗,n(γ ), θ0) = −
(

Pθ0

(
∂

∂θ
h∗

θ,γ

))−1

h∗
θ0,γ

(x),(3.1)

where θ̂∗,n(γ ) = θ̂t,n(γ ) or θ̂c,n(γ ) and h∗
θ,γ = ht

θ,γ or hc
θ,γ , defined by

ht
θ,γ :=

( ∂
∂θ

fθ

fθ

−
∂
∂θ

Pθ (E(γ ))

Pθ (E(γ ))

)
IE(γ ),

hc
θ,γ :=

∂
∂θ

fθ

fθ

IE(γ ) −
∂
∂θ

Pθ (E(γ ))

Pθ (E(γ )c)
IE(γ )c .

On the other hand, under the GEM, by defining

hs
θ,π,γ :=

( ∂
∂θ

fθ

fθ

IE(γ ) + (1 − π) ∂
∂θ

Pθ (E(γ )c)

(1 − π)Pθ (E(γ )c) + π
IE(γ )c ,

−1

1 − π
IE(γ ) + 1 − Pθ (E(γ )c)

1 − (1 − π)Pθ (E(γ ))
IE(γ )c

)T

,

and recalling the information matrix Is(η,E(γ )) (see Proposition 2.11), we obtain

IF(x, θ̂s,n(γ ), π̂s,n(γ ), θ0, π0) = (Is(η0,E(γ )))−1hs
θ0,π0,γ

(x).(3.2)

Because of the continuity of the estimators with respect to γ , it is easy to see

that the IF of the estimator θ̂∗,n(γn) coincides with that of θ̂∗,n(γ ) if {γn}n ⊂ � and
γn → γ ∈ �, if we apply the main idea in the proof of Theorem B.1 in [10] to the
points that do not belong to the boundary of E(γ ). Therefore, the IF of the one-step
(truncated, censored or smart) estimator based on the MVE estimators will be the
one given by (3.1), or (3.2) with E(γ ) being the MVE of P, where P belongs to an
elliptical model [or to the GEM model given by (2.2) for the elliptical model].

Of course, the asymptotic variances computed from the information matrices
Ic(θ0,E(γ )), I∗

t (θ0,E(γ )) and I∗∗
t (θ0,E(γ )), taking into account Remarks 2.1

and 2.2, and by integration of the square of the relations (3.1) and (3.2), coincide.

3.1. Strong consistency. To explore the asymptotic behavior of our estimators,
we begin with the consistency of the initial estimator. We will show that any initial
consistent estimator under the model would give the same asymptotic behavior.
The consistency of the MVE in the uncontaminated model has already been treated
in [7]. However, under the uniqueness of the theoretical MVE, it is not difficult to
show the following proposition that covers the GEM.
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PROPOSITION 3.1. Let g be a decreasing function which defines an elliptical
family on R

p . Let {Xn}n be a random sample obtained from the distribution

P = (1 − π0)Pθ0 + π0Q(3.3)

in the GEM of the elliptical family defined by g with π0 < 1/2, let A = E(μ,
, r)

be the MVE of P, which we assume to be unique, and An = E(μn,
n, rn) be the
sample MVE. Then we have that limn IAn = IA a.s.

Now, we are in a position to prove the consistency of the smart estimate under
the GEM.

THEOREM 3.2 (Consistency of the estimators). Let g be a function which
defines an elliptical family on R

p and satisfies G1, G2 and Gp. Let {Xn}n be a
random sample taken from the distribution

P = (1 − π0)Pθ0 + π0Q

in the GEM of the elliptical family defined by g, 0 ≤ π0 < 1/2 and θ0 ∈ �.
Let A be an MVE of P, which we assume to be unique. Let {An}n be a sequence

of empirical MVE’s and let {(π̂n, μ̂n, 
̂n)}n be a sequence of MLE(s) based on the
ellipsoids {An}n. Then, the following is satisfied:

1. The MLE(s) based on {An}n is strongly consistent.
2. If π0 = 0, then the MLE(c) based on {An}n is strongly consistent.
3. If α ∈ (0,1/2), then the MLE(r), θ̂r,n, based on {An}n under the restrictions

given by �α
An

is strongly consistent. Moreover, if π̂n is computed from θ̂r,n using
(2.14), then also π̂n → π0 a.s.

Proposition 3.2 shows that, for a large enough sample size, the restricted pa-
rameter set contains the true value of the parameter. Thus, for large sizes these
restrictions are, in fact, superfluous.

PROPOSITION 3.2. Assume the hypotheses of Theorem 3.2. Let α ∈ (0,1/2)

be given and let �α
An

be defined as in (2.13). Then, for a.e. sample there exists
δ > 0 such that {θ :‖θ − θ0‖ < δ} ⊂ �α

An
, for large enough n.

3.2. Asymptotic distribution. Although the extension of the argmax-based ar-
guments of the Empirical Processes Theory to the semiparametric framework is
certainly not trivial, our model is well suited for such a task, because of the special
features of the family of ellipsoids parameterized through the set �. In fact, Sec-
tion 3.2.4 of [26] can easily be tuned to cover our setup by verbatim repeating the
reasoning therein in order to get the chain of results on linearization given in the
Appendix as well as their consequences.
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We only consider with some detail the MLE(r) which needs some additional
analysis. Let α ∈ (0,1/2), and {γn} be the sequence of parameters associated to
the sequence of sample MVE’s. We initially assume the hypotheses in Lemma A.7,
as well as the regularity of the underlying elliptical model. After the consistency
results, for the analysis of the asymptotic distribution, we can assume that the
γ -parameters belong to a compact subset K of �, and that the θ -parameters verify
the restrictions given by �α

E(γn) and belong to the set {θ :‖θ − θ0‖ < δ} for some
δ > 0 and large enough n.

Let us consider the function mθ,γ , associated to the MLE(r), given by

mθ,γ (x) := IE(γ ) log
(

g((x − μ)T 
−1(x − μ))∫
E(γ ) g((y − μ)T 
−1(y − μ))dy

)
.(3.4)

Lemma 3.1 allows us to apply Theorem A.1 under the condition required in
Lemma A.8.

LEMMA 3.1. Let us assume that g is twice continuously differentiable. Let
θ0 = (μ0,
0) ∈ �, γ0 ∈ � be such that

inf
x∈E(γ0)

g
(
(x − μ0)

T 
−1
0 (x − μ0)

)
> 0.

Then, there exist a vector valued function ṁθγ , δ > 0 and a compact neighbor-
hood K of γ0 such that{

mθγ − mθ0γ − (θ − θ0)
T ṁθ0γ

‖θ − θ0‖ :‖θ − θ0‖ < δ,γ ∈ K

}
(3.5)

is P-Donsker and

P
(
mθγ − mθ0γ − (θ − θ0)

T ṁθ0γ

)2 = o(‖θ − θ0‖)2,(3.6)

uniformly in γ ∈ K .

