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A CONSTRUCTIVE APPROACH TO THE ESTIMATION OF
DIMENSION REDUCTION DIRECTIONS1

BY YINGCUN XIA

National University of Singapore

In this paper we propose two new methods to estimate the dimension-
reduction directions of the central subspace (CS) by constructing a regres-
sion model such that the directions are all captured in the regression mean.
Compared with the inverse regression estimation methods [e.g., J. Amer. Sta-
tist. Assoc. 86 (1991) 328–332, J. Amer. Statist. Assoc. 86 (1991) 316–342,
J. Amer. Statist. Assoc. 87 (1992) 1025–1039], the new methods require no
strong assumptions on the design of covariates or the functional relation be-
tween regressors and the response variable, and have better performance than
the inverse regression estimation methods for finite samples. Compared with
the direct regression estimation methods [e.g., J. Amer. Statist. Assoc. 84
(1989) 986–995, Ann. Statist. 29 (2001) 1537–1566, J. R. Stat. Soc. Ser. B
Stat. Methodol. 64 (2002) 363–410], which can only estimate the directions
of CS in the regression mean, the new methods can detect the directions of
CS exhaustively. Consistency of the estimators and the convergence of corre-
sponding algorithms are proved.

1. Introduction. Suppose X is a random vector in R
p and Y is a univariate

random variable. Let B0 = (β01, . . . , β0q) denote a p × q orthogonal matrix with
q ≤ p, that is, B�

0 B0 = Iq , where Iq is a q × q identity matrix. Given B�
0 X, if Y

and X are independent, that is, Y ⊥⊥ X|B�
0 X, then the space spanned by the column

vectors β01, β02, . . . , β0q , S(B0), is called the dimension reduction space. If all the
other dimension reduction spaces include S(B0) as their subspace, then S(B0) is
the so-called central dimension reduction subspace (CS); see Cook [6]. The col-
umn vectors β01, β02, . . . , β0q are called the CS directions. Dimension reduction
is a fundamental statistical problem both in theory and in practice. See Li [22, 23]
and Cook [6] for more discussion. If the conditional density function of Y given X

exists, then the definition is equivalent to the conditional density function of Y |X
being the same as that of Y |B�

0 X for all possible values of X and Y , that is,

fY |X(y|x) = fY |B�
0 X(y|B�

0 x).(1.1)

Other alternative definitions for the dimension reduction space can be found in the
literature.

Received April 2005; revised January 2006.
1Supported by NUS FRG R-155-000-048-112.
AMS 2000 subject classifications. Primary 62G08; secondary 62G09, 62H05.
Key words and phrases. Conditional density function, convergence of algorithm, double-kernel

smoothing, efficient dimension reduction, root-n consistency.

2654

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/009053607000000352
http://www.imstat.org
http://www.ams.org/msc/


CONSTRUCTIVE DIMENSION REDUCTION 2655

In the last decade or so, a series of papers (e.g., Härdle and Stoker [15], Li [22],
Cook and Weisberg [8], Samarov [26], Hristache, Juditsky, Polzehl and Spokoiny
[19], Yin and Cook [34], Xia, Tong, Li and Zhu [33], Cook and Li [7], Li, Zha
and Chiaromonte [21] and Lue [24]) have considered issues related to the dimen-
sion reduction problem, with the aim of estimating the dimension reduction space
and relevant functions. The estimation methods in the literature can be classified
into two groups: inverse regression estimation methods (e.g., SIR, Li [22] and
SAVE, Cook and Weisberg [8]) and direct regression estimation methods (e.g.,
ADE, Härdle and Stoker [15] and MAVE of Xia, Tong, Li and Zhu [33]). The
inverse regression estimation methods are computationally easy and are widely
used as an initial step in data mining, especially for large data sets. However, these
methods have poor performance in finite samples and need strong assumptions on
the design of covariates. The direct regression estimation methods have much bet-
ter performance for finite samples than the inverse regression estimations. They
need no strong requirements on the design of covariates or on the response vari-
able. However, the direct regression estimation methods cannot find the directions
in CS exhaustively, such as those in the conditional variance.

None of the methods mentioned above uses the definitions directly in searching
for the central space. As a consequence, they fail in one way or another to esti-
mate CS efficiently. A straightforward approach in using definition (1.1) is to look
for B0 in order to minimize the difference between those two conditional density
functions. The conditional density functions can be estimated using nonparamet-
ric smoothers. Obviously, this approach is not efficient in theory due to the “curse
of dimensionality” in nonparametric smoothing. In calculations, the minimization
problem is difficult to implement. People have observed that the CS in the re-
gression mean function, that is, the central mean space (CMS), can be estimated
much more efficiently than the general CS. See, for example, Yin and Cook [34],
Cook and Li [7] and Xia, Tong, Li and Zhu [33]. Motivated by this observation,
one can construct a regression model such that the CS coincides with the CMS
space in order to reduce the difficulty of estimation. In this paper we first con-
struct a regression model in which the conditional density function fY |X(y|x) is
asymptotically equal to the conditional mean function. Then, we apply the meth-
ods of searching for the CMS to the constructed model. Based on the discussion
above, this constructive approach is expected to be more efficient than the inverse
regression estimation methods for finite samples, and can detect the CS directions
exhaustively.

In the estimation of dimension reduction space, most methods need in one way
or another to deal with nonparametric estimation. In terms of nonparametric esti-
mation, the inverse regression estimation methods employ a nonparametric regres-
sion of X on Y while the direct regression estimation methods employ a nonpara-
metric regression of Y on X. In contrast to existing methods, the methods in this
paper search for CS from both sides by investigating conditional density functions.
A similar idea appeared in Yin and Cook [35] for a general single-index model. To
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overcome the difficulties of calculation, we propose two algorithms in this paper
using an idea similar to that of Xia, Tong, Li and Zhu [33]. The algorithm solves
the minimization problem in the method by treating it as two separate quadratic
programming problems, which have simple analytic solutions and can be calcu-
lated quite efficiently. The convergence of the algorithm can be proved. Our con-
structive approach can overcome the disadvantage in inverse regression estimation,
requiring a symmetric design for explanatory variables, and also the disadvantage
in direct regression estimation, of not finding the CS directions exhaustively. Sim-
ulations suggest that the proposed methods have very good performance for finite
samples and are able to estimate the CS directions in very complicated structures.
Applying the proposed methods to two real data sets, some useful patterns have
been observed, based on the estimations.

To estimate the CS, we need to estimate the directions B0 as well as the di-
mension q of the space. In this paper, however, we focus on the estimation of the
directions by assuming that q is known.

2. Estimation methods. As discussed above, the direct regression estimation
has good performance for finite samples. However, it cannot detect exhaustively
the CS directions in complicated structures. Motivated by these facts, our strategy
is to construct a semiparametric regression model such that all the CS directions
are captured in the regression mean function. As we can see from (1.1), all the
directions can be captured in the conditional density function. Thus, we will con-
struct a regression model such that the conditional density function is asymptoti-
cally equal to the regression mean function.

The primary step is thus to construct an estimate for the conditional density
function. Here, we use the idea of the “double-kernel” local linear smoothing
method studied in Fan, Yao and Tong [13] for the estimation. Consider Hb(Y − y)

with y running through all possible values, where H(v) is a symmetric density
function, b > 0 is a bandwidth and Hb(v) = b−1H(v/b). If b → 0 as n → ∞,
then from (1.1) we have

mb(x, y)
def= E

(
Hb(Y − y)|X = x

)
= E

(
Hb(Y − y)|B�

0 X = B�
0 x

)
→ fY |B�

0 X(y|B�
0 x).

See Fan, Yao and Tong [13]. The above equation indicates that all the directions
can be captured by the conditional mean function mb(x, y) of Hb(Y −y) on X = x

with x and y running through all possible values. Now, consider a regression model
nominally for Hb(Y − y) as

Hb(Y − y) = mb(X,y) + εb(y|X),
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where εb(y|X) = Hb(Y − y) − E(Hb(Y − y)|X) with Eεb(y|X) = 0. Let
gb(B

�
0 x, y) = E(Hb(Y − y)|B�

0 X = B�
0 x). If (1.1) holds, then mb(x, y) =

gb(B
�
0 x, y). The model can be written as

Hb(Y − y) = gb(B
�
0 X,y) + εb(y|X).(2.1)

As b → 0, we have gb(B
�
0 x, y) → fY |B�

0 X(y|B�
0 x). Thus, the directions B0 de-

fined in (1.1) are all captured in the regression mean function in model (2.1) if y

runs through all possible values.
Based on model (2.1), we propose two methods to estimate the directions. One

of the methods is a combination of the outer product of gradients (OPG) estima-
tion method (Härdle [16], Samarov [26] and Xia, Tong, Li and Zhu [33]) with
the “double-kernel” local linear smoothing method (Fan, Yao and Tong [13]). The
other one is a combination of the minimum average (conditional) variance estima-
tion (MAVE) method (Xia, Tong, Li and Zhu [33]) with the “double-kernel” local
linear smoothing method. The structure adaptive weights in Hristache, Juditsky
and Spokoiny [20] and Hristache, Juditsky, Polzehl and Spokoiny [19] are used in
the estimation.

2.1. Estimation based on outer products of gradients. Consider the gradient
of the conditional mean function mb(x, y) with respect to x. If (1.1) holds, then it
follows that

∂mb(x, y)

∂x
= ∂gb(B

�
0 x, y)

∂x
= B0 � gb(B

�
0 x, y),(2.2)

where �gb(v1, . . . , vq, y) = (�1gb(v1, . . . , vq, y), . . . ,�qgb(v1, . . . , vq, y))� with

�kgb(v1, . . . , vq, y) = ∂

∂vk

gb(v1, . . . , vq, y), k = 1,2, . . . , q.

Thus, the directions B0 are contained in the gradients of the regression mean func-
tion in model (2.1). One way to estimate B0 is by considering the expectation of
the outer product of the gradients

E

{(
∂mb(X,Y )

∂x

)(
∂mb(X,Y )

∂x

)�}

= B0E{�gb(B
�
0 X,Y ) �� gb(B

�
0 X,Y )}B�

0 .

It is easy to see that B0 is in the space spanned by the first q eigenvectors of the
expectation of the outer products.

Suppose that {(Xi, Yi), i = 1,2, . . . , n} is a random sample from (X,Y ). To es-
timate the gradient ∂mb(x, y)/∂x, we can use nonparametric kernel smoothing
methods. For simplicity, we adopt the following notation scheme. Let K0(v

2) be a
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univariate symmetric density function and define K(v1, . . . , vd) = K0(v
2
1 + · · · +

v2
d) for any integer d and Kh(u) = h−dK(u/h), where d is the dimension of u and

h > 0 is a bandwidth. Let Hb,i(y) = Hb(Yi − y), where H(·) and b are defined
above. For any (x, y), the principle of the local linear smoother suggests minimiz-
ing

n−1
n∑

i=1

{Hb,i(y) − a − b�(Xi − x)}2Kh(Xix)(2.3)

with respect to a and b to estimate mb(x, y) and ∂mb(x, y)/∂x, respectively, where
Xix = Xi −x. See Fan and Gijbels [11] for more details. For each pair of (Xj ,Yk),
we consider the minimization problem

(âjk, b̂jk) = arg min
ajk,bjk

n∑
i=1

[Hb,i(Yk) − ajk − b�jkXij ]2wij ,(2.4)

where Xij = Xi − Xj and wij = Kh(Xij ). We consider an average of their outer
products,

�̂ = n−2
n∑

k=1

n∑
j=1

ρ̂jkb̂jkb̂
�
jk,

where ρ̂jk is a trimming function introduced for technical purposes to handle the
notorious boundary points. In this paper we adopt the following trimming scheme.
For any given point (x, y), we use all observations to estimate its function value
and its gradient as in (2.3). We then consider the estimates in a compact region of
(x, y). Moreover, for those points with too few observations around, their estimates
might be unreliable. They should not be used in the estimation of the CS directions
and should be trimmed off. Let ρ(·) be any bounded function with bounded second
order derivatives on R such that ρ(v) > 0 if v > ω0; ρ(v) = 0 if v ≤ ω0 for some
small ω0 > 0. We take ρ̂jk = ρ(f̂ (Xj ))ρ(f̂Y (Yk)), where f̂ (x) and f̂Y (y) are
estimators of the density functions of X and Y , respectively. The CS directions
can be estimated by the first q eigenvectors of �̂.