If the matrix of second derivatives is continuous and nonsingular, relation (A.24)
in Lemma A.8 and the consistency of the MVE’s produce the asymptotic laws of
the MLE(s) at the announced rate n1/2, independently of the rate of convergence
of the initial estimator.

The analogous result for the MLE(c) under the elliptical model follows from
similar considerations. Finally, under a probability in the GEM of the elliptical
model with π > 0, the consistency of the MLE(s) assures, from Proposition 2.7,
that the MLE(s) coincides with the natural MLE(r) asymptotically. Thus, they
share their asymptotic normal distribution, with the covariance matrices related
to the information matrices already obtained. We summarize these results in the
following final theorem.
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THEOREM 3.3 (Asymptotic distributions). Assume the hypothesis in Lem-
ma A.7 and that g is twice continuously differentiable. Let A be the (only) MVE
of P. For each n ∈ N , consider an estimation, An, obtained through a consistent
estimator of the MVE; the MLE(r), θ̂r,n under the restriction defined by �α

An
for

some α ∈ (0,1/2), as well as the MLE(s), θ̂s,n, and the MLE(c), θ̂c,n, based on An.
If the corresponding information matrices are nonsingular, then:

1.
√

n(θ̂r,n − θ0) converges in law to a centered multivariate normal distribution
with covariance matrix given by the inverse of the information matrix, I∗∗

t (θ,A)

defined through (2.20) and Proposition 2.9.
2. If π0 = 0,

√
n(θ̂c,n −θ0) converges in law to a centered multivariate normal dis-

tribution with covariance matrix given by the inverse of the information matrix,
Ic(θ,A), defined in Proposition 2.9.

3. If π0 > 0,
√

n(θ̂s,n − θ0) converges in law to a centered multivariate normal
distribution with covariance matrix given in (2.19).

4. Discussion. A consideration on the efficiency of the obtained estimators
can be illuminating. Note that the rate of convergence is always n1/2, but also
that the asymptotic law of the estimators depends on the limit ellipsoid but not
on the rate of convergence of the initial estimator to this ellipsoid. In fact, from
the asymptotic results and the expressions of the information matrices, it becomes
apparent that the efficiency is equivalent to that obtained from the corresponding
MLE computed on the theoretical (enlarged) MVE. Therefore, it is greater than
that obtained by the usual one step reweighting, even for initial estimators that
converge faster than the MVE estimator.

Under the elliptical model, any high-BP consistent initial estimator (tn,Cn) of
θ = (μ,
) could be used to produce our estimation An := E(tn,Cn, rCn,α) of the
central ellipsoid A = E(μ,
, r
,α), covering, say, the 1 − α = 95% of the theo-
retical distribution. Between our proposals, the MLE(c) based on An will provide
maximum efficiency and the same BP as (tn,Cn). We recall that, according to Re-
mark 2.1, the gain of efficiency with respect to the MLE(t) appears only in the
estimation of 
, thus, the MLE(t) and MLE(c) of μ based on An have the same
efficiency. Since it is usual to justify the use of robust estimators looking at the
behavior under the model (i.e., assuming the existence of no contamination), the
greater efficiency of the MLE(c) under the elliptical model would justify its prior-
itary use.

In Tables 1, 2 and 3 (see Appendix B) we present the asymptotic efficiencies
of these estimators under the uncontaminated elliptical model and their versions
based on enlarged MVE estimations. The comparison of the efficiencies in these ta-
bles with other well-known robust estimators (see, for instance, the efficiencies ob-
tained in [5]) or [4] shows that the combination “Initial MVE estimator”+“Scaled
version for a given α” + “MLE(c)” gives better efficiencies between the highest-BP
equivariant estimators.
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In the contaminated model, it is intuitively sound that the best choice for an
estimator based on a subsample which contains no outlier should be the MLE(t). In
this sense the MLE(s) is the natural MLE, because it only substitutes the estimation
provided by the MLE(t) when it does not exist or the sample does not sufficiently
match the GEM. In some way it also robustifies the MLE(t) that, as already noted,
possibly does not even exist. This nonexistence is in apparent contradiction with
Theorem 1 in [20], but the BP studied in this theorem is not the sample-based one
and does not reflect the possible nonexistence of the MLE(t), which could make it
undesirable from the robustness point of view. The MLE(r) would be an excellent
alternative, taking into account the choice of the initial trimmed sets.

In the presence of outliers, our choice of the MVE as initial estimator to produce
the trimmed set is related to the GEM model, which is based on the possibility of
discarding the outliers by resorting to a common central ellipsoid of the contam-
inated and uncontaminated models. Since our proposals circumvent the drawback
of its convergence rate, this choice stresses the improvement of efficiency obtained
through the presented methodology.

The literature on robust estimation in the elliptical model usually analyzes the
estimation of |
| a posteriori, by adjusting on the basis of the model and the
estimates of location and shape. This generally leads to a Fisher inconsistent es-
timation under a real contaminated model, even in the considered GEM in which
only outliers contaminate the distribution. On the contrary, our proposals are in
their own right MLE, even for the size of 
, and only the MLE(c) would be Fisher
inconsistent (when π0 > 0).

In the applications, every proposal can be computed through a variant of the
EM algorithm (see Section 4.2 in Dempster, Laird and Rubin [9]) and based on
the improved MVE given in (6.59) in [22]. The variant of the EM algorithm can
be based on a Monte Carlo approximation to the integrals using a random sample
from the appropriate elliptical distribution, while in the M step we need to solve
the estimation problem for the original (nontruncated, noncensored) elliptical dis-
tribution.

APPENDIX A: PROOFS AND SOME TECHNICAL RESULTS

PROOF OF PROPOSITION 2.1. If fθ1 = fθ2 λ-a.s. on A, then

λ

{
x ∈ A :

j∑
i=1

(
Qj(θ1) − Qj(θ2)

)
Tj (x) = log(C(θ1)/C(θ2))

}
= λ(A),

and the T ’s would satisfy a linear constraint on A with λ-positive measure. �

PROOF OF PROPOSITION 2.2. Let θ = (μ,
) ∈ � be such that, for some k,
it satisfies

Pθ0[Ck] = Pθ0[A],(A.1)
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where Ck = {x ∈ A :fθ (x) = kfθ0(x)}.
Assume that μ �= μ0 and let ε > 0 such that B(μ0, ε) ⊂ A and fθ0 > 0 on

B(μ0, ε). Then ε∗ = inf(‖μ − μ0‖, ε) > 0. For every x ∈ S(μ0, ε
∗) ∩ {y : 〈y −

μ,μ0 − μ〉 > 0}, let [x,μ0] ⊂ R
p be the segment joining x with μ0.