To allow the estimation to be adaptive to the structure of the dependence of Y

on X, we may follow the idea of Hristache, Juditsky, Polzehl and Spokoiny [19]
and replace wij in (2.4) by

wij = Kh(�̂
1/2Xij ),

where �̂1/2 is a symmetric matrix with (�̂1/2)2 = �̂. Repeat the above procedure
until convergence. We call this procedure the method of outer product of gradient
based on the conditional density functions (dOPG). To implement the estimation
procedure, we suggest the following dOPG algorithm.
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Step 0. Set �̂(0) = Ip and t = 0.

Step 1. With wij = Kh(�̂
1/2
(t) Xij ), calculate the solution to (2.4),

(
a

(t)
jk

b
(t)
jk

)
=

{
n∑

i=1

Kht

(
�̂

1/2
(t) Xij

)(
1

Xij

)(
1

Xij

)�}−1

×
n∑

i=1

Kht

(
�̂

1/2
(t) Xij

)(
1

Xij

)
Hbt ,i(Yk),

where ht and bt are bandwidths [details are given in (2.6) and (2.7) below].
Step 2. Define ρ

(t)
jk = ρ(f̃ (t)(Xj ))ρ(f̃

(t)
Y (Yk)) with

f̃
(t)
Y (y) = n−1

n∑
i=1

Hbt ,i(y),

f̃ (t)(x) = (nμ̃)−1h
p
t

∏
λ

(t)
k >ht

λ
(t)
k

ht

n∑
i=1

Kht

(
�̂

1/2
(t) Xix

)
,

where λ
(t)
k , k = 1, . . . , p, are the eigenvalues of �̂

1/2
(t) and μ̃ = ∫

K0(
∑

λ
(t)
k >ht

v2
k )∏

λ
(t)
k >ht

dvk . Calculate the average of outer products,

�̂(t+1) = n−2
n∑

j,k=1

ρ
(t)
jk b

(t)
jk

(
b

(t)
jk

)�
.

Step 3. Set t := t + 1. Repeat Steps 1 and 2 until convergence. Denote the fi-
nal value of �̂(t) by �(∞). Suppose the eigenvalue decomposition of �(∞) is
	diag(λ1, . . . , λp)	�, where λ1 ≥ · · · ≥ λp . Then the estimated directions are
the first q columns of 	, denoted by B̂dOPG.

In the dOPG algorithm, f̃
(t)
Y (y) and f̃ (t)(x), t > 0, are the estimators of the

density functions of Y and B�
0 X, respectively. A justification is given in the proof

of Theorem 3.1 in Section 6.2. In calculations, the usual stopping criterion can
be used. For example, if the largest singular value of �̂(t) − �̂(t+1) is smaller
than 10−6, then we stop the iteration and take �̂(t+1) as the final estimator. The
eigenvalues of �(∞) can be used to determine the dimension of the CS. However,
we will not go into the details on this issue in this paper. In practice, we may
need to standardize Xi = (Xi1, . . . ,Xip)� by setting Xi := S

−1/2
X (Xi − X̄) and

standardize Yi by setting Yi := (Yi − Ȳ )/
√

sY , where X̄ = n−1 ∑n
i=1 Xi and SX =

n−1 ∑n
i=1(Xi − X̄)(Xi − X̄)�, Ȳ = n−1 ∑n

i=1 Yi and sY = n−1 ∑n
i=1(Yi − Ȳ )2.

Then the estimated CS directions are the first q columns of 	S
−1/2
X .
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2.2. MAVE based on conditional density function. Note that if (1.1) holds,
then the gradients ∂mb(x, y)/∂x at all (x, y) are in a common q-dimensional sub-
space as shown in equation (2.2). To use this observation, we can replace b in
(2.3), which is an estimate of the gradient, by Bd(x, y) and have the local linear
approximation

n−1
n∑

i=1

{Hb,i(y) − a − d�B�(Xi − x)}2Kh(Xix),

where d = d(x, y) is introduced to take the role of �gb(B
�
0 x, y) in (2.2). Note that

the above weighted mean of squares uses the local approximation errors of Hb,i(y)

by a hyperplane with the normal vectors in a common space spanned by B . Since
B is common for all x and y, it should be estimated with aims to minimize the
approximation errors for all possible Xj and Yk . As a consequence, we propose to
estimate B0 by minimizing

n−3
n∑

k=1

n∑
j=1

ρ̂jk

n∑
i=1

{Hb,i(Yk) − ajk − d�
jkB

�Xij }2wij(2.5)

with respect to ajk, djk = (djk1, . . . , djkq)
�, j, k = 1, . . . , n and B :B�B = Iq ,

where ρ̂jk is defined above. This estimation procedure is similar to the minimum
average (conditional) variance estimation method (Xia, Tong, Li and Zhu [33]).
Because the method is based on the conditional density functions, we call it the
minimum average (conditional) variance estimation based on the conditional den-
sity functions (dMAVE).

The minimization problem in (2.5) can be solved by fixing (ajk, djk), j, k =
1, . . . , n, and B alternately. As a consequence, we need to solve two quadratic
programming problems which have simple analytic solutions. For any matrix B =
(β1, . . . , βd), we define operators 
(·) and M(·), respectively, as


(B) = (β�
1 , . . . , β�

d )� and M(
(B)) = B.

We propose the following dMAVE algorithm to implement the estimation.

Step 0. Let B(1) be an initial estimator of the CS directions. Set t = 1.
Step 1. Let B = B(t), calculate the solutions of (ajk, djk), j, k = 1, . . . , n, to the

minimization problem in (2.5):(
a

(t)
jk

d
(t)
jk

)
=

{
n∑

i=1

Kht

(
B�

(t)Xij

)(
1

B�
(t)Xij

)(
1

B�
(t)Xij

)�}−1

×
n∑

i=1

Kht

(
B�

(t)Xij

)(
1

B�
(t)Xij

)
Hbt ,i(Yk),

where ht and bt are two bandwidths (details are discussed below).
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Step 2. Let ρ
(t)
jk = ρ(f̂B(t)

(Xj ))ρ(f̂
(t)
Y (Yk)) with f̂

(t)
Y (y) = n−1 ∑n

i=1 Hbt ,i(y)

and f̂B(t)
(x) = n−1 ∑n

i=1 Kht (B
�
(t)Xix). Fixing ajk = a

(t)
jk and djk = d

(t)
jk , cal-

culate the solution of B or 
(B) to (2.5):

b(t+1) =
{

n∑
k,j,i=1

ρ
(t)
jk Kht

(
B�

(t)Xij

)
X

(t)
ijk

(
X

(t)
ijk

)�}−1

×
n∑

k,j,i=1

ρ
(t)
jk Kht

(
B�

(t)Xij

)
X

(t)
ijk

{
Hbt ,i(Yk) − a

(t)
jk

}
,

where X
(t)
ijk = d

(t)
jk ⊗ Xij .

Step 3. Calculate �(t+1) = {M(b(t+1))}�M(b(t+1)) and B(t+1) = M(b(t+1)) ×
�

−1/2
(t+1). Set t := t + 1 and go to Step 1.

Step 4. Repeat Steps 1–3 until convergence. Let B(∞) be the final value of B(t).
Then our estimators of the directions are the columns in B(∞), denoted
by B̂dMAVE.

The dMAVE algorithm needs a consistent initial estimator in Step 0 to guarantee
its theoretical justification. In the following, we use the first iteration estimator of
dOPG, the first q eigenvectors of �̂(1), as the initial value. Actually, any initial
estimator that satisfies (6.6) can be used and Theorem 3.2 will hold. Similar to
dOPG, the standardization procedure can be carried out for dMAVE in practice.
The stopping criterion for dOPG can also be used here.

Note that the estimation in the procedure is related to nonparametric estimation
of conditional density functions. Several bandwidth selection methods are avail-
able for the estimation. See, for example, Silverman [28], Scott [27] and Fan, Yao
and Tong [13]. Our theoretical verification of the convergence for the algorithms
requires some constraints on the bandwidths, although we believe these constraints
can be removed with more complicated technical proofs. To ensure the require-
ments on bandwidths can be satisfied, after standardizing the variables we use
the following bandwidths in our calculations. In the first iteration, we use slightly
larger bandwidths than the optimal ones in terms of MISE as

h0 = c0n
−1/(p0+6), b0 = c0n

−1/(p0+5),(2.6)

where p0 = max(p,3). Then we reduce the bandwidths in each iteration as

ht+1 = max
{
rnht , c0n

−1/(q+4)},
(2.7)

bt+1 = max
{
rnbt , c0n

−1/(q+3), c0n
−1/5}

for t ≥ 0, where rn = n−1/(2(p0+6)), c0 = 2.34 as suggested by Silverman [28] if
the Epanechnikov kernel is used. Here, the bandwidth b is selected smaller than h

based on simulation comparisons.
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Fan and Yao ([12], page 337) proposed a method, called profile least-squares
estimation, for the single-index model and its variants by solving a similar mini-
mization problem as in (2.5). The method can also be used here for the estimation
of B0 in (2.1).

3. Asymptotic results. To exclude the trivial cases, we assume that p > 1 and
q ≥ 1. Let f0(y|v1, . . . , vq), f0(v1, . . . , vq) and fY (y) be the (conditional) density
functions of Y |B�

0 X, B�
0 X and Y , respectively. Let ρ0(x, y) = ρ(f0(B

�
0 x)) ×

ρ(fY (y)), �f0(y|v1, . . . , vq) = (∂f0(y|v1, . . . , vq)/∂v1, . . . , ∂f0(y|v1, . . . , vq)/

∂vq)
�, μB(u) = E(X|B�X = u) and wB(u) = E{XX�|B�X = u}. For any ma-

trix A, let |A| denote its largest singular value, which is the same as the Euclidean
norm if A is a vector. Let B̃0 :p × (p − q) be such that (B0, B̃0)

�(B0, B̃0) = Ip .
We need the following conditions for (1.1) to prove our theoretical results.

(C1) [Design of X.] The density function f (x) of X has bounded second order
derivatives on R

p; E|X|r < ∞ for some r > 8; the functions μB(u) and
wB(u) have bounded derivatives with respect to u and B for B in a small
neighborhood of B0 : |B − B0| ≤ δ for some δ > 0.

(C2) [Conditional density function.] The conditional density functions fY |X(y|x)

and fY |B�X (y|u) have bounded fourth order derivatives with respect to x, u

and B for B in a small neighborhood of B0; the conditional density functions
of f

B̃�
0 X,Y |B�

0 X
(u, y|v) and

∫ | � f0(y|u)|dy are bounded for all u,y and v.

(C3) [Efficient dimension.] The matrix M0 = ∫
ρ0(x, y)�f0(y|B�

0 x)��f0(y|B�
0 x)×

f (x)fY (y) dx dy has full rank q .
(C4) [Kernel functions.] K0(v

2) and H(v) are two symmetric univariate density
functions with bounded second order derivatives and compact supports.

(C5) [Bandwidths for consistency.] Bandwidths h0 = c1n
−rh and b0 = c2n

−rb ,
where 0 < rh, rb ≤ 1/(p0 +6), p0 = max{p,3}. For t ≥ 1, ht = max{rnht−1,

�} and bt = max{rnbt−1, b̄}, where rn = n−rh/2, � = c3n
−r ′

h, b̄ = c4n
−r ′

b with
0 < r ′

h, r
′
b ≤ 1/(q + 3), and c1, c2, c3, c4 are constants.

In (C1), the finite moment requirement for |X| can be removed if we adopt
the trimming scheme of Härdle, Hall and Ichimura [14]. However, as noticed
in Delecroix, Hristache and Patilea [10], this scheme causes some technical
problems in the proofs. Based on assumptions (C2) and (C4), the smooth-
ness of gb(u, y) is implied. A lower order of smoothness is sufficient if we
are only interested in the estimation consistency. The second order differen-
tiable requirement in (C4) can ensure the Fourier transformations of the kernel
functions being absolutely integrable; see Chung [5], page 166. Popular ker-
nel functions such as the Epanechnikov kernel and the quadratic kernel are in-
cluded in (C4). The Gaussian kernel can be used with some modifications to
the proofs. Condition (C3) indicates that the dimension q cannot be further re-
duced. For ease of exposition, we further assume that μ0H = ∫

H(v)dv = 1,
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μ2H = ∫
v2H(v)dv = 1, μ0q = ∫

K(v1, . . . , vq) dv1 · · ·dvq = 1 and μ2q =∫
K(v1, . . . , vq)v

2
1 dv1 · · ·dvq = 1; otherwise, we take H(v) := H(v/τ

1/2
2H )/τ

1/2
2H

and K(v1, . . . , vq) = μ−1
0q K(v1/

√
μ2q, . . . , vq/

√
μ2q)/

√
μ2q . The bandwidths

satisfying (C5) can be found easily. For example, the bandwidths given in (2.6)
and (2.7) satisfy the requirements. Actually, a wider range of bandwidths can
be used; see the proofs. Let νB(x) = μB(B�x) − x, w̄B(x) = wB(B�x) −
μB(B�x)μ�

B(B�x) and f0(x) = f0(B
�
0 x). For any square matrix A, A−1 and

A+ denote the inverse (if it exists) and the Moore–Penrose inverse matrices, re-
spectively.

THEOREM 3.1. Suppose conditions (C1)–(C5) hold. Then we have

|B̂dOPGB̂�
dOPG − B0B

�
0 | = O(�4 + δ2

q�b̄ + δq�b̄b̄
4 + δ2

n/b̄
2 + n−1/2)

in probability as n → ∞, where δq�b̄ = (n�
q b̄/ logn)−1/2 and δn = (logn/n)1/2.

If �
4 + δ2

q�b̄ + δq�b̄b̄
4 + δ2

n/b̄
2 = o(n−1/2) can be satisfied, then

√
n{
(B̂dOPGB̂�

dOPGB0) − 
(B0)} D→ N(0,W0),

where

W0 = Var
[
ρ0(X,Y )M−1

0

(�f0(Y |B�
0 X)fY (Y ) − E{�f0(Y |B�

0 X)fY (Y )|X})
⊗ (w̄+

B0
(X)νB0(X))

]
.

The first part of Theorem 3.1 indicates that B̂dOPG is a consistent estimator
of an orthogonal basis, B0Q with Q = B�

0 B̂dOPG, in CS and |B̂dOPG − B0Q| =
O(�4 + δ2

q�b̄ + δq�b̄b̄
4 + δ2

n/b̄
2 + n−1/2) in probability. See Bai, Miao and Rao

[2] and Xia, Tong, Li and Zhu [33] for alternative presentations of the asymp-
totic results. If the bandwidths in (2.7) are used, then the consistency rate is
O(n−4/(q+4)+1/(q+3) logn + n−1/2) in probability. A faster consistency rate can
be obtained by adjusting the bandwidths. The convergence of the corresponding
algorithm is also implied in the proof in Section 6. If q ≤ 3, then the condition for
the normality can be satisfied by taking

1 > r ′
h > 1

8 , 2
7r ′

h < r ′
b < 1

2 − qr ′
h.

If we use higher order polynomial smoothing, it is possible to show that root-n
consistency can be achieved for any dimension q . See, for example, Härdle and
Stoker [15] and Samarov [26], where the higher order kernel, a counterpart of the
higher order polynomial smoother, was used. However, using higher order polyno-
mial smoothers increases the difficulty of calculations while the improvement of
finite sample performance is not substantial.
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THEOREM 3.2. If conditions (C1)–(C5) holds, then

|B̂dMAVEB̂�
dMAVE − B0B

�
0 | = O{�4 + δ2

q�b̄ + δq�b̄b̄
4 + δ2

n/b̄
2 + n−1/2}

in probability as n → ∞. If �
4 +δ2

q�b̄ +δq�b̄b̄
4 +δ2

n/b̄
2 = o(n−1/2) can be satisfied,

then

√
n{
(B̂dMAVEB̂�

dMAVEB0) − 
(B0)} D→ N(0,D+
0 �0D

+
0 ),

where D0 = ∫
ρ0(x, y) � f0(y|B�

0 x) �� f0(y|B�
0 x) ⊗ {νB0(x)ν�

B0
(x)}f0(x) ×

fY (y) dx dy and

�0 = Var
[
ρ0(X,Y )

(�f0(Y |B�
0 X)fY (Y )−E{�f0(Y |B�

0 X)fY (Y )|X})⊗νB0(X)
]
.

The proof of Theorem 3.2 is given in Section 6. The convergence of the dMAVE
algorithm is implied in the proof. Similar remarks on dOPG are applicable to
dMAVE. Moreover, B̂dMAVE converges to B0Q̃, where Q̃ is determined by the
initial consistent estimator of the directions. For example, Q̃ = B̂�

(1)B0 if B(1) is
used as the initial estimator. Similarly, root-n consistency holds for q ≤ 3. It is
possible that root-n consistency holds for q > 3 if the higher order local polyno-
mial smoothing method is used. In spite of the equivalence in terms of consistency
rate for both dOPG and dMAVE, our simulations suggest that dMAVE has better
performance than dOPG in finite samples. Theoretical comparison of efficiencies
between the two methods is not clear. In a very special case when q = 1 and the
CS is in the regression mean, Xia [30] proved that dMAVE is more efficient than
dOPG.

We here give some discussion about the requirements on the distributions of
X and Y . If Y is discrete, we can consider the conditional cumulative distribu-
tion functions and have FY |X(y|x) = FY |B�

0 X(y|B�
0 x) when Y ⊥⊥ X|B�

0 X holds.
Similar to (2.1), we can consider a regression model

I (Y < y) = G(B�
0 X,y) + e(y|X),

where G(B�
0 x, y) = E{I (Y < y)|X = x} = E{I (Y < y)|B�

0 X = B�
0 x} and

e(y|X) = I (Y < y) − G(B�
0 X,y). Similar theoretical consistency results are pos-

sible to be obtained following the same techniques developed here. If some covari-
ates in X are discrete, our algorithms in searching for a consistent initial estimator
will fail. However, if a consistent initial estimator can be found by, for example,
the methods in Horowitz and Härdle [18] and Hristache, Juditsky, Polzehl and
Spokoiny [19] and B�X has a continuous density function for all B in a neighbor-
hood around B0, then our theoretical results in the above theorems still hold.
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4. Simulations. We now demonstrate the performance of the proposed esti-
mation methods by simulations. We will compare them with some existing meth-
ods including SIR (Li [22]), SAVE (Cook and Weisberg [8]), PHD (Li [23]) and
rMAVE (Xia, Tong, Li and Zhu [33]). The computer codes used here can be
obtained from www.jstatsoft.org/v07/i01 for the SIR, SAVE and PHD methods
(courtesy of Professor S. Weisberg) and www.stat.nus.edu.sg/~staxyc for rMAVE,
dOPG and dMAVE. In the following calculations, we use the quadratic kernel
H(v) = K0(v

2) = (15/16)(1 − v2)2I (v2 < 1) and ω0 = 0.01. The bandwidths in
(2.6) and (2.7) are used. For the inverse regression methods, the number of slices
is chosen to be between 5 and 30 and most close to n/(2p). We define an overall
estimation error for the estimator B̂ : B̂�B̂ = Iq by the maximum singular value of
B0B

�
0 − B̂B̂�; see Li, Zha and Chiaromonte [21].

EXAMPLE 4.1. Consider the model

Y = sign(2X�β1 + ε1) log(|2X�β2 + 4 + ε2|),(4.1)

where sign(·) is the sign function. The coordinates X ∼ N(0, Ip) and unobserv-
able noises ε1 ∼ N(0,1) and ε2 ∼ N(0,1) are independent. For β1, the first four
elements are all 0.5 and the others are zero. For β2, the first four elements are 0.5,
−0.5, 0.5, −0.5, respectively, and all the others are zero. A similar model was
investigated by Chen and Li [3]. In order to show the effect on the estimation per-
formance of the number of covariates, we vary p in the simulation. With different
sample sizes, 200 replications are drawn from the model. The calculation results
are listed in Table 1. To get some intuition about the size of estimation errors, Fig-
ure 1 shows a typical sample of size n = 200 and its estimate with estimation error
0.21. The structure can be estimated quite well in the sample.

TABLE 1
Mean (and standard deviation) of estimation errors for Example 4.1

n p dOPG dMAVE rMAVE SIR SAVE PHD

5 0.25 (0.09) 0.22 (0.08) 0.43 (0.19) 0.29 (0.09) 0.87 (0.19) 0.72 (0.22)
100 10 0.55 (0.19) 0.35 (0.07) 0.64 (0.19) 0.46 (0.10) 0.94 (0.06) 0.90 (0.13)

20 0.81 (0.13) 0.54 (0.10) 0.88 (0.12) 0.64 (0.11) 0.96 (0.06) 0.93 (0.07)

5 0.17 (0.05) 0.14 (0.04) 0.27 (0.13) 0.19 (0.05) 0.55 (0.26) 0.47 (0.15)
200 10 0.32 (0.09) 0.24 (0.06) 0.46 (0.17) 0.30 (0.06) 0.96 (0.08) 0.73 (0.16)

20 0.62 (0.15) 0.36 (0.06) 0.66 (0.16) 0.43 (0.06) 0.93 (0.04) 0.94 (0.08)

5 0.13 (0.04) 0.13 (0.04) 0.19 (0.07) 0.16 (0.05) 0.32 (0.18) 0.37 (0.12)
300 10 0.24 (0.06) 0.18 (0.04) 0.36 (0.16) 0.24 (0.05) 0.85 (0.17) 0.59 (0.15)

20 0.48 (0.13) 0.28 (0.05) 0.55 (0.16) 0.35 (0.05) 0.92 (0.03) 0.84 (0.12)

5 0.11 (0.04) 0.11 (0.04) 0.21 (0.12) 0.14 (0.04) 0.22 (0.11) 0.31 (0.10)
400 10 0.21 (0.04) 0.16 (0.04) 0.31 (0.11) 0.21 (0.05) 0.66 (0.22) 0.51 (0.13)

20 0.31 (0.06) 0.25 (0.04) 0.49 (0.15) 0.29 (0.04) 0.98 (0.04) 0.76 (0.14)

www.jstatsoft.org/v07/i01
www.stat.nus.edu.sg/~staxyc
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FIG. 1. A typical data set of size 200 from Example 4.1 with p = 10 to show the size of estima-
tion error and its graphic performance. The upper two panels are plots of y against the true CS
directions, the lower two panels y against the estimated directions using dMAVE. The estimated
directions are respectively β̂1 = (0.42,0.64,0.44,0.45,−0.01,−0.07,0.02,−0.00,−0.08,0.07)�
and β̂2 = (−0.54,0.43,−0.57,0.43,0.01,−0.04,−0.01,0.07,−0.05,0.07)� with estimation error
0.21.