The function fθ0 (resp. fθ ) increases (resp. decreases) on the segment from x to
μ0. Because of G1, fθ0 is not constant on this segment. Thus, if we denote λ1

x the
(one-dimensional) Lebesgue measure on [x,μ0], then

λ1
x{fθ �= kfθ0} ∩ [x,μ0] > 0,

which makes (A.1) impossible.
This implies that μ = μ0. Moreover, from (A.1) there exists a sequence {xn} ⊂

Ck − {0}, such that limn xn = μ0 and, since (from G1) g(0+) > 0, we obtain

k = lim
n

fθ (xn)

fθ0(xn)
=

( |
0|
|
|

)1/2

lim
n

g((xn − μ0)
T 
−1(xn − μ0))

g((xn − μ0)T 
−1
0 (xn − μ0))

=
( |
0|

|
|
)1/2

.

In other words, if x ∈ Ck , we have

g
(
(x − μ0)

T 
−1(x − μ0)
) = g

(
(x − μ0)

T 
−1
0 (x − μ0)

)
.

On the other hand, let x ∈ A such that fθ0(x) < fθ0(μ0) and let

tx = sup{t > 0 :g(t) > |
0|1/2fθ0(x)}.
Because of G1, tx �= 0. Moreover, taking into account that A is open and (A.1),

we have that there exist two sequences {xn}, {yn} ⊂ Ck such that

lim
n

(xn − μ0)
T 
−1

0 (xn − μ0) = lim
n

(yn − μ0)
T 
−1

0 (yn − μ0) = tx,(A.2)

while (yn −μ0)
T 
−1

0 (yn −μ0) > tx , and (xn −μ0)
T 
−1

0 (xn −μ0) < tx , for every
n ∈ N. Therefore, by definition of Ck and tx , it must also happen that

lim
n

(yn − μ0)
T 
−1(yn − μ0) = tx .(A.3)

Without loss of generality, we can assume that the sequence {yn}n is convergent.
Let yx be its limit. Thus, from (A.2) and (A.3) we have that

(yx − μ0)
T 
−1(yx − μ0) = tx and (yx − μ0)

T 
−1
0 (yx − μ0) = tx .(A.4)

However, by G1, it is possible to choose x in order to obtain infinite different
values for tx above. This and the freedom we have to choose the convergent se-
quence {yn} give that at most there exists a matrix 
 which satisfies the infinite
number of relations included in (A.4). Since 
0 satisfies all these relations, the
only possibility is to have 
 = 
0. �

Proposition 2.4 employs the following lemma in its proof.
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LEMMA A.1. Let X := {x1, . . . , xn}, where n > p, be a set whose points are
in general position. Let H be the family of all hyperplanes in R

p , and given H ∈
H , let us denote the distance from xi to H by di(H) := inf{‖xi − h‖ :h ∈ H }, i =
1, . . . , n.

If (d(1)(H), d(2)(H), . . . , d(n)(H)) is the ordered set of the values, di(H), i =
1, . . . , n, then infH∈H d(p+1)(H) > 0.

PROOF. Every H ∈ H is determined by the vector v ∈ Sp−1, the unit sphere
in R

p , and the value b ∈ R which satisfy H = {x ∈ R
p : 〈x, v〉 = b}. Let us

denote H = Hv,b. Also, set xi = (x1
i , . . . , x

p
i ), for every i = 1, . . . , n, Mn :=

sup{|xj
i | : j = 1, . . . , p and i = 1, . . . , n} and Hn = {(v, b) ∈ Sp−1 × R :Hv,b ∩

[−Mn,Mn]p �= ∅}. Obviously,

inf
{
d(p+1)(H) :H ∈ H

} = inf
{
d(p+1)(Hv,b) : (v, b) ∈ Hn

}
.

For every v ∈ Sp−1 such that there exists b ∈ R, which satisfies that (v, b) ∈ Hn,
let us consider the continuous maps

v → Bn(v) := sup{b ∈ R
p : (v, b) ∈ Hn},

v → Bn(v) := inf{b ∈ R
p : (v, b) ∈ Hn}.

Since Sp−1 is compact and Hn = ⋃
v∈Sp−1

{v} × [Bn(v),Bn(v)], where we take
[Bn(v),Bn(v)] = ∅ if these maps are not defined, we obtain that Hn is compact.

On the other hand, for every i = 1, . . . , n, the map (v, b) :→ di(Hv,b) is contin-
uous, hence, (v, b) :→ d(p+1)(Hv,b) is also continuous and reaches its infimum on
Hn, proving the lemma from the general position assumption. �

PROOF OF PROPOSITION 2.4. We will only consider the more involved case
p > 1. Let {(μk,
k)}k ⊂ � be a sequence such that

lim
k

n∏
i=1

f(μk,
k)(xi) = sup
(μ,
)∈�

n∏
i=1

f(μ,
)(xi).(A.5)

Since g is continuous and g(0) > 0, it must be

lim inf
k

n∏
i=1

f(μk,
k)(xi) > 0.(A.6)

Let v1
k , . . . , v

p
k and δ1

k , . . . , δ
p
k be the eigenvectors and eigenvalues of 
k . Let

�k := inf{δ1
k , . . . , δ

p
k } and let jk be such that �k = δ

jk

k . First, we prove that it is
impossible that lim infk �k = 0. Let us assume that, on the contrary, there exists a
subsequence, which we will denote as the original one, such that limk �k = 0.

Since the points in X are in general position and, since n > p, we can apply
Lemma A.1 to obtain that there exists d > 0 such that

Ik := {
i ∈ {1, . . . , n} : |(xi − μi)

T v
jk

i | ≥ d
}
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is a set which contains at least (n − p) elements. Therefore, if i ∈ Ik , then

(xi − μk)
T 
−1

k (xi − μk) ≥ |(xi − μi)
T v

jk

i |2(�k)
−1 ≥ d2(�k)

−1,

and, since g is nonincreasing, if i ∈ Ik , and |
k| ≥ (�k)
p , we have that

n∏
i=1

f(μk,
k)(xi) ≤ (�k)
−pn/2g(0)pg(d2(�k)

−1)n−p.(A.7)

Thus, applying assumption Gp in (A.7), we have that if k is big enough,

n∏
i=1

f(μk,
k)(xi) ≤ (�k)
n(2γ−p)/2−pγ g(0)pd−2γ (n−p),

which converges to zero as n → ∞ and contradicts (A.6).
Now, let �k := sup{δ1

k , . . . , δ
p
k }. Since |
k| ≥ �

p−1
k �k , we have that

n∏
i=1

f(μk,
k)(xi) ≤ (�k)
−n(p−1)/2(�k)−n/2g(0)n,

and, to avoid contradictions with (A.6), we obtain that lim supk |�k| < ∞.
Because lim infk |�k| > 0 and lim supk |�k| < ∞, we can conclude that

lim supk ‖μk‖ < ∞ because, on the contrary, (A.6) would be false.
This means that every sequence which satisfies (A.5) is contained in a compact

set and, in consequence, it contains a convergent subsequence to, say, (μ̂, 
̂) ∈ �.
An easy argument of continuity shows now that (μ̂, 
̂) is the point we are looking
for. �

PROOF OF PROPOSITION 2.5. Let {(θk,πk)}k in �×[0,1), θk = (μk,
k), be
a sequence such that

lim
k→∞PnL

s
θk,πk/A

= sup
θ∈�,π∈[0,1)

PnL
s
θ,π/A.

Since [0,1) is bounded, we can assume that there exists π̂ = limk πk .
Taking into account that the second summand in (2.8) is bounded above, we

can repeat the same reasoning as in Proposition 2.4 to show that there exists a
convergent subsequence of {θk} whose limit belongs to � and also that π̂ < 1.
Thus, from the continuity of fθ and Pθ [recall (2.12)], we obtain that the maximum
is attained at the limit of this subsequence.

The proof for the MLE(c) is the same, by keeping π = 0 fixed. �

PROOF OF PROPOSITION 2.6. This proof goes along the same lines as the
one we gave for Proposition 2.4 because, under the restrictions, the term Pθk

(A) is
bounded away from zero. �
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PROOF OF PROPOSITION 2.7. The first statement directly follows from the
expression (2.8) of the objective function, which, for π = 0, coincides with that of
the censored framework. Concerning the other statement, notice that an equivalent
expression for (2.8) is

PnIA log(fθ/Pθ (A)) + Pn

(
IA log

(
(1 − π)Pθ (A)

)
(A.8)

+ IAc log
(
1 − (1 − π)Pθ (A)

))
.

Let us denote ψ(π, θ) to the sum of the second and third summands in this
expression (which are the only ones depending on π ). Note that ψ(π∗(θ), θ) does
not depend on θ . On the other hand, derivation of ψ with respect to π easily shows
that, for every θ , if π ≥ 0 and π > π∗(θ), then ψ(π, θ) is nonincreasing on π , thus,
the maximum value of ψ(π, θ) on [0,1] is ψ(π∗(θ), θ) if π∗(θ) ≥ 0 else ψ(0, θ).
Then it follows that π̂s,n = π∗(θ̂s,n) when π̂s,n > 0, and the maximum value of
(A.8) under the restriction Pθ (A) ≥ Pn(A) is, as stated in the second item,

PnIA log(fθ/Pθ (A)) + ψ(π∗(θ), θ). �

The proof of Theorem 2.1 is based on Lemma A.2. Let μ be a positive
σ -finite measure on βp such that the function c on R

p defined by c(θ) =∫
exp{∑d

i=1 θjxj }μ(dx) is not identically +∞. c is the so-called Laplace trans-
form of μ. Its domain is the set {θ ∈ R

d : c(θ) < +∞}.
LEMMA A.2 (Theorem 7.1 in [1]). Let κ = log c be the logarithm of the

Laplace transform of μ. Then κ is a closed convex function on R
p and is strictly

convex on its domain, provided μ is not concentrated on an affine subspace of R
p .

PROOF OF THEOREM 2.1. We will employ the canonical form of (2.3), ob-
tained by a re-parameterization and the absorption of h into λ, leading to

fθ (x) = C(θ) exp

{
d∑

j=1

θjTj (x)

}
.(A.9)

The expression within the brackets in (2.6) is the logarithm of a density function,
say, gθ,π , with respect to the σ -finite measure λ|A + δ{c},

gθ,π (x) := IA(x)(1 − π)fθ (x) + I{c}(x)
[
(1 − π)

(
1 − Pθ (A)

) + π
]
.(A.10)

It is straightforward to obtain the following exponential expression for gθ,π ,
whenever the condition 1 − (1 − π)Pθ (A) > 0 holds [or in an equivalent way,
whenever −π < Pθ (A

c)/Pθ (A), allowing even negative values of π ]:

gθ,π = (
1 − (1 − π)Pθ (A)

)[
IA exp

{
d∑

j=1

θjTj

}
(1 − π)C(θ)

1 − (1 − π)Pθ (A)
+ I{c}

]

= (
1 − (1 − π)Pθ (A)

)
exp

{
IA

(
d∑

j=1

θjTj + log
(1 − π)C(θ)

1 − (1 − π)Pθ (A)

)}
,
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easily seen within the class of exponential distributions, if we add the parameter

θd+1 = log
(

(1 − π)C(θ)

(1 − (1 − π)
∫
A C(θ) exp{∑d

j=1 θjTj (x)}λ(dx))

)
,(A.11)

leading to the density functions with respect to λ|A + δ{c},

hθ,θd+1(x) := D(θ, θd+1) exp

{
d∑

j=1

θj (Tj (x)IA(x)) + θd+1IA(x)

}
.(A.12)

The hypothesis requiring that the T ’s do not satisfy a linear constraint on A

implies that T1, T2, . . . , Td, IA also do not satisfy such a linear constraint on A.
This allows us, by Lemma A.2, to guarantee that − logD(θ, θd+1) is a closed
strictly concave function on its domain.

On the other hand, from (A.11), the restriction π ≥ 0 can be written as

θd+1 + log

(∫
exp

{
d∑

j=1

θjTj (x)

}
λ∗(dx)

)
≤ 0,(A.13)

where the term IAc is included in a new measure λ∗ = λ|Ac .
Once more by Lemma A.2, the function on the left of (A.13) is a convex func-

tion. Therefore, the restricted set defined by (A.13) is a convex set.
Let P be a probability distribution verifying the hypotheses. The function

P loghθ,θd+1 =
d∑

j=1

θjP(Tj IA) + θd+1P(IA) − logD(θ, θd+1)

is then a strictly concave function on its domain, so, if any, it has a unique maxi-
mum point (θ∗

1 , . . . , θ∗
d , θ∗

d+1) on the restricted (convex) set (A.13).
The relation between (θ, θd+1) and (θ,π) given by (A.11) would give now the

only (if any) maximum point of PLs
θ,π/A = P loggθ,π under π ≥ 0.

For the proof of the statements related to the MLE(t), note that by resorting to
the canonical form of the exponential family and absorbing IA into the measure λ,
from Lemma A.2, it is straightforward that the function

logC(θ) +
d∑

j=1

θjPTj − log Pθ (A)

is a strictly concave function of θ , thus, the results are immediate. �

The next lemma is easily deduced from Theorem 1 in [6].

LEMMA A.3. Let (μ0,
0) ∈ �. Given r0 > 0, let

E(μ0,
0)(r0) := {
E(μ,
, r) : P(μ0,
0)[E(μ,
, r)] ≥ P(μ0,
0)[E(μ0,
0, r0)]}.