In model (4.1) the CS directions are hidden in a complicated structure and are
not easy to detect directly by the conditional regression mean function. When the
sample size is large (≥ 200) and p is not large (= 5), all the methods give accurate
estimates. As p increases, rMAVE performs not so well because the second direc-
tion is not captured in the regression mean function; SAVE and PHD also fail to
give accurate estimates. SIR performs much better in all the situations than SAVE
and PHD. dOPG has about the same performance as SIR. dMAVE is the best in all
situations among all the methods.

EXAMPLE 4.2. Now, consider the CS in conditional mean as well as the con-
ditional variance as in the model

Y = 2(X�β1)
d + 2 exp(X�β2)ε,(4.2)

where X = (x1, . . . , x10)
� with x1, . . . , x10 ∼ Uniform(−√

3,
√

3) and ε ∼ N(0,1)

are independent, β1 = (1,2,0,0,0,0,0,0,0,2)�/3 and β2 = (0,0,3,4,0,0,0,0,

0,0)�/5. For model (4.2), one CS direction is contained in the regression mean
and the other in the conditional variance. One typical data set with size 200 is
shown in Figure 2. Table 2 lists the calculation results for 200 replications.
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FIG. 2. A typical data set with n = 200 from Example 4.2 and its dMAVE estimation. The upper
two panels are plots of y against the true CS directions, the lower two panels y against the estimated
directions with estimation error 0.31.

Because rMAVE cannot detect the CS directions hidden in the conditional vari-
ance directly, it has very poor overall estimation performance as listed in Table 2.
If d = 1, that is, the regression mean function is monotonic, SIR works reasonably
well; if d = 2, the regression mean function is symmetric and SIR fails to find the
direction hidden in the regression mean. As a consequence, its performance is very
poor. The performances of SAVE and PHD are also far from satisfactory, though
they are applicable to the model theoretically. The proposed dOPG and dMAVE
perform very well and are better than the existing methods listed in Table 2.

TABLE 2
Mean (and standard deviation) of estimation errors for Example 4.2

d n dOPG dMAVE rMAVE SIR SAVE PHD

100 0.57 (0.15) 0.44 (0.12) 0.85 (0.13) 0.63 (0.15) 0.93 (0.08) 0.99 (0.08)
1 200 0.36 (0.08) 0.28 (0.06) 0.76 (0.16) 0.42 (0.09) 0.91 (0.12) 0.98 (0.07)

400 0.24 (0.05) 0.18 (0.04) 0.68 (0.15) 0.29 (0.06) 0.64 (0.16) 0.97 (0.07)

100 0.63 (0.19) 0.46 (0.16) 0.85 (0.16) 0.96 (0.09) 0.90 (0.06) 0.91 (0.11)
2 200 0.33 (0.10) 0.28 (0.06) 0.70 (0.18) 0.95 (0.07) 0.87 (0.11) 0.88 (0.11)

400 0.22 (0.05) 0.19 (0.04) 0.66 (0.19) 0.95 (0.09) 0.85 (0.12) 0.89 (0.11)
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EXAMPLE 4.3. In this example we demonstrate the consistency rates of the
estimation methods by checking how the estimation errors change with sample
size n. Consider the model

Y = x1

0.5 + (1.5 + x2)2 + x3(x3 + x4 + 1) + 0.1ε,(4.3)

where ε ∼ N(0,1) and X ∼ N(0, I10) are independent. Model (4.3) is a combina-
tion of the two examples in Li [22]. For this model, all the theoretical requirements
for the methods are satisfied. Therefore, it is fair to use the model to check their
consistency rates.

In the top panel in Figure 3 the proposed methods have much smaller estima-
tion errors than the inverse regression estimations. Because all the directions are
hidden in the regression mean function, it is not surprising that rMAVE has the
best performance. Multiplied by root-n, the errors should stay at a constant level
if the theoretical root-n consistency is applicable to the range of sample size. The
bottom panel suggests that the estimation errors of SIR and SAVE do not start to
show a root-n decreasing rate for sample sizes up to 1000, while PHD, rMAVE,
dOPG and dMAVE demonstrate a clear root-n consistency rate.

EXAMPLE 4.4. In our last simulation example, we consider a model with a
very complicated structure. Suppose (Xi, Yi), i = 1,2, . . . , n, are drawn indepen-
dently from the model Y = β�

1 X/2 + ε(1 − |β�
1 X|2)1/2, where (X, ε) satisfies

{X ∼ N(0, I10), ε ∼ N(0,1) : |β�
1 X| ≤ 1, |β�

2 X| ≤ 1,0.5 < (β�
1 X)2(1 − ε2) +

ε2 ≤ 1}, and β1 and β2 are defined in Example 4.1. The calculation results based
on 200 replications are listed in Table 3. Because of the complicated structure as
shown in Figure 4, the CS directions are not easy to estimate and observe directly.
However, with moderate sample size, the proposed methods can still estimate the
directions accurately. It is interesting to see that SAVE also works in this example.

Based on the simulations, we have the following observations. (1) The existing
methods (rMAVE, PHD, SIR and SAVE) fail in one way or another to estimate
the CS directions efficiently, while dOPG and dMAVE are efficient for all the ex-
amples. (2) dOPG and dMAVE demonstrate very good finite sample performance,
even a root-n rate of estimation efficiency, while some of the existing methods do
not show a clear root-n rate in the range of sample sizes investigated. (3) dOPG and
dMAVE are less sensitive to the number of covariates than PHD, SAVE and SIR.
Simulations not reported here also suggest that the asymmetric design of X has
less effect on dOPG and dMAVE than on the inverse regression estimation meth-
ods. (4) If the CS directions are all hidden in the regression mean function, rMAVE
is the best and should be used. Otherwise, dOPG and dMAVE are recommended.
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FIG. 3. The calculation results for Example 4.3 using different estimation methods. The lines are
the mean of estimation errors with different sample sizes and 200 replications. The top panel is the
plot of the errors against sample size; the bottom panel is the errors multiplied by root-n against
sample size.

5. Real data analysis.

EXAMPLE 5.1 (Cars data). This data was used by the American Statistical
Association in its second (1983) exposition of statistical graphics technology. The
data set is available at lib.stat.cmu.edu/datasets/cars.data. There are 406 observa-
tions on eight variables: miles per gallon (Y ), number of cylinders (X1), engine
displacement (X2), horsepower (X3), vehicle weight (X4), time to accelerate from
0 to 60 mph (X5), model year (X6) and origin of the car (1 = American, 2 =
European, 3 = Japanese).

http://lib.stat.cmu.edu/datasets/cars.data
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TABLE 3
Mean (and standard deviation) of estimation errors for Example 4.4

n dOPG dMAVE rMAVE SIR SAVE PHD

200 0.5909 (0.29) 0.5089 (0.30) 0.9411 (0.07) 0.8770 (0.12) 0.9242 (0.19) 0.9833 (0.05)
400 0.2117 (0.19) 0.1498 (0.10) 0.9573 (0.05) 0.8783 (0.13) 0.7677 (0.18) 0.9789 (0.03)
600 0.1148 (0.04) 0.1059 (0.03) 0.9725 (0.03) 0.8758 (0.13) 0.5357 (0.21) 0.9799 (0.03)
800 0.0876 (0.03) 0.0862 (0.02) 0.9744 (0.03) 0.8737 (0.14) 0.3657 (0.13) 0.9757 (0.04)

1000 0.0782 (0.02) 0.0779 (0.02) 0.9671 (0.04) 0.8819 (0.13) 0.2604 (0.06) 0.9789 (0.04)

Now we investigate the relation between the response variable Y and the co-
variates X = (X1, . . . ,X8)

�, where X1, . . . ,X6 are defined above, X7 = 1 if a car
is from America and 0 otherwise and X8 = 1 if it is from Europe and 0 otherwise.
Thus, (X7,X8) = (1,0), (0,1) and (0, 0) correspond to American cars, European
cars and Japanese cars, respectively. For ease of explanation, all covariates are
standardized separately. When applying dOPG to the data, the first four largest
eigenvalues are 21.1573, 1.6077, 0.2791 and 0.2447. Thus, we consider CS with
dimension 2. Based on dMAVE, the two directions (coefficients of X) are esti-
mated as β̂1 = (−0.33,−0.45,−0.45,−0.53,0.14,0.42,0.00,−0.02)� and β̂2 =

FIG. 4. A typical data set from Example 4.4 with n = 200 and its dMAVE estimation. The upper
three panels are plots of y against the true CS directions and y − x�β1/2 against the second direc-
tion; the lower three panels are plots of y against the estimated CS directions (with estimation error
0.32) and y − x�β̂1/2 against the second estimated direction.
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FIG. 5. The estimation results for Example 5.1 using dMAVE. The two panels are plots of Y against
the two estimated CS directions. The origins of cars are denoted by “·” for American cars, “×” for
European cars and “◦” for Japanese cars.

(0.00,0.15,−0.10,−0.23,−0.12,−0.17,−0.88,0.29)�. The plots of Y against
β̂�

1 X and β̂�
2 X are shown in Figure 5.

Based on the estimated CS directions and Figure 5, we have the following in-
sights to the data. The first direction highlights the common structure for cars of
all origins: miles per gallon (Y ) decreases with number of cylinders (X1), engine
displacement (X2), horsepower (X3) and vehicle weight (X4), and increases with
the time to accelerate (X5) and model year (X6). The second direction indicates
the difference between American cars and European or Japanese cars.

EXAMPLE 5.2 (Ground level ozone). Air pollution has a serious impact on
the health of plants and animals (including humans); see the report of the World
Health Organization (WHO) [29]. Substances not naturally found in the air or at
greater concentrations than usual are referred to as “pollutants.” The main pollu-
tants include nitrogen dioxide (NO2), carbon dioxide (CO), sulphur dioxide (SO2),
respirable particulates, ground-level ozone (O3) and others. Pollutants can be clas-
sified as either primary pollutants or secondary pollutants. Primary pollutants are
substances directly produced by a process, such as ash from a volcanic eruption or
the carbon monoxide gas from a motor vehicle exhaust. Secondary pollutants are
products of reactions among primary pollutants and other gases. They are not di-
rectly emitted and thus cannot be controlled directly. The main secondary pollutant
is ozone.

Next, we investigate the statistical relation between the level of ground-
level ozone and the levels of primary pollutants and weather conditions by
applying our method to pollution data observed in Hong Kong [(1994–1997)
www.stat.nus.edu.sg/%7Estaxyc/HongKongAirpollution.xls] and Chicago [(1995–
2000) www.ihapss.jhsph.edu/data/data.htm]. This investigation is of interest in
understanding how the secondary pollutant ozone is generated from the primary
pollutants and weather conditions. Let Y , N,S,P,T and H be the weekly av-
erage levels of ozone, nitrogen dioxide (NO2), sulphur dioxide (SO2), respirable

http://www.stat.nus.edu.sg/%7Estaxyc/HongKongAirpollution.xls
http://www.ihapss.jhsph.edu/data/data.htm
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TABLE 4
The estimated CS directions in Example 5.2

City Direction N S P T H N ∗ S N ∗ P N ∗ T

β1 0.10 −0.13 −0.06 −0.00 −0.00 0.06 0.29 0.19
Chicago β2 −0.10 −0.11 0.39 −0.25 −0.07 0.12 −0.15 0.09

β1 0.32 −0.15 0.23 0.10 −0.41 −0.07 0.20 0.42
Hong Kong β2 −0.04 −0.08 −0.12 0.18 0.19 −0.21 0.35 0.17

N ∗ H S ∗ P S ∗ T S ∗ H P ∗ T P ∗ H T ∗ H

β1 0.04 −0.18 0.27 −0.01 −0.06 0.36 0.77
Chicago β2 −0.51 0.46 −0.20 −0.21 −0.15 −0.16 0.32

β1 0.10 0.01 −0.05 −0.31 0.53 0.12 −0.14
Hong Kong β2 −0.52 −0.26 −0.18 0.42 0.22 −0.29 −0.19

particulates, temperature and humidity, respectively. To include the interaction
between primary pollutants and weather conditions into the model directly, we
further consider their cross-products resulting in 15 covariates altogether, denoted
by X. For ease of explanation, all covariates are standardized separately. For all
possible working dimensions, only the first two dimensions show clear relations
with Y . We further calculate the eigenvalues in dOPG. The largest four eigenvalues
are 10.78,2.93,2.11,1.70 for Chicago, and 6.89,1.24,0.69,0.52 for Hong Kong.
Now we consider dimension reduction with efficient dimension 2, although the
estimation of the number of dimensions needs further investigation. The estimates
for the first two directions are given in Table 4.