Then, the volume of E(μ0,
0, r0) is minimal in E(μ0,
0)(r0).
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PROOF OF PROPOSITION 2.10. Because of the regularity of the model, the
map θ :→ Pθ (E((μ0,
0), r)) is continuously differentiable in a neighborhood of
θ0, so it suffices to show that for every fixed value of ς2 (= |
|1/p) the function
has a local maximum at μ = μ0 and � = 
0/ς

2
0 .

Let μ1 and 
1 with |
1| = |
0|. Because of the elliptical character of the
model, we have that P(μ0,
0)(E((μ0,
0), r)) = P(μ1,
1)(E((μ1,
1), r)). Thus,
if we assume that

P(μ0,
0)(E((μ0,
0), r)) < P(μ1,
1)(E((μ0,
0), r)),

then the absolute continuity of P(μ1,
1) implies that, for some r∗ < r ,

P(μ1,
1)(E((μ0,
0), r
∗)) = P(μ1,
1)(E((μ1,
1), r)) = p0.

Then, the volume of the ellipsoid E((μ0,
0), r
∗) would be strictly lower than

E((μ1,
1), r) with the same probability, contradicting Lemma A.3. �

Lemmas A.4 and A.5 include some well-known properties, and are stated for
reference.

LEMMA A.4. If P belongs to the GEM given by an elliptical family and A is
the MVE of P, then:

1. P(A) = 1/2, and,
2. if A = E(μ,
, r), then limε→0+ P(E(μ,
, r + ε)) = 1/2.

The next lemma follows from the well-known fact that the class

C := {{x ∈ R
p : |〈x − μ,v〉| ≤ d} :μ ∈ R

p, v ∈ S(0,1) and d > 0
}
,

and the class of all ellipsoids constitute two Vapnik–Cervonenkis (VC) classes.

LEMMA A.5. Let {Xn}n be a random sample taken from a probability distri-
bution P, then:

1. sup{|Pn(A) − P(A)| :A is an ellipsoid } → 0, a.s.
2. sup{|Pn(A ∩ B) − P(A ∩ B)| :A is an ellipsoid and B ∈ C} → 0, a.s.

LEMMA A.6. Let g be a decreasing function which defines an elliptical family
on R

p . Let P = (1 − π0)Pθ0 + π0Q, 0 ≤ π0 < 1/2 and θ0 ∈ �, be a distribution in
the GEM of the elliptical family defined by g.

Let A = E(μ0,
0, r0) be the MVE of P. Then, for every η > 0, there exist d > 0
and ε > 0, such that, if we denote Aε = E(μ,
, r + ε), then

sup
v∈S(0,1)

sup
μ∈Rp

P[Aε ∩ {x ∈ R
p : |〈x − μ,v〉| ≤ d}] < η.
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PROOF. Let η > 0. Since Pθ0 is absolutely continuous, it is easy to show that
there exists d > 0 such that

sup
v∈S(0,1)

sup
μ∈Rp

P[{x ∈ R
p : |〈x − μ,v〉| ≤ d}] < η.

This and (2) in Lemma A.4 give the result. �

LEMMA A.7. Assume the hypotheses of Theorem 3.2. Let δ1
n, . . . , δ

p
n be the

eigenvalues of 
̂n. Let �n = inf{δ1
n, . . . , δ

p
n }. Then

lim inf
n

�n > 0, a.s.

PROOF. We will only treat the case p > 1. Let γ > p/2 be the value associated
by Gp to g. Obviously, 2γ − p > 0 and, then, there exists η > 0 such that 2γ (1 −
2η) > p.

From Lemma A.6, there exist ε > 0 and d > 0 such that

sup
v∈S(0,1)

sup
μ∈Rp

P[Aε ∩ {x ∈ R
p : |〈x − μ,v〉| ≤ d}] < η.

Taking into account Proposition 3.1, Lemmas A.5 and A.4 and that IAε log(fθ0)

is P-integrable, we have that there exists a probability one set �0 such that if
ω ∈ �0, then

P ω
n [An] → P(A) = 1/2.(A.14)

There exists N ∈ N (N = N(ω)) such that if n ≥ N , then An ⊂ Aε and,

sup
v∈S(0,1)

sup
μ∈Rp

P[An ∩ {x ∈ R
p : |〈x − μ,v〉| ≤ d}] < η,(A.15)

and

P ω
n IAn log(fθ0) → PIA log(fθ0).(A.16)

Let ω ∈ �0. ω will remain fixed and will be omitted in the notation.
Statement (A.14) implies that requirements on m in Proposition 2.5 hold from

an index onward, and then the MLE(s) exists from this index onward.
Let us denote μ̂n = (μ1

n, . . . ,μ
p
n). Let jn be such that �n = δ

jn
n . Let us assume

that there exists a subsequence such that limk �nk
= 0. To simplify the notation,

we will denote this subsequence with the same notation as the original one. Let us
consider the set

Bn := {x = (x1, . . . , xp) ∈ R
p : (xjn − μjn

n )2 ≥ d2}.
From (A.15) we have that Pn[Bn ∩ An] ≥ Pn(An) − η and now the proof goes

by repeating the same steps as in Proposition 2.4 with the set Ik being replaced
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there by the set Bn here, because we have
n∏

i=1

(
f

(μ̂n,
̂n)
(xi)

)IAn(xi)

≤ (�n)
−(p/2)nPn(An)g(0)nηd−2γ n(Pn(An)−η)(�n)

γn(Pn(An)−η)(A.17)

= (
(�n)

2γ (Pn(An)−η)−pPn(An)/2g(0)ηd−2γ (Pn(An)−η))n. �

PROOF OF THEOREM 3.2. Let us denote θ̂s,n = (π̂n, μ̂n, 
̂n) and let An be
an empirical MVE. First, we will prove that the sequence {(π̂n, μ̂n, 
̂n)}n is a.s.
included in a compact subset of [0,1) × �. To this, let �0 be a probability one
set whose points satisfy 1 in Lemma A.5, Proposition 3.1, (A.14), (A.16) and
Lemma A.7, and let ω ∈ �0. This point will remain fixed throughout the proof
and we will make no reference to it in the notation.

The second term in (2.8) does not depend on π and the third one is bounded.
Since (π̂n, μ̂n, 
̂n) maximizes (2.8) and the first term converges to −∞ if π̂n → 1,
it may not happen that lim sup π̂n = 1.

Let δ1
n, . . . , δ

p
n be the eigenvalues of 
̂n. Let �n = sup(δ1

n, . . . , δ
p
n ). Fol-

lowing the same steps as in Proposition 2.4, we would prove that if it were
lim sup�n = ∞, then there would exist a subsequence such that

lim
k

nk∏
i=1

(
f

(μ̂nk
,
̂nk

)
(xi)

)IAnk
(xi) = 0

and, for this sequence, the second term in (2.8) would converge to −∞, which is
impossible because (A.16) is satisfied.