The plots of Y against the two estimated directions are shown in Figure 6. The
plots show strong similar patterns in the two separated cities. If we check the esti-
mated coefficients (directions), NO2 and particulates (or their interaction) are the
most important pollutants that affect the level of ozone. Temperature and humidity
and their interaction are the other important factors. The interactions of weather
conditions with NO2 and particulates also contribute to the variation of ozone lev-
els. These statistical conclusions give support to the chemical claim that ozone is
formed by chemical reactions between reactive organic gases and oxides of nitro-
gen in the presence of sunlight; see the WHO report [29].

6. Proofs.

6.1. Basic ideas of the proofs. The basic idea to prove the theorems is based
on the convergence of the algorithms and that the true dimension reduction space is
the attractor of the algorithms. We here give a more detailed outline for the proof of
Theorem 3.2. Suppose the estimate of B0 in an iteration of the dMAVE algorithm
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FIG. 6. The estimation results for Example 5.2 using dMAVE. The upper two panels are the levels
of ozone against the first two estimated CS directions in Hong Kong, the lower two panels are those
in Chicago.

is B(t). It follows from Step 2 that

b(t+1) = 
(B0) +
{

n∑
k,j,i=1

ρ
(t)
jk Kht

(
B�

(t)Xij

)
X

(t)
ijk

(
X

(t)
ijk

)�}−1

×
n∑

k,j,i=1

ρ
(t)
jk Kht

(
B�

(t)Xij

)
X

(t)
ijk(6.1)

× {
Hb,i(Yk) − a

(t)
jk − 
(B0)

�X
(t)
ijk

}
,

where X
(t)
ijk is defined in the algorithm. By the decomposition in Step 3, we obtain

the estimate B(t+1) in the next iteration. If the initial value B(1) is a consistent
estimator of B0, by Lemmas 6.3, 6.4 and 6.5 below, we will obtain a recurring
relation for the iterations as



(
B(t+1)

) − 
(B0) = �t

{


(
B(t)

) − 
(B0)
} + 	n,t ,

with |�t | < 1 and |	n,t | = o(1) almost surely when t ≥ 1. Therefore, the dimen-
sion reduction space is an attractor in the algorithm. This recurring relation is then
used to prove the convergence of the algorithm and the consistency of the final
estimator. To ensure the convergence of the algorithm, we need to consider consis-
tency with probability 1.
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The details of the proofs are organized as follows. In Section 6.2 we first list a
series of lemmas, Lemmas 6.1–6.5. Based on these lemmas, the theorems are then
proved. The proofs of Lemmas 6.1–6.5 are algebraic albeit complex calculations
based on Lemmas 6.6 and 6.7. They can be found in Xia [31] and are available
upon request. Lemmas 6.6 and 6.7 are two basic results used in the proof dealing
with uniform consistency. Their proofs are given in Section 6.3.

6.2. Proofs of the theorems. We first introduce notation. Let εb,i(y) =
Hb(Yi − y) − E(Hb(Yi − y)|Xi), DY ⊂ R be a compact interior support of Y ;
that is, for any v ∈ DY , there exists δ > 0 such that infy : |y−v|<δ fY (y) > 0. Sim-
ilarly, we can define a compact interior support DX for X. For B ⊂ {B :B�B =
Iq}, define δB = max{|B − B0| :B ∈ B}. For any index set Z and random
matrix An(z), we say An(z) = O(an|z ∈ Z), or An(z) = O(an) for simplic-
ity, if supz∈Z |An(z)|/an = O(1) almost surely. As usual, An = OP (an) indi-
cates that every term in An is O(an) in probability as n → ∞. Recall that
B0 = (β01, β02, . . . , β0q) and B = (β1, β2, . . . , βq). Let H

1,B
b,i (x) = gb(B

�
0 x, y) +

��gb(B
�
0 x, y)B�Xix , H

2,B
b,i (x) = ∑q

ι,κ=1 �2
ι,κgb(B

�
0 x, y)(β�

ι Xix)(β
�
κ Xix)/2 and

H
3,B
b,i (x) = ∑q

ι,κ,τ=1{�3
ι,κ,τ gb(B

�
0 x, y) (β�

ι Xix)(β
�
κ Xix)(β

�
τ Xix)}/6, where Xix =

Xi − x, �gb(v1, . . . , vq, y) is defined in Section 2 and

�2
ι,κgb(v1, . . . , vq, y) = ∂2

∂vι ∂vκ

gb(v1, . . . , vq, y) for ι, κ = 1,2, . . . , q,

and �3
κ,τ,ιgb is defined naturally. By the Taylor expansion of gb(B

�
0 Xi, y) at B�

0 x,
it follows from model (2.1) that

Hb,i(y) = H
1,B0
b,i (x)+H

2,B0
b,i (x)+H

3,B0
b,i (x)+εb,i(y)+O(|B�

0 Xix |4)(6.2)

almost surely. Let δmh = (nhm/ logn)−1/2, δmhb = (nhmb/ logn)−1/2 for any in-
teger m, δb = (nb/ logn)−1/2, δn = (logn/n)1/2 and rmhb = h2 + b4 + δb + δmh.
Let fB,f and fY be the density functions of B�X, X and Y , respectively. Again,
for simplicity, we write fB(x),μB(x) and wB(x) for fB(B�x),μB(B�x) and
wB(B�x), respectively; see also the definitions in Section 3. Let c, c0, c1, . . . , be
positive constants, where c may have different values at different places.

LEMMA 6.1 (Kernel smoother in the first iteration). Let(
axy

bxyh

)
=

{
n∑

i=1

Kh(Xix)

(
1

Xix/h

)(
1

Xix/h

)�}−1 n∑
i=1

Kh(Xix)

(
1

Xix/h

)
Hb,i(y).

Under assumptions (C1), (C2) and (C4), if h → 0, b → 0 and nhp+2b/ logn →
∞, then we have

axy = gb(B
�
0 x, y) + 1

2

q∑
κ=1

�2
κ,κgb(B

�
0 x, y)h2 + O(h3 + δphb|x ∈ DX,y ∈ DY ),
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bxy = B0 � gb(B
�
0 x, y) + {μ2pnh2f (x)}−1

n∑
i=1

Kh(Xix)Xixεb,i(y)

+ O(h2 + δphb|x ∈ DX,y ∈ DY ).

LEMMA 6.2 (Kernel smoother in dOPG). Define Dq = {D = B diag(λ1, . . . ,

λq)B
� + B̃ diag(λq+1, . . . , λp)B̃� : (B, B̃)�(B, B̃) = Ip , c1 > min(λ1, . . . , λq) ≥

c0 > 0, B ∈ B and max(λq+1, . . . , λp)/h2 ≤ en}. Let

SD
n (x) = n−1

n∑
i=1

Kh(D
1/2Xix)

(
1

Xix

)(
1

Xix

)�

and (
aD
xy

bD
xy

)
= {nSD

n (x)}−1
n∑

i=1

Kh(D
1/2Xix)

(
1

Xix

)
Hb,i(y).

Under assumptions (C1), (C2) and (C4), if nhq+2b/ logn → ∞, b → 0, h → 0,
δB/h → 0 and en → 0, then we have

aD
xy = gb(B

�
0 x, y) + 1

2

q∑
κ=1

�2
κ,κgb(B

�
0 x, y)h2

+ O(h3 + δqhb|x ∈ DX,y ∈ DY ,D ∈ Dq),

bD
xy = B0{�gb(B

�
0 x, y) + O(h2 + δqh + en)} + ED

n,0(x, y)

+ O(εqhb|x ∈ DX,y ∈ DY ,D ∈ Dq),

where εqhb = h4 + (h2 + δqh)δqhb + (h2 + δqhb)en + (h + δqhb/h)δB and

ED
n,0(x, y) = hp−q{nfB(x)}−1

×
q∏

τ=1

λ1/2
τ w̄+

B (x)

n∑
i=1

Kh(D
1/2Xix){μB(x) − Xi}εb,i(y).

LEMMA 6.3 (Kernel smoother in dMAVE). Let

�B
n (x) = n−1

n∑
i=1

Kh(B
�Xix)

(
1

B�Xix/h

)(
1

B�Xix/h

)�

and (
aB
xy

dB
xyh

)
= {n�B

n (x)}−1
n∑

i=1

Kh(B
�Xix)

(
1

B�Xix/h

)
Hb,i(y).
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Under assumptions (C1), (C2) and (C4), if nhqb/ logn → ∞, b → 0, h → 0 and
δB/h → 0, then

aB
xy = gb(B

�
0 x, y) + ��gb(B

�
0 x, y)(B0 − B)�νB(x) + 1

2

q∑
κ=1

�2
κ,κgb(B

�
0 x, y)h2

+ VB
1n(x, y) + O(h4 + δqhδqhb + hδB + δ2

B |x ∈ DX,y ∈ DY ,B ∈ B),

dB
xyh = �gb(B

�
0 x, y)h + MB

1n(x, y)h3 + VB
2n(x, y)

+ O(h4 + δqhδqhb + hδB + δ2
B |x ∈ DX,y ∈ DY ,B ∈ B),

where

VB
1n(x, y) = {1 + MB

2n(x,h)h}EB
n,1(x, y) + MB

3n(x,h)hEB
n,2(x, y),

VB
2n(x, y) = MB

4n(x)hEB
n,1(x, y) + {1 + MB

5n(x,h)h}EB
n,2(x, y),

MB
kn(x), k = 1,2, . . . ,5, are bounded continuous functions (details can be found

in the proofs) and

EB
n,1(x, y) = {nfB(x)}−1

n∑
i=1

Kh(B
�Xix)εb,i(y),

EB
n,2(x, y) = {nhfB(x)}−1

n∑
i=1

Kh(B
�Xix)B

�Xixεb,i(y).

LEMMA 6.4 (Denominator of dMAVE). Let ρ̂B
jk = ρ(f̂B(Xj ))ρ(f̂Y (Yk)),

where

f̂B(x) = n−1
n∑

i=1

Kh(B
�Xix), f̂Y (y) = n−1

n∑
i=1

Hb(Yi − y).

Let XB
ijk = dB

jk ⊗ Xij , where dB
jk = dB

XjYk
. Suppose (C1)–(C4) hold and nhq+2b/

logn → ∞, nb2/ logn → ∞, b → 0, h → 0 and δB/h → 0. We have{
n−3

n∑
k,j,i=1

ρ̂B
jkKh(B

�Xij )X
B
ijk(X

B
ijk)

�
}−1

= (Iq ⊗ B)LB
1 (Iq ⊗ B�)h−2 + (Iq ⊗ B)L2

+ L3(Iq ⊗ B�) + 1
2D+

B + O{(rqhb + δqhb)/h|B ∈ B},
where L1,L2 and L3 are constant matrices (details can be found in the proof) and
DB = ∫

ρ(fB(x))ρ(fY (y)) � gb(B
�
0 x, y) �� gb(B

�
0 x, y) ⊗ {νB(x)ν�

B(x)}f (x) ×
f (y) dx dy.
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LEMMA 6.5 (Numerator of dMAVE). Suppose conditions (C1)–(C4) hold. If
b → 0, h → 0, nhqb/ logn → ∞, nb2/ logn → ∞ and δB/h → 0, then

n−3
n∑

k,j,i=1

ρ̂B
jkKh(B

�Xij )X
B
ijk{Hb,i(Yk) − aB

jk − 
(B0)
�XB

ijk}

= DB

(

(B) − 
(B0)

) + �n(B0)

+ O{h4 + rqhbδqhb + δ2
qhb + δ2

n/b
2 + (δqhb/h + h)δB |B ∈ B},

where aB
jk = aB

XjYk
,�n(B0) = O(δn + δ2

qhb/h) almost surely and �n(B0) =
OP (n−1/2) with (Iq ⊗ B�

0 )�n(B0) = 0 and
√

n�n(B0)
D→ N(0,�0), where �0

is given in Theorem 3.2.

PROOF OF THEOREM 3.1. By Lemma 6.1, write

bxy = B0cn(x, y) + {μ2pnh2
0f (x)}−1

×
n∑

i=1

Kh0(Xix)Xixεb0,i(y) + B̃0O(h2
0 + δph0b0),

where (B0, B̃0) is a p × p orthogonal matrix and cn(x, y) = �gb(B
�
0 x, y) +

O(h2
0 + δph0b0). By Lemma 6.6, the second term on the right-hand side above

is O(δph0b0/h0). It follows from Step 2 in the dOPG algorithm that

�̂(1) = (B0, B̃0)Cn(B0, B̃0)
�+ n−3

n∑
i,j,k=1

(Sijk + S�
ijk)

(6.3)
+ O{(h2

0 + δph0b0)δph0b0/h0},
where �̂(1) and ρ

(0)
jk are defined in the algorithm, Sijk = ρ

(0)
jk {μ2ph2

0f (Xj )}−1

B0 � gb0(B
�
0 Xj,Yk)Kh0(Xij )X

�
ij εb0,i(Yk) and

Cn = n−2
n∑

j,k=1

ρ
(0)
jk

(
cn(Xj ,Yk)

O(h2
0 + δph0b0)

)(
cn(Xj ,Yk)

O(h2
0 + δph0b0)

)�

=
(

�
(1)
n O(h2

0 + δph0b0)

O(h2
0 + δph0b0) O(h4

0 + δ2
ph0b0

)

)
,

where �
(1)
n = n−2 ∑n

j,k=1 ρ
(0)
jk cn(Xj ,Yk)c

�
n (Xj ,Yk). By Lemma 6.6, we have

f̃
(0)
Y (y) = fY (y) + f ′′

Y (y)b2
0/2 + O(b4

0 + δb0 |y ∈ DY ), f̃ (0)(x) = f (x) + O(h2
0 +

δph0 |x ∈ DX). By the definition of ρ(·), we have ρ
(0)
xy = ρ(f (x))ρ̃b0(fY (y)) +

O(rph0b0 |x ∈ R
p, y ∈ R), where ρ̃b0(fY (y)) = ρ(fY (y)) + ρ′(fY (y))f ′′

Y (y)b2
0/2.
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Let

S̃ijk = ρ(f (Xj ))ρ̃b0(fY (Yk))B0 � gb0(B
�
0 Xj,Yk)

× {μ2ph2
0f (Xj )}−1Kh0(Xij )X

�
ij εb0,i(Yk).

By (C5) and Lemma 6.7, we have n−3 ∑n
i,j,k=1 S̃ijk = O{(δn+δ2

ph0b
+δ2

n/b
2
0)/h0}.

Thus,

n−3
n∑

i,j,k=1

Sijk = n−3
n∑

i,j,k=1

S̃ijk + O{rph0b0δph0b0h
−1
0 } = O

(
λ̃(1)

n

)
,(6.4)

where

λ̃(1)
n = δn/h0 + δ2

ph0b
/h0 + δ2

n/(b
2
0h0) + h4

0 + rph0b0δph0b0h
−1
0 .

By (C3) and the strong law of large numbers for U-statistics (cf. Hoeffding [17]),
�

(1)
n = ∫

ρ(f (x))ρ(fY (y)) � gb0(B
�
0 x, y) �� gb0(B

�
0 x, y)}f (x) fY (y) dx dy +

o(1) almost surely, which is of full rank asymptotically. Thus, its eigenvalues are
greater than a positive constant asymptotically. On the other hand, the eigenvalues
of the lower right principal submatrix in Cn are of order λ̃

(1)
n . Let λ

(1)
1 ≥ · · · ≥ λ

(1)
p

be the eigenvalues of �̂(1) and β
(1)
1 , . . . , β

(1)
p be the corresponding eigenvectors.

By the interlacing theorem (cf. Ando [1]), we have min{λ(1)
1 , . . . , λ

(1)
q } > c and

max{λ(1)
q+1, . . . , λ

(1)
p } = O(λ̃

(1)
n ). By (6.3) and (6.4), we have

�̂(1) = B0�
(1)
n B�

0 + O
(
δ
(1)
B

)
,(6.5)

where δ
(1)
B = rph0b0 + δph0b0 + δ2

ph0
/h2

0 + δn/h0 + δ2
n/(b

2
0h0). Let B(1) =

(β
(1)
1 , . . . , β

(q)
1 ). By Lemma 3.1 of Bai, Miao and Rao [2], we have

B(1)B
�
(1) − B0B

�
0 = O

(
δ
(1)
B

)
.(6.6)

Let t = 1. Consider the (t +1)st iteration. Let E (t)
n,0(x, y) = E

�̂(t)

n,0 (x, y) as defined in

Lemma 6.2. By the conditions on bandwidths in (C5), we have e
(1)
n

def= λ̃
(1)
n /h2

1 → 0

and δ
(1)
B /h1 → 0. By Lemma 6.2, similar to (6.3), we have from the algorithm

�̂(t+1) = (B0, B̃0)C
(t)
n (B0, B̃0)

�
(6.7)

+ n−2
n∑

j,k=1

{
S

(t)
jk + (

S
(t)
jk

)�} + O(εqht bt δqht bt ),

where S
(t)
jk = ρ

(t)
jk B0{�gbt (B

�
0 Xj,Yk) + O(h2 + δqht + e

(t)
n )}{E (t)

n,0(Xj ,Yk)}� and

C(t)
n =

(
�

(t)
n O(εqhb)

O(εqhb) O(ε2
qhb)

)
,
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where �
(t)
n = n−2 ∑n

j,k=1 ρ
(t)
jk �gbt (B

�
0 Xj,Yk)�� gbt (B

�
0 Xj,Yk)+O{h2

t +δqht +
e
(t)
n }. Note that B�

(t)E
(t)
n,0(Xj ,Yk) = 0, E (t)

n,0(Xj ,Yk) = O(δqht bt ) and B�
0 E (t)

n,0(Xj ,

Yk) = O(δqhtbt δ
(t)
B ). It follows that

n−2
n∑

j,k=1

{
S

(t)
jk + (

S
(t)
jk

)�}

= (B0, B̃0)

[
(B0, B̃0)

�n−3
n∑

j,k=1

{
S

(t)
jk + (

S
(t)
jk

)�}
(B0, B̃0)

]
(B0, B̃0)

�(6.8)

= (B0, B̃0)

(
0 C

(t)
12,n

(C
(t)
12,n)

� 0

)
(B0, B̃0)

� + O
(
δqhtbt δ

(t)
B

)
,

where C
(t)
12,n = n−2 ∑n

j,k=1 ρ
(t)
jk {�gbt (B

�
0 Xj,Yk) + O(h2

t + δqht + e
(t)
n )} ×

{E (t)
n,0(Xj ,Yk)}�B̃0. Similar to ρ

(0)
xy , we have ρ

(t)
jk = ρ̃

(t)
jk + O(rqht bt ), where ρ̃

(t)
jk =

ρ(fB0(Xj )){ρ(fY (Yk)) + ρ′(fY (Yk))f
′′
Y (Yk)b

2
t /2}. By (C5) and Lemma 6.7, we

have

C
(t)
12,n = n−2

n∑
j,k=1

ρ̃
(t)
jk � gbt (B

�
0 Xj,Yk)

{
E (t)

n,0(Xj ,Yk)
}�

B̃0

+ O
(
rqhtbt δqht bt + e(t)

n δqhtbt

)
(6.9)

= O
(
δn + δ2

qht bt
+ δ2

nb
−2
t + rqhtbt δqht bt + e(t)

n δqhtbt

)
.

By the strong law of large numbers for U-statistics, it follows that �
(t)
n = M0 +

o(1) almost surely, where M0 is defined in (C3). Let λ
(t+1)
1 ≥ · · · ≥ λ

(t+1)
p be the

eigenvalues of �̂(t+1) and B(t+1) the first q eigenvectors. By the same arguments

as for λ̃
(1)
n , it follows from (6.7), (6.8) and (6.9) that min{λ(t+1)

1 , . . . , λ
(t+1)
q } > c

and max{λ(t+1)
q+1 , . . . , λ

(t+1)
p } = O{λ̃(t+1)

n }, where λ̃
(t+1)
n = εqhtbt δqht bt + ε2

qhtbt
+

δqhtbt δ
(t)
B . Considering e

(t+1)
n ht+1

def= λ̃
(t+1)
n /ht+1, there exists a constant c1 which

does not depend on t such that

e(t+1)
n ht+1 ≤ c1

{
χ

(t)
0,n + χ

(t)
1,ne

(t)
n ht + χ

(t)
2,nδ

(t)
B

}
,(6.10)

where χ
(t)
0,n = (h4

t + h2
t δqht bt + δqht bt δqht )δqhtbt /ht+1, χ

(t)
1,n = (h2

t + δqhtbt )δqhtbt /

(htht+1) and χ
(t)
2,n = δqhtbt /ht+1. By (6.7) and (6.8), we write

�̂(t+1) = B0�
(t)
n B0 + B0C̃

(t)
12,nB̃

�
0

(6.11)
+ B̃0

(
C̃

(t)
12,nB0

)� + O
{
εqht bt + δqhtbt δ

(t)
B

}
,
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where C̃
(t)
12,n is the first term on the right-hand side of the first equation in

(6.9). By the same arguments as for (6.6), we have B(t+1)B
�
(t+1) − B0B

�
0 =

O{δqhtbt (δqhtbt + rqhtbt )+ (h2
t + rqhtbt )e

(t)
n + (h+ δqhb/h)δ

(t)
B + δn + δ2

n/b
2
t +h4

t }.
That is,

δ
(t+1)
B ≤ c2

{
χ

(t)
3,n + χ

(t)
4,ne

(t)
n ht + χ

(t)
5,nδ

(t)
B

}
(6.12)

for a constant c2 independent of t , where χ
(t)
3,n = δqht bt (δqhtbt + rqht bt ) + h4

t +
δ2
n/b

2
t + δn, χ

(t)
4,n = (h2

t + rqht bt )/ht and χ
(t)
5,n = ht + δqhtbt /ht . Note that ht and

bt decreasing with t , by (C5), we have δqhtbt /ht+1 ≤ δq�b̄/� → 0. It follows

that e
(t+1)
n = λ

(t+1)
n /h2

t+1 → 0, δ
(t+1)
B = O(rqhtbt ) and δ

(t+1)
B /ht+1 → 0. Iterat-

ing (6.10) and (6.12), it follows that

δ
(∞)
B = O

{
χ

(∞)
3,n + χ

(∞)
4,n χ

(∞)
0,n

} = O{�4 + δq�b̄(δq�b̄ + �
2 + b̄4) + δ2

n/b̄
2 + δn}

and e
(∞)
n = O(δq�b̄). This is the first part of Theorem 3.1. By (6.11) and the equa-

tions above, write

�̂(∞) = {B0 + ηn}�(∞)
n {B0 + ηn}� + O{�4 + δq�b̄(δq�b̄ + b̄4) + δ2

n/b̄
2},

where ηn = C̃
(∞)
12,n(�

(∞)
n )−1 = O{�4 + δq�b̄(δq�b̄ + b̄4) + δ2

n/b̄
2 + δn}. Note that

B�
(∞)w̄

+
B(∞)

(x) = 0 and, thus, B�
(∞)ηn = 0. We have �̃n

def= (B0 + ηn)
�(B0 + ηn) =

Iq + O(δ2
n). Let η̃n = {B0 + ηn}�̃−1/2

n . It follows that

�̂(∞) = η̃n�
(∞)
n η̃�

n + O{�4 + δq�b̄(δq�b̄ + b̄4) + δ2
n/b̄

2}.
Let B̂dOPG be the first q eigenvectors of �̂(∞). By Lemma 3.1 of Bai, Miao and
Rao [2], we have

B̂dOPGB̂�
dOPG − B0B

�
0

(6.13)
= B0η

�
n + ηnB

�
0 + O{�4 + δq�b̄(δq�b̄ + b̄4) + δ2

n/b̄
2}.