Therefore, the sequence {(π̂n, μ̂n, 
̂n)}n is a.s. included in a compact subset of
[0,1)×�. Let us consider a convergent subsequence {(π̂nk

, μ̂nk
, 
̂nk

)}k with limit
(π∗,μ∗,
∗).

Lemma A.4 and (A.14) trivially give that

Pnk
(Ank

) log(1 − πnk
) → P(A) log(1 − π∗).(A.18)

Proposition 3.1 implies that if we denote A = E(μ,
, r), then for every ε > 0
there exists N such that, if k ≥ N , then

E(μ,
, r − ε) ⊂ Ank
⊂ E(μ,
, r + ε).(A.19)

However, if we denote θ̂nk
= (μ̂nk

, 
̂nk
), θ∗ = (μ∗,
∗), (2.12) implies that

lim
k

P
θ̂nk

(E(μ,
, rε)) = Pθ∗(E(μ,
, rε)),

where rε ∈ {r − ε, r + ε}. From here, (A.19) and the continuity of Pθ∗ , we obtain
that

lim
k

P
θ̂nk

(Ac
nk

) = Pθ∗(Ac).
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This, with (A.14), gives that

lim
k

Pnk
(Ac

nk
) log

(
(1 − πnk

)P
θ̂nk

(Ac
nk

) + πnk

)
(A.20)

= P(Ac) log
(
(1 − π∗)Pθ∗(Ac) + π∗)

.

The continuity of g implies that limk f
θ̂nk

= fθ∗ . Moreover, the sequence {f
θ̂nk

}k
is uniformly bounded by a constant because the sequence {
̂nk

}k is contained in
a compact subset of � and g is bounded by g(0). Thus, taking into account that
1 in Lemma A.5 implies that the sequence of distributions {Pnk

}k converges in
distribution to P, and that A is a continuity set of P, it is a standard exercise to
prove that

Pnk
(IAnk

log(fθnk
)) → P(IA log(fθ∗)).

This, (A.18) and (A.20) give that

lim
k

Pnk
Ls

θnk
,πnk

/Ank
= PLs

θ∗,π∗/A.(A.21)

On the other hand, from the assumptions on �0, it can be deduced that

lim
k

Pnk
Ls

θ0,π0/Ank
= PLs

θ0,π0/A
.(A.22)

But, from Proposition 2.3, we obtain that PLs
θ∗,π∗/A ≤ PLs

θ0,π0/A
, and, by defi-

nition of the smart estimate, we also have that

lim
k

Pnk
Ls

θ0,π0/Ank
≤ lim

k
Pnk

Ls
θnk

,πnk
/Ank

.

This, (A.21), (A.22) and the inequality (2.11) imply that θ0 = θ∗.
The consistency of the MLE(c) under the elliptical model can be proved with

the same scheme by considering the easier case π = 0.
The proof for the MLE(r) follows the same steps, once we show that the depen-

dence on α of the restrictions given by �α
A does not constitute any constraint from

the asymptotic point of view. This is proved in Proposition 3.2. �

PROOF OF PROPOSITION 3.2. Let δ ∈ (0,1/2 − α). From Proposition 3.1
and the Glivenko–Cantelli property of the class of ellipsoids, we deduce that, for
n ≥ n0 large enough (and depending on the sample), Pθ0(An) > α + η holds.
On the other hand, (2.12) shows that for ε > 0 there exists δ > 0 such that
supB∈βp |Pθ (B) − Pθ0(B)| < ε whenever ‖θ − θ0‖ < δ. Both relations give that
Pθ (An) > α, so that θ ∈ �α

An
, if ‖θ − θ0‖ < δ and n > n0. �

Now we will adapt Section 3.2.4 in [26] to our semiparametric setup. We only
include some keys for the adapted proofs which verbatim would repeat the argu-
ments there.
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THEOREM A.1 (Extension of Theorem 3.2.16 in [26]). Let {Mn}n be stochas-
tic processes, all of them indexed by the same product � × K of an open subset
� and a compact subset K of two Euclidean spaces, and M : � × K → R be a
deterministic function.

Assume that for every γ ∈ K the function θ → M(θ,γ ) has a unique maximum
θ0 where it is twice continuously differentiable w.r.t. θ , with nonsingular continu-
ous (w.r.t. γ ) second derivative matrix V (γ ). Suppose also that

√
n
(
Mn(θn, γn) − M(θn, γn)

) − √
n
(
Mn(θ0, γn) − M(θ0, γn)

)
= (θn − θ0)

T Zn(θn, γn) + o∗
P (‖θn − θ0‖2)

+ o∗
P

(‖θn − θ0‖ + √
n‖θn − θ0‖2 + n−1/2)

for every sequence θn = θ0 + o∗
P (1), every sequence {γn} ⊂ K , and a uniformly

tight sequence Zn(θn, γn) of random vectors.
If the sequence θ̂n(γn) converges in outer probability to θ0 and satisfies

Mn(θ̂n(γn), γn) ≥ sup
θ

Mn(θ, γn) − oP (n−1),

for every n ∈ N, then
√

n(θ̂n(γn) − θ0) = −(V (γn))
−1Zn(θ̂n(γn), γn) + o∗

P (1).

PROOF. For every sequence hn = o∗
P (1), the hypotheses yield

Mn(θ0 + hn, γn) − Mn(θ0, γn)

= 1
2h′

nV (γn)hn + n−1/2h′
nZn(θ0 + hn, γn)(A.23)

+ o∗
P

(‖hn‖2 + (√
n
)−1‖hn‖ + n−1)

.

Take hn = θ̂n(γn) − θ0, and follow the proof in [26], taking into account
that the term h′

nV (γn)hn on the right-hand side is bounded above by c‖hn‖2

for some c > 0. This holds because, on the contrary, there should exist a se-
quence {γn} ⊂ K such that the corresponding sequence of minimum eigenval-
ues of V (γn) would converge to 0. Then, for some convergent subsequence to
some γ ∈ K , the continuity of V would give the contradiction of the singu-
larity of V (γ ). [The same argument based on the compactness of K makes
it possible to guarantee that the eigenvalues of V (γn) are bounded, so that
−n−1/2(V (γn))

−1Zn(θ̂n(γn), γn) is O∗
P (n−1/2), and, hence, to apply (A.23) also

to hn = −n−1/2(V (γn))
−1Zn(θ̂n(γn), γn) analogously to the original proof.] �

Now let � be the parameter space in the elliptical model and let K be a com-
pact subset of �. Let mθ,γ be a real function, consider the sample probability, Pn,
corresponding to n i.i.d. observations from P, Mn(θ, γ ) = Pnmθ,γ and M(θ,γ ) =
Pmθ,γ , as well as the empirical process Gnmθγ = √

n(Mn(θ, γ ) − M(θ,γ )). The
differentiability involved in the preceding theorem can be guaranteed through the
condition required in Lemma A.8.
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LEMMA A.8 (Extension of Lemma 3.2.19 in [26]). Suppose that for every γ

in the compact set K , there exists a vector-valued function ṁθ0,γ such that, for
some δ > 0, {

mθγ − mθγ0 − (θ − θ0)
T ṁγ θ0

‖θ − θ0‖ :‖θ − θ0‖ < δ, γ ∈ K

}
is P-Donsker and that, uniformly for γ ∈ K ,

P
(
mθγ − mθ0γ − (θ − θ0)

T ṁθγ0

)2 = o(‖θ − θ0‖2).