By Lemma 6.7 and (C5), we have

ηn = n−2
n∑

j,k=1

ρ(fB0(Xj ))ρ(fY (Yk))E
(∞)
n,0 (Xj ,Yk) �� gb(B

�
0 Xj,Yk)

(
�(∞)

n

)−1

+ O{rq�b̄δq�b̄}

= n−1
n∑

i=1

ρ(fB0(Xi))ρ(fY (Yi))w̄
+
B0

(Xi)νB0(Xi)ζ
�
i

(
�(∞)

n

)−1 + O{rq�b̄δq�b̄},

where ζi = �gb̄ (B�
0 Xi,Yi)fY (Yi) − E{�gb̄ (B�

0 Xi,Yi)fY (Yi)|B�
0 Xi}. Let ζ̃i =

�f (Yi |B�
0 Xi)fY (Yi) − E{�f (Yi |B�

0 Xi)fY (Yi)|B�
0 Xi}. As b → 0, we have
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�
(∞)
n → M0 almost surely, where M0 is defined in (C3). By calculating the mean

and covariance matrix, we have

n−1
n∑

i=1

ρ(fB0(Xi))ρ(fY (Yi))w̄
+
B0

(Xi)νB0(Xi)(ζ̃
�
i − ζ�

i ) = oP (n−1/2).

It follows from the two equations above and the conditions in the theorem for the
bandwidths that

ηn = n−1
n∑

i=1

ρ(fB0(Xi))ρ(fY (Yi))w̄
+
B0

(Xi)νB0(Xi)ζ̃
�
i M−1

0 + oP (n−1/2).(6.14)

After vectorizing ηn, the second part of Theorem 3.1 follows from (6.13), (6.14)
and the central limit theorem. �

PROOF OF THEOREM 3.2. Consider the initial estimator B(1) in (6.6). Let
Q̃ = B�

(1)B0. For simplicity, we assume limn→∞ Q̃ = Iq ; otherwise, we may use

the basis B0Q̃ and consider the expansion in Lemmas 6.3, 6.4 and 6.5 at (B0Q̃)�x.
Let δ̃

(t)
B be the consistency rate of the estimator in the t ′th iteration. Write 
(B0) =

(Iq ⊗ B0)
(Iq). By the definition of DB in Lemma 6.4, it follows that

(Iq ⊗ B)�DB = 0,

Iq ⊗ B = Iq ⊗ B0 + O(δB),(6.15)

(Iq ⊗ B0)
��n(B0) = 0.

By the definition of the Moore–Penrose inverse, we have D+
B DB = Iq ⊗ (B̃B̃�),

where (B, B̃) is a p × p orthogonal matrix. By Lemmas 6.4, 6.5 and (6.1), for
every B(t) in B = {B : |B − B0| ≤ δ̃

(t)
B }, if δ̃

(t)
B /ht → 0 we have

b(t+1) = (Iq ⊗ B0)
{

(Iq) + O

(
c(t)
n

)}
+ 1

2�(t)

{


(
B(t)

) − 
(B0)
} + 1

2D+
(t)�n(B0)(6.16)

+ O
{
�t + (ht + δqht bt /ht )δ̃

(t)
B

}
,

where �t = h4
t + (h2

t + b4
t + δqht bt )δqhtbt + δ2

n/b
2
t , c

(t)
n = {�t + (δqht bt /ht +

ht )δ̃
(t)
B }/h2

t , D(t) = DB(t)
and �(t) = Iq ⊗ (B̃(t)B̃

�
(t)) = � + δ̃

(t)
B , where � =

Iq ⊗ (B̃0B̃
�
0 ) is a projection matrix and (B0, B̃0) is a p × p orthogonal matrix.

We have

M
(
b(t+1)) = B0�

(t)
n + 1

2M
(
�

{


(
B(t)

) − 
(B0)
}) + 1

2M
(
D+

(t)�n(B0)
)

+ O
{
�t + (ht + δqhtbt /ht )δ̃

(t)
B

}
,
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where �
(t)
n = Iq + O(c

(t)
n ) and M(·) is defined in Section 2.2. Note that

�̃(t+1)
n

def= {
M

(
b(t+1))}�

M
(
b(t+1))

= (
�(t)

n

)2 + O
{
δ
(t)
B + δ̃n + �t + (ht + δqhtbt /ht )δ̃

(t)
B

}
,

where δ̃n = δn + δ2
qht bt

/ht . If c
(t)
n = o(1) almost surely, then by Step 3,

B(t+1) = B0 + 1
2M

(
�

{


(
B(t)

) − 
(B0)
}) + 1

2M
(
D+

(t)�n(B0)
)

+ O
{
�t + (ht + δqhtbt /ht )δ̃

(t)
B

}
(6.17)

= B0 + 1
2M

(
�

{


(
B(t)

) − 
(B0)
})

+ O
{
δ̃n + �t + (ht + δqht bt /ht )δ̃

(t)
B

}
.

By (C5) and (6.6), we have δqht bt /h2
t ≤ δq�b̄/�

2 → 0, δ
(1)
B /h1 → 0 and c

(1)
n → 0

almost surely. Thus, (6.17) holds for t = 1. By assumption (C5), it follows that
δ̃
(2)
B /h2 = o(1) and c

(2)
n = o(1) almost surely. Thus, (6.17) holds for t = 2. Iterat-

ing the formula, we have

δ̃
(∞)
B = O(�∞ + δ̃n) = O{�4 + (�2 + b̄4 + δq�b̄)δq�b̄ + δ̃n}.

A more detailed derivation was given in Xia, Tong and Li [32]. Therefore, the
first part of Theorem 3.2 follows immediately. By the first equation of (6.17) with
t = ∞ and Lemma 6.5, we have

B(∞) − B0 = 1
2M

(
�

{


(
B(∞)

) − 
(B0)
}) + 1

2M
(
D+

(∞)�n(B0)
)

+ OP {�4 + (�2 + b̄4 + δq�b̄)δq�b̄}.
Multiplying both sides by B�

0 , by (6.15), we have

B�
0 B(∞) − I = OP {�4 + (�2 + b̄4 + δq�b̄)δq�b̄}.

It follows that

B(∞)B
�
(∞)B0 − B0 = 1

2M
(
�

{


(
B(∞)

) − 
(B0)
}) + 1

2M
(
D+

(∞)�n(B0)
)

+ OP {�4 + (�2 + b̄4 + δq�b̄)δq�b̄}.
Note that �D+

(∞) = D+
(∞) + OP (δ̃

(∞)
B ). We have



(
B(∞)B

�
(∞)B0

) − 
(B0) = D+
(∞)�n(B0) + OP {�4 + (�2 + b̄4 + δq�b̄)δq�b̄}.

This is the second part of Theorem 3.2. �
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6.3. Auxiliaries.

LEMMA 6.6. Suppose mn(χ,Z),n = 1,2, . . . , are measurable functions
of Z with index χ ∈ R

d , where d is an integer, such that (I) |mn(χ,Z)| ≤
M(Z) with E(Mr(Z)) < ∞ for some r > 2; (II) supχ E|mn(χ,Z)|2 < an; and
(III) |mn(χ,Z) − mn(χ

′,Z)| ≤ |χ − χ ′|α1nα2G(Z) with some α1, α2 > 0 and
E|G(Z)| < ∞. Suppose {Zi, i = 1, . . . , n} is a random sample from Z. If an =
cn−δ with 0 ≤ δ < 1 − 2/r and c > 0, then for any positive α0 we have

sup
|χ |≤nα0

∣∣∣∣∣n−1
n∑

i=1

{mn(χ,Zi) − Emn(χ,Zi)}
∣∣∣∣∣ = O{(an logn/n)1/2}

almost surely.

PROOF. The “continuity argument” approach is used here. See, for exam-
ple, Mack and Silverman [25] and Härdle, Hall and Ichimura [14]. Note that

Dn
def= {|χ | ≤ nα0} is bounded and its Borel measure is less than c1n

α0d for some
constant c1. There are nα4 (α4 > α0d + (1 + α2)d/α1) balls Bnk

centered at χnk
,

1 ≤ k ≤ nα4 , with diameter less than c2n
−(1+α2)/α1 , such that Dn ⊂ ⋃

1≤k≤nα4 Bnk
.

It follows that

sup
χ∈Dn

∣∣∣∣∣1

n

n∑
i=1

{mn(χ,Zi) − Emn(χ,Zi)}
∣∣∣∣∣

≤ max
1≤k≤nα4

∣∣∣∣∣1

n

n∑
i=1

{mn(χnk
,Zi) − Emn(χnk

,Zi)}
∣∣∣∣∣

+ max
1≤k≤nα4

sup
χ∈Bnk

∣∣∣∣∣1

n

n∑
i=1

[{mn(χ,Zi) − mn(χnk
,Zi)}(6.18)

− E{mn(χ,Zi) − mn(χnk
,Zi)}]

∣∣∣∣∣
def= max

1≤k≤nα4
|Rn,k,1| + max

1≤k≤nα4
sup

χ∈Bnk

|Rn,k,2|.

By condition (III) and the definition of Bnk
, we have

max
1≤k≤nα4

sup
χ∈Bnk

|mn(χ,Zi) − mn(χnk
,Zi)| ≤ max

1≤k≤nα4
sup

χ∈Bnk

nα2 |χ − χnk
|α1G(Zi)

≤ c3n
−1G(Zi).

By the strong law of large numbers, we have

max
1≤k≤nα4

sup
χ∈Bnk

|Rn,k,2| ≤ c4n
−2

n∑
i=1

{G(Zi) + EG(Zi)} = O(n−1)(6.19)
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almost surely. Let Tn = (nan/ logn)1/2, mo
n(χnk

,Zi) = mn(χnk
,Zi)I {|M(Zi)| ≥

Tn} and mI
n(χnk

,Zi) = mn(χnk
,Zi) − mo

n(χnk
,Zi). Write

Rn,k,1 = 1

n

n∑
i=1

[mo
n(χnk

,Zi) − E{mo
n(χnk

,Zi)}] + 1

n

n∑
i=1

ξnk,i ,(6.20)

where ξnk,i = mI
n(χnk

,Zi) − E{mI
n(χnk

,Zi)}. By truncation, it follows that

E|mo
n(χnk

,Zi)| ≤ T −r+1
n E|M(Zi)|r .