Then, if θn = θ0 + o∗
P (1), we have that, uniformly in γ ,

Gn(mθnγ − mθ0γ )
(A.24)

= (θn − θ0)
T

Gnṁθ0γ + o∗
P

(‖θn − θ0‖ + √
n‖θn − θ0‖2 + n−1/2)

.

PROOF. It suffices to adapt the proof in [26] to the function

f :�∞(�d × K) × (�d × K) → R
d

given by f (z, (θ, γ )) = z(θ, γ ) (�d := {‖θ − θ0‖ < δ}) and the stochastic
processes

Zn(θ, γ ) = Gn

mθγ − mθ0γ − (θ − θ0)
T ṁθ0γ

‖θ − θ0‖ ,

which, from the hypotheses, converge in �∞(�d × K) to a tight Gaussian
process Z. �

PROOF OF LEMMA 3.1. In order to simplify the notation, given x ∈ R
p and

θ = (μ,
), let us denote xθ = (x − μ)T 
−1(x − μ).
From the continuity and the nonincreasing character of g, we deduce that

there exist K , a compact neighborhood of γ0, δ > 0, and an ellipsoid E(γ ∗)
such that

⋃
γ∈K E(γ ) ⊂ E(γ ∗) and, if Vδ := {θ ∈ � :‖θ − θ0‖ < δ}, then

infx∈E(γ ∗),θ∈Vδ
g(xθ0) > 0.

Since the set {xθ : θ ∈ �δ,x ∈ E(γ ∗)} is bounded, the second statement follows
from the derivability w.r.t. θ , leading to the Fréchet derivability in L2. Also, note
that the hypothesis on the continuity of the second derivative implies that g′ is
Lipschitz in its effective domain.

Thus, the components of ṁθγ are easily seen to be∫
IE(γ )

2
−1(y − μ)g′(yθ ) dy∫
IE(γ )

g(yθ ) dy
− 2
−1(x − μ)g′(xθ )

g(xθ )

for the derivative w.r.t. μ, while those corresponding to 
 are∫
IE(γ )

2
−1(y − μ)(y − μ)T 
−1g′(yθ ) dy∫
IE(γ )

g(yθ ) dy
− 2
−1(x − μ)(x − μ)T 
−1g′(xθ )

g(xθ )
.
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To verify that (3.5) is P-Donsker, we only need to give some steps concerning
the permanence of the Donsker property as developed in Section 2.10 in [26],
starting from the Lipschitz property of g′, that with Theorem 2.10.6 there leads to
the Donsker property of the class {g′(xθ ) :‖θ − θ0‖ < δ}.

The uniform (below or upper) bounds on the compact set E(γ ∗) containing
the ellipsoids in the class permit us to apply the properties in Examples 2.10.8
and 2.10.9 in [26] and conclude Donsker’s property of the class in (3.5). �

APPENDIX B: ASYMPTOTIC EFFICIENCY

Tables 1–3 show the efficiency of the proposed estimators in the estimation of
an element of μ, and arbitrary diagonal and off-diagonal elements of 
 in several
dimensions, for the multivariate Gaussian and some t distributions.

We analyze the MLE(c) and MLE(t) and the estimators based on enlarged
versions of the MVE to cover 1 − α of the theoretical probability [MLE(c)α or
MLE(t)α]. This assures maximum BP of our equivariant estimators.

When estimating the components of μ, the efficiencies of the truncated and
censored estimates coincide, and we only show those of the censured one.

TABLE 1
Asymptotic efficiencies to estimate an element of μ

Dimension

p = 2 p = 3 p = 5 p = 10 p = 30

Gaussian MLE(c) 0.1531 0.2032 0.2613 0.3263 0.3984
MLE(c)0.25 0.4049 0.4658 0.5301 0.5991 0.6627
MLE(c)0.10 0.6675 0.7184 0.7650 0.8085 0.8503
MLE(c)0.025 0.8821 0.9040 0.9242 0.9414 0.9579

t1 MLE(c) 0.5147 0.5933 0.6414 0.6434 0.5975
MLE(c)0.25 0.8037 0.8374 0.8542 0.8492 0.8198
MLE(c)0.10 0.9387 0.9482 0.9530 0.9490 0.9350
MLE(c)0.025 0.9884 0.9900 0.9906 0.9896 0.9855

t5 MLE(c) 0.2889 0.3780 0.4713 0.5481 0.5737
MLE(c)0.25 0.6132 0.6839 0.7465 0.7931 0.8047
MLE(c)0.10 0.8450 0.8792 0.9070 0.9249 0.9280
MLE(c)0.025 0.9636 0.9724 0.9793 0.9833 0.9839

t8 MLE(c) 0.2469 0.3296 0.4193 0.5092 0.5583
MLE(c)0.25 0.5586 0.6339 0.7067 0.7657 0.7953
MLE(c)0.10 0.8083 0.8495 0.8850 0.9133 0.9240
MLE(c)0.025 0.9511 0.9631 0.9729 0.9800 0.9826

t15 MLE(c) 0.2082 0.2805 0.3640 0.4544 0.5306
MLE(c)0.25 0.5025 0.5769 0.6535 0.7249 0.7768
MLE(c)0.10 0.7642 0.8108 0.8535 0.8912 0.9157
MLE(c)0.025 0.9337 0.9486 0.9627 0.9734 0.9801
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TABLE 2
Asymptotic efficiencies to estimate a diagonal element of 


Dimension

p = 2 p = 3 p = 5 p = 10 p = 30

Gaussian MLE(t) 0.0266 0.0521 0.1023 0.1790 0.3000
MLE(t)0.25 0.1375 0.2059 0.2955 0.4184 0.5593
MLE(t)0.10 0.3594 0.4457 0.5508 0.6657 0.7744
MLE(t)0.025 0.6673 0.7364 0.8072 0.8674 0.9273