If an = cn−δ with 0 ≤ δ < 1 − 2/r , we have

n−1

∣∣∣∣∣
n∑

i=1

Emo
n(χnk

,Zi)

∣∣∣∣∣ ≤ E|M(Z1)|rT −r+1
n = o({an log(n)/n}1/2).(6.21)

Again by truncation, we have
n∑

i=1

|mo
n(χnk

,Zi)| ≤
n∑

i=1

|M(Zi)|I (|M(Zi)| ≥ Tn

)

≤ T −r+1
n

n∑
i=1

|M(Zi)|r I (|M(Zi)| ≥ Tn

)
.

For fixed T , by the strong law of large numbers, we have

n−1
n∑

i=1

|M(Zi)|r I (|M(Zi)| ≥ T
) → E

{|M(Z1)|r I (|M(Z1)| ≥ T
)}

almost surely. The right-hand side above is dominated by E{|M(Zi)|r} and → 0
as T → ∞. Note that Tn increases to ∞ with n. For large n such that Tn > T , we
have

Cn
def= n−1

n∑
i=1

|M(Zi)|rI (|M(Zi)| ≥ Tn

) ≤ n−1
n∑

i=1

|M(Zi)|r I (|M(Zi)| ≥ T
) → 0

almost surely as T → ∞. It follows that

max
1≤k≤nα4

n−1

∣∣∣∣∣
n∑

i=1

mo
n(χnk

,Zi)

∣∣∣∣∣ ≤ CnT
−r+1
n = o{(an logn/n)1/2}(6.22)

almost surely. By condition (II), we have

max
1≤k≤nα4

Var

(
n∑

i=1

ξnk,i

)
≤ n max

1≤k≤nα4
E{mI

n(χnk
,Z1)}2

≤ n max
1≤k≤nα4

E{mn(χnk
,Z1)}2(6.23)

≤ c5nan
def= N1.
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By the condition on an and the definition of ξnk,i , we have

max
1≤k≤nα

|ξnk,i | ≤ c6Tn = c6(nan/ logn)1/2 def= N2.(6.24)

Let N3 = c7(nan logn)1/2 with c2
7 > 2(α4 +2)(c5 + c6c7). By Bernstein’s inequal-

ity (cf. de la Peña [9]), we have from (6.23) and (6.24) that

P

(∣∣∣∣∣
n∑

i=1

ξnk,i

∣∣∣∣∣ > N3

)
≤ 2 exp

( −N2
3

2(N1 + N2N3)

)

≤ 2 exp{−c2
7 logn/(2c5 + 2c6c7)}

≤ c8n
−α4−2.

It follows that
∞∑

n=1

Pr

(
max

1≤k≤nα4

∣∣∣∣∣
n∑

i=1

ξnk,i

∣∣∣∣∣ ≥ N3

)

(6.25)

≤
∞∑

n=1

nα4 max
1≤k≤nα4

Pr

(∣∣∣∣∣
n∑

i=1

ξnk,i

∣∣∣∣∣ ≥ N3

)
< ∞.

By the Borel–Cantelli lemma (cf. Chow and Teicher [4], page 60), we have

max
1≤k≤nα4

∣∣∣∣∣
n∑

i=1

ξnk,i

∣∣∣∣∣ = O(N3)(6.26)

almost surely. Combining (6.20), (6.21), (6.22) and (6.26), we have

max
1≤k≤nα4

|Rn,k,1| = O{(an log(n)/n)1/2}(6.27)

almost surely. Lemma 6.6 follows from (6.18), (6.19) and (6.27). �

For any function G(Xi,Yi,Xj , Yj ,Xk,Yk) [or G(Xj , Yj ,Xk,Yk)], we intro-
duce a projection operator Ek as follows:

EkG(Xi,Yi,Xj ,Yj ,Xk,Yk) = E{G(Xi,Yi,Xj ,Yj ,Xk,Yk)|Xi,Yi,Xj ,Yj }.
LEMMA 6.7. Let A = {A :A�A = Iκ} with 1 ≤ κ ≤ p. Suppose g0(y), g1(x),

g2(x) are bounded continuous functions. If conditions (C2) and (C4) hold with B

replaced by A for all A ∈ A, then

n−3
n∑

i,j,k=1

Kh(A
�Xij )g1(Xi)g2(Xj )g0(Yk) � gb(B

�
0 Xj,Yk)εb,i(Yk)

= n−1
n∑

i=1

EjEk{Kh(A
�Xij ) � gb(B

�
0 Xj,Yk)εb,i(Yk)} + O(ςκhb|A ∈ A),
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where ςκhb = δ3
nh

−κb−2 + δ2
κhb + δ2

nb
−2 and the first term on the right-hand side

is O(δn).

PROOF. For easy exposition, we consider gk ≡ 1, k = 0,1,2 only. Let �n(A)

be the left-hand side of the equation in the lemma. Let ϕK(s) = (2π)−κ ×∫
exp(ıs�u)K(u)du and ϕH (t) = (2π)−1 ∫

exp(ıtv)H(v) dv be the Fourier trans-
formations, where ı is the imaginary unit. It follows from the inverse Fourier trans-
formation that gb(u, y) = b−1 ∫

ϕH (t ′)e−ıt ′y/bE{eıt ′Y/b| B�
0 X = u}dt ′. Thus,

�gb(B
�
0 Xj,Yk) = b−1

∫
ϕH (t ′) � g̃b(B

�
0 Xj)e

−ıt ′Yk/b dt ′,(6.28)

where �g̃b(u) = ∂E(eıt ′Y/b|B�
0 X = u)/∂u. We have

�n(A) = 1

n3b

∫
ϕH (t ′)

n∑
i,j,k=1

{Kh(A
�Xij ) � g̃b(B

�
0 Xj)

− Ej [Kh(A
�Xij ) � g̃b(B

�
0 Xj)]}

× {εb,i(Yk)e
−ıt ′Yk/b − Ek[εb,i(Yk)e

−ıt ′Yk/b]}dt ′

+ 1

n2b

∫
ϕH (t ′)

n∑
i,k=1

Ej [Kh(A
�Xij ) � g̃b(B

�
0 Xj)]

× {εb,i(Yk)e
−ıt ′Yk/b − Ek[εb,i(Yk)e

−ıt ′Yk/b]}dt ′
(6.29)

+ 1

n2b

∫
ϕH (t ′)

n∑
i,j=1

Ek[εb,i(Yk)e
−ıt ′Yk/b]{Kh(A

�Xij ) � g̃b(B
�
0 Xj)

− Ej [Kh(A
�Xij ) � g̃b(B

�
0 Xj)]}dt ′

+ 1

nb

∫
ϕH (t ′)

n∑
i=1

Ej [Kh(A
�Xij ) � g̃b(B

�
0 Xj)]

× Ek[εb,i(Yk)e
−ıt ′Yk/b]dt ′

def= �n,1(A) + �n,2(A) + �n,3(A) + �n,4(A).

By inverse Fourier transformation, it follows that Kh(A
�Xij ) = h−κ

∫
ϕK(s) ×

e−ıs�A�Xij /h ds and Hb(Yi − Yk) = b−1 ∫
ϕH (t)e−ıt (Yi−Yk)/b dt . Thus,

�n,1(A) = 1

n3hκb2

∫ 3∏

=1

n∑
i=1

m
,n(A, s, t, t ′,Xi, Yi)ϕK(s)ϕH (t)ϕH (t ′) ds dt dt ′,
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where

m1,n(A, s, t, t ′,Xi, Yi) = e−ıs�A�Xi/h � g̃b(B
�
0 Xi)

− E[e−ıs�A�Xi/h � g̃b(B
�
0 Xi)],

m2,n(A, s, t, t ′,Xi, Yi) = eı(t−t ′)Yi/b − E
[
eı(t−t ′)Yi/b

]
and

m3,n(A, s, t, t ′,Xi, Yi) = e−ıtYi/b − E(e−ıtYi/b|Xi).

By (C2), we have that | � g̃b(u)| ≤ ∫ | � f0(y|u)|dy is bounded. For any r > 2,
it follows that supt ′ E{�g̃b(B

�
0 Xi)}r ≤ c and that

sup
A,s,t,t ′

E|m
,n(A, s, t, t ′,Xi, Yi)|r ≤ c, 
 = 1,2,3,

where c is a finite constant. For any α0 > 0, let D ′
n = {(t, t ′, s) : |t | ≤ nα0, |t ′| ≤

nα0, |s| ≤ nα0}. By taking χ = (A, t, t ′, s) and an = c, we have from Lemma 6.6,

sup
A∈A,(t,t ′,s)∈D ′

n

n−1

∣∣∣∣∣
n∑

i=1

m
,n(A, s, t, t ′,Xi, Yi)

∣∣∣∣∣ = O(δn), 
 = 1,2,3,(6.30)

almost surely. On the other hand, |m
,n(A, s, t, t ′,Xi, Yi)| is bounded. Thus,

sup
A∈A,(t,t ′,s)

n−1

∣∣∣∣∣
n∑

i=1

m
,n(A, s, t, t ′,Xi, Yi)

∣∣∣∣∣ = O(1), 
 = 1,2,3.(6.31)

By (C4), the Fourier transformation functions ϕK(·) and ϕH (·) are absolutely in-
tegrable; see Chung [5], page 166. We can choose α0 such that∫

|s|>nα0
|ϕK(s)|ds = O(δ3

n),

∫
|t |>nα0

|ϕH (t)|dt < O(δ3
n).(6.32)

Partitioning the integration region in �n,1(A) into two parts, we have from (6.30)–
(6.32) that

sup
A∈A

|�n,1(A)| ≤ 1

n3hκb2

∫
(s,t,t ′)∈D ′

n

3∏

=1

sup
A∈A

∣∣∣∣∣
n∑

i=1

m
,n(A, s, t, t ′,Xi, Yi)

∣∣∣∣∣
× |ϕK(s)ϕH (t)ϕH (t ′)|ds dt dt ′

+ 1

n3hκb2

∫
(s,t,t ′)/∈D ′

n

3∏

=1

sup
A∈A

∣∣∣∣∣
n∑

i=1

m
,n(A, s, t, t ′,Xi, Yi)

∣∣∣∣∣
× |ϕK(s)ϕH (t)ϕH (t ′)|ds dt dt ′

= (hκb2)−1O(δ3
n)

∫
|ϕK(s)ϕH (t)ϕH (t ′)|ds dt dt ′(6.33)
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+ (hκb2)−1O(1)

∫
(s,t,t ′)/∈D ′

n

|ϕK(s)ϕH (t)ϕH (t ′)|ds dt dt ′

= O(δ3
nh

−κb−2)

almost surely. Let g̃(Xi) = Ej [Kh(A
�Xij ) � g̃b(B

�
0 Xj)]. It is easy to see that

g̃(Xi) = O(1) almost surely. Applying the inverse Fourier transformation to
εb,i(Yk) and using similar arguments leading to (6.33), we have

sup
A∈A

|�n,2(A)| = O(δ2
nb

−2)(6.34)

almost surely. Applying the inverse Fourier transformation to Kh(A
�Xij ), similar

to (6.33), we have

sup
A∈A

|�n,3(A)| = O(δ2
nh

−κb−1)(6.35)

almost surely. By (6.28), we have

�n,4(A) = n−1
n∑

i=1

EjEk{Kh(A
�Xij ) � gb(B

�
0 Xj,Yk)εb,i(Yk)}.

By Lemma 6.6, we have

sup
A∈A

�n,4(A) = O(δn)(6.36)

almost surely. Finally, Lemma 6.7 follows from (6.33)–(6.36) and (6.29). �
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