MLE(c) 0.2666 0.2293 0.2161 0.2392 0.3206
MLE(c)0.25 0.4560 0.4217 0.4248 0.4813 0.5793
MLE(c)0.10 0.6551 0.6321 0.6534 0.7128 0.7894
MLE(c)0.025 0.8408 0.8435 0.8614 0.8918 0.9336

t1 MLE(t) 0.2004 0.2990 0.3941 0.4597 0.4938
MLE(t)0.25 0.4941 0.5976 0.6778 0.7244 0.7457
MLE(t)0.10 0.7351 0.8126 0.8599 0.8879 0.8968
MLE(t)0.025 0.8778 0.9334 0.9619 0.9712 0.9747

MLE(c) 0.4255 0.3736 0.4085 0.4611 0.4938
MLE(c)0.25 0.6619 0.6507 0.6873 0.7251 0.7458
MLE(c)0.10 0.8486 0.8480 0.8667 0.8884 0.8968
MLE(c)0.025 0.9588 0.9593 0.9661 0.9715 0.9747

t5 MLE(t) 0.0786 0.1492 0.2512 0.3749 0.4664
MLE(t)0.25 0.3028 0.4134 0.5381 0.6518 0.7279
MLE(t)0.10 0.5914 0.6877 0.7773 0.8498 0.8903
MLE(t)0.025 0.8415 0.8890 0.9282 0.9571 0.9690

MLE(c) 0.3661 0.3064 0.3118 0.3865 0.4670
MLE(c)0.25 0.5749 0.5474 0.5854 0.6607 0.7283
MLE(c)0.10 0.7736 0.7739 0.8074 0.8549 0.8906
MLE(c)0.025 0.9269 0.9301 0.9433 0.9597 0.9692

t8 MLE(t) 0.0609 0.1182 0.2116 0.3347 0.4502
MLE(t)0.25 0.2552 0.3611 0.4883 0.6199 0.7199
MLE(t)0.10 0.5411 0.6430 0.7429 0.8248 0.8847
MLE(t)0.025 0.8195 0.8701 0.9144 0.9500 0.9683

MLE(c) 0.3437 0.2881 0.2874 0.3545 0.4514
MLE(c)0.25 0.5481 0.5175 0.5517 0.6347 0.7207
MLE(c)0.10 0.7488 0.7465 0.7816 0.8342 0.8852
MLE(c)0.025 0.9131 0.9173 0.9327 0.9541 0.9685

t15 MLE(t) 0.0458 0.0918 0.1717 0.2908 0.4302
MLE(t)0.25 0.2089 0.3038 0.4288 0.5684 0.6981
MLE(t)0.10 0.4796 0.5785 0.6890 0.7962 0.8735
MLE(t)0.025 0.7771 0.8400 0.8961 0.9364 0.9669

MLE(c) 0.3168 0.2685 0.2630 0.3205 0.4331
MLE(c)0.25 0.5177 0.4855 0.5118 0.5931 0.7003
MLE(c)0.10 0.7188 0.7098 0.7452 0.8106 0.8746
MLE(c)0.025 0.8931 0.8988 0.9189 0.9433 0.9673
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TABLE 3
Asymptotic efficiencies to estimate an off-diagonal element of 


Dimension

p = 2 p = 3 p = 5 p = 10 p = 30

Gaussian MLE(t) 0.0332 0.0631 0.1130 0.1929 0.3030
MLE(t)0.25 0.1621 0.2323 0.3247 0.4361 0.5718
MLE(t)0.10 0.4070 0.4874 0.5854 0.6890 0.7872
MLE(t)0.025 0.7151 0.7716 0.8333 0.8805 0.9315

MLE(c) 0.0332 0.0631 0.1130 0.1929 0.3030
MLE(c)0.25 0.1621 0.2323 0.3247 0.4361 0.5718
MLE(c)0.10 0.4070 0.4874 0.5854 0.6890 0.7872
MLE(c)0.025 0.7151 0.7716 0.8333 0.8805 0.9315

t1 MLE(t) 0.0581 0.0997 0.1540 0.2064 0.2371
MLE(t)0.25 0.1470 0.2023 0.2655 0.3219 0.3598
MLE(t)0.10 0.2202 0.2757 0.3390 0.3962 0.4331
MLE(t)0.025 0.2646 0.3178 0.3784 0.4319 0.4701

MLE(c) 0.7773 0.7684 0.7634 0.7598 0.7553
MLE(c)0.25 0.8665 0.8697 0.8726 0.8762 0.8782
MLE(c)0.10 0.9401 0.9434 0.9468 0.9497 0.9505
MLE(c)0.025 0.9836 0.9852 0.9861 0.9871 0.9876

t5 MLE(t) 0.0301 0.0572 0.1021 0.1643 0.2244
MLE(t)0.25 0.1119 0.1584 0.2173 0.2878 0.3479
MLE(t)0.10 0.2164 0.2598 0.3122 0.3743 0.4271
MLE(t)0.025 0.3003 0.3332 0.3721 0.4217 0.4659

MLE(c) 0.6862 0.6922 0.7047 0.7263 0.7444
MLE(c)0.25 0.7691 0.7927 0.8198 0.8495 0.8687
MLE(c)0.10 0.8728 0.8950 0.9166 0.9341 0.9472
MLE(c)0.025 0.9578 0.9674 0.9756 0.9820 0.9866

t8 MLE(t) 0.0261 0.0493 0.0899 0.1497 0.2194
MLE(t)0.25 0.1047 0.1488 0.2053 0.2753 0.3420
MLE(t)0.10 0.2166 0.2594 0.3074 0.3659 0.4215
MLE(t)0.025 0.3181 0.3451 0.3788 0.4206 0.4648

MLE(c) 0.6518 0.6625 0.6809 0.7093 0.7387
MLE(c)0.25 0.7311 0.7610 0.7966 0.8342 0.8631
MLE(c)0.10 0.8422 0.8718 0.9000 0.9250 0.9426
MLE(c)0.025 0.9446 0.9571 0.9695 0.9791 0.9854

t15 MLE(t) 0.0220 0.0424 0.0775 0.1317 0.2068
MLE(t)0.25 0.0967 0.1379 0.1913 0.2589 0.3321
MLE(t)0.10 0.2146 0.2564 0.3061 0.3587 0.4157
MLE(t)0.025 0.3348 0.3607 0.3884 0.4230 0.4599

MLE(c) 0.6097 0.6236 0.6484 0.6827 0.7287
MLE(c)0.25 0.6841 0.7191 0.7617 0.8113 0.8541
MLE(c)0.10 0.8015 0.8371 0.8756 0.9108 0.9383
MLE(c)0.025 0.9227 0.9413 0.9589 0.9728 0.9832
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The efficiencies have been computed comparing the values of the asymptotic
variances (in Theorem 3.3) with the Cramer–Rao bound. The involved integrals
have been computed by the Monte Carlo method with 500,000 repetitions.
